Skip to main content
eScholarship
Open Access Publications from the University of California

PaleoBios

PaleoBios bannerUC Berkeley

Paleogene marine bivalves of the deep-water Keasey Formation in Oregon, Part III: The heteroconchs

Abstract

The heteroconch bivalve fauna of the deep-water (>200 m) Keasey Formation in northwestern Oregon records the Eocene–Oligocene climatic transition and replacement of tropical widely-distributed taxa by the cryophilic taxa that dominate modern high-latitude faunas of the North Pacific. Low-diversity assemblages occur in tuffaceous mudstone and siltstone facies of a deep nearshore basin at the onset of subduction on the Cascadia Margin. Six species of anomalodesmatan heteroconchs have been treated separately, and the remaining Keasey heteroconchs treated here include one basal archiheterodont and 13 imparidentian euheterodonts. The families represented are Carditidae, Thyasiridae, Lucinidae, Lasaeidae, Cardiidae, Tellinidae, Basterotiidae, Mactridae and Veneridae. New taxa include the genus Anechinocardium and seven new species: Cyclocardia moniligena, Conchocele bathyaulax, Conchocele taylori, Kellia saxiriva, Kellia vokesi, Moerella quasimacoma and Saxicavella burnsi. Three species lacking adequate material for formal description are treated in open nomenclature. New features useful for taxonomic discrimination include heretofore unrecognized differences in micro-spines and lamellae on the posterior slope in cardiid bivalve genera and presence of a faint subumbonal ridge in three genera of basterotiid bivalves. Four of the new species are in families in which thiotrophic and methanotrophic chemosymbioses have evolved. Specimens are typically articulated. Shell material is well preserved in the massive units but often chalky or highly altered at cold-seep sites. Fossils are never abundant except for local concentrations in carbonate mounds and associated carbonate lenses, blebs and nodules at cold-seep localities. Multiple lines of evidence of both diffuse and robust flow of fluids rich in reduced compounds are reviewed for three sites where the fauna includes an inner core of chemosymbiotic taxa and peripheral zone of taxa that are opportunistic and tolerant of hypoxia.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View