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Abstract: The paper analyzes the discount rate under uncertainty. The analy-

sis complements the probabilistic characterization of uncertainty by a measure of

confidence. Special cases of the model comprise discounting under smooth am-

biguity aversion as well as discounting under a disentanglement of risk aversion

from aversion to intertemporal substitution. The paper characterizes the gen-

eral class of preferences for which uncertainty implies a reduction of the discount

rate. It also characterizes how the more comprehensive description of uncertainty

changes the discount rate with respect to the standard model. The paper relates

different results in the literature by switching between different risk measures. It

presents a parametric extension of the Ramsey discounting formula that takes

into account confidence into future growth estimates and a measure of aversion

to the lack of confidence. If confidence decreases in the futurity of the growth

forecast, the discount rates have a falling term structure even in the case of an

iid growth process.

JEL Codes: D61, Q54, D81, D90

Keywords: uncertainty, discounting, climate change, ambiguity, confidence,
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Discounting and Confidence

1 Introduction

How does uncertainty about future economic development affect the optimality

of investments? At the agent level, the consumption discount rate determines

intertemporal trade-offs and precautionary saving. At the aggregate level, the

social discount rate evaluates long-term projects including climate change re-

lated mitigation and adaptation projects, investments in basic research, national

defense, infrastructure projects, and projects involving irreversible changes like

biodiversity loss. An important determinant of these rates and their term struc-

ture is the uncertainty over economic growth and the set of future consumption

possibilities. The paper presents a new model for the (social or consumption)

discount rate under uncertainty. The model unifies and generalizes a variety of

previously derived discounting formulas. It captures uncertainty in terms of risk,

ambiguity, and confidence labeled beliefs. The paper comprehensively character-

izes the preferences implying that the social discount rate decreases in the face

of uncertainty. A parametric special case extends the stochastic Ramsey equa-

tion to account for general forms of uncertainty. I discuss the relation between

confidence, aversion to the lack of confidence, and the term structure of discount

rates.

From Leland (1968) we learned that a decision maker should increase his

savings for the future under uncertainty, if his (absolute) Arrow-Pratt risk aver-

sion decreases in wealth. In Leland’s analysis, Arrow-Pratt risk aversion simul-

taneously characterizes aversion to intertemporal substitution. Gollier (2002)

showed that Leland’s reasoning continues to hold when disentangling risk aver-

sion from the propensity to smooth consumption over time (see as well Kimball

& Weil 2009). These papers, together with a large body of related analysis, as-

sume that uncertainty is described by a uniquely given probability distribution

(risk). Recently, Gierlinger & Gollier (2008) challenge the findings by analyzing

more general forms of uncertainty. The authors employ Klibanoff, Marinacci &

Mukerji’s (2005) model of smooth ambiguity aversion and show that a decreasing

coefficient of absolute ambiguity aversion is not sufficient to ensure a reduction

of the discount rate in the face of uncertainty. Here, the discount rate includes a

‘pessimism term’ that can only be signed by restricting the form of uncertainty
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(lottery domain). The current paper reconstitutes Leland’s original findings for

settings of general uncertainty, including the case of smooth ambiguity aversion.

An appropriate change in the risk measure eliminates the ‘pessimism effect’.

The discount rate increases or decreases under uncertainty whenever (general-

ized) Arrow Pratt measures of risk aversion increase or decrease in consumption.

The paper also provides a general characterization how the discount rate in the

comprehensive uncertainty model differs from the discount rate obtained in the

intertemporally additive expected utility standard model. The generalized uncer-

tainty framework builds on Traeger (2010) and incorporates as special cases the

model based on Kreps & Porteus (1978), Epstein & Zin (1989), and Weil (1990)

disentangling risk aversion from intertemporal substitutability and the model of

smooth ambiguity aversion by Klibanoff et al. (2005) and Klibanoff, Marinacci &

Mukerji (2009). The general framework employs multi-layer probabilistic beliefs

that are indexed by a confidence measure.

Ever since Keynes (1921) and Ellsberg (1961), economists and decision the-

orists have expressed their concern that a standard probability distribution can-

not capture uncertainty comprehensively. Arrow & Hurwicz (1972) developed an

axiomatic framework that evaluates sets of possible outcomes in the complete ab-

sence of probabilities. In the framework of this paper, a related decision criteria

can arise in the limit of a complete lack of confidence. However, even if decision

makers form probabilistic beliefs, they might not be fully confident that these

beliefs are correct, unless they face objective lotteries. Such objective lotteries

are mostly encountered in casinos or experiments. In contrast, the probabilis-

tic descriptions of a real life future result from a wide spectrum of sources and

methods and ranges from careful derivations based long time series and frequent

observations to mere guesstimates. A frequent illustration of the differences in

uncertainty not captured in a probability distribution is based on the analysis of

two mutually exclusive events. In absence of any information on the likelihood of

these events, the principle of insufficient reason suggests assigning equal proba-

bilities. Similarly, if the events correspond to heads and tails in the toss of a fair

coin, a decision maker would generally assign equal probabilities. Yet, in the first

situation the decision maker’s guess is based on complete ignorance, while in the
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second situation he faces well known objective probabilities. Both uncertainties

differ in a dimension not captured by the probability distributions themselves.

It is a measure of confidence (or of subjectivity) that distinguishes the two sit-

uations. Experiments based on the famous Ellsberg (1961) paradox have shown

that these differences matter for behavior. Decision theorists have explored this

concern in depth over the last two decades. The current paper builds on a recent

extension of the widespread smooth ambiguity model of Klibanoff, Marinacci, &

Mukerji (2005, 2009) by Traeger (2010). The latter analysis extends the classi-

cal von Neumann & Morgenstern (1944) axioms, underlying the expected utility

model, to a setting where lotteries are distinguished by their degree of confi-

dence. Limiting cases of the model include the Arrow & Hurwicz (1972) criterion

for decision making under ignorance and Gilboa & Schmeidler’s (1989) maximin

expected utility. In particular, the setting permits to model a decision maker

who employs any combination of these decision criteria conditional on the con-

fidence in his description of the uncertainty he faces. The current paper applies

this framework to derive a discounting formula that takes into account not just

probabilities, but also confidence.

A related distinction of different types of uncertainty has reached the applied

policy arena in a field where recent research has proven the primordial impor-

tance of selecting the right discount rate. The guidance notes of the Intergov-

ernmental Panel on Climate Change (AR4) ask the lead authors to distinguish

between three different types of uncertainty: “unpredictability”, “structural un-

certainty”, and “value uncertainty”. The subsequent economic assessment and

cost benefit analysis was not, yet, able to incorporate these distinctions. In recent

work, Gierlinger & Gollier (2008) and Traeger (2008) apply the smooth ambiguity

framework by Klibanoff et al (2005, 2009) to models of social discounting. These

models, however, can only capture two types of uncertainty: objective versus

subjective uncertainty. In real world applications, purely objective probabilities

are rare. Measures of subjective uncertainty stretch from careful econometric

analysis with a limited number of observations to pure guesstimates. The cur-

rent paper suggests a framework in which decision makers, or scientists, base

their uncertainty evaluation not only on probabilistic descriptions of future un-
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certainty, but also on the way that these probabilities were informed and, thus,

their confidence in these probabilistic beliefs. The analysis translates both of

these informations into the social (or consumption) discount rate. The adopted

preference framework builds on a behaviorally as well as normatively attractive

set of axioms that preserves time consistency and a minimally modified version

of von Neumann-Morgenstern’s independence axiom. Moreover, the framework

keeps separate what is distinct: the desire to smooth consumption over time and

the (various degrees of) uncertainty aversion. A growing body of work shows that

such a distinction is crucial to explaining behavior under risk, like the equity pre-

mium and the risk free rate puzzles (Vissing-Jørgensen & Attanasio 2003, Bansal

& Yaron 2004, Bansal, Kiku & Yaron 2010).

2 Background and Representation

Current consumption is certain and denoted x0. I employ the unidimensional

notation u′(x0) for derivatives. However, outcomes can also be multidimensional

unless stated otherwise.1 The decision maker considers investing a (marginal)

unit of a good into a productive project that pays one unit plus the (average)

yearly interest r in period T . The minimal interest required to make the agent

invest into the project is the (risk free) social discount rate or consumption dis-

count rate. Under certainty it is characterized by the pure rate of time preference

δ and the ratio of marginal utilities in the future and in the present:

r = δ − 1

T
ln

[
u′(xT )

u′(x0)

]

, (1)

where xT denotes future consumption. In the one dimensional setting, the cur-

vature of u characterizes the desire to smooth consumption over time.

This paper derives the modifications of equation (1) necessary to account for

uncertainty over the future. In particular, the formulas will account for the in-

1In general, outcomes can be elements of a compact metric continuously differentiable man-
ifold. For the general case u′(x0) is short for ∂

α
0 u(x0), denoting the directional derivative along

consumption change α at consumption point x0. Here, α is a curve determining the consump-
tion change in the present period. Similarly u′(x1) is then short for ∂β

1 u(x1) denoting changes
along curve β in period 1, and u′(xT ) is then short for ∂γ

Tu(xT ).
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formedness of probabilities describing future uncertainty. Probabilities can be

objective like for the toss of a coin or the spin of a roulette wheel. But probabili-

ties can also derive from a small number of observations (or simulations), or they

can base on the principle of insufficient reason. The latter principle states that

the agent should assign equal probability mass to all events, if he has no informa-

tion about their likelihood.The preference representation employed here allows

the agent to distinguish different types of probabilities by means of a degree of

confidence (or subjectivity). Traeger (2010) derives such a preference representa-

tion by enriching the well known von Neumann & Morgenstern (1944) framework

for decision making under uncertainty with a dimension of confidence. Special

cases of the model disentangle Arrow Pratt risk aversion from intertemporal sub-

stitution like in Epstein & Zin (1989), Weil (1990), and Kreps & Porteus (1978)

[KP model], or represent smooth ambiguity aversion as in Klibanoff et al. (2005)

and Klibanoff et al. (2009) [KMM model]. The representation builds on a set

of functions {f s}s∈S that characterize a measure of intertemporal risk aversion.

Each index s ∈ S corresponds to a particular degree of confidence (or subjec-

tivity), complementing the probabilistic measure of uncertainty. The set S is an

arbitrary finite set of confidence descriptions. I assume that utility u and the risk

aversion functions f s are increasing and concave. In the case of two periods and a

single lottery over future consumption, which is characterized by the probability

measure p of degree of subjectivity s, the welfare evaluation writes as

u(x0) + e−δ f s−1

[Epf
s ◦ u(x1)] ,

where the superindex “−1” denotes the inverse and “◦” denotes function compo-

sition. The operator Mf
p ≡ f

−1
Epf takes a generalized mean of whatever follows

to its right. A concave function f implies that the result of the generalized mean

Mf
p returns a smaller value than the expected value operator itself (Hardy, Lit-

tlewood & Polya 1964). A concave function f s characterizes intertemporal risk

aversion with respect to uncertainty with degree of confidence s. Intertemporal

risk aversion can be interpreted as a measure of risk aversion with respect to

utility gains and losses. Equation (3) will give a choice theoretic interpretation.

In general, multiple layers of uncertainty that are characterized by different
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Figure 1 depicts an example of multi-layer un-
certainty in tree form. The indices s, s′, s′′ and
s′′′ label the different degrees of confidence of
the uncertainty nodes. Collapsing the first two
layers into a single layer would not change the
evaluation as both layers share the same degree
of subjectivity. Moreover, the degree of subjec-
tivity s′′′ of the degenerate node is irrelevant
for the evaluation (a degenerate node expresses
certainty).

degrees of confidence come together in determining future outcomes. For exam-

ple, economic growth in some developing country is governed by a probability

distribution given political stability of the regime. Political stability itself is gov-

erned by a probability distribution of low confidence. Adding another layer, the

likelihood of political stability might itself depend on regional climate. Future

changes of the regional climate are described by probabilistic estimates that de-

rive from cross model comparisons of various deterministic climate models. The

reader is invited to rank or put his or her label on the confidence corresponding

to this type of probability. An example of a multi-layer uncertainty description

is depicted by the tree in Figure 1. Each uncertainty node is characterized by

a subjectivity or, equivalently, confidence label. The representation derived by

Traeger (2010) implies that a lottery of subjectivity s within this uncertainty

tree has to be evaluated by the generalized mean that is characterized by the in-

tertemporal risk aversion function f s. A tree as in Figure 1 features lotteries over

lotteries. I start by labeling the root lottery to the left as lottery p1. Lottery p1

is a lottery over different lotteries p2 in the next uncertainty layer. The lotteries

p2 are lotteries over lotteries p3 in the last layer, which are lotteries over future

outcomes. The uncertain scenario depicted in Figure 1 involves four different

lotteries p3 with three different degrees of subjectivity.2 In general, let there be

N ∈ IN layers of uncertainty. Moreover, let ŝ(p) denote the degree of subjectivity

2The hierarchical structure of lotteries over lotteries can be visualized by indexing a lottery
in layer i with θ1, . . . , θi−1, where θj characterizes the risk states going along with lottery pj . If
the lottery pi has a continuous distribution, the uncertainty layer i+1 features an uncountable
set of lotteries pi+1. A formal characterization of the general lottery space is given in Traeger
(2010) and employs Borel measures over disjoint unions of Borel algebras corresponding to the
different degrees of subjectivity.
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of a given lottery. Then, the general preference representation can be written as

u(x0) + e−δ Mf ŝ(p1)

p1
Mf ŝ(p2)

p2
· · ·Mf ŝ(pN )

pN
u(x1)= u(x0) + e−δ

[
Nt∏

i=1

Mf ŝ(pi)

pi

]

u(x1). (2)

Each generalized mean deducts a risk premium that depends on the amount

of uncertainty (described by pi) and on the degree of confidence ŝ(pi). I denote

certainty equivalent utility in the i-th layer by mi(pi) ≡ Mf ŝ(pi)

pi
· · ·Mf ŝ(pN )

pN
u(x1)

and mN+1(x1) ≡ u(x1) or, dropping the argument, simply by mi.

The following characterization of intertemporal risk aversion adapted from

Traeger (2010) provides a choice theoretic intuition for the concept of intertem-

poral risk aversion.3 Let a decision maker be indifferent between the two combi-

nations of first and second period outcomes (x1, x2) and (x1, x2), where u(x1) >

u(x1) and u(x2) > u(x2). An intertemporal risk averse decision maker prefers

the certain consumption path (x1, x2) (or equivalently (x1, x2)) over a lottery

that yields with equal probabilities either the path (x1, x2) or the path (x1, x2).

Formally this condition can be written as

(x1, x2) ∼ (x1, x2) ⇒ (x1, x2) �t (x1, x2) ⊕
1
2
s (x1, x2) , (3)

where ⊕
1
2
s denotes a probability one half mixture with degree of subjectivity s. If

this mixture represents an objective lottery, like in the case of a coin toss, equa-

tion (3) captures intertemporal risk aversion with respect to objective lotteries.

Note that an agent described by the intertemporally additive standard model is

always indifferent between the certain path and the lottery in equation (3).

In an intertemporal setting, uncertainty affects welfare in two distinct ways.

First, a stochastic variable generates fluctuations over time. A decision maker

with a preference for smooth consumption paths dislikes these fluctuations. This

effect of risk is captured by the utility function and is part of standard model.

Second, a decision maker can be intrinsically risk averse (averse to risk per se).

This effect is captured by intertemporal risk aversion. A different way to measure

risk aversion in the general setting is as follows. Let the curvature of u continue to

3The interpretation employs two uncertain periods while equation (2) only introduced un-
certainty over a single period. See section 4 for the formal extension of the model to multiple
uncertain periods.
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measure aversion to intertemporal substitution. Eliminate the direct measure of

intrinsic risk aversion by means of intertemporal risk aversion. Instead, measure

total risk aversion by the functions

gs = f s ◦ u (4)

for all s ∈ S. Both, the concavity of f s and the concavity of u translate into

the curvature of the functions gs. Hence, the functions gs jointly capture both

sources of risk aversion. As discussed in Traeger (2007) and Traeger (2010) these

functions gs characterize Arrow Pratt risk aversion with respect to lotteries of

degree of confidence s. Note that this interpretation in terms of Arrow Pratt risk

aversion only holds in the one-commodity setting. Equation (4) implies a further

characterization of intertemporal risk aversion. The statement that f s = gs ◦u−1

is concave implies that Arrow Pratt risk aversion dominates aversion to intertem-

poral substitution. Hence, an intertemporal risk averse agent prefers to substitute

into the certain future rather than into an uncertain risk state. The assumptions

that u and f s are increasing and concave imply the same characteristics also

for gs.

3 The Present versus the Future

The model of this section analyzes the case where future payoffs are collected in a

single uncertain future period. This is the setting of Leland (1968), Gollier (2002),

Gierlinger & Gollier (2008), Traeger (2008), and Kimball & Weil (2009). It also

is the setting of most analytic discussions of social discounting in the economics

of climate change, a research area that currently is home to the hottest debate

over the “right” discount rate, given that the discount rate is the single most

important determinant of optimal greenhouse gas mitigation levels (Nordhaus

2007). I introduce multiple layers of uncertainty characterized by differing degrees

of confidence. The model relates to the representations of the social discount rate

under KP preferences analyzed in Gollier (2002) and under smooth ambiguity

KMM preferences examined in Gierlinger & Gollier (2008). I compare, unify and

generalize the results of these papers. I derive a sufficient condition under which
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the social discount rate decreases with uncertainty, and a sufficient condition

under which for the social discount rate is smaller than in the standard model.

A special case of these conditions characterizes when smooth ambiguity aversion

decreases the social discount rate. The conditions depend on preferences only

and hold for all uncertain scenarios (lotteries).

3.1 Multi-commodity setting: The social discount rate in

terms of intertemporal risk aversion

The following proposition extends the expression for the social discount rate in

equation (1) incorporating uncertainty and uncertainty attitude.

Proposition 1: The social discount rate under preferences of the form given in

equation (2) is

r = δ − ln

[{
N∏

i=1

Epi f
ŝ(pi)′(mi+1)

f ŝ(pi)′(mi)
︸ ︷︷ ︸

prudence term

confidence level ŝ(pi)

Epi
f ŝ(pi)′(mi+1)

Epi f ŝ(pi)′(mi+1)
︸ ︷︷ ︸

pessimism term

confidence level ŝ(pi)

}

u′(x1)

u′(x0)

]

. (5)

The expected value operator Epi acts on everything carrying an index i + 1

for the next uncertainty layer: lotteries pi+1 and certainty equivalents mi+1. In

particular, the expected value operator printed in large also acts on the i + 1

entries of the subsequent product term (with EpN acting on u′(x1)). I label the

fractions with the expected value in the numerator prudence terms. The name

is based on Proposition 2 below. The fractions with the expected value in the

denominator are weights. They increase the weight given to events with high

marginals (generally low outcomes), and reduces the weight of events with low

marginals (generally high outcomes). Therefore, these weights gain the name pes-

simism term as they bias probabilities to give more weight to bad outcomes. Both

names were assigned by Gierlinger & Gollier (2008) in a special case described

below.
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Proposition 2: A prudence term of confidence level s reduces the social dis-

count rate for all uncertain scenarios, if and only if, the function f s ex-

hibits decreasing absolute risk aversion AIRAs = −fs′′

fs′ , which is equivalent

to −fs′′′

fs′′ > −fs′′

fs′ .

Only relying on smoothness of the function f s, the condition is f s′ ◦ f s−1

convex.

I call the term −fs′′′

fs′′ absolute intertemporal prudence with respect to confidence

level s. The name prudence relates to Kimball’s (1990) work on third order

derivatives of utility functions in the context of precautionary savings. In this

terminology the condition in Proposition 2 states that the prudence term reduces

the social discount rate if prudence dominates risk aversion (for a given confidence

level). The condition is equivalent to a falling degree of absolute intertemporal

risk aversion AIRAS. Thus, the prudence term conforms with Leland (1968)

finding in the standard model. The following intuition explains why the third

order derivative or the change of risk aversion is crucial. Assume that a decision

maker is less risk averse at higher welfare levels. Then, saving for the future not

only increases expected future consumption, but also reduces the risk premium

accounting for future uncertainty. Thus, the decision maker has an additional

incentive to save for the future under uncertainty.

Sufficient conditions for which the pessimism term decreases the social dis-

count rate are more intricate. In a simplified version of the model, Gierlinger &

Gollier (2008) analyze the term. They use the KMM framework of smooth ambi-

guity aversion by Klibanoff et al. (2005), which accounts for two types of lotteries:

objective (s = obj) and subjective (s = subj). The decision maker exhibits in-

tertemporal risk aversion only with respect to subjective lotteries characterized

by f subj, but not with respect to objective lotteries (f obj is the identity/absent

from the model). Moreover, the smooth ambiguity model assumes that the deci-

sion maker faces a subjective lottery over an objective lottery.

10
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Corollary 1: [KMM model of smooth ambiguity aversion]

In a setting with subjective over objective lotteries and intertemporal risk

neutrality with respect to objective risk, the social discount rate collapses

to the form

r = δ − ln

[

Epsubjf
subj ′(mobj)

f subj ′(msubj)
︸ ︷︷ ︸

amb. prudence term

Epsubj
f subj ′(mobj)

Epsubjf subj ′(mobj)
︸ ︷︷ ︸

pessimism term

Epobj
u′(x1)

u′(x0)

]

.

Here Epobj takes the expectation with respect to an objective lottery over out-

comes x1, while Epsubj takes expectations over the objective lotteries pobj (and

the objective certainty equivalent mobj = mobj(pobj)). In this framework, f subj

corresponds to Klibanoff et al.’s (2005) measure of smooth ambiguity aversion.

In this context, Gierlinger & Gollier (2008) already derived that decreasing ab-

solute ambiguity aversion (AIRAsubj) implies that the prudence term reduces the

social discount rate. They also discuss in detail sufficient conditions for the pes-

simism term to decrease the social discount rate. In general, these conditions are

no longer mere preference restrictions but also involve restrictions regarding the

underlying lotteries. Section 3.2 discusses a different formulation of the social

discount rate that avoids these complications.

Gierlinger & Gollier (2008) classify the pessimism effect as newly arising in

the ambiguity setting. However, the next lemma shows that the pessimism term

can already arise in a pure risk setting. Assume there is a single lottery and no

subjective risk or ambiguity. Then, a unique function f characterizes intertem-

poral risk aversion. The setting is a special case of Kreps & Porteus (1978) and

a generalization of Epstein & Zin’s (1989) and Weil’s (1990) model.

Corollary 2: [KP model]

In a setting with a single lottery (no distinction of confidence, no ambigu-

ity), the social discount rate collapses to the form

r = δ − ln

[

Ef ′(u(x1))

f ′(m)
︸ ︷︷ ︸

prudence term

E
f ′(u(x1))

Ef ′(u(x1))
︸ ︷︷ ︸

pessimism term

u′(x1)

u′(x0)

]

.

11
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Thus, already in a standard setting without ambiguity, an appropriate repre-

sentation decomposes the social discount rate into a prudence and a pessimism

term.

The smooth ambiguity model and the KP model yield similar forms for the

social discount rate. Comparing the two, the smooth ambiguity model replaces

outcomes in the KP setting by conditional expectations (conditional with respect

to subjective uncertainty). This similarity arises because the KP preference struc-

ture allows for intertemporal risk aversion with respect to objective risk, while

the KMM model allows for intertemporal risk aversion with respect to subjective

risk (and assumes neutrality with respect to objective risk). Combining the two

models yields prudence and pessimism effects in both uncertainty layers.

Corollary 3: [KMM merged with KP model]

In a general setting with subjective over objective lotteries the social dis-

count rate collapses to the form

r = δ − ln

[

Epsubjf
subj ′(mobj)

f subj ′(msubj)
︸ ︷︷ ︸

subj. prudence term

Epsubj
f subj ′(mobj)

Epsubjf subj ′(mobj)
︸ ︷︷ ︸

subj. pessimism term

Epobjf
obj ′(u(x1))

f obj ′(mobj)
︸ ︷︷ ︸

obj. prudence term

Epobj
f obj ′(u(x1))

Epobjf obj ′(u(x1))
︸ ︷︷ ︸

obj. pessimism term

u′(x1)

u′(x0)

]

.

Proposition 2 then states that the subjective prudence term reduces the social

discount rate if and only if subjective prudence dominates subjective risk aversion

and that the objective prudence term reduces the discount rate if and only if

objective prudence dominates objective risk aversion. In the language of Leland

(1968): If both risk measures AIRAsubj and AIRAobj are decreasing in their

arguments, then (at least) the prudence terms reduce the social discount rate.

Observe that, in the representation of this section, the arguments of the risk

aversion functions f s are not physical wealth, but utility that measures outcome

appreciation with respect to a cardinality that derives from intertemporal trade-

offs.
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3.2 One-commodity setting: The social discount rate in

terms of Arrow Pratt risk aversion

Gollier (2002) has shown that, in the one-commodity setting, the effect of uncer-

tainty on the social discount rate in the KP framework can be unambiguously

determined. His decomposition does not involve the pessimism term, whose sign

generally depends on the underlying lottery. This section develops a similar rep-

resentation of the social discount rate for the general model and pins down the

overall effects of uncertainty on the social discount rate. The key is to use a

representation that employs measures of Arrow Pratt risk aversion rather than

measures of intertemporal risk aversion or smooth ambiguity aversion. This ap-

proach is only possible in a one-commodity setting and I assume that outcomes

are drawn from a closed subset of IR for the remainder of this section. As dis-

cussed in section 2, the functions

gs = f s ◦ u

characterize Arrow Pratt risk aversion with respect to lotteries of degree of con-

fidence s. The subsequent discounting formula builds on a preference represen-

tation that eliminates the f s functions and introduces the gs measures of risk

aversion instead. In this representation, certainty equivalents are measured in

real terms rather than in certainty equivalent utility. I denote the i-th layer

certainty equivalent by ni ≡ ni(pi) ≡ Mgŝ(p
i)

pi
· · ·Mgŝ(p

N )

pN
x1 and nN+1 ≡ x1 (or

equivalently ni = u−1(mi)).

Proposition 3: In a one-commodity setting, the social discount rate of Propo-

sition 1 is also characterized by

r = δ − ln

[

u′(n1)

u′(x0)
︸ ︷︷ ︸

Arrow Pratt risk aversion

(combined of all levels)

N∏

i=1

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
︸ ︷︷ ︸

Arrow Pratt prudence

confidence level ŝ(pi)

]

. (6)

Again, the expected value operator Epi acts on lotteries pi+1 and certainty equiv-

alents ni+1 to the right, including those in the subsequent product term. The
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important difference between equation (5) and (6) is that, in equation (6), the

marginal utility ratio shows up on the left of the expected value operators, eval-

uating only the certainty equivalent n1. Then, the essence of Proposition 2 can

be applied recursively to all Arrow Pratt prudence terms yielding the following

result.

Proposition 4: The social discount rate under uncertainty is lower than

I) under certainty if the coefficient of absolute Arrow Pratt risk aversion

ARAs = −gs′′

gs′
is decreasing for all confidence levels, i.e.

−gs′′′

gs′′
> −gs′′

gs′
for all s ∈ S .

Only relying on smoothness of the functions {gs}s∈S, the condition is

gs′ ◦ gs−1
convex for all s ∈ S.

II) in the standard model (where gs = u ∀s ∈ S) if, in addition to the con-

ditions stated in part I, absolute Arrow Pratt risk aversion dominates

utility prudence, i.e.

−gs′′

gs′
> −u′′′

u′′
for all s ∈ S .

Only relying on smoothness of the functions {gs}s∈S and u, the con-

dition is u′ ◦ gs−1
concave for all s ∈ S.

In the special case of KP preferences (#S = 1), part I of the proposition was

derived by Gollier (2002). If the decision maker is less Arrow Pratt risk averse

the higher his wealth, then uncertainty over his future income will induce higher

savings (thereby effectively reducing risk aversion). The corresponding #S = 1

special case of part II extends Gollier’s finding by comparing the social discount

rate under KP preferences to the discount rate in the standard model. In the

standard model, the concavity of marginal utility is the only ingredient that

reduces the social discount rate under risk. In contrast, under KP preferences,

the disentangled Arrow Pratt risk aversion takes this role. If this disentangled

risk aversion dominates utility prudence, then KP preferences reduce the social

discount rate more. In particular, a decision maker who does not exhibit utility
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prudence, but exhibits Arrow Pratt risk aversion, will always choose a lower

discount rate under Kreps Porteus preferences.

The special case of the smooth ambiguity model corresponds to S = {obj, subj}
and gobj = u. The condition of smooth ambiguity aversion, i.e. that f subj is con-

cave, translates into gsubj ◦ u−1 concave, which means that the decision maker

is more averse to subjective risk than to objective risk or intertemporal sub-

stitution. Ambiguity itself relates to second order subjective uncertainty (over

objective first order lotteries).

Corollary 4: [KMM model]

I) The introduction of uncertainty in terms of ambiguity and/or objective

risk decreases the social discount rate if ARAsubj = −gsubj
′′

gsubj
′ and η =

−u′′

u′
are both decreasing or, equivalently, if

−gsubj
′′′

gsubj ′′
> −gsubj

′′

gsubj ′
and − u′′′

u′′
> −u′′

u′
.

Only relying on smoothness of u and gsubj, the conditions are u′ ◦ u−1

and gsubj
′ ◦ gsubj

−1

concave. Translated into the f -representation of

section 3.1 these conditions become

u′ ◦ u−1 and f subj ′ ◦ f subj
−1

· u′ ◦ u−1 ◦ f subj
−1

concave.

II) In an uncertain world, the introduction of ambiguity aversion reduces

the social discount rate if, in addition to the conditions stated in part

I, subjective Arrow Pratt risk aversion ARAsubj dominates utility pru-

dence:

−gsubj
′′

gsubj ′
> −u′′′

u′′
.

Only relying on smoothness of u and gsubj, this additional requirement

is u′ ◦ gsubj−1
concave.

In the statement relating to the f -representation in part I of the corollary, the

expression is a (pointwise) multiplication (‘·’) of two composed functions. The

corresponding condition can be translated into a third order condition, however,
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the resulting expression extends over several lines and is of little insight. Gier-

linger & Gollier (2008) have analyzed the questions answered in Corollary 4 in

the f -representation. For general functional forms, they only found joint condi-

tions on preferences and lotteries in order to identify when ambiguity aversion

reduces the discount rate. In contrast, the above corollary holds for all well de-

fined ambiguous lotteries. Note that the corollary also holds for the setting where

the decision maker faces objective over subjective lotteries, which is not part of

the KMM setting. Finally, observe that it would be misleading to interpret the

condition on utility prudence in part I of Corollary 4 as a decreasing absolute

aversion to intertemporal substitution. The comparison with the general result

in Proposition 4 shows that aversion to intertemporal substitution only plays a

role as entangled aversion to objective risk.

4 The multiperiod case

This section extends the discounting formula to settings with an arbitrary time

horizon. In the discounted expected utility standard model, the discount rate

only depends on consumption and uncertainty in the investment and the pay-

off period. This simplification no longer holds in the current setting, or in the

special cases of KP or smooth ambiguity preferences. Here, the timing of un-

certainty resolution between the investment and the payoff period influences the

discount rate, and so does the uncertainty governing the post-payoff future. In

general, Arrow Pratt prudence no longer characterizes fully the overall effect of

uncertainty on the discount rate. The second part of this section derives a para-

metric discounting formula under the assumptions of normal growth rates and

homothetic preferences, extending the familiar Ramsey rule stated in equation

(1). Finally, I introduce a notion of aversion to the lack of confidence and discuss

some implications for the term structure of the discount rate.

4.1 The general case

Let the decision maker evaluate a project with payoffs in period T . In general,

the time horizon influences the discount rate, even if it surpasses the time of the
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project payoffs. I assume a planning horizon T̄ ≥ T .4 The resulting social or

consumption discount rate corresponds to the equilibrium interest rate on a zero

coupon bond with maturity in period T . Uncertainty in period t is captured by

Nt layers of uncertainty. Lottery p1t is a lottery over lotteries p2t in the next lower

uncertainty layer, continuing down to lotteries p
Nt−1

t over pNt

t . The final layer of

uncertainty in period t, pNt

t , characterizes uncertainty over outcomes xt and over

the remaining future p1t+1. A degree of confidence ŝ(pit) ∈ S characterizes each

lottery pit. This construction generalizes Kreps & Porteus’s (1978) concept of

temporal lotteries. For a detailed description see Traeger (2010). Preferences are

extended recursively to the multiperiod case. They are stationary giving rise to

the existence of a constant pure rate of time preference δ. If the decision maker

adopts a finite planning horizon T̄ , then WT̄ = u(xT̄ ) captures welfare in the last

period after all uncertainty has resolved. If the decision maker’s planning horizon

coincides with the time of payoff T , then WT = u(xT ). Welfare in earlier periods

is obtained by recursively calculating5

Wt−1(xt−1, p
1
t ) = u(xt−1) + e−δ

[
Nt∏

i=1

Mf ŝ(pit)

pit

]

Wt(xt, p
1
t+1) (7)

for t ∈ 1, . . . , T .

I denote certainty equivalent welfare in uncertainty layer i of period t for

some given lottery pit by mi
t(p

i
t) ≡

[
∏Nt

j=i M
f ŝ(p

j
t
)

p
j
t

]

Wt(xt, p
1
t+1) or, dropping the

argument, simply by mi
t. Moreover, I use mNt+1

t ≡ Wt(xt, p
1
t+1). Recall that the

social discount rate in the multiperiod setting was defined as the yearly average.

4In the case of an infinite time horizon, I assume that future consumption grows sufficiently
slow that the welfare functional converges. For an infinite time horizon, welfare is generally
obtained as a fix point of equation (7) under some stationarity assumption, or by explicitly
spelling out the equations of motion and the formulating the Bellman equation. Assuming
a positive time preference and a stationary consumption process beyond some point in time
T̂ > T̄ would permit the decision maker to calculate the value WT̂ in the infinite time horizon
setting and then to simply work through the relevant years of the project recursively.

5The recursion calculates welfare at the end of a given period when uncertainty only re-
mains about future outcomes. To obtain welfare at the onset of period t − 1 simply apply

∏Nt−1

i=1
Mf

ŝ(pi
t−1)

t−1

pi
t−1

to equation (7).
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Proposition 5: The social discount rate in the multiperiod setting for payoffs

in period T is

r = δ − 1

T
ln

[{
T∏

t=1

N∏

i=1

Epit
f ŝ(pit)

′

(mi+1
t )

f ŝ(pit)
′

(mi
t)

︸ ︷︷ ︸

prudence term

confidence level ŝ(pi)

Epi
f ŝ(pit)

′

(mi+1
t )

Epi f ŝ(pit)
′

(mi+1
t )

︸ ︷︷ ︸

pessimism term

confidence level ŝ(pi)

}

u′(xT )

u′(x0)

]

.

For i < NT the expected value operator Epit
acts on lotteries pi+1

t and certainty

equivalents mi+1
t . The expected value operator E

p
Nt
t

acts on mNt+1
t = xt and, for

t < T , on the lottery p1t+1 characterizing uncertainty in the next period. The form

for the discount rate in Proposition 5 does not depend on whether the decision

maker applies a finite planning horizon coinciding with the payoff time T , some

larger finite horizon, or an infinite planning horizon. However, the evaluation of

the certainty equivalent utility levels do depend on the time horizon. In the case

of an infinite time horizon the mi
t(p

i
t) depend on an infinite consumption process.

Proposition 2 also applies in the general setting.

Proposition 2’: A prudence term of confidence level s reduces the social dis-

count rate, if and only if, the function f s exhibits decreasing absolute risk

aversion AIRAs = −fs′′

fs′ : −fs′′′

fs′′ > −fs′′

fs′ . Only relying on smoothness of

the functions {f s}s∈S, the condition is f s′ ◦ f s−1

convex for all s ∈ S.

Once more, the assumption of a one-commodity setting permits a translation

of the risk aversion measures into Arrow Pratt terms by using gs = f s ◦ u for

s ∈ S. The corresponding representation of the social discount rate employs

the definitions of the certainty equivalents in real terms ni
t(p

i
t) = u−1 (mi

t(p
i
t))

including nN0+1
0 ≡ x0.

Proposition 6: In a one-commodity setting, the social discount rate expressed

by means of Arrow Pratt risk aversion for

I) a decision maker adopting the time horizon T̄ = T coinciding with the

time of the payoff is

r = δ − 1

T
ln

[
T∏

t=1

u′(n1
t )

u′(n
Nt−1+1
t−1 )

[
Nt∏

i=1

Epit

gŝ(p
i
t)
′

(ni+1
t )

gŝ(p
i
t)
′

(ni
t)

]]

. (8)
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II) a decision maker adopting a time horizon T̄ > T (possibly infinite) is

r = δ − 1

T
ln

[{
T∏

t=1

u′(n1
t )

u′(n
Nt−1+1
t−1 )

[
Nt∏

i=1

Epit

gŝ(p
i
t)
′

(ni+1
t )

gŝ(p
i
t)
′

(ni
t)

]}

u′(xT )

u′(nNT+1
T )

]

.

Note that, once more, also the evaluation of the certainty equivalents ni
t depend

on the time horizon. In equation (8) the use of Arrow Pratt risk aversion shifts

once more marginal utility to the left of the period’s expectation operator. In a

two period setting, this shift enabled the powerful statements of Proposition 4.

However, in the multiperiod setting these marginal utilities also depend on uncer-

tainty and consumption levels in other periods. Because of this interdependence

of welfare the proof underlying Proposition 4 no longer applies. Moreover, if the

planning horizon exceeds that of the project, the interdependence with future

welfare introduces an additional marginal utility term to the right of the last

expectation operator. Assuming that uncertainty only resolves in period T = T̄

recovers a separable welfare function and Proposition 4 applies again.

Corollary 5: [Uncertainty resolves only in period T = T̄ ]

If the planning horizon of the agent coincides with the time of the payoff

T̄ = T and there is no uncertainty resolving in earlier periods, then Propo-

sition 4 also holds for the multiperiod setting.

4.2 Isoelastic preferences and normal uncertainty

Isoelastic preferences are arguably the most prominent specification in economics.

They imply decreasing absolute coefficients of aversion and underly the usual

parametric formulation of the Ramsey discounting formula. I extend the para-

metric Ramsey rule to the setting of this paper. LetX ⊂ IR describe an aggregate

consumption commodity. I assume that consumption growth is uncertain and de-

scribed by a normal distribution. Growth from one period to the next is captured

by a single uncertainty layer. The growth rate gt = ln xt+1

xt
∼ N(µt, σt; st) is dis-

tributed normally, where st ∈ S labels confidence. The isoelastic preferences
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can be represented by the functions u(xt) =
x
ρ
t

ρ
and f s(z) = (ρz)

αs
ρ , implying

gs = xαs

t . In a setting without confidence, these preferences correspond to those

used by Epstein & Zin (1989) and Weil (1990) to disentangle risk preferences

from intertemporal substitutability. I employ the inverse of the intertemporal

elasticity of substitution η = 1 − ρ = −u′′

u′
for measuring the decision maker’s

propensity to smooth consumption over time. Epstein & Zin (1989) measure

Arrow Pratt risk aversion as a function of α. Employing instead a measure of

intertemporal risk aversion allows me to flesh out the contribution differing from

the standard model (where the intertemporal risk aversion term vanishes). More-

over, the carefully chosen risk measure will simplify the formula for the discount

rate significantly. A straight forward numerical measure of intertemporal risk

aversion would be a coefficient of relative intertemporal risk aversion calculated

as

RIRAs = −f s′′(z)

f s′(z)
|z| =

{
1− αs

ρ
for ρ > 0

αs

ρ
− 1 for ρ < 0

(9)

for all s ∈ S and ρ 6= 0 ⇔ η 6= 1. The absolute in the definition arises because

the utility function u can be negative. Such a measure is suggested in the case of

smooth ambiguity aversion by Klibanoff et al. (2009). However, the Epstein-Zin

specification implies that the measure RIRAs goes to infinity for ρ → 0, when

utility switches from the positive to the negative domain. I therefore introduce

a renormalized measure

ζs =

{

RIRAs |1− η2| for η 6= 1

−2αst for η = 1

which is continuous at η = 1 and positive, if and only if, the decision maker is

intertemporal risk averse.

Proposition 7: The social discount rate for payoffs in period T is

r = δ +
1

T

[
T∑

t=1

ηµt − η2
σ2
t

2
− ζst

σ2
t

2

]

. (10)

20



Discounting and Confidence

The first term in the sum captures how expected growth reduces future marginal

utility deriving from a unit of consumption. The second term corresponds to the

risk term of the standard model. It is caused by aversion to intertemporal fluctu-

ations generated by the stochastic process. The last term captures intertemporal

risk aversion. Common values for η in the standard model are between 1 and

2. However, the disentangled approach generally estimates values of η smaller

than unity: Aversion to intertemporal substitution turns out smaller when it no

longer has to simultaneously play the role of risk aversion. Vissing-Jørgensen &

Attanasio (2003), Bansal & Yaron (2004), and Bansal et al. (2010) identify η = 2
3

as a reasonable estimate. I adopt Kocherlakota’s (1996) estimates of µ = 1.8%

and σ = 3.6%, based on an annual time series of 90 years for the US, to com-

pare the different contributions. Then, the growth term ranges 1.2% − 3.6% for

η ∈ [2
3
, 2] and the second term ranges 0.03%− 0.3%, which is close to negligible.

Thus, intertemporal growth trends are highly significant for the social discount

rate and for the saving decision, while wiggles are not. Relative risk aversion,

measured in the Arrow Pratt sense, generally is assumed to range 5− 10 giving

rise to ζ ∈ [72/9, 155/9] for η = 2
3
, ζ ∈ [8, 18] for η = 1, and ζ ∈ [9, 24] for η = 2.

The last contribution in equation (10) then ranges 0.5%− 1.6%. Thus, intertem-

poral risk aversion reduces the social discount rate significantly, while risk has a

negligible effect in the standard model.

4.3 Aversion to the lack of confidence and the term struc-

ture of discount rates

The numerical reasoning in the previous section assumed constant growth rates

and confidence. My interest is in analyzing the situation where confidence in the

normal distributions governing growth decreases the further an agent (or society

as a whole) looks into the future. In order to capture reactions to decreasing

confidence, I introduce the notion of aversion to subjectivity. For this purpose, I

assume that the set of subjectivity descriptions is completely ordered by a binary

relation ⊲ ⊂ S2, such that s ⊲ s′ denotes that lotteries labeled s are considered

more subjective (or less confident) then lotteries labeled s′. I keep µt and σt fix

at not necessarily constant levels. Following Traeger (2010), I define a decision
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maker as [strictly ] averse to the subjectivity of belief or the lack of confidence in

beliefs if for all s, s′ ∈ S

s ⊲ s′ ⇔ (x1, ..., xT )⊕
1
2

s′ (x
′

1, ..., x
′

T ) �T [≻T ] (x1, ..., xT )⊕
1
2
s (x′

1, ..., x
′

T )

∀ x1, ..., xT , x
′

1, ..., x
′

T ∈ X [with non-indifferent paths]

⇔ f s ◦ (f s′)−1 [strictly] concave .

The equivalence of the two lines on the right hand side is shown in the cited

paper. The definition of smooth ambiguity aversion is the special case of aversion

to subjectivity where s = subj and s′ = obj and, for the definition of Klibanoff

et al. (2009), f obj is the identity. I aim at a representation of discount rates where

subjectivity and confidence are measured on a scale from zero to one, rather than

in abstract terms. For this purpose, I introduce the space of all order preserving

maps from the abstract space of confidence descriptions onto the unit interval

S∗ = {S∗ :S→ [0, 1] | S∗(s) > S∗(s′) ⇔ s ⊲ s′ and

∃ s, s ∈ S s.th. S∗(s)=0, S∗(s)=1} ,

which map the label indicating objectivity or most confidence to zero and the

label indicating highest subjectiveness or least confidence to unity. The following

proposition expresses the social discount rate in terms of subjectivity and aversion

to subjectivity (lack of confidence).

Proposition 8: Let a decision maker exhibit isoelastic preferences, intertempo-

ral risk aversion to objective lotteries, and aversion to the lack of confidence.

Let the growth rate be normally distributed as laid out above. Then, there

exist parameters η ∈ IR, λ ∈ [0, 1), and ζ ≥ 0 and a map S∗ ∈ S∗ such that

the discount rate for a payoff in period T is

r = δ +
1

T

[
T∑

t=1

ηµt − η2
σ2
t

2
− ζ

1− λs∗t

σ2
t

2

]

, (11)

where s∗t = S∗(st) ∈ [0, 1].

For a decision maker who is strictly intertemporal risk averse with respect
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to objective lotteries and satisfies strict aversion to the lack of confidence

in beliefs it is ζ, λ > 0.

The parameter λ captures aversion to subjectivity or lack in confidence. A

decision maker who is indifferent to subjectivity obeys the KP model an exhibits

λ = 0. His consumption discount rate features a time-constant contribution from

intertemporal risk aversion, measured by ζ, weighting the volatility. For decision

makers with aversion to subjectivity, the parameter ζ only reflects intertemporal

risk aversion to objective lotteries. As subjectivity increases, the denominator 1−
λs∗ decreases the discount rate by increasing risk aversion. I am interested in the

case where confidence in the normal description of growth uncertainty decreases

the further the agent looks into the future: s∗t+1 > s∗t ∀ t ∈ {1, ..., T}. An example

is a decision maker who takes into consideration that technological uncertainty,

climate change, or social tensions make future growth less and less predictable.

Such an agent invests more into projects with certain future payoffs because

he accounts for his increasing lack of confidence. Note that the combination

of a complete lack of confidence st = 1 and an extreme aversion to the lack of

confidence λ → 1 results in an Arrow & Hurwicz (1972) type criterion for decision

making under ignorance. Such a decision maker would only pay attention to the

worst possible outcome.6

Proposition 8 brings the discount rate into a suitable form to discuss the term

structure of the discount rate in relation to confidence in beliefs. I employ again

Kocherlakota’s (1996) growth estimates of µ = 1.8% and σ = 3.6% and choose

η = 2
3
based on Vissing-Jørgensen & Attanasio (2003), Bansal & Yaron (2004),

and Bansal et al. (2010). The graphs in Figure 2 depict the average yearly dis-

count rate for a payoff in period T assuming a pure rate of time preference of

6The limit λ → 1 corresponds to γs∗ → ∞ for s∗ → 1, giving rise to full weight on the
minimal element carrying positive probability mass. The normal distribution has full support
on IR so that the decision maker puts all weight on however small possibility of dying of hunger
(or worse). If we offer such an agent a zero coupon bond enabling a sure transfer into the future
and allowing him not to worry about starvation in that period he would pay an infinite amount
for the first marginal transfer. This is reflected by the discount rate going to infinity if both, λ
and s, approach unity. Obviously, the underlying growth model in combination with the offer
of a certain transfer would be too simple a model in order to support the decisions of such an
agent. A “dismal theorem” interpretation of equation (11) would be a misinterpretation (or
extrapolation beyond applicability) of the model.
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Figure 2 depicts the term structure for decreasing confidence. The thick, solid lines (colored)
represent an idd growth process with exponentially decreasing confidence. For the dashed lines,
all uncertainty resolves in the payoff period (abscissa). The model parameters are chosen such
that implied Arrow Pratt risk aversion is RRA = 5 in the present and RRA = 10 in year
30. The blue (dark) graphs on the left assume a confidence half life of t 1

2
= 10, implying an

aversion to the lack of confidence of λ = 0.61. The green (light) graphs on the right assume a
confidence half life of t 1

2
= 20, implying an aversion to the lack of confidence of λ = 0.83. For

comparison, the thin, solid line (black) at the top represents certainty and the thin, dotted line
an iid growth process in the intertemporally additive expected utility standard model.

δ = 1.5%. The solid black line at the top of the graphs in Figure 2 depicts the

discount rate under certainty. The dashed black line right underneath depicts the

discount rate under iid growth uncertainty in the standard model. The formulas

correspond to the first summand and to the first two summands in equation (11),

respectively. The figure shows that uncertainty has almost no effect in the stan-

dard model. For higher values of η, the absolute value and the difference between

the two lines would be larger. However, for any value of η the term structure will

be flat and the decision maker discounts the future at a constant rate.

In contrast, a decrease of confidence in futurity implies a falling term struc-

ture, even under iid uncertainty. The term structure is determined by the intrinsic

aversion to objective risk, the loss in confidence over time, and the aversion to the

lack of confidence. A quantitative simulation of the term structure has to fix these

values. I use an Arrow Pratt risk aversion coefficient of RRA = 5 for aversion to

objective risk. This value lies at the lower end of what is measured for relative risk

aversion in disentangled approaches. The assumption is equivalent to ζ = 7.2.

Moreover, I assume that confidence, measured as 1 − s∗t , declines exponentially
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to zero at rate γ. The exponential distribution is reasonable because it lacks

memory. The assumption translates into the functional form s∗t = 1− exp(−γt).

I fix the values for the decay rate of confidence and the aversion to the lack of

confidence as follows. I assume that the Arrow Pratt measure of relative risk

aversion increases to RRA = 10 over the course of the next 30 years. This risk

aversion coefficient is on the high side of estimates, but by no means an upper

bound. I fix the remaining degree of freedom by an assumption on the half life of

confidence (t 1
2
= ln 2

γ
). The representation in Proposition 8 has cardinalized the

degree of confidence 1 − s∗t on an interval from unity to zero. The blue (thick)

lines on the left of Figure 2 assume that the decision maker’s confidence over

the distribution governing growth from on period to the next decreases to half

its value during the course of 10 years. The solid line represents the iid growth

model of equation (11). The dashed lines represent a model where all uncertainty

resolves in the payoff period.7 Both discount rates start at approximately 2.2%.

The KP model with RRA = 5 would yield a constant term structure at this level,

which is a significant reduction with repect to the standard model. As the agent

becomes less confident over the future, the discount rate falls. By construction,

Arrow Pratt risk aversion with respect to the growth realization in year 30 is

RRA = 10. At this point, confidence has already fallen to an eigth and the

curves slowly starts to flatten. The dashed line at year 30 depicts a discount rate

of 1.7% corresponding to the (constant) rate that would obtain in the KP model

with RRA = 10. The solid line lags behind because it calculates the discount rate

for the case where part of the uncertainty resolves in the closer future, over which

the decision maker is more confident. In the long run, the solid line converges to

the dashed line.

The graph on the right of Figure 2 analyzes the term structure for a longer

half life of confidence, t 1
2
= 20 years. Aversion to the lack of confidence is

once more determined by the requirement that after 30 years the implied Arrow

Pratt measure should be RRA = 30. Because confidence falls slower in the

right graph, this calibration implies a higher degree of aversion to the lack of

7The variance is adjusted to imply the same uncertainty over consumption in period T as
in the case of the iid growth scenario. The scenario with last period uncertainty resolution is
captured by equation (11) with σt = 0% for t ∈ {0, ..., T − 1} and σT = 3.6% ∗

√
T .
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confidence (λ = 0.83 as opposed to λ = 0.61 for the graph on the left). In year

30, the dashed line once more depicts the discount rate of 1.7% corresponding

to the KP model with RRA = 10. However, confidence falls slower than in the

simulation on the left. Thus, confidence keeps falling more significantly beyond

year 30 and the dashed line only starts to flatten at the end of the century. The

solid line, representing the iid model, once more lags behind because uncertainty

partially resolves in the closer future where the decision maker is more confident

about his probabilistic beliefs.8

5 Conclusions

The future is uncertain. Probabilistic beliefs over the future range from well

founded estimates to guesstimates. The present framework captures differences

in way probabilities have been informed by a confidence index. Different confi-

dence classes of probabilistic beliefs give rise to different degrees of risk aversion.

The widespread smooth ambiguity model is a special case with two classes of

probabilities. The paper analyzes how such general forms of uncertainty affect

the consumption discount rate of individual agents and the social discount rate

for aggregate cost benefit analysis.

A prudence term reduces the discount rate under uncertainty, whenever ab-

solute measures of uncertainty aversion are falling. If uncertainty aversion is

measured in terms of smooth ambiguity aversion or, more generally, intertem-

poral risk aversion, the prudence effect is complemented by a pessimism effect.

The pessimism term has an ambiguous effect on discount rates. Intertemporal

risk aversion and smooth ambiguity aversion capture an intrinsic aversion to risk,

as opposed to an aversion caused by the desire for consumption smoothing and

8In year 150 the dashed line reaches zero and eventually even becomes slightly negative. Note
that a negative consumption discount rate in this model does not imply that the welfare function
diverges. In contrast, the comprehensive model yields lower welfare levels under uncertainty
than does the standard model with the high discount rate. The interpretation is that, if
society has the means to transfer a certain unit of consumption into a highly uncertain future
described by low confidence probabilities, then it should do so, even when it has to accept a
small depreciation of the transfer. However, a larger rate of pure time preference will imply a
strictly positive discount rate with the same assumptions on confidence and aversion. Moreover,
see footnote 6 on the limitations of the normal growth model in this context.
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fluctuations over time. In a one commodity setting, generalized Arrow Pratt

measures of risk aversion jointly measure intrinsic risk aversion and aversion to

intertemporal fluctuations. Using these measures to represent preferences elimi-

nates the pessimism term. Then, the prudence effect uniquely characterizes the

discount rates. Thus, the discount rates fall under uncertainty, whenever these

absolute measures of Arrow Pratt risk aversion are falling in consumption for all

confidence levels. This finding confirms Leland’s (1968) intuition on precaution-

ary savings, which was recently challenged in the context of ambiguity aversion.

The intuition is that, if risk aversion falls in consumption level, an increase in fu-

ture baseline consumption mitigates the effect of uncertainty aversion and, thus,

increases the incentive to save. Similarly, it makes cost benefit analysis pay

more attention to (certain) future payoffs. This intuition holds as long as the

aversion measure captures all of the uncertainty aversion present in the model.

The effect of uncertainty on discount rates is larger in the general model than

in the (all-entangling) standard model, if the absolute Arrow Pratt measures of

(disentangled) risk aversion dominate absolute utility prudence.

In an application, the paper extended the Ramsey formula for isoelastic prefer-

ences and normal growth to the setting of general uncertainty. A new contribution

arises that is proportional to volatility and a measure of intrinsic risk aversion:

smooth ambiguity aversion or, more generally, intertemporal risk aversion. The

new term reduces the discount rate significantly in the presence of uncertainty.

In order to analyze the term structure of discount rates, risk aversion has to be

related across different confidence levels. An assumption of aversion to the lack

of confidence plays this role. If confidence decreases over time, the term struc-

ture is falling even in the case of iid growth. The further the agent, or society,

look into the future, the lower the confidence and the higher is the incentive to

increase baseline consumption. For cost benefit analysis, the finding implies the

use of hyperbolic discount rates. They reduce the extreme devaluation of long-

run consequences of current actions implied by exponential discounting, while

maintaining standard discount rates for the short term. Many of the examples

cited in the introduction exhibit long-run benefits of current actions - or long-run

costs of current inaction. Here, a reduced social discount rate implies that more
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projects should be carried out, e.g. mitigation of greenhouse gas emissions. A

different perspective on the finding is as follows. The standard model contains

the implicit assumption that long-run uncertainties are of the same type as flip-

ping a coin. This implicit assumption can result in a bias against precautionary

action ensuring future consumption levels.

Appendix

A Proofs

Proof of Proposition 1: First observe that ∂x0W0 = ∂x0u(x0) = u′(x0) and

∂x1Mf ŝ(p)

p u(x1) =
Ep f

ŝ(p)′ [u(x1)] u
′(x1)

f ŝ(p)′
[
Mf ŝ(p)

p u(x1)
] .

Then

∂x1

[
N∏

i=j

Mf ŝ(pi)

pi

]

u(x1) = Epj
f ŝ(pj)′ [mj+1]

f ŝ(pj)′
[
Mf ŝ(pj)

pj
mj+1

] ∂x1

[
N∏

i=j+1

Mf ŝ(pi)

pi

]

u(x1)

=

[
N∏

i=j

Epi
f ŝ(pi)′ [mi+1]

f ŝ(pi)′
[
mi
]

]

u′(x1)

and the discount rate becomes

r = − ln

[
∂x1W0

∂x0W0

]

= δ − ln

[{
N∏

i=1

Epi
f ŝ(pi)′(mi+1)

f ŝ(pi)′(mi)

}

u′(x1)

u′(x0)

]

.

The second version stated in the proposition is obtained by expanding numerator

and denominator with Epi f
ŝ(pi)′(mi+1). �

Proof of Proposition 2: For two continuously differentiable functions h and f

with h > 0 and f strictly monotone on a non-degenerate domain holds

Eh (z)

h [f−1E f(z)]
> 1 ⇔ Eh ◦ f−1(y) > hf−1 E y ⇔ h ◦ f−1 convex .
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For h < 0 it follows analogously h ◦ f−1 concave. Moreover,

h ◦ f−1 convex ⇔ h′′ >
f ′′

f ′
h′ ⇔







−f ′′

f ′
> −h′′

h′
∧ h′ > 0 or

−f ′′

f ′
< −h′′

h′
∧ h′ < 0 .

Then with h = f ′, noting that f ′ > 0 and f ′′ < 0 by assumption, I find the

condition

Epi f
ŝ(pi)′(mi+1)

f ŝ(pi)′(mi)
> 1 ⇔ Epi f

ŝ(pi)′(mi+1)

f ŝ(pi)′
(

f ŝ(pi)
−1

Epi f ŝ(pi)(mi+1)
) > 1

⇔ f ŝ(pi)′ ◦ f ŝ(pi)
−1

convex ⇔ −f ŝ(pi)′′

f ŝ(pi)′
< −f ŝ(pi)′′′

f ŝ(pi)′′
,

which is equivalent to AIRAŝ(pi) = −f ŝ(pi)
′′

f ŝ(pi)
′ decreasing. �

Corollaries 1 - 3 are immediate consequences of Proposition 1.

Proof of Proposition 3: Replacing the functions f s by gs = f s ◦ u for all

s ∈ S and observing that f s ◦ f s̄−1 = gs ◦ u−1 ◦ u ◦ gs̄−1 I obtain the welfare

representation

u(x0) + e−δ u−1

[
Nt∏

i=1

Mgŝ(p
i)

pi

]

x1 .

The required welfare changes then become ∂x0u(x0) = u′(x0) and

e−δ∂x1 u

[
Nt∏

i=1

Mgŝ(p
i)

pi

]

x1 = e−δ u′(n1)
N∏

i=j

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
,

which results in the discount rate stated in equation (6). �

Proof of Proposition 4:

Part I: Let rcert denote the discount rate when receiving the expected future

payoff x̄ with certainty. Comparison with the discount rate r in the uncertain
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scenario yields

r < rcert ⇔ u′(n1)

u′(x0)

N∏

i=1

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
>

u′(x̄)

u′(x0)
.

Assume gs′ ◦ gs−1
convex for all s ∈ S. Define

Ãj(p
j) ≡

N∏

i=j

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)

for all j = 1, . . . , N ′. Recursive application of Proposition 2 for j = N,N−1, . . . , 1

ensures that all Ãj(p
j) are larger than unity:

Ãj(p
j) =

N∏

i=j

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
= Epj

gŝ(p
i)′(ni+1)

gŝ(pi)
′

(ni)
Ãj+1 > Epj

gŝ(p
i)′(ni+1)

gŝ(pi)
′

(ni)
> 1 .

Thus a sufficient condition for r < rcert is

u′(n1) > u′(x̄) ⇔ u′

([
Nt∏

i=1

Mgŝ(p
i)

pi

]

x1

)

> u′

([
Nt∏

i=1

Epi

]

x1

)

,

which is satisfied by the assumptions gs′ > 0 and u′′, gs′′ < 0 for all s ∈ S, because

an increasing concave function gs makes the generalized mean smaller than the

expected value.

Part II: The comparison of r w.r.t. to the discount rate rstd obtained under

standard preferences where gs = u ∀s ∈ S implies the condition

r < rstd ⇔ u′(n1)

u′(x0)

N∏

i=1

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
>

u′(n1
u)

u′(x0)

N∏

i=1

Epi
u′(ni+1

u )

u′(ni
u)

,

where nj
u =

[
∏Nt

i=j Mu
pi

]

x1 is the certainty equivalent calculated with u charac-

terizing the generalized mean. The denominator in the last term of the equation

does not depend on the expected value operator immediately to the left and can-

cels with the numerator in the preceding term, reducing the right hand side to
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[
∏N

i=1 Epi

]
u′(x1)
u′(x0)

. Rearranging implies

r < rstd ⇔
u′

([
∏Nt

i=1 Mgŝ(p
i)

pi

]

x1

)

[
∏N

i=1 Epi

]

u′(x1)

N∏

i=1

Epi
gŝ(p

i)′(ni+1)

gŝ(pi)
′

(ni)
> 1 .

As shown in part I) the product term is larger than unity. Thus, a sufficient

condition for r < rcert is

u′

([
Nt∏

i=1

Mgŝ(p
i)

pi

]

x1

)

>

[
N∏

i=1

Epi

]

u′(x1) . (12)

If u′ is concave the condition is satisfied as u concave and gS increasing and

concave for all s imply

u′

([
Nt∏

i=1

Mgŝ(p
i)

pi

]

x1

)

> u′

([
N∏

i=1

Epi

]

x1

)

>

[
N∏

i=1

Epi

]

u′(x1) .

If u′ is convex, using concavity of u, condition (12) translates into
[

Nt∏

i=1

Mgŝ(p
i)

pi

]

x1 < u′
−1

([
N∏

i=1

Epi

]

u′(x1)

)

=

[
Nt∏

i=1

Mu′

pi

]

x1 .

This condition is satisfied if all the mean values characterized by gs, s ∈ S are

smaller than those characterized by u′, which is satisfied if gs ◦u′
−1

is concave for

all s ∈ S or, equivalently, −u′′′

u′′
< −g′′

g′
(see proof of Proposition 2). �

Corollary 4 is an immediate consequence of Proposition 3. �

Proof of Proposition 5: The welfare change from an infinitesimal change in

current consumption still is ∂x1W0 = ∂x1u(x0) ≡ u′(x0), while the future change

becomes

∂xT
W0 = e−δ ∂xT

[
Nt∏

i=1

Mf
ŝ(pit)
t

pit

]

W1(x1, p
1
1)

= e−δ

[
N1∏

i=1

Epit

f ŝ(pi1)
′ [
mi+1

1

]

f ŝ(pi1)
′[
mi

1

]

]

∂xT
W1(xt, p

1
t+1)
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= e−δt

[{
T∏

t=1

Nt∏

i=1

Epit

f ŝ(pit)
′

(mi+1
t )

f ŝ(pit)
′

(mi
t)

}

u′(xT )

]

.

Note that the only change for a longer time horizon is that the mi
t are calculated

for longer consumption stream. Then

r = −1

t
ln

[
∂xT

W0

∂x0W0

]

= δ − 1

t
ln

[{
T∏

t=1

Nt∏

i=1

Epit

f ŝ(pit)
′

(mi+1
t )

f ŝ(pit)
′

(mi
t)

}

u′(xT )

u′(x0)

]

.

�

Proof of Proposition 2’: Same as for Proposition 2. �

Proof of Proposition 6: Replacing the functions f s by gs = f s ◦u I obtain the

welfare representation VT̄ (xT̄ ) = xT̄ and

Wt−1(xt−1, p
1
t ) = u(xt−1) + e−δ u

{[
Nt∏

i=1

Mg
ŝ(pit)
t

pit

]

u−1 ◦Wt(xt, p
1
t+1)

}
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for t ∈ 1, . . . , T̄ . First, observe that ∂x0W0 = u′(x0) still holds. Moreover,

∂xT
W0 = e−δ u′(n1

1) ∂xT

[
Nt∏

i=1

Mg
ŝ(pit)
t

pit

]
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]

]

∂xT
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1
t+1)
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]
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}
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}
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(13)

where δi,j = 1 if i = j and 0 otherwise and 0i,j = 0 if i = j and 1 otherwise. The

last two equations will both be used to derive two alternative formulations. The

further calculation differs depending on the time horizon:

I) Time horizon T̄ = T and WT (·) = WT (xT ) = u(xt). Then ∂xT
WT =

u′(xT ) = u′(nNT+1
T ) and the last derivative cancels the last u′-denominator,

resulting in

∂xT
W0 = e−δtu′(n1

t )

{
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Nt∏
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and the discount rate becomes

r = −1

t
ln

[

−∂xT
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∂x0W0

]

= δ − 1

t
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gŝ(p
i
T
)′(ni

T )

]

= δ − 1

t
ln

[
T∏

t=1

[

u′(n1
t )

u′(n
Nt−1+1
t−1 )

Nt∏

i=1

Epit

gŝ(p
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.

where in the second line by definition nN0+1
0 = x0.

II) Time horizon T̄ > T . Then ∂xT
WT (·) = ∂xT

WT (xT , pT+1) = u′(xT ) as

before, but u′(nNT+1
T ) 6= u′(xT ), so that the last terms no longer cancel and

by equation (13) the discount rate becomes
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t
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Mgŝ(p
i
t)

pit

]

u−1 ◦Wt(xt, p
1
t+1)

= u−1
[ Nt∏

i=j
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�

Proof of Corollary 5: In this case the general formula collapses to
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But then the same reasoning as in the proof of Proposition 4 can be applied. �

Proof of Proposition 7: At time T̄ I have m2
T̄
= uT̄ (xT̄ ) =

x
ρ

T̄

ρ
and

m1
T̄ = f−1

sT̄

[
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]
= 1

ρ
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where expectations are evaluated given xT̄−1 so that
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2

︸ ︷︷ ︸

≡BT̄

.

For earlier periods, I recursively find that the certainty equivalent utility levels

m2
t (uncertain only about the future) and m1

t (uncertain about current and future

consumption) are of the form:

m2
t =

x
ρ
t

ρ
+ e−δ m1
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{
1 + e−δ Bt+1

}
,

m1
t = f−1

st
[Et−1fst(m

2
t )] =
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1 + e−δ Bt+1

}

︸ ︷︷ ︸

≡Bt

=
x
ρ
t−1

x
ρ
t

eρµt+ραst

σ2
t
2 m2

t . (14)

Then I can evaluate the expressions

f st ′(m2
t )

f st ′(m1
t )

=
αst (ρ m2

t )
αst
ρ

−1

αst (ρ m1
t )

αst
ρ

−1
=

(
m2

t

m1
t

)αst−ρ

ρ

=
(

xt

xt−1

)αst−ρ

e−(αst−ρ)(µt+αst

σ2
t
2
) (15)

by virtue of equation (14). In the payoff period I have u′(xT ) = xρ−1
T and

f sT ′(m2
T )

f sT ′(m1
T )

u′(xT ) =
(

xT

xT−1

)αsT
−ρ

e−(αsT
−ρ)(µT+αsT

σ2
T
2

) xρ−1
T

= xρ−1
T−1

(
xT

xT−1

)αsT
−1

e−(αsT
−ρ)(µT+αsT

σ2
T
2

) .
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The following calculation takes expectations. The expression coincides with the

one in the previous line for t = T and DT+1 = 1.

xρ−1
t−1 Et−1

(
xt

xt−1

)αst−1

e−(αst−ρ)(µt+αst

σ2
t
2
)
∏T

τ=t Dτ+1

= xρ−1
t−1 e(αst−1)µt+(αst−1)2

σ2
t
2 e−(αst−ρ)(µt+αst

σ2
t
2
)
∏T

τ=t Dτ+1

= xρ−1
t−1 exp

(

(αst − 1)µt + (αst − 1)2
σ2
t

2
− (αst − ρ)(µt + αst

σ2
t

2
)
)
∏T

τ=t Dτ+1

= xρ−1
t−1 exp

(

−µt + (−2αst + 1)
σ2
t

2
+ ρ(µt + αst

σ2
t

2
)
)
∏T

τ=t Dτ+1

= xρ−1
t−1 exp

(

(ρ− 1)µt + (1− 2αst + ραst)
σ2
t

2

)
∏T

τ=t Dτ+1

= xρ−1
t−1 exp

(

−(1− ρ)µt +
(

1− αst

ρ

) (
1− (1− ρ)2

)σ2
t

2

)
∏T

τ=t Dτ+1

= xρ−1
t−1 exp

(

−ηµt + η2
σ2
t

2
+ RIRAst |1− η2|σ

2
t

2

)

︸ ︷︷ ︸

≡Dt

∏T

τ=t Dτ+1

= xρ−1
t−1

∏T

τ=t−1 Dτ+1 (16)

employing the definitions η = 1− ρ and equation (9). The easiest way to verify

the third last line is by expansion. Recursively employing equation (16) and

making use of equation (15) yields

r = δ − 1

t
ln

[

1

u′(x0)

{
T∏

t=1

Epit

f st ′(m2
t )

f st ′(m1
t )

}

u′(xT )

]

= δ − 1

t
ln

[

xρ−1
0

xρ−1
0

T∏

t=1

Dt+1

]

implying equation (10) stated in the proposition for η 6= 1. For η = 1 find that the

problem is smooth and limη→1 RIRAst |1−η2| = limρ→0(1− αst

ρ
)ρ(2−ρ) = −2αst .

�

Proof of Proposition 8: With defining ζ = ζs = RIRAS∗(sobj) |1− η2| equation
(11) is an immediate consequence of equation (11) for the set of least subjective

lotteries. Fixing the parameter λ by the requirement ζ

1−λ
= ζs ⇒ λ = 1− ζ

RIRAs

implies validity of the representation also for the most subjective lotteries (la-

beled s). Moreover, the parameter λ ∈ [0, 1) because the assumption of aversion
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to objective risk makes ζ > 0 and the assumption of aversion to the subjectivity

of belief implies ζ ≤ ζs with a strict inequality in the case of strict aversion to the

subjectivity of belief. By aversion to the subjectivity of belief it also follows that

ζS∗−1(s∗t )
is monotonous in s∗t for all S

∗ ∈ S∗ because a more subjective lottery im-

plies a higher degree of intertemporal risk aversion (Traeger 2010). In particular,

there exists a map S∗ on the set of finite elements s ∈ S such that ζ

1−λs∗t
= ζst . �
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