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ABSTRACT

We study how the market prices the default and liquidity risks incor-
porated into one of the most important credit spreads in the financial
markets–interest rate swap spreads. Our approach consists of jointly
modeling the Treasury, repo, and swap term structures using a gen-
eral five-factor affine credit framework and estimating the parameters
by maximum likelihood. We find that the credit spread is driven by
changes in a persistent liquidity process and a rapidly mean-reverting
default intensity process. Although both processes have similar volatili-
ties, we find that the credit premium priced into swap rates is primarily
compensation for liquidity risk. The term structure of liquidity premia
increases steeply with maturity. In contrast, the term structure of de-
fault premia is almost flat. However, both liquidity and default premia
vary significantly over time.



1. INTRODUCTION

One of the most fundamental issues in finance is how the market compensates investors
for bearing credit risk. Events such as the flight to quality that led to the hedge fund
crisis of 1998 demonstrate that changes in the willingness to bear credit risk can have
dramatic effects on the financial markets. Furthermore, these events indicate that
variation in credit spreads may reflect changes in both perceived default risk and in
the relative liquidity of bonds.

This paper studies the risk premia incorporated into what is rapidly becoming
one of the most important credit spreads in the financial markets–interest rate swap
spreads. Since swap spreads represent the difference between swap rates and Trea-
sury bond yields, they reflect the difference in the default risk of the financial sector
quoting Libor rates and the U.S. Treasury. In addition, swap spreads may include
a significant liquidity component if the relevant Treasury bond trades special in the
repo market. Thus, swap spreads represent an important data set for examining how
both default and liquidity risks influence security returns. The importance of swap
spreads derives from the dramatic recent growth in the notional amount of interest
rate swaps outstanding relative to the size of the Treasury bond market. For exam-
ple, the total amount of Treasury debt outstanding at the end of June 2003 was $6.6
trillion. In contrast, the Bank for International Settlements (BIS) estimates that the
total notional amount of interest rate swaps outstanding at the end of June 2003 was
$95.0 trillion, representing nearly 15 times the amount of Treasury debt.

Since swap spreads are fundamentally credit spreads, our approach consists of
jointly modeling the Treasury, repo, and swap term structures using the reduced-form
credit framework of Duffie and Singleton (1997, 1999). The liquidity component in
swap spreads is identified from the difference between general collateral government
repo rates (which can be viewed essentially as riskless rates) and yields on highly-
liquid on-the-run Treasury bonds. The default component in swap spreads can then
be identified from the difference between swap and repo rates. Estimating all three
curves jointly allows us to capture the interactions among the term structures. To
capture the rich dynamics of the Treasury, repo, and swap curves, we use a five-factor
affine term structure model that allows the swap spread to be correlated with the
riskless rate. In addition, our specification allows market prices of risk to vary over
time to reflect the possibility that the willingness of investors to bear default and
liquidity risk may change. We estimate the parameters of the model by maximum
likelihood. The data for the study span nearly the full history of the swap market.
We show that both the swap and Treasury term structures are well described by the
five-factor affine model.
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The results show that the credit spread for swaps has both significant liquidity
and default risk components. On average, the default risk component is about 31 basis
points, while the liquidity risk component is about 7 basis points. The default risk
component is uniformly positive, has frequent spikes, and is rapidly mean reverting.
In contrast, the liquidity risk component is very persistent, was near zero for much of
the 1990s, but has increased dramatically in recent years. The volatilities of the two
components are roughly similar throughout the sample period. Both the liquidity and
default risk components are positively correlated with the level of interest rates. The
results also suggest that little of the swap spread is attributable to tax effects.

We then examine the implications of the data for the market prices of liquidity
and default risk. Consistent with previous research, we find that there are significant
time-varying term premia embedded in Treasury bond prices. We also find that there
is a sizable credit premium built into the swap curve. Surprisingly, however, this credit
premium is almost entirely compensation for the variation in the liquidity component
of the spread; the risk of changes in the probability of default is virtually unpriced by
the market. For example, the average credit premium in five-year zero-coupon swaps
is 26 basis points, consisting of a liquidity premium of 29 basis points and a default
premium of −3 basis points. On average, the term structure of liquidity premia is
positive and steeply increasing with maturity. In contrast, the average term structure
of default risk premia is flat at a level near or slightly below zero. Both the default
and liquidity premia vary significantly through time and occasionally take on negative
values during the sample period.

A number of other papers have also focused on the determinants of swap spreads.
In an important recent paper, Duffie and Singleton (1997) apply a reduced-form credit
modeling approach to the swap curve and examine the properties of swap spreads.
Our results support their finding that both default risk and liquidity components are
present in swap spreads. He (2000) uses a multi-factor affine term structure frame-
work to model the Treasury and swap curves simultaneously, but does not estimate
the model. Other research on swap spreads includes Sun, Sundaresan, and Wang
(1993), Lang, Litzenberger, and Liu (1998), Collin-Dufresne and Solnik (2001), Grin-
blatt (2001), Eom, Subramanyam, and Uno (2002), Huang, Neftci, and Jersey (2003),
Kambhu (2004), and Afonso and Strauch (2004). Our paper differs in a fundamental
way from this literature since by jointly modeling and estimating the Treasury, repo,
and swap curves, our approach allows us to identify both the default and liquidity
components of the credit spread embedded in swap rates. Furthermore, to our knowl-
edge, this paper is the first to provide direct estimates of both the liquidity and default
risk premia in the swap market.

The remainder of this paper is organized as follows. Section 2 explains the frame-
work used to model the Treasury, repo, and swap term structures. Section 3 describes
the data. Section 4 discusses the estimation of the model. Section 5 presents the
empirical results. Section 6 summarizes the results and makes concluding remarks.
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2. MODELING SWAP SPREADS

To understand how the market prices credit risk over time, we need a framework for
estimating expected returns implied by the swap and Treasury term structures. In this
section, we use the Duffie and Singleton (1997, 1999) credit modeling approach as the
underlying framework for analyzing the behavior of swap spreads. In particular, we
jointly model the Treasury, repo, and swap term structures using a five-factor affine
framework and estimate the parameters of the model by maximum likelihood.1

Recall that in the Duffie and Singleton (1997, 1999) framework, the value D(t, T )
of a liquid riskless zero-coupon bond with maturity date T can be expressed as

D(t, T ) = EQ exp −
T

t

rs ds , (1)

where rt denotes the instantaneous riskless rate and the expectation is taken with
respect to the risk-neutral measure Q rather than the objective measure P . Assume
that there are also illiquid riskless zero-coupon bonds in the market. This framework
can be extended to show that the price A(t, T ) of an illiquid riskless zero-coupon bond
can be expressed as

A(t, T ) = EQ exp −
T

t

rs + γs ds , (2)

where γt is an instantaneous liquidity spread (or perhaps more precisely, an illiquidity
spread).2 Finally, default is modeled as the realization of a Poisson process with an
intensity that may be time varying. Under some assumptions about the nature of
recovery in the event of default, the value of a risky zero-coupon bond C(t, T ) can be
expressed in the following form

C(t, T ) = EQ exp −
T

t

rs + γs + λs ds . (3)

1There are many recent examples of affine credit models. A few of these are Duffee
(1999), He (2000), Duffie and Liu (2001), Collin-Dufresne and Solnik (2001), Duffie,
Pedersen, and Singleton (2003), Huang and Huang (2003), Longstaff, Mithal, and Neis
(2004), and Berndt, Douglas, Duffie, Ferguson, and Schranz (2004).
2This approach follows Duffie and Singleton (1997) who allow for Treasury cash flows
to be discounted at a lower rate than non-Treasury cash flows, where the difference is
due to a convenience yield process. Our approach accomplishes the same by adding a
spread to the discount rate applied to non-Treasury cash flows.
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where λt is the default intensity process. This default intensity process can also be
thought of as the product of the time-varying Poisson intensity and the fraction of the
loss of market value in the event of default.

In applying this credit model to swaps, we are implicitly making two assump-
tions. First, we assume that there is no counterparty credit risk. This is consistent
with recent papers by Grinblatt (2001), Duffie and Singleton (1997), and He (2000)
that argue that the effects of counterparty credit risk on market swap rates should
be negligible because of the standard marking-to-market or posting-of-collateral and
haircut requirements almost universally applied in swap markets.3 Second, we make
the relatively weak assumption that the credit risk inherent in the Libor rate (which
determines the swap rate) can be modeled as the credit risk of a single defaultable
entity. In actuality, the Libor rate is a composite of rates quoted by 16 banks and,
as such, need not represent the credit risk of any particular bank.4 In this sense, the
credit risk implicit in the swap curve can be viewed essentially as the average credit
risk of the most representative banks providing quotations for Eurodollar deposits.5

To model the bond prices D(t, T ), A(t, T ), and C(t, T ), we next need to specify
the dynamics of r, γ, and λ. In doing this, we work within a general affine framework.
In particular, we assume that the dynamics of r, γ, and λ are driven by a vector X of
five state variables, X I = [X1, X2, X3, X4, X5].

In modeling the liquid riskless rate r, we assume that

3Even in the absence of these requirements, the effects of counterparty credit risk
for swaps between similar counterparties are very small relative to the size of the
swap spread. For example, see Cooper and Mello (1991), Sun, Sundaresan, and Wang
(1993), Bollier and Sorensen (1994), Longstaff and Schwartz (1995), Duffie and Huang
(1996), and Minton (1997).

4The official Libor rate is determined by eliminating the highest and lowest four bank
quotes and then averaging the remaining eight. Furthermore, the set of 16 banks whose
quotes are included in determining Libor may change over time. Thus, the credit risk
inherent in Libor may be “refreshed” periodically as low credit banks are dropped
from the sample and higher credit banks are added. The effects of this “refreshing”
phenomenon on the differences between Libor rates and swap rates are discussed in
Collin-Dufresne and Solnik (2001).

5For discussions about the economic role that interest-rate swaps play in financial mar-
kets, see Bicksler and Chen (1986), Turnbull (1987), Smith, Smithson, and Wakeman
(1988), Wall and Pringle (1989), Macfarlane, Ross, and Showers (1991), Sundare-
san (1991), Litzenberger (1992), Sun, Sundaresan, and Wang (1993), Brown, Harlow,
and Smith (1994), Minton (1997), Gupta and Subrahmanyam (2000), and Longstaff,
Santa-Clara, and Schwartz (2001).
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r = δ0 +X1 +X2 +X3, (4)

where δ0 is a constant. Thus, the dynamics of the liquid riskless term structure are
driven by the first three state variables. This three-factor specification of the riskless
term structure is consistent with recent evidence by Dai and Singleton (2002) and
Duffee (2002) about the number of significant factors affecting Treasury yields.6

In modeling the dynamics of the liquidity spread γ, we assume that

γ = δ1 +X4, (5)

where δ1 is a constant. Thus, the state variable X4 drives the variation in the yield
spreads between illiquid and liquid riskless bonds. The liquidity spread γ may be
correlated with both r and λ since our framework will allow X4 to be correlated with
the other state variables.

Finally, to model the dynamics of the default intensity λ, we assume that

λ = δ2 + τ r +X5, (6)

where δ2 and τ are constants. This specification allows the default process λ to depend
on the state variables driving the riskless term structure in both direct and indirect
ways. Specifically, λ depends directly on the first three state variables through the
term τr in Equation (6). Indirectly, however, the default process λ may be correlated
with the riskless term structure through correlations between X5 and the other state
variables. The advantage of allowing both direct and indirect dependence is that it en-
ables us to examine in more depth the determinants of swap spreads. For example, our
approach allows us to examine whether the swap spread is an artifact of the difference
in the tax treatment given to Treasury securities and Eurodollar deposits. Specifically,
interest from Treasury securities is exempt from state income taxation while interest
from Eurodollar deposits is not. Thus, if the spread λ were determined entirely by
the differential tax treatment, the parameter τ would represent the marginal state
tax rate of the marginal investor and might be on the order of 0.05 to 0.10. In con-
trast, structural models of default risk such as Merton (1974), Black and Cox (1976),
Longstaff and Schwartz (1995), suggest that credit spreads should be inversely related
to the level of r, implying a negative sign for τ . Finally, we assume that the values
of γ and λ are the same under both the objective and risk-neutral measures. This

6Also see the empirical evidence in Litterman and Scheinkman (1991), Knez, Lit-
terman, and Scheinkman (1994), Longstaff, Santa-Clara, and Schwartz (2001), and
Piazzesi (2003) indicating the presence of at least three significant factors in term
structure dynamics.
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assumption is standard and allows the parameters of the model to be identified by
maximum likelihood estimation.7

To close the model, we need to specify the dynamics of the five state variables
driving r, γ, and λ. We assume that under the risk-neutral measure, the state variable
vector X follows the general Gaussian process,

dX = −βXdt+ Σ dBQ, (7)

where β is a diagonal matrix, BQ is a vector of independent standard Brownian
motions, Σ is lower diagonal (with elements denoted by σij), and the covariance matrix
of the state variables ΣΣI is of full rank and allows for general correlations among the
state variables. As shown by Dai and Singleton (2000), this is most general Gaussian
or A5(0) structure that can be defined under the risk neutral measure. Finally, Dai
and Singleton (2002) argue that Gaussian models are more successful in capturing the
dynamic behavior of risk premia in the class of affine models.

To study how the market compensates investors over time for bearing credit risk,
it is important to allow a fairly general specification of the market prices of risk in
this affine A0(5) framework. Accordingly, we assume that the dynamics of X under
the objective measure are given by

dX = −κ(X − θ)dt+ Σ dBP , (8)

where κ is a diagonal matrix, θ is a vector, and BP is a vector of independent standard
Brownian motions. This specification has the advantages of being both tractable and
allowing for general time varying market prices of risk for each of state variables.8

Given the risk-neutral dynamics of the state variables, closed-form solutions for
the prices of zero-coupon bonds are given by,

7Dai and Singleton (2003) show that if this assumption is relaxed, then the parameters
of the model may not be identifiable from historical data and additional assumptions
about objective probabilities need to be appended to implement the model.

8It is important to acknowledge, however, that even more general specifications for
the market prices of risk are possible. For example, the diagonal matrix κ could be
generalized to allow nonzero off-diagonal terms. Our specification, however, already
requires the estimation of ten market price of risk parameters and approaches the
practical limits of our computational techniques. Adding more market price of risk
parameters also raises the risk of introducing identification problems.
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D(t, T ) = exp(−δ0(T − t) + a(t) + bI(t)X), (9)

A(t, T ) = exp(−(δ0 + δ1)(T − t) + c(t) + dI(t)X), (10)

C(t, T ) exp(−((1 + τ)δ0 + δ1 + δ2))(T − t) + e(t) + f I(t)X), (11)

where

a(t) =
1

2
LIβ−1ΣΣIβ−1L(T − t)

− LIβ−1ΣΣIβ−2(I − e−β(T−t))L+
i,j

1− e−(βii+βjj)(T−t)
2βiiβjj(βii + βjj)

(ΣΣI)ijLiLj ,

b(t) = β−1 e−β(T−t) − I L,

I is the identity matrix, and LI = [1, 1, 1, 0, 0]. The functions c(t) and d(t) are the same
as a(t) and b(t) except that LI is defined as [1, 1, 1, 1, 0]. Similarly, the functions e(t)
and f(t) are the same as a(t) and b(t) except that LI is defined as [1+τ, 1+τ, 1+τ, 1, 1].

3. THE DATA

The objective of our paper is to estimate the values of the liquidity and default pro-
cesses underlying swap spreads, and then identify the risk premia associated with these
processes. To this end, our approach is to use data that allows these processes to be
identified separately. Specifically, we use data for actively-traded on-the-run Treasury
bonds to define the liquid riskless term structure. To identify the liquidity component
of spreads over Treasuries, we need a proxy for the yields on illiquid Treasury bonds.
There are several possible candidates for this proxy. First, we could use data from
off-the-run Treasury bonds. The difficulty with this approach is that even off-the-run
Treasury bonds may still contain some “flight-to-liquidity” premium over other types
of fixed income securities. Second, we could use data for bonds that are guaranteed by
the U.S. Treasury such as Refcorp Strips. As shown by Longstaff (2004), these bonds
have the same credit risk as Treasury bonds, but do not enjoy the same liquidity as
Treasury bonds. One difficulty with this approach, however, is that data for Refcorp
Strips are not available for the first part of the sample period. The third possibility,
and the approach we adopt, is to use the general collateral government repo rate as
a proxy for the “liquidity-adjusted” riskless rate. As argued by Longstaff (2000), this
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rate is virtually a riskless rate since repo loans are almost always overcollateralized
using Treasury securities as collateral. Furthermore, since repo loans are contracts
rather than securities, they are less likely to be affected by the types of supply-and-
demand-related specialness effects that influence the prices of securities. We note that
the three-month repo rate and the yield on three-month Refcorp Strips are within sev-
eral basis points of each other throughout most of the sample period (when both rates
are available). With this interpretation of the repo rate as the “liquidity-adjusted”
riskless rate, the estimated value of r can be viewed as a proxy for the implied “spe-
cial” repo rate for the highly liquid on-the-run bonds used to estimate the Treasury
curve.9 Finally, the default component of the credit spread built into swap rates can
be identified using market swap rates in addition to the Treasury and repo rates.

Given this approach, the next step is to estimate the parameters of the model
from market data. In doing this, we use one of the most extensive sets of U.S. swap
data available, covering the period from January 1988 to February 2002. This period
includes most of the active history of the U.S. swap market.

The Treasury data consists of weekly (Friday) observations of the constant ma-
turity Treasury (CMT) rates published by the Federal Reserve in the H-15 release
for maturities of two, three, five, and ten years. These rates are based on the yields
of on-the-run Treasury bonds of various maturities and reflects the Federal Reserve’s
estimate of what the par or coupon rate would be for these maturities. CMT rates are
widely used in financial markets as indicators of Treasury rates for the most-actively-
traded bond maturities. Since CMT rates are based heavily on the most-recently-
auctioned bonds for each maturity, CMT rates provide accurate estimates of yields
for liquid on-the-run Treasury bonds. The possibility that these bonds may trade
special in the repo market is taken into account explicitly in the estimation since the
liquidity process γt can be viewed as a direct measure of the specialness of Treasury
bonds relative to the repo rate. Finally, data on three-month general collateral repo
rates are provided by Salomon Smith Barney.

The swap data for the study consist of weekly (Friday) observations of the three-
month Libor rate and midmarket constant maturity swap (CMS) rates for maturities
of two, three, five, and ten years. These maturities represent the most liquid and
actively-traded maturities for swap contracts. All of these rates are based on end-
of-trading-day quotes available in New York to insure comparability of the data. In
estimating the parameters, we are careful to take into account daycount differences
among the rates since Libor rates are quoted on an actual/360 basis while swap rates
are semiannual bond equivalent yields. There are two sources for the swap data. The
primary source is the Bloomberg system which uses quotations from a number of swap
brokers. The data for Libor rates and for swap rates from the pre-1990 period are

9For discussions of the implications of “special” repo rates for Treasury bonds, see
Duffie (1996), Buraschi and Menini (2002), and Krishnamurthy (2002).
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provided by Salomon Smith Barney. As an independent check on the data, we also
compare the rates with quotes obtained from Datastream; the two sources of data are
generally very consistent.

Table 1 presents summary statistics for the Treasury, repo, and swap data, as
well as the corresponding swap spreads. In this paper, we define the swap spread
to be the difference between the CMS rate and the corresponding-maturity CMT
rate. Fig. 1 plots the two-year, three-year, five-year, and ten-year swap spreads over
the sample period. As shown, swap spreads average between 40 and 60 basis points
during the sample period, with standard deviations on the order of 20 to 25 basis
points. The standard deviations of weekly changes in swap spreads are only on the
order of six to eight basis points. Note, however, that there are weeks when swap
spreads narrow or widen by as much as 45 basis points. In general, swap spreads are
less serially correlated than the interest rates. The first difference of swap spreads,
however, displays significantly more negative serial correlation. This implies that there
is a strong mean-reverting component to swap spreads.

4. ESTIMATING THE TERM STRUCTURE MODEL

In this section, we describe the empirical approach used in estimating the term struc-
ture model and report the maximum likelihood parameter estimates. The empirical
approach closely parallels that of the recent papers by Duffie and Singleton (1997), Dai
and Singleton (2000), and Duffee (2002). This approach also draws on other papers in
the empirical term structure literature such as Longstaff and Schwartz (1992), Chen
and Scott (1993), Pearson and Sun (1994), Duffee (1999), and many others.

In this five-factor model, the parameters of both the objective and risk-neutral
dynamics of the state variables need to be estimated. In addition, we need to solve for
the value of the state variable vector X for each of the 734 weeks in the sample period.
At each date, the information set consists of four points along the Treasury curve, one
point on the repo curve, and five points along the swap curve. Specifically, we use the
CMT2, CMT3, CMT5 and CMT10 rates for the Treasury curve, the three-month repo
rate, and the three-month Libor, CMS2, CMS3, CMS5, and CMS10 rates for the swap
curve. Since the model involves only five state variables, using ten observations at each
date provides us with significant additional cross-sectional pricing information from
which the parameters of the risk-neutral dynamics can be more precisely identified.

We focus first on how the five values of the state variables are determined. As
in Chen and Scott (1993), Duffie and Singleton (1997), Dai and Singleton (2000),
Duffee (2002), and others, we solve for the value of X by assuming that specific rates
are observed without error each week. In particular, we assume that the CMT2 and
CMT10 rates, the three-month repo rate, and the three-month Libor and CMS10 rates
are observed without error. These rates represent the shortest and longest maturity
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rates along each curve and are among the most-liquid maturities quoted, and hence,
the most likely to be observed with a minimum of error.

Libor is given simply from the expression for a risky zero-coupon bond,

Libor =
a

360

1

C(t, t+ 1/4)
− 1 , (12)

where a is the actual number of days during the next three months. Similarly, the
repo rate is given by,

Repo =
a

360

1

A(t, t+ 1/4)
− 1 . (13)

Since CMT rates represent par rates, they are also easily expressed as explicit
functions of riskless zero coupon bonds,

CMTT = 2
1−D(t, t+ T )
2T
i=1D(t, t+ i/2)

. (14)

Similarly, as in Duffie and Singleton (1997), CMS rates can be expressed as the par
rates implied by the term structure of risky zero-coupon bonds,

CMST = 2
1− C(t, t+ T )
2T
i=1 C(t, t+ i/2)

. (15)

Given a parameter vector, we can then invert the closed-form expressions for these
five rates to solve for the corresponding values of the state variables using a standard
nonlinear optimization technique. While this process is straightforward, it is compu-
tationally very intensive since the inversion must be repeated for every trial value of
the parameter vector utilized by the numerical search algorithm in maximizing the
likelihood function.10

10By representing swap rates as par rates, this approach implicitly assumes that both
the floating and fixed legs of a swap are valued at par initially. Since we assume that
there is no counterparty default risk, however, an alternative approach might be to
discount swap cash flows along a riskless curve. In this case, the value of each leg
could be slightly higher than par, although both would still share the same value.
This alternative approach, however, results in empirical estimates of the liquidity and
default processes that are virtually identical to those we report.
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To define the log likelihood function, let R1,t be the vector of the five rates
assumed to be observed without error at time t, and let R2,t be the vector of the
remaining five observed rates. Using the closed-form solution, we can solve for Xt
from R1t

Xt = h(R1,t,Θ), (16)

where Θ is the parameter vector. The conditional log likelihood function for Xt+∆t is

−1
2
(Xt+∆t − θ −K(Xt − θ))IΩ−1(Xt+∆t − θ −K(Xt − θ)) + ln | Ω | , (17)

where K is a diagonal matrix with i-th diagonal term e−κii∆t, and Ω is a matrix with
ij-th term given by

Ωij =
1− e−(κii+κjj)∆t

κii + κjj
(ΣΣI)ij .

Let 6t+∆t denote the vector of differences between the observed value of R2,t+∆t and
the value implied by the model.11 Assuming that the 6 terms are independently dis-
tributed normal variables with zero means and variances η2i , the log likelihood function
for 6t+∆t is given by

−1
2
6It+∆t Σ

−1
6 6t+∆t − 1

2
ln | Σ6 |, (18)

where Σ6 is a diagonal matrix with diagonal elements η
2
i , i = 1, . . . , 5. SinceXt+∆t and

6t+∆t are assumed to be independent, the log likelihood function for [Xt+∆t, 6t+∆t]
I is

simply the sum of Equations (17) and (18). The final step in specifying the likelihood
function consists of changing variables from the vector [Xt, 6t]

I of state variables and
error terms to the vector [R1,t, R2,t]

I of rates actually observed. It is easily shown that
the determinant of the Jacobian matrix is given by | Jt |=| ∂h(R1,t)

∂R1,t
|. Summing over

all observations gives the log likelihood function for the data

11We assume that the 6 terms are independent. In actuality, the 6 terms could be
correlated. As is shown later, however, the variances of the 6 terms are very small
and the assumption of independence is unlikely to have much effect on the estimated
model parameters.
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−1
2

T−1

t=1

(Xt+∆t − θ −K(Xt − θ))IΩ−1(Xt+∆t − θ −K(Xt − θ))

+ ln | Ω | + 6It+∆t Σ
−1
6 6t+∆t + ln | Σ6 | + 2 ln | Jt | . (19)

Given this specification, the likelihood function depends explicitly on 39 parameters.

From this log likelihood function, we now solve directly for the maximum like-
lihood parameter estimates using a standard nonlinear optimization algorithm. In
doing this, we initiate the algorithm at a wide variety of starting values to insure
that the global maximum is achieved. Furthermore, we check the results using an
alternative genetic algorithm that has the property of being less susceptible to finding
local minima. These diagnostic checks confirm that the algorithm converges to the
global maximum and that the parameter estimates are robust to perturbations of the
starting values.

Table 2 reports the maximum likelihood parameter estimates and their asymptotic
standard errors. As shown, there are clear differences between the objective and risk-
neutral parameters. These differences have major implications for the dynamics of
the default and liquidity processes that we will consider in the next section. The
differences themselves reflect the market prices of risk for the state variables and
also have important implications for the expected returns from bearing default and
liquidity risk. One key result that emerges from the maximum likelihood estimation
is that the five-factor model fits the data well, at least in its cross-sectional dimension.
For example, the standard deviations of the pricing errors for the CMS2, CMS3, CMS5,
and CMT3 and CMT5 rates (given by η1, η2, η3, η4, and η5, respectively) are 9.1, 8.1,
7.5, 4.5, and 6.3 basis points, respectively. These errors are relatively small and are
on the same order of magnitude as those reported in Duffie and Singleton (1997) and
Duffee (2002). Note, however, that we are estimating the Treasury, repo, and swap
curves simultaneously.

5. EMPIRICAL RESULTS

In this section, we first discuss the empirical estimates of the liquidity and default
components. We then present the results for the liquidity and default risk premia.

5.1 The Liquidity and Default Components.

Since the instantaneous credit spread applied to swaps in this framework is equal
to the sum γt + λt, it is natural to think of γt and λt as the liquidity and default
components of the credit spread. Summary statistics for the estimated values of the
liquidity and default components are presented in Table 3. Figure 2 graphs the time
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series of the two components along with the time series of their sum, or equivalently,
the total credit spread.

Table 3 shows that the average value of the liquidity component is 7.1 basis
points. In contrast, the average value of the default component is 31.3 basis points.
Thus, on average, the liquidity component represents only 18.5 percent of the total
instantaneous credit spread.

The two components, however, vary significantly over time. The standard devia-
tion of the liquidity component is 15.9 basis points over the sample period, while the
same measure for the default component is 15.5 basis points. Figure 2 shows that the
liquidity component ranges from about 10 to 20 basis points during the first part of
the sample period. During the middle part of the sample period, however, the liquidity
component is slightly negative, ranging from −5 to −10 basis points. The liquidity
component is very stable during this middle period. Beginning with approximately
May 1998, the period just prior to the Russian debt default, the liquidity spread be-
comes positive again and rises rapidly to more than 20 basis points by the beginning
of the LTCM crisis in August 1998. The liquidity spread stays high for the remainder
of the sample period, reaching a maximum of nearly 54 basis points in early 2000. As
indicated by the serial correlation coefficient of 0.966, the liquidity component displays
a high degree of persistence.

In contrast, the default component of the spread displays far less persistence; the
serial correlation coefficient for the default component is 0.733. This is evident from
the time series plot of the default component shown in the middle panel of Figure 2.
As illustrated, the default component ranges from a low of about 1 basis point (the
estimated default component is never negative) to a high of 121 basis points. The
default component is clearly skewed toward large values and exhibits many spikes.
These spikes, however, appear to dissipate quickly consistent with the rapidly mean-
reverting nature of the time series of the default component. The two largest spikes in
the default component occur in late December of 1990, which was immediately before
the first Gulf War, and in October 1999, which was a period when a number of large
hedge funds experienced major losses in European fixed income positions. The two
components of the credit spread are positively correlated with each other and with
the level of interest rates.

The bottom panel of Figure 3 shows the time series of the total instantaneous
credit spread γt + λt. As illustrated, the credit spread averages about 38.4 basis
points, but varies widely throughout the sample period. Near the beginning of the
sample period, the credit spread ranges from about 60 to 80 basis points. During the
middle period, however, the credit spread declines to near zero, ranging between zero
and about 10 basis points for most of the 1991 to 1998 period. With the hedge fund
crisis of 1998, the total credit spread increases rapidly, reaches a maximum of about
129 basis points in 1999, but then begins to decline significantly near the end of the
sample period. The standard deviation of the credit spread over the sample period
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is 24.2 basis points. Its minimum value is −6.2 basis points, and its first-order serial
correlation coefficient is 0.882.

Finally, we note that the estimate of the parameter τ for the default risk process
λt is 0.00403. This value, however, is not statistically significant. This small value
indicates that if there is a marginal state tax effect, it is on the order of one half of a
percent or less. Thus, the effect on swap rates of the differential state tax treatment
given to Treasury bonds appears negligible.

5.2 Liquidity and Default Risk Premia.

The primary objective of this paper is to examine how the market prices the default
and liquidity risks in interest rate swaps. To this end, we focus on the premia incor-
porated into the expected returns of bonds implied by the estimated term structure
model. These premia are given directly from the differences between the objective and
risk-neutral parameters of the model.

To provide some perspective for these results, however, it is useful to also examine
the implications of the model for the term premia in Treasury bond prices. Applying
Ito’s Lemma to the closed-form expression for the value of a liquid riskless zero-coupon
bond D(t, T ) results in the following expression for its instantaneous expected return

rt + b
I(t)((β − κ)Xt + κθ)). (20)

The first term in this expression is the riskless rate, and the second is the instan-
taneous term premium for the bond. This term premium is time varying since it
depends explicitly on the state variables. The term premium represents compensation
to investors for bearing the risk of variation in the riskless rate, or equivalently, the
risk of interest-rate-related changes in the value of the riskless bond.

Now applying Ito’s Lemma to the expression for the price of a price of a illiquid
riskless zero-coupon bond A(t, T ) gives the instantaneous expected return

rt + γt + d
I(t)((β − κ)Xt + κθ)). (21)

The first term is again the riskless rate. The second term is the liquidity spread which
compensates the investor for holding an illiquid riskless security. The third term is
the total risk premium, consisting of the term premium and the liquidity premium,
where the liquidity premium compensates the investor for the risk of liquidity-related
changes in the values of bonds that are not as liquid as Treasury bonds.

Similarly, applying Ito’s Lemma to the price of the risky zero-coupon bond C(t, T )
leads to the following expression for the instantaneous expected return

rt + γt + f
I(t)((β − κ)Xt + κθ)). (22)
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The first two terms in this expression are the same as in Equation (21). The remaining
term can be interpreted as the combined term, liquidity, and default premia. As before,
the default premium represents compensation to the investor for bearing the return
risk caused by variation in the default intensity process.

To identify the liquidity premium separately, we simply take the difference be-
tween the expected returns in Equations (21) and (20) (and subtract out the liquidity
component γt). Similarly, to identify the default premium separately, we take the
difference between the expected returns in Equations (22) and (21). As shown, these
premia are time varying through their dependence on the state variable vector.

Table 4 reports summary statistics for the term, liquidity, and default premia for
zero-coupon bonds with maturities ranging from one to ten years. Figure 3 plots the
average values of these premia. As shown, the average term premia range from about
53 basis points for a one-year horizon to 212 basis points for a ten-year horizon. Figure
3 shows that the average term premia are concave in the horizon. These estimates of
average term premia are similar to those reported by Fama (1984), Fama and Bliss
(1987), and others.

The average liquidity premia are all positive and range from about 5 basis points
for a one-year horizon to 73 basis points for a ten-year horizon. Thus, the average
liquidity premium can be as much as one third the size of the term premium for longer
maturities. Figure 3 shows that the liquidity premium is actually slightly convex in
the horizon of the zero-coupon bond. Table 4 also shows that the liquidity premium
is highly variable.

The results for the average default premia are strikingly different. As shown,
all of the average default risk premia are slightly negative. Numerically, their values
are all close to −3 basis points. Thus, the term structure of default premia is flat
at essentially zero. This surprising result implies that on average, virtually all of the
credit premium built into swap rates is compensation for liquidity risk. For example,
the credit premium for the five-year horizon is 26 basis points, consisting of a liquidity
premium of 29 basis points and a default premium of −3 basis points.

Intuitively, one reason why the risk of changes in λt is largely unpriced may have
to do with the nature of this risk. As shown in Fig. 3, the default process is rapidly
mean reverting. Furthermore, Table 2 shows that speed of mean reversion for X5
(which is the major source of variation in the default process) under the objective
measure is 14.39. Thus, the market may require little or no premium for this risk
simply because of its ephemeral nature. Specifically, a shock to λ may have only a
very short-term effect on the prices of bonds and investors may require very little
premium to bear this temporary risk.

Another potential reason why the average default risk premium in the swap mar-
ket may be due to fact that the Libor rate can be “refreshed” in the way described by
Collin-Dufresne and Solnik (2001). In particular, if one of the banks in the set used
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to determine Libor were to experience financial distress, it would likely be quickly
replaced by another more solvent bank. This mechanism would have the effect of
stabilizing the values of λ implicit in market Libor rates. Again, the effect of this may
be that investors require little compensation for this “managed” or “controlled” risk.
Note that since this feature is unique to Libor rates, default premia for individual
corporate bonds could have very different properties.

To give some sense of the time variation in term, liquidity, and default premia,
Fig. 4 graphs these premia for a one-year-maturity zero-coupon bonds. As illustrated,
the term premium displays a significant amount of variation. The term premium
is usually positive, but has generally tended downward and has occasionally been
negative during the latter part of the sample period.

The time series of the liquidity premium displays a number of interesting features.
Recall that the average liquidity premium for a one-year horizon is about 5 basis
points. Fig. 4 shows that the conditional liquidity premium varies significantly over
time and is often large in absolute terms. Most surprisingly, the liquidity premium is
negative for nearly one half of the sample period. The liquidity premium first becomes
negative around 1992 and remains generally negative until August of 1998. Despite
the variation, however, the liquidity premium is less volatile than the term premium.
Although not shown, a similar pattern holds for liquidity premia in bonds with longer
maturities.

Finally, the default premia show a pattern similar to that for the default compo-
nent. In particular, the default premium displays rapid mean reversion and exhibits
a number of large spikes. The default premium for a one-year horizon is much more
volatile than the term or liquidity premia. For longer maturities, however, the default
premium is less volatile that the other premia. On the other hand, these results in-
dicate that while the average default premium may be close to zero, the conditional
default premium can be substantially different from zero. Thus, there are times when
the market price of default risk may be a significant determinant of swap spreads.

6. CONCLUSION

This paper examines how the market prices the default and liquidity risk inherent
in interest rate swaps. A number of key results emerge from this analysis. We find
that the credit spread in swaps consists of both a liquidity and a default component.
On average, the default component of the credit spread is larger, but the liquidity
component is slightly more volatile. Both components vary significantly through time.
The liquidity component displays a high level of persistence. In contrast, the default
component is rapidly mean reverting. In addition, the default component exhibits a
number of large but temporary spikes in its level over time.

We find that the liquidity risk inherent in swaps is compensated by the market
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with a significant risk premium. In contrast, the average premium for default risk
is essentially zero or slightly negative and the term structure of default risk premia
is flat. Thus, virtually all of the credit premium built into the swap curve is due
to liquidity premia. Curiously, however, these liquidity premia are slightly negative
during the mid 1990s.

These results raise a number of intriguing questions for future research. Do the
negative values for the liquidity component of the spread and the associated risk
premia during the 1990s imply that swaps were viewed as even more liquid that Trea-
sury bonds? Has the flight-to-liquidity phenomenon become more important in the
post-LTCM era, thus explaining the return of the liquidity spread and its associated
premium to positive values? Finally, is the absence of a default risk premium in the
swap curve unique to this market, or is this feature found in corporate, sovereign,
agency, or municipal bond markets as well?
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Table 2

Maximum Likelihood Estimates of the Model Parameters. This table reports the maximum likeli-
hood estimates of the parameters of the five-factor term structure model along with their asymptotic standard
errors. The asymptotic standard errors are based on the inverse of the information matrix computed from
the Hessian matrix for the log likelihood function.

Parameter Value Std. Error

β1 6.97493 1.60510
β2 0.43063 0.00790
β3 −0.00778 0.00161
β4 −0.08669 0.00296
β5 1.47830 0.10616

κ1 2.59781 0.71490
κ2 0.25373 0.21606
κ3 0.37843 0.19430
κ4 1.79193 0.52619
κ5 14.39822 1.53849

θ1 0.00124 0.00981
θ2 −0.01729 0.03886
θ3 0.06726 0.02271
θ4 0.00529 0.00088
θ5 0.00032 0.00089

σ11 0.03209 0.00413
σ21 0.00019 0.00114
σ22 0.01495 0.00076
σ31 0.00000 0.00077
σ32 0.00003 0.00074
σ33 0.00924 0.00051
σ41 0.00028 0.00023
σ42 −0.00006 0.00019
σ43 0.00039 0.00017
σ44 0.00300 0.00007
σ51 0.00029 0.00079
σ52 0.00010 0.00060
σ53 0.00037 0.00048
σ54 0.00030 0.00042
σ55 0.00895 0.00022

δ0 0.00324 0.02006
δ1 −0.00458 0.00043
δ2 0.00260 0.00076
τ 0.00403 0.00575

η1 0.00091 0.00000
η2 0.00081 0.00000
η3 0.00075 0.00000
η4 0.00045 0.00000
η5 0.00063 0.00000
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Figure 1. Swap Spreads. Weekly time series of swap spreads measured in
basis points. The sample period is January 1988 to February 2002.
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Figure 2. Liquidity and Default Components of the Credit Spread.
The top panel plots the liquidity component of the spread. The middle panel
plots the default component of the spread. The bottom panel plots the sum
of the liquidity and default components which equals the credit spread. All
time series are measured in basis points. The sample period is January 1988 to
February 2002.
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Figure 3. Average Term, Default, and Liquidity Premia. This plot
shows the average term, default, and liquidity premia for zero-coupon bonds
with the indicated maturities. All premia are measured in basis points. The
sample period is January 1988 to February 2002.
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Figure 4. Time Series of Term, Liquidity, and Default Premia. The top
panel plots the conditional term premium for a one-year zero-coupon bond. The
middle panel plots the conditional liquidity premium for a one-year zero-coupon
bond. The bottom panel plots the conditional default premium for a one-year
zero-coupon bond. All premia are measured in basis points. The sample period
is January 1988 to February 2002.




