Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Genome-Wide Association Study for Anthracycline-Induced Congestive Heart Failure

Abstract

Purpose

Anthracycline-induced congestive heart failure (CHF) is a rare but serious toxicity associated with this commonly employed anticancer therapy. The ability to predict which patients might be at increased risk prior to exposure would be valuable to optimally counsel risk-to-benefit ratio for each patient. Herein, we present a genome-wide approach for biomarker discovery with two validation cohorts to predict CHF from adult patients planning to receive anthracycline.

Experimental design

We performed a genome-wide association study in 3,431 patients from the randomized phase III adjuvant breast cancer trial E5103 to identify single nucleotide polymorphism (SNP) genotypes associated with an increased risk of anthracycline-induced CHF. We further attempted candidate validation in two independent phase III adjuvant trials, E1199 and BEATRICE.

Results

When evaluating for cardiologist-adjudicated CHF, 11 SNPs had a P value <10-5, of which nine independent chromosomal regions were associated with increased risk. Validation of the top two SNPs in E1199 revealed one SNP rs28714259 that demonstrated a borderline increased CHF risk (P = 0.04, OR = 1.9). rs28714259 was subsequently tested in BEATRICE and was significantly associated with a decreased left ventricular ejection fraction (P = 0.018, OR = 4.2).

Conclusions

rs28714259 represents a validated SNP that is associated with anthracycline-induced CHF in three independent, phase III adjuvant breast cancer clinical trials. Clin Cancer Res; 23(1); 43-51. ©2016 AACR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View