Skip to main content
eScholarship
Open Access Publications from the University of California

Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

Abstract

Spent nuclear fuel contains fissionable materials (235U, 239Pu, 241Pu, etc.). To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, BoralTM, MetamicTM, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion- Resistant Material (HPCRM)1 can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous – an essential property for corrosion resistance – and that the boron has to be homogenously distributed in the HPCRM qualify the material to be a neutron poison.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View