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Abstract

Rapid product lifecycles and high development costs pressure manufacturing
firms to cut not only their development times (time-to-market), but also the time it
takes them to reach full capacity utilization (time-to-volume). The period between
completion of development and full capacity utilization is known as production ramp-
up. During that time, the new production process is still ill understood, which causes
low yields and low production rates. This paper analyzes the interactions among
capacity utilization, yields, and process improvement (learning). We model learning
in the form of deliberate experimentation. Experiments such as engineering trials
lead to process improvements, but they also reduce capacity in the short run. This
creates a trade-off between experiments and production. High selling prices during
ramp-up raise the opportunity cost of experiments, yet early learning is more valu-
able than later learning. We formalize the resulting intertemporal trade-off between
the short-term opportunity cost of capacity and the long term value of learning as a
dynamic program. The paper also examines the tradeoff between production speed
and yield/quality, where faster production rates lead to more defects. Depending on
the relationship between selling price and variable cost, it may be optimal to follow
a "yield first” or a ”speed first” policy. Several numerical examples illustrate our
results. We show that misunderstanding the causes of learning, in particular whether
it is experience driven or experiment driven, leads to suboptimal behavior and out-
comes.

KEYWORDS: Yield, ramp-up, start-up, learning curve, experimentation



1. Introduction

Many high-tech industries are characterized by shrinking product lifecycles and increas-
ingly expensive production equipment and up-front costs. The market window for sell-
ing many products has shrunk to less than a year in industries such as disk-drives' and
telecommunications. These forces pressure organizations to cut not only their develop-
ment times (time-to-market), but also the time it takes to reach full production volume

(time-to-volume) in order to meet their financial goals for the product (time-to-payback).

The period between the end of product development and full capacity production is known
as production ramp-up. Two conflicting factors are characteristic of this period: low
production capacity, and high demand. High demand arises because the product is still
“relatively fresh” and might even be the first of its type. Thus, customers are ready to
pay a premium price. Yet production output is low due to low production rates and low
yields. The production process is still poorly understood and, inevitably, much of what is
made does not work properly the first time. Machines break down, setups are slow, special
operations are needed to correct product and process oversights, and other factors impede
output. Over time, with learning about the production process and equipment, yields and
capacity utilization go up (although in many industries they never reach 100%). Due to
the conflicts between low capacity and high demand, the company finds itself pressured

from two sides, an effect referred to as the “nutcracker” (Mclvor et al. 1997).

In this article, we analyze the interactions among capacity utilization, yields, and yield
improvement (learning) during ramp-up. Traditional learning-curve models implicitly as-
sume that manufacturing performance increases with cumulative output from the plant,
more or less independent of managerial decisions. This is clearly an oversimplification,
however, and there is much that managers can do to affect the rate of learning (Dutton
and Thomas 1984).

Learning in manufacturing takes place through many mechanisms. We concentrate on
deliberate learning through experiments such as engineering trials, which are controlled
experiments using the production process as a laboratory. Such trials are essential for
diagnosing problems and testing proposed solutions and process improvements. But they
also use scarce production capacity. This creates a paradoxical trade-off between regular
production and experimentation. On one hand, high market prices create an incentive
to maximize output and minimize engineering trials. On the other hand, it is during the

ramp-up that the knowledge level of the plant is at its lowest, so the need for learning

!This research was funded by the Sloan Center for the Information Storage Industry at the University

of California, San Diego.



is especially high. We formalize this intertemporal trade-off between short-term revenues
and long term learning benefits in form of a dynamic program, and derive solutions for

the cost, value, and level of experimentation.

The remainder of this article is organized as follows. Section 2 provides more background
on the assumptions of our model, and discusses several strands of related literature. Sec-
tion 3 describes the type of production environments our analysis is appropriate for and
presents a simple model that captures the interaction among capacity utilization, process
knowledge, and yields. The analysis of this (static) model will be the basis for our dy-
namic model of learning and process improvement during production ramp-up, presented
in Section 4. Our results are illustrated by several numerical examples in Section 5, where
we show that different cost and demand situations call for different ramp-up strategies.

Section 6 provides a summary, managerial implications, and future research directions.

2. Background

This paper draws on three strands of research, as it is about manufacturing learning dur-
ing ramp-up, with yields the primary dependent variable. Ramp-up is the transition a
manufacturing process makes from zero to full production. Each new product introduced
into a factory must undergo a ramp-up. Ramp-ups are also needed for new lines and
new factories; these are sometimes called “start-ups”. A new product ramp-up can take
a quarter of the product life cycle - several months for a hard disk drive, for example.
During this period, yields and production rates gradually increase as learning takes place.
Important types of learning typically include adjusting the process recipe, modifying tool-
ing and equipment to reduce defects and downtime, and developing more effective and
faster inspection methods at all stages of the process. Thus production rates and yields

go up, while defects, maintenance time, and rework go down.

Ramp-ups also occur when a new process or a new plant starts up. These are often more
difficult and dramatic than new product ramp-ups, since many additional variables need

to be learned about.

Yields are an important state variable during ramp-up because they have a major effect
on process economics and because low yields reflect gaps in process understanding and are
closely linked to knowledge and learning (Bohn 1994). The economic impact of low yields
can be much larger than their impact on costs, since foregone revenue is usually a large
opportunity cost during ramp-up (Terwiesch et al. 1997). Production speed and good

output are also useful measures of progress during ramp-up. As we model in Section 3,



the process manager often trades off yield and speed, for example when considering how
hard to attempt to rework a bad unit before scrapping it?. Therefore, we will model the

optimal trajectories of both yield and production rate over the course of a ramp-up.

There is little published research on ramp-ups, despite their ubiquity. Langowitz (1988)
conducts an exploratory study of ramp-up of four electronics products. Benfer (1993)
discusses the general problem of rapid ramp-up at Intel. Both emphasize the relation-
ship between development and successful ramp-up. Clawson (1985) discusses ramp-up in
aerospace. Wasserman and Clark (1986) document a problematic ramp-up of high perfor-
mance semiconductors, in which yields remained close to zero for months®. Not all ramp-
ups are successful, in either technical or business terms. Sometimes the plant is unable to
raise yields to the breakeven level, or it takes so long that the product never earns enough
revenue to repay its fixed costs. Leachman (1996) show examples of semiconductor fabs
taking years to raise their yields above 50 percent. As we model in Section 5, protracted
or ultimately unprofitable ramp-ups can arise when managers assume that learning will
occur automatically through experience, and therefore underinvest in deliberate learning

through experimentation.

2.1. Learning and experience curves

Although the importance of learning is widely recognized, many models of manufacturing
and business strategy have focused on a single causal explanation, the cumulative volume of
production. This is captured in the so-called ezperience curve model, surveyed critically in
(Dutton et al. 1984). This model postulates that per unit costs fall as the log of cumulative
production (Argote and Epple 1990). Although this model may provide a good fit to costs

ex post, that does not make it accurate or useful as a normative guide.

But in their current forms progress functions also have serious limitations.
In offering cumulative volume as the only policy input variable, they fail to
match the complex, underlying dynamics of firms’ costs and imply that build-
ing cumulative volume is the only way to achieve progress. However, exam-

ination of progress-function studies reveals that sustained production often

2In some assembly processes such as auto assembly it is economical to rework all defectives, and final
yields are therefore very high. In this situation, first-pass yield or defect levels are a better measure of
technological understanding and status during the ramp-up. For simplicity this paper models situations

where final yields are a good measure, such as semiconductors, disk drives, and parts fabrication processes.
30ther ramp-up case studies include (Bohn and Jaikumar 1986; Freeze and Clark 1986; Freeze and

others 1984; Langowitz and Wheelwright 1986).



provides producers with opportunities to effect cost efficiencies that have little

to do with cumulative volume (Dutton and Thomas 1984).

These criticisms are especially appropriate when looking at ramp-ups, where the central
goal is to manage progress as rapidly as possible, and where a naive experience curve
model would suggest that the rate and success of ramp-up are predetermined, completely
predictable, and beyond managerial control. Such a simplistic view of the learning process

offers no managerial guidance for improving the ramp-up of a new product.

Various researchers have gone beyond the experience curve to investigate learning processes
in manufacturing in more detail, in an attempt to “open the black box” and derive manage-
rially useful lessons. Several have done detailed investigations into how factory problems
are solved and learning occurs, emphasizing activities by the engineers, responsible for
systematic problem solving and learning. Lapré et al. (1996) show that many directed
improvement projects in fact have zero or negative effects. Both sound theory and empir-
ical validation by experimentation are needed before process changes are justified. Tyre
(1990) and von Hippel (1993) examine information flows and other aspects of problem

solving for a variety of new process introductions in plants.

Many others have looked at learning at a more aggregate level, to determine what factors
drive performance improvement. These include Adler (1990), Adler and Clark (1991),
Dorroh et al. (1994), Epple et al. (1996), Gruber (1994), Mishina (1998), Lapré and
Wassenhove (1998) and Mukherjee et al. (1998). Most of these articles emphasize empirical
fits to data rather than conceptual models. Three conceptual papers are related to our
approach. Mody provides a model, which explicitly examines engineering effort as a driver
of learning (Mody 1989). Dorroh (1994) has a related model of make to order production,
with a production function that takes knowledge and other resources as inputs. Knowledge
is produced by explicit investment in learning, independent of production. They examine
the effects of discounting and other parameters on the decisions of how much and when

to produce and learn.

Zangwill and Kantor (1998) propose that learning be modeled as “waste removal” rather
than directly as cost reduction. Rather than yield or production rate as the dependent
variable, they suggest using “percent defective” and “waste time” respectively. They
propose that each halving of waste requires a roughly constant amount of effort. Earlier
empirical work in Stata (1989) provides extensive documentation of halving times for
various kinds of waste reduction efforts. Our model in Section 4 is related to these ideas

with respect to production rate, although it models yields directly.



2.2. What drives learning?

Although our model emphasizes deliberate learning through experiments, we also allow
for learning to take place through experience. Management directly sets the rate of ex-
perimentation and the production rate, subject to the constraint of machine capacity.
Both experimentation and production (experience) can cause learning, which leads to
higher knowledge about how to produce. In the terminology of Dutton and Thomas, ex-
perimentation is a form of induced (deliberate) learning, while production experience is
autonomous (automatic) learning. Both can potentially operate, and we will investigate
the consequences of learning by experimentation compared with by experience. Figure 1

shows the flow of causality.

Induced

Rate of Learning Cost per
> Experimentation # > Yield —» good unit
Correlated
g;ng;nem ork;y Accumulated
time Knowledge
Maximum
Rate of T Speed of Output,
—P  Production » Production revenue,
Autonomous contribution,
Learning profitability

Figure 1: Causes of learning and improvement

Note that it may be difficult for an outside observer to know whether experimentation
or experience is the principal driver of learning and thereby of improved performance.
Both accumulated experiments and accumulated experience are correlated with time and
therefore with each other. Hence it is very difficult to use historical data to disentangle
their effects, especially since experimentation is almost never carefully tracked. Therefore
we view most of the “experience curve” research, which purports to show that increased
production leads to learning, as irrelevant to the question of what actually causes learning

and how learning should be managed.

If experimentation is a key driver of learning, what limits the rate of experimentation?
In section 4 we emphasize the production capacity constraint, i.e. that experiments de-
crease output. Many yield ramp-ups involve strenuous debates between process engineers,
who are measured by yield, and production managers, who are measured by short term
throughput. For example semiconductor companies will restrict the number of “hot lots”
i.e. expedited engineering trials, on the grounds that such lots cause a disproportionate
reduction in production and increase in service times for normal production (Ehteshami

et al. 1992).



There are at least three other limits that could be considered. First, engineers and other
learning workers are in short supply, and they have more problems to work on than time.
Second, some kinds of experiments incur out of pocket costs e.g. for special laboratory
analysis. Third, the effectiveness of experimentation varies dramatically depending on a

variety of statistical and non-statistical design issues (Bohn 1987).

The contributions of this article are as follows. First, we analyze the interaction between
capacity utilization and yields, a trade-off of fundamental importance during production
ramp-up. The model is far more detailed than any of the previous studies and thus
provides a more micro-level analysis of ramp-up. Second, using dynamic programming
techniques, we explicitly derive the cost and value of experimentation. These results
support management in trading-off the short term opportunity cost of experimentation
with the long-term value of increased processing capability. Finally, we explain a number
of different ramp-up patterns that can be observed in various industries and suggest which

ones are best suited under which circumstances.

3. Yield and Output during Ramp-up

Our model focuses on the production ramp-up of high-tech products, such as electronics.
We define high-tech as meaning the company is on the cutting edge of what is currently
understood in process engineering. Further, high-tech environments frequently experience
high but rapidly falling prices, and the only opportunity to achieve higher than competitive
prices is early in the product lifecycle. This forces management to bring the product to
market long before the manufacturing process is fully understood. Production techniques

are at low stages of knowledge and yield losses are still substantial.

During ramp-up, the goal is to raise both yield and production rate as rapidly as possible.
At each moment, there is a tradeoff between the two, as the likelihood of a defect is an
increasing function of the processing speed. There are many causes of such tradeoffs.
First, consider the operation of a robotic watch assembly line as described in Jaikumar
and Bohn 1992. Faster robot movement causes vibrations which decrease the precision of
the assembly and thus increase the likelihood of a defect. Similar speed-precision-defect
interactions occur in many automated placement and assembly operations. Similar issues

apply for assembly or test operations performed by operators.

A second cause of speed-vs-yield tradeoffs is rework. If there is a fixed capacity available
for overall production, an increase in starts reduces the amount of capacity that can be

used for rework. This reduces the number of rework loops that can be spent per defective



item and thus, ultimately, final yields. (Terwiesch et al 1997)

Third, because of process variability allowing more work in progress (WIP) between op-
erations increases total throughput. However, by Little’s Law this raises average waiting
time and thus the time between the occurence of problems at upstream operations, and
their detection at downstream test or inspection points. Once problems are detected, there
is more bad WIP to be purged or reworked. Problem solving may also take longer, again
lowering yields. Note that production variability is usually higher in ramp-ups, making

this tradeoff especially pointed.

Fourth, consider the time spent for calibration, inspection and maintenance of equipment.
These operations take time, which reduces production rates. However, badly calibrated

or maintained machines will be more likely to produce defective parts.

Finally, many continuous and batch processes involve the application of power over time,
such as baking, heat treating, and etching. The time-energy profile of such processes can be
widely varied by adjusting temperatures, voltage, conveyor speed, and other parameters.
A process can be optimized for raw speed by raising the power level and decreasing the
time. However, this speed maximizing setting is usually not the quality / yield optimal

setting, creating a tradeoff.

Each of these five explanations forces management to trade off an increased level of
throughput against production yields. In the present article, we abstract from this detailed
causality and develop a framework that is generalizable across various industrial settings.
We will first develop a (static) model, analyzing the interaction between capacity utiliza-
tion, processing capability, and yields. This model formalizes the starts vs. yields trade-off
and is applicable beyond situations of production ramp-up. It will later allow us to show
under what circumstances during production ramp-up management should focus on out-
put or on yields (Subsection 3.3). In Section 4, we use the same model as the starting

point for exploring the trade-off between experiments and production.

3.1. Notation

Consider an operation which takes v units of time [hours/unit], if executed at its maximum
speed. In presence of a speed versus yield trade-off, it might be beneficial to slow down the
corresponding operation by a certain operation time x to « 4 7 units of time [hours/unit].
Assume a total capacity of I' machine hours per period [hours/period]. Then the number
of units started in the process is s = x—; at a utilization of u = x—z—w of the theoretical
capacity. x represents a deliberate “level of care” built into the operation and is selectable

by management.



Next, we have to describe the relationship between starts s and yields. Spending more

time on an operation will reduce the likelihood of a defect. Define y(z,a) as the yield

level as a function of z. This yield level is jointly determined by z and a parameter

a > 0 which measures processing capability. The higher a, the more the process can be
Oy(z,a)

accelerated without major yield losses: =3>= > 0. We assume diminishing returns of the

extra operation time x, so that %ﬁﬁl > 0 and %@—al < 0. Output is then starts times

yields or y(z, Oé)m_iw'

Throughout the article, we assume that capacity is a binding constraint. This is charac-
teristic of production ramp-ups since the product is still relatively fresh and thus in strong
demand, while output is restricted as we will see. All units produced can be sold at a
selling price p, and the variable cost per start (e.g. raw material) is c¢. Before we turn to
a dynamic version of the model, with learning (increase in «) or falling prices, we need to
develop some simple insights about the static trade-off between starts and yields. Looking
at one period in isolation, x is chosen to maximize the contribution (sales minus variable
costs), which we can write as:

r I
— c
T+ T+ 7y

(P, o, z,¢) = py(x, ) (3.1)

3.2. The starts versus yields trade-off

Good output is not necessarily a monotonic increasing function in the number of starts
or in the level of utilization. Starting too many units can disturb the production process
that badly that not only yields fall, but even the overall number of good units produced
decreases. Contribution falls even more than good output since the contribution measure

7 also takes the costs of a start into account.

To simplify analysis, we now assume a specific functional form for the relationship among

yields, processing capability, and operation time. Let

1

y(x,a) = yo <1 — £> (3.2)
which - consistent with our argument above - shows that x reduces the likelihood of a
defect, but with diminishing returns. The parameter y, captures a base yield which is
independent of the speed of the operation and cannot be improved, such as yield problems
in operations that are downstream to the bottleneck production line. Without loss of
generality, we standardize the minimum production time v = 1 and discount the selling
price by the base yields, i.e. define p = pyo. Good output per period is now given by

1) ._T

Yo (1 — E) -7 and the per period contribution is:



r+1 x+1

be the operation time that maximizes good output. It is characterized by the

c (3.3)

axT

1 I I
w(p,a,z,¢) =p (1 — —)
Let z*

out

balance between the marginal gains from higher quality of one particular unit (increased
likelihood that an item started becomes good output) and the marginal losses resulting
from a lower overall production rate. An additional unit started at a high level of utilization
is not only likely to be defective itself, it also forces an increased processing speed on

all other items, making them more likely to be defective as well. Thus, an increase in

* —
out —

utilization is connected with a decrease in yields, and pushing utilization beyond u

1
zZut—i_l

actually decreases the overall output. At this point the effective capacity decreases.

1T
. Output maximizing
Not desirable Contribution
maximizing

. Actual
2 utilization
g
N
=

Effective

utilization

0

0 Yieldsy 1

Figure 2: Utilization versus Yields

*

In order to calculate the contribution optimal level z7_,,

we need to take the costs per
start into account, as well as the selling price. The general optimal solution is charac-
terized by the balance between the marginal gains from higher quality of one particular
unit (increased likelihood that an item started can be sold) and the marginal losses re-
sulting from a slower overall production. In terms of Figure 2, this yields a downward
adjustment of utilization. Thus, the contribution optimal solution has higher yields and
lower utilization than the output optimal solution. We assume £ > 1, i.e. prices adjusted
for downstream yield losses are high enough to cover the variable cost of production.
Proposition 1 formalizes these ideas.

Proposition 1 (Static Model): The contribution optimal solution %, and the output

*

* . have the following properties:

optimal solution z

e Both the output maximizing operation time and the contribution maximizing op-
eration time are strictly positive, i.e. z3, > 0 and z},,, > 0. As a result of this

Uhts Unone < 1, which corresponds to a deliberate under-utilization of the capacity.

10



e The output maximizing operation time z} , and the corresponding contribution level

IT},, are given by:

1 1 1
* + ta I, =np,aoz,,0 =Tp

out:f’ out? 1+§(1+\/1+—a)

X

(3.4)

*

e The contribution maximizing operation time z}_,,

the corresponding yield level

y(xk, i, @), and the resulting contribution level IIZ . are given by:

. e firam UGN VAt Jast S
cont a ( 1— i) ’ Yeont Y\ Zeont> \/W—f— 1 .

2
— 1
T = 7w(p,a,z,,,c) =T« (p=c)

cont cont» ca ca
po2/l+a—L4+24+a—-2

E
cont

e The contribution maximizing operation time z? ., decreases with the selling price p

being increased relative to cost ¢ (£ increases). For large values of £ the contribution

*

optimal solution approaches the output optimal solution: z}_,

*
— Loyt

PROOQOF': for easier readability, all the proofs are given in the Appendix.

The first part of Proposition 1 shows the difference between utilization and effective uti-

lization: it is both contribution and output optimal not to operate the production line at

*

. 15 not beneficial, as the yield losses

its maximum speed. Pushing utilization above u
more than offset the gains from starting more units. At this point, the effective utilization
of the plant is maximized.

*

s .
Proposition 1 also shows how z},,, and z} ,

depend on the various parameters, especially
the processing capability a. Yields and contribution can also be written as functions of a.
The last point in Proposition 1 states that a decrease in selling price p will - everything
else equal - reduce the number of starts and increase the resulting yields. Thus, with

falling prices, the production line needs to put an even higher emphasis on quality.

Finally, it is interesting to observe the difference between (3.4) and (3.5). For the special
case ¢ = 0, the two are identical. For ¢ > 0, utilization is adjusted downwards in favor
of yields. This confirms the intuition generated by Figure 2. Thus, a simple corolary of

Proposition 1 is that y,, < v, and, for the corresponing utilization levels, yZ,, < vy ;.

11



3.3. Yield Emphasis versus Volume Emphasis

Consider a sequence of periods similar to the one described above. The only difference
between each period is the processing capability a: over time, the organization learns more
about its production process, which corresponds to an increase in . Note from (3.2), that
an increase in « allows for higher yields at the same level of starts or more starts at the
same level of yields. In this section, we are not explicit about how the learning occurs. It

might be driven by volume, by an organizational learning effort, or by time alone.

The result of these changes is a sequence of models similar to the static model described
above. This constitutes the first step toward a “dynamic ramp-up problem”. A natural
question to ask in this model is: What should the plant do with its increased processing
capabilities, produce more or further increase yields (at the cost of output)? To illustrate
this trade-off, we extend Figure 2 by showing various levels of a. Each of the points on the
additional lines corresponds to a set of (y;, ;) that is computed using (3.5) for a changing
level of . We define this path of utilization / yield combination as the Ramp-Map. This

is summarized in Figure 3. Let a yield-emphasizing ramp be a ramp with high initial yields
v
a utilization-emphasizing ramp be a ramp with low initial yields (relative to utilization, so

(relative to utilization,% is small) where the learning is used to increase utilization. Let

Z—: is large) with high initial utilization. With increasing «, yields are increased.
1
Utilization
emphasis vield
2
S
g
N
s
0

0 Yieldsy 1
Figure 3: Increasing processing capability: the Ramp-Map

Proposition 2 (Ramp-map): If learning occurs exogenous to the model, i.e. the pro-
duction decisions z; have no impact on any future «; then the ramp-map has the following

properties:

e Long run behavior: for @« — oo, y* — 1o and u* — 1 and as a result z— — 1/yo

e For small a, Z— is an increasing function in 2. Large values of £ favor a utilization

*

emphasizing ramp.

12



* * . . . .
e For large values of £, & — Zout — which characterizes the maximum possible

(63
y* Your  (1+a)yo’
utilization emphasis. The ramp-map above this path is empty.

Proposition 2 is interesting in several ways. First, we see that regardless of cost per start
¢ and selling price p the long run behavior for increasing levels of « is always y* — yo
and u* — 1, where production is perfect. This provides the end-point of the Ramp-map.
Second, the ratio Z— helps us to further specify the location of the start-point. For large
values of £, following Proposition 1, the only focus is on output, thus Z—: is maximized. At
this point, the ratio between utilization and yields is characterized by ;. For smaller
values of £, there is an extra focus on yields, which means the path through the Ramp-map

shifts to the lower right.

To illustrate the implications for different industrial processes, compare disk drive assembly
and wafer production. For the former, the costs of raw material are very close to the market
price of the finished good. Proposition 2 predicts a strong yield emphasis in the ramp-
up, which is consistent with empirical research in this industry (Terwiesch et al. 1997).
Even if first-pass yields are low, rework is used intensively to reach high final yields. For
semiconductors, the value of the finished wafer is many times its cost per start. Thus,
following Proposition 2, the main focus is on output and the ramp-up is characterized
by extremely low initial yields. Various studies in the semiconductor industry show that
production can sometimes continue at low yields for a prolonged period, if competition is

low and prices high (e.g. Leachman 1996).

4. Learning in Ramp-up

Proposition 2 is based on the assumption that learning is exogenous to the model. In
other words, it assumes that learning efforts are in no way affected by production. In this
section, we alter the previous model by explicitly including the sources of learning into
our analysis. We do this by adding a second managerial decision variable, learning effort.

We assume that learning effort takes the form of controlled experiments.

The benefit of learning is an increased knowledge about the production process, which is
captured in the processing capability parameter o in the model. However, learning also
has drawbacks. First, experiments consume capacity which could otherwise be used for
regular production (e.g. set-ups of experiments, experimental output might not be salable,
disruption from expediting experimental “hot lots”). Second, experiments are a deviation
from what is currently believed to be the optimal process control. This lowers yields (e.g.

in case of trying out a new recipe).

13



This creates a dual role of the production process: it not only produces salable output,
it also provides the environment for conducting experiments (Bohn 1987). Looking at
IT%,,,, in (3.5), we see that the overall contribution is proportional to I'. So, spending more

machine time for experimentation creates an opportunity cost of lost regular production.

This situation is illustrated in Figure 4. The overall capacity is reduced because of yield
losses and down time for experimentation. Although experiments reduce contribution in
the short-run, they increase the future processing capability, which allows for more starts
and higher yields in the following periods. The remainder of this section formalizes the

model of Figure 4 focussing on the capacity reducing effect of experimentation.

1 Starts —®> Current
By (32) Yields
5 Yield losses
2 '
55 Time for Autonomous
@ g Care Experiments Learning
=1 ] and other
é—'g Timex | 5 ocess Usethe Future
=1 same abilit:
o® Improvement capapility
33 Effective Efforts ) resources
8 i Utilization Induced @
@ Learning
Time for Future
0 Experiments startslyields.
0 Hours of Machine Time per Week r

Figure 4: Effects of experimentation

4.1. A Mathematical Model

In order to formalize the tradeoff between current production and learning, we define z
as the fraction of the overall processing capacity I' that is used for experiments. Together
with the processing speed (level of care ), the experimentation time represents our second

managerial decision variable. The overall output of the production process is then:

r
x4+ 1

(1—=2)y(z,a) 0<z<1

We model the dynamic influence of z on the processing capability a as apew = o1a35 Fa-
Thus learning occurs both by experimentation z and by experience. 3, captures the relative
importance of learning by experimentation to learning by doing and (3, the learning rate
of learning by doing in itself*. If z = 0, the next period’s processing capability e, is

(o times larger than the current capability a,;y. Learning by experience is thus driven by

4Note, that this formulation of learning is equivalent to assuming ame, := aoldﬁfﬁ%_z, where 3 is
defined as the absolute importance of learning by experimentation and (2 as the absolute importance of

learning by doing.

14



the cumulative time (e.g. machine hours) the production line has been processing the new
product. 3; measures how much additional progress would occur if the line were dedicated

to experiments for the whole period.

We now extend our static model of Section 3 to a T-period dynamic model. The previously
introduced variables o, z and p for knowledge, care level, and price are now indexed by
time, i.e. oy, ¢ and p;. Over the periods, prices fall at a rate of 6, per period, and future
earnings are discounted with a factor ;. As this paper focuses on the dynamics inside the

plant, we view this price fall as exogenous to our model.

In every period, management needs to decide on both speed of the line (in form of ;)
and the fraction of capacity used for experimentation z;. This choice is basically a balance
between the cost of experiments in form of lost production and the value of experiments

in form of an increased future capability (see Figure 4).

Whereas the costs of an experiment are additive over time (the first 10% of production
capacity has the same opportunity cost as the last 10%), the value of an experiment
typically is not. For example, spending 20% of the capacity for experimentation in one
period will yield a smaller increase in «; than spending 10% in the current period and
10% in the subsequent period. There are several reasons for such a sub-additivity. First,
experimentation is normally done in cycles. It is more effective to wait for the results
of one experiment before formulating ideas which become the basis of the next cycle.
Second, although capacity is a key input, there are other inputs, especially engineering
time. For a fixed number of engineers, there will be decreasing marginal returns to z.
Third, conducting too many experiments at the same time increases the noise in the

process, which makes it harder to learn.

We model this sub-additivity by discounting the learning rate 3; by a factor © < 1, so
that f.sr(z) = $10%. The new processing capability is then given by

Qe - — OzOldﬁg [6eff(z)]z — aOldﬁf@ZQﬁQ (41)

For small values of experimentation time z, the discount factor ©* is close to one, i.e. for
the first units of experimentation, the marginal gains are close to the ideal learning rate
(1. For larger values of z, an increase in z has diminishing returns. In the extreme case
of z =1, only © percent of the ideal learning rate is achieved. For example, we can write
ax = a1 37 (207 and a3 = 0272 307 = 0y 3712 3,071+,

We can see immediately that the overall discount is minimized if the experiments are
evenly spread over the periods. Therefore, if cost and value of the experiments were

constant over time, it would be optimal to have z; = 25. However, in presence of changing

15



cost and value, this approach is unlikely to be optimal and the real optimal solution has

to be chosen based on the overall optimization problem.

As the speed of the line z; has no effect on any future oy ;,7 = 1..T — ¢, we can decompose
the overall optimization into T optimization problems with z; as a decision variable and
one optimization problem that chooses z1, ...z assuming an optimal speed in each period.
The optimal z; can be computed based on (3.5). The optimal z; can be computed by

solving a simple dynamic program with o as the state and z; as the decision variable.

HtOtal(Zla ZT) :Ma,x 25271(1 - Zt)ﬂ—t(at) (42)

21..2T

where oy is connected to ay_1, 2,1 and x;_1 by (4.1) and the immediate pay-offs per period

are defined as m(cy;) = m(8}, 'p, oy, 2}, ¢). We define

Fia) = Maz {(1 = z)m(an) + 8aFia(cu37 07 33) § (4.3)

Fr(ar) = nr(ar) + Terminal value(«)

For the last period T, there is no direct value of experimentation in our model. How-
ever, higher processing capability beyond period T typically has some value, e.g. in lower
unit costs for the residual product lifecycle or in increased knowledge for future product
generations. For a general period ¢, we can see from (4.3) that the first part of Fy(oy) is
decreasing linearly in z;. As we will show more formally below, the returns to experimenta-
tions are marginally decreasing, which makes (4.3) a sum of two concave functions. Thus,
the optimal solutions 27, ...z} are uniquely identified and can be computed by backward

induction.

4.2. Costs of an Experiment

In order to understand how much of their scarce production capacity the organization
should invest in experimentation, we need to understand the cost and benefit of one
unit of experimentation time. At first sight, the analysis looks quite simple: costs of
experimentation are given by the opportunity costs of not producing and the benefits
of experimentation are given by the increased process knowledge that we have already
formalized in (3.5).

Although this intuition is correct, the actual analysis is more complicated, as both op-

portunity cost and value of increased process knowledge are functions of time and current
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processing capability. Time is important as it relates to selling price and thus to the op-
portunity cost of not producing. The current knowledge is important as it influences how
much is still to be learned from an experiment as well as the opportunity cost. Having the

line not produce is cheaper at a low level of knowledge than at a high level of knowledge.

Let k(t,ou,2) = Max{zm(a),0} denote the cost of experimentation if a fraction z
of capacity is used for experimentation at time ¢ and state oy. We can then prove the

following proposition.

Proposition 3a (cost of an experiment): The cost k(t, a4, 2;) of doing z units of
experimentation in time ¢ and state a4 is an increasing function of the processing capability

oy, and a decreasing function of time ¢.

Proposition 3a means that the cost of experimentation can - over the periods 1..7" - go
either up or down. Increasing levels of processing capability a; bring the opportunity cost
up, as at a high « the production line can produce more and at higher yields. However,
falling prices, which also drive the opportunity cost, are pushing the opportunity cost
down. As over time the organization increases its processing capability, oy and ¢ move

together, allowing the cost of experimentation to go either up or down.

Before we turn to the value of an experiment, we compute the costs of increasing the
processing capability from o; to Aayyq. This extends Proposition 3a which derived the

costs of experimentation per unit of experimentation time.

Proposition 3b (doubling «): Increasing the processing capability by a factor A (i.e.

Qpew = AQq) carries the following costs:

e the amount of experimentation required as a function of A is given by

lo 1 2
_llogp [logHJ B log 5
2 log6 4 log 6

z(A) = (4.4)

e the corresponding cost is given by k(t, ay, z(X)).

We can see that although the required amount of experimentation to increase a to A« is
independent of time, the associated costs k(t, ay, z(A)) are not. This is a result of Propo-
sition 3a. (4.4) shows the relationship between experimentation time and the learning
parameters (31, (o, and #. These parameters provide an upper bound of how much im-
provement can be achieved within one period. The sub-additivity parameter 6 discounts

the rate of learning by experimentation following (4.1). We can see that a doubling of «

17



becomes more and more expensive as « increases and has to be justified by large benefits.

These benefits are now analyzed in greater detail.

4.3. Value of an Experiment

The value of an experiment depends on three factors, ¢, o, and z. Similar to the cost of
an experiment, both time ¢ and processing capability « (the two state variables of the
DP) have an influence on the value. The value of an experiment is - as opposed to the
cost - not linear in z. Thus, the value of a unit of experimentation depends on how much
additional experimentation is conducted in that particular period. We define v(t, oy, 2;)

as the value of doing z; units of experimentation in time ¢ and state .

We can express v(t, ay, z;) using the recursive definition of Fy(cy) in (4.3):

v(t, a1, 20) = 8a | Fryn (a3 07 Bo) — Fra(cufBy)] (4.5)

Doing z; units of experimentation will bring the processing capability at period t + 1
from o4 to atﬁftGZtZ (2. The net present value of this is given by E+1(atﬁft@zt2 Bs). 1If
we decide to not invest into process improvement, the new state will be ay3; with the
associated net present value of Fyyq(a;f2). In other words, we define the value of an
experiment as the net present value difference between two scenarios, corresponding to
two different a-trajectories, starting at period ¢t + 1. The first scenario is based on the
optimal experimentation in period ¢, the second scenario forces z; = 0. Note that the two

scenarios are likely to have different experimentation policies beyond period ¢ + 1.

Proposition 4 (value of experiment): The value of increasing the processing capability

from a to Aa goes down in « (diminishing physical returns) as well as in ¢.

Proposition 4 shows the value of an experiment to be falling over time. There are three
reasons for this. First, the residual life-time of the product to which the new knowledge
might be applied, is shrinking. An experiment in the next period will only help a later
period, but will reduce the current regular production. Second, the value of an experiment

falls as prices fall. This makes early knowledge more valuable than late knowledge.

Third, in addition to those two effects, that are purely driven by calendar time, the value of
an experiment is also falling over increasing .. To illustrate this, compare two situations.
In the first situation, « is small and yield losses are still high. Increasing o at this point
has substantial leverage, as there are still plenty of opportunities for improvement. In the

second situation, the process is close to being perfect. Both u and y are close to one, so
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an improvement in «, even if of substantial size, will not have much impact on the bottom

line.

This is similar to the argument of Zangwill and Kantor (1998). Instead of looking at
process yields, they make waste (defined as 1l-yields) their key variable. The authors
argue that the effort required for a proportional waste reduction is constant. For example,
getting yields from 50-75% and getting them from 75-87% both correspond to a halving
of waste, and require the same effort, but the first improvement is more valuable then
the second. This is consistent with (3.2) in our model, where we define waste as é, and
Proposition 3b, which requires a constant effort for each proportional change in a. Thus,

there exists a constant a-improvement (in form of a multiplier) for each halving of waste.

We now turn to a series of numerical examples, which illustrate how qualitatively different

optimal behavior can arise from different market, techological, and learning parameters.

5. Numerical Illustrations

We solve a number of numerical examples in this section. They shed light on the struc-
ture of the optimal solution to the general profit maximizing problem as stated in (4.2).
Consider an example of a low price to cost ratio, such as disk drive assembly. The initial
price is p = $3/unit, prices fall at 6, = 0.95 per period (month), the discount factor is
64 = 0.98. We assume ¢ = $1/unit and consider only the final assembly, so there are no
substantial yield losses further downstream (yo = 1). Let the initial processing capability
be a; = 1 and the learning rates §; = 2.80 and 3> = 1.01. The overall capacity available

for production and experimentation is I' = 1000, the lifecycle is T = 12 months.

5.1. High Experimentation Capability

To begin with, consider the case where the experimentation capability is high, i.e. § = 1.
Engineers can conduct a large number of experiments and still get the maximum learning
out of each of them. We can compute the cost of an experiment in the first period using
Proposition 3a. With no experimentation, the optimal first period profit is m3 = 25.4.
Thus, each percent of experimentation time creates an opportunity cost of k(1, a1,0.01) =

0.254. The value of experimentation is driven by the future periods’ increased capability.
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Figure 5: Cost and value (in dollar) of experimentation

Figure 5 plots the cost and value of experimentation for this specific case. Over the first
four periods, the value of complete experimentation exceeds its cost indicating that the
full period should be spent on experimentation. This changes from period 5 onwards.
As the processing capability as is substantially higher than earlier, the opportunity cost
goes up to k(5, as,0.01) = 1.04 per percentage experimentation time. At the same time,
the value of the experiment has decreased for the reasons discussed in connection with
Proposition 4. First, there are fewer periods left to which the additional knowledge can
be applied. Second, because of the physical diminishing returns, a further increase in

processing capability has less value.

As a result, no time is spent on experimentation in the fourth period and beyond. Figure
5 also shows that experiments are inexpensive in the beginning and in the end of the

product lifecycle, but most costly in the middle.
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Figure 6: Optimal solution for # = 1; the bars indicate the optimal z

Figure 6 summarizes the optimal solution. The four bars indicate the optimal experimen-
tation policy: full experimentation at the start, then none. Figure 6 also shows yields,

utilization, and per period contribution. We see that the initial focus of the plant is on
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yields (start at 72%) rather than utilization (start at 26%)°. This yield emphasizing ramp

is a result of the relatively small price to cost ratio (of initially 3:1).

5.2. Low Experimentation Capability

Next, consider the case of lower experimentation capability, e.g. 6 = 0.5 . Whereas
the cost per unit of experimentation remain unchanged in the first period, its value goes
down drastically. Spending z; = 1 units on experimentation now only results in a second
period capability of s = 1.46. This is driven by the sub-additivity argument. The
lower «, also translates into a lower second period opportunity cost of the coming periods
(k(2,9,0.01) = 0.31, k(3,3,0.01) = 0.36 , k(4,04,0.01) = 0.40). The decrease in
k(2,9,0.01) together with the reduced first period value of experimentation creates an

incentive to move some experiments from period one to period two.
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Figure 7: Optimal solution for 0 = %; the bars indicate the optimal z,

Figure 7 shows the optimal solution for the case § = 0.5. Again, the emphasis of the ramp
is on yields, rather than utilization. As opposed to the previous example (and Figure
6), production starts in the first period, so the plant is actually producing at the initial
yields of 72%. Figure 7 demonstrates the harsh economic reality that most companies face
during ramp-up. Given its low learning capability captured in 6 = %, it is not until period
9 (75% into the lifecycle) that the plant reaches its maximum contribution. However,
rapidly falling prices quickly erode even the remaining 25% of the lifecycle, so that the

time that can be used to pay back development expenses is extremely short.

These first two examples have illustrated the importance of the sub-additivity parameter
0. The first example is similar to a production ramp-up on a pilot line. The market

introduction of the product is delayed (despite falling prices) and all the capacity is used for

5Note that these values are ”“not realized”, as the complete first periods are dedicated to

experimentation.
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process engineering. In the second example, the product is introduced to the market earlier
and process engineering is spread out over several periods. Although this approach allows
for some early profits and high prices, it also forces management to run the production
line at low yields and utilization. As expected, the overall profit in the first example
(m = 522.5) exceeds profits in the second one (7 = 296.3).

5.3. Rapidly Falling Prices

Next, consider a situation of rapidly falling prices. Suppose R&D has come up with a
radical new product that is the first of its kind. For the first period, we can charge a
monopoly price of p = 5. Afterwards, competitors enter the market and prices drop
sharply to p = 3, and from then onwards fall at 6, = 0.95. All other parameters are
identical to the second example above. This example is interesting as it demonstrates
that the capacity dedicated to experimentation should not necessarily decrease over time.
The cost of experimentation in the optimal solution are given by k(1,a;,0.01) = 0.58
and k(2,a,0.01) = 0.28. Compared to the second period, prices are high in the first
period, which drives up the opportunity cost of not producing. The processing capability
a1 = 1 is sufficiently high to create profits. This picture changes in the second period.
As little time was spent on experimentation in the first period, as = 1.39, which is
not a substantial increase. However, given the drastic fall in prices, management now
faces a situation where the selling price is substantially lower than before. This price level
together with the current processing capability makes experimentation now less expensive,
yielding a second period experimentation of z; = 0.57. From then onwards, the cost of
experimentation follows the path we have seen in the first two cases: an initial increase
because of the increased capability and a long-term decrease because of falling prices. The

optimal level of z5 to 215 is decreasing in time.

Taking the above examples together with Propositions 3 and 4, we can postulate three

types of solution:

1. Virtual pilot line: The introduction of the product is delayed and all available capacity
is used for experimentation (z; = 1 for ¢ = 1..n < T'). This approach is optimal if (a)
prices are falling at a modest rate (6, is low) (b) high experimentation capability (weak

sub-additivity:6 is close to 1).

2. Miz of experiments and production: Experiments are spread out over several periods,
but more and more of the production capacity is used for regular production (z > z;41 >

0). This approach is optimal for low experimentation capability.

3. Delayed experimentation: The time spent for experimentation is larger in the second
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period than in the first period (2o > z; > 0). This approach is optimal if prices fall faster
in the beginning than they do later.

5.4. Knowing the Sources of Learning

The above examples all assume that management is fully aware of the true sources of
learning. This includes both the relative magnitude between 3; and (3 and their absolute
magnitude. Following our discussion in Section 2, this is frequently not the case. Especially
the importance of “learning by experience” is frequently overestimated compared to the
importance of controlled experiments. In terms of our model, this corresponds to an

underestimation of 3.

Consider a situation similar to the example of Section 5.1 . The initial processing capability
is @1 = 1 and the learning rates are §; = 2.8 and > = 1.01. However, these underlying
parameters are not known by managers, who have estimates of the learning rates in form
of @-,z’ = 1,2. Let Bl = 2 and BQ = 1.5, which corresponds to an overestimation of
experience versus experimentation. Based on this assumption, management chooses the
experimentation times to maximize lifecycle contribution according to (4.2). This yields
lower than optimal z; and a total contribution of 7 = 235. If management had followed
the true optimal policy the discounted contribution would have been 7 = 296. In other
words, 20% of the potential contribution are lost because of an incorrect estimate of the

learning rate.

Next, consider the reverse case where the real learning rate is 3; = 2.8, however engineering
over-estimates the importance of experimentation, yielding Bl = 5. As a result of this,
more time is allocated to experimentation than optimal. Instead of getting a contribution

of m = 296, the product now only reaches contributions of 7 = 267.

Two remarks clarify these examples. First, in both of them management’s qualitative
understanding concerning the sources of learning was correct. Management was aware that
experimentation yields higher improvement rates than pure volume, but the magnitude
of these rates were misestimated. If management thinks of the only source of learning as
being regular production (“learning by doing”), no time will be spent for experimentation

(z; = 0). The resulting loss of contribution is even larger than in the other examples.

Second, a deviation of 20-40% in 7 seems to be relatively small, especially if compared to
how far the BZ estimates were from the true values. However, this is looking at contribution,
rather than profits. In presence of any reasonably large fixed costs, a 20-40% contribution

change will make the difference between bottom line profits and losses.
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6. Conclusion, Implication and Future Research

We have presented an analytical model of production ramp-up, which combines a static
trade-off between yields and utilization with a dynamic trade-off of learning and process
improvement. In today’s rapidly changing environments, cutting development times (time-
to-market) in itself is not sufficient. The other key to achieving high contributions is a
rapid production ramp-up of a new product. This includes quickly achieving both high

yields and a high level of utilization.

6.1. Summary

We model the trade-off between yields and utilization by making yields a decreasing func-
tion of the number of items started in the process. Such start-vs-yield trade-offs are
common from causes including variances increasing with processing speed, human failure,
rework, increased WIP, or reduced maintenance. In this situation, it is both output and
contribution beneficial to deliberately start fewer items than allowed by the available ca-
pacity. A larger ratio between price and cost allows a pure focus on output rather than

sales or cost (Proposition 1).

In Proposition 2, we introduced the concept of the Ramp-map. Given an increasing
processing capability, the production line is able to increase both yields and utilization. In
the extreme case of perfect knowledge about the production process, yields and utilization
reach 100%. Before this point, management can choose between different paths, emphasiz-
ing either high yields or high utilization. We show that high prices create an incentive to
emphasize utilization more than yields. The model allows us to explain different empirical

patterns of ramp-up.

Whereas in Proposition 2 the sources of learning are exogenous to the model, Proposition
3 explicitly includes a decision variable for learning efforts. Learning effort is modeled
as controlled experiments, which create an opportunity cost of not satisfying the high
demand. Over time, the costs of an experiment can go up or down. Costs tend to go up
because of an increasing processing capability: the higher yields and utilization, the larger
are the opportunity costs for shutting down the line for experimentation. On the other
hand, prices are highest at the day of market introduction and fall thereafter. This can

reduce the cost of experimentation.

The value of an experiment is falling, both in time and processing capability. The fall
over time is a result of a shorter residual life-time as well as of falling prices. The fall

over processing capability is based on physically diminishing returns: the same amount
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of learning effort will create higher physical benefits (e.g. in terms of yields or output)
and higher economic benefits for a low processing capability than for a high processing
capability.

Finally, we illustrate the structure of the optimal ramp-up policy based on a series of
numerical examples. For slowly falling prices, low initial processing capability, and high
experimentation capability, it is optimal to do all the experiments up front. This means
the production process should be managed like a pilot line and regular production should
take over only once yields and utilization have been increased. In presence of lower experi-
mentation capability, it is beneficial to spread the experiments out over time. In this case,
the proportion of capacity dedicated to experimentation typically decreases from period
to period. However, in the extreme case of rapidly falling prices, it can be beneficial to

delay the experiments to a latter period.

6.2. Managerial Implications

Our findings have a number of managerial implications. Most basic is the need for man-
agers to accept and deal with the inherent paradox of learning during production ramp-up.
At the beginning of a ramp when prices are at their highest, and yields and output at
their lowest, it is nonetheless still the moment to further reduce output in order to run
engineering trials and work on yield and speed improvements. This paradox often creates,
in our experience, strong pressures to take shortcuts in learning, such as experiments with
overly small sample sizes relative to the process noise level, or not running validation trials
before implementing process changes. While this keeps up-time higher in the short run,
it often leads to problems which reduce performance for the rest of the ramp-up period
and beyond. We deal with this paradox by explicitly calculating the cost and value of
experimentation as functions of time and processing capability. Figures 6 and 7 show the

patterns that can result from optimal behavior.

Second, we show the importance of understanding the sources of learning. It is incorrect
to treat learning as an exogenous process beyond managerial control. Rather, there are
three key high-level inputs which should be explicitly allocated and managed. These are
normal production experience, capacity withdrawn from production for experiments of
many kinds, and engineering time. Only the first of these happens automatically. Only
engineering time (which we modeled as being lumped together with experimentation)
appears explicitly in a cost accounting system. But the dollar costs of experimentation
time, although not captured in accounting systems, can be a large investment as well, and

are integral to success.
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On a related note, we provide a more explicit way to think about the effectiveness of learn-
ing, through our 3; and 6 parameters. Different plants, people, and learning methods have
different abilities to extract useful process knowledge from a given amount of experimen-
tation. Indeed whole books have been written on this, and there is much more research
still to be done on it. There are also differential abilities to learn from plain production
experience, modeled as our f coefficient. Knowing the sources of learning (Figure 1) and
then working to improve their effectiveness is a key form of managerial learning from one

ramp-up to the next.

At a tactical level, our analysis in Section 3 provides a first look at the important trade-off
between yields and production speed. With different product economics, and at different
times in ramp-up, the optimal levels of care and rework shift. It also serves as a strong
reminder that in yield driven industries there is a large difference between utilization and

effective utilization.

Finally, this research illustrates the importance of time-to-volume compared with the still
dominant paradigm of time-to-market. We show how different situations require different

decisions during the ramp-up period.

6.3. Future Research

We have kept the model as simple as possible in order to focus on structural results rather
than on concrete solutions to be taken as a quantitative guide. This approach clearly has
limitations. Our assumptions that the processing capability can be represented as a single
number as well as the assumptions concerning the functional forms of learning rates and

sub-additivity are strong simplification of real ramp-up situations.

Refinements of the model provide interesting avenues for future research. First, some of
the assumptions could be relaxed. For example prices and competitive behavior could be
explicitly modeled. Spence (1981) provided an influential analysis of the effect of learning
on strategic competition. He modeled a firm investing in learning early, in order to deter
entry by potential competitors. In his model, learning was an inherent by-product of
production experience, so that the form of “investment” was to produce more. The firm
uses low prices both to encourage demand, and to serve as a signal to competitors that
it has made an investment. This leads to the prescription to “price ahead of the learning
curve”. In our model, firms can also invest in learning, but in the form of deliberate
learning through more time for experiments (and lower output). We hypothesize that,
as in Spence-style models, firms will still use lowered prices as a signal of their increased

production capability. Thus the within-factory prescriptions of the two models are very
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different (maximize output in one case, reduce output and maximize learning in the other),

yet they are similar at a strategic level.

Second, we see a strong need for more empirical research on this topic. Detailed case
studies on the ramp-up period will help to reveal additional variables. Such case studies
could try to develop a managerial check-list of items that need to be addressed before or
during the ramp-up. Another empirical research opportunity lies in a detailed econometric
analysis of yield and utilization curves over time, which tries to identify the most effective

variables that help increase the effective capacity.

A related refinement would be to make capacity and other fixed cost decisions endogenous.
We treated capacity as a fixed constraint which was binding throughout the ramp-up
period. But it is usually possible to buy extra capacity at the start, moving up the time
when supply catches demand. Thus in some ways, investing in capacity can substitute for
investing in learning.

Finally, the issues of production ramp-up should be linked to the existing fields of product
development and learning in manufacturing. Although in the present manuscript we try to
explicitly include findings from the manufacturing learning literature, we do not sufficiently
include aspects of product development. What happens during product development will
have a strong impact on the initial processing capability as well as on the speed of ramp-
up. Thus, linking the quality of the ramp-up to events during the product development

process provides a third interesting avenue for future research.
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8. Appendix: Sketches of Proofs of Propositions 1 to 5

8.1. Proof of Proposition 1

We need to show that there exists both a unique output maximizing care time z,, and

To do this, we use s = 14%0 and show

that there exists a uniquely defined optimal levels of starts. Given the 1:1 transformation

*

a unique contribution maximizing care time x7,,,,.

E
cont*

between s and z, this also uniquely characterizes the optimal care levels z},, and x
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Output as a function of starts is given by ¢(s) = s(1— éﬁ) As 8%52 =2-d75-
52

2m < 0, q(s) is concave in s. The contribution maximizing problem can be restated
as pq(s) — cs — Maz, which provides a linear combination of concave functions, and thus

itself is concave.

Thus, both z} , and z7,,, can be obtained from first order conditions and the corresponding
yield and contribution levels result from substituting «} , and x} ,, into the corresponding

definitions.

(3.5) converges to (3.4) for large p (; — 0).0

8.2. Proof of Proposition 2

As u* = ==, with a — oo, we can see from (3.5) that  — 0 and thus u* — 1. The same
holds for yields y*.

The ratio % indicates to what extent the process focuses on output or yields. From

w* (p—c) 1+4/1+a—ca/p

Proposition 1, we can determine: % = «
P Y p [w / 1+afca/p+1+afca/p} [w / 1+a7ca/p+c/p}

All of the proposed statements can be derived from the ratio Z—D

8.3. Proof of Proposition 3

PROOF (3a): We can see from Proposition 1 that m(ay) is increasing with oy, as the
operation time (3.5) decreases with o (thus a high « allows for more starts) and the
corresponding yield level also increases with «.

To show that costs are decreasing with p;, define m = /p? + p?a — pa > 0 and

A H21T* 2 — 22 +2p%a— 2 2p—
_ _ 1) pmat2pm—am+2p7+2p*a—pat2m+2p—«
consider _qmtagp « (p 1) (pa+2p_a+2m)2m

where - without loss of generality - ¢ = 1. As p > ¢ = 1, the second derivative is positive
(i.e. costs are falling). This is - holding oy constant - the only parameter changing with

time.O

PROOF (3b): (4.4) can be derived by solving Ao = o/3:0" 3, for z. After taking log-
arithms, we obtain a quadratic expression in z, yielding two solutions. As A has to be
smaller than (33,0, which is the maximum achievable improvement (z = 1), the optimal

solution is given by (4.4).0
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8.4. Proof of Proposition 4

PROOF': To establish the diminishing returns we define m as above and compute

O, . _ _1 (p . 1)2p4p2+3p2a—6pa—4p+3a+4pm—4m
o2« 2 (pat2p—a+2m)? (p+pa—a)m

the second derivative is negative which shows that II? ,, grows slower for large values of

where m is defined as above. As p > 1,

Q.

(2) First, prices are falling over time, and second, the residual lifetime to which the new
knowledge can be applied is shrinking. Each of the two arguments is sufficient in itself to

make the value of an improvement go down in ¢.0
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