UC Berkeley

Research Reports

Title
SmartAHS and SHIFT Enhancements, Persistence and Query Interpretation

Permalink
https://escholarship.org/uc/item/61z178c8

Author
Misener, Jim

Publication Date
2000-03-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/61z178c8
https://escholarship.org
http://www.cdlib.org/

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

SmartAHSand SHIFT Enhancements,
Persgenceand Query Interpretation

Jim Misener
California PATH

California PATH Research Report
UCB-I TS-PRR-2000-6

Thiswork was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 258

March 2000
|SSN 1055-1425

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

SmartAHS and SHIFT Enhancements, Persistence and Query

Interpretation
Table of Contents
Abstract 3
Key Words 3
[1 Executive Summary 3|
P Background 5
3 Methodology 7
E.l Phase I. SmartAHS ENNANCEMENTSccuveiiiiiiiiiieeciecciieeciee ettt ene e ns 7
.2 Phase Il. SHIFT ENhANCEMENESc...cciuiiiiiiiiiiiic ettt eeeaaee e 7
3.3 Phase 1. DOCUMENTALIONuiiiiiitiiitiiiteeit et eeitee st eeiteessresseesssesseesseessseesseessseeseessseanns 7
u Phase I. SmartAHS Enhancements (Jan — May 98) 8|
.1 Sensor Architecture DEVEIOPMENTc...cvveviereieeeeretieieieeeieteereteeeeeensiesereeeenseeenssereenanas 9
A, 1.1 INETOTUCTION ...ttt e et e et e e et e esbaesnreenteeenreesreesnes 9
. 1.2 USING SBNSOS.....uviiiiiietiiieiiitiiiiesetteiieseestetesssseessssassessssssssessssssessessesssssesassseseesssseseessons 9
1.1.3 DeSIGNING NEW SENSOISc.uveviieieiireieerieitieieeieesiaaieaseestaeseesseesseessesseesseassesseesseeseenns 11
A. 1.4 IMPIEMENTATION.cviiiiiiieccieccce ettt e e et eeenreeeneeeennes 13
.2 Communication ArchiteCture INtEGration.............c...ccoeveeveriurerierersiersereseenssensesnenanns 14
4.2.1 Modeling communication With SHIFT ... 14
4.2.2 CommuNICAtION COMPONENTS.......cveievevreeeeiieeteeieetieeeeeeeeesteeneeeneesreeneeaeesseeseeeneenns 14
.2.3 EXAMPIBS ..ottt e sttt e e s et e e e e ettt e e e s aab b e e e s aanbrreeesbrreeesanrreeeeas 25
.3 Human Driver Model INtEOIratioN...............c.cooveeveveeeeiereeeeeerseeeeesessseesensssesensenseseesensens 53
.31 INEFOTUCTION ...ttt e et e et e e eebteeenreeeneeeennes 53
.3.2 Background: SmartAHS Simulation Framework...........c.ccccoovviiieiiiiiieiiecieenen, 54
1.3.3 HUMaN Driver MOGEIS.ot e et re e breeenreeeanis 55
o Yo] 58
B4 APPICAON GU ...ttt eseeses et et ses st sesensesesensesensesensnsessnsesssesessesens 60
b Phase Il. SHIFT Enhancements (Jan — May 98) 61|
.1 Enhance Simulation Data OULPUL............cviiiiiiiiiiieiieeceese e 61
AL INEFOAUCTION L.ttt ettt e enteesbaeenbeenbaeenreesneeanes 61
5.2 POIt SHIET t0 PC COMPULETSc.oeeoveeeeseeeeeeeeeeeseeeseeenseseeensneesneensneeeseseeeesneesseeees 63
B.2.1 SHIFT COMPIEI ..ottt eeire e nreeeanns 64
b.2.2 SHIFT Runtime Environment: runtime, libDebug, and socket libraries................... 64
p.2.3 TKSHIFT DebUgger. ..o 64
B.2.4 TNE REICASE PIOCESSo.coowroorseerreeesseresseeeseeerereseeesseeeeeereeeeereseeereeereeeeeees 65
5.3 Investigate Parallelization OF SHIFToooooioooeieeeeeeeeeeeeeeeeeeeeeeeeeeevrereeeensenanns 66
5.3.1 Distributing the ContiNUOUS STEP.ccvviiiiiieiiiieiiieeceeeceeeeeee et evee e e 67
5.3.2 Benchmark TestS...........cccovveiveennennn S SO P PP PP PPO PP PRPOPOPROPROPNY 68
4 Perform SHIFT Implementation and Verification EXtENSIONS.............cccoeveeivesverinnnnne. 69
4.1 Motivations and GOAIScceciveiiieiiiiiic it 69
5.5 Generation 0f EXECULADIE COUE..........coouoeeeeeeeeeeeeeeeeeeseeeeseeeeeveeeseeenseseeensreeeseseeesneeeeas 74

5.5. 1 SHIFT APPHCAIION ...ttt ee s e e reeeneeens 74
D.5.2 SHIFT EXECULON ..o 74
5.5.3 Benefits of the APPrOaCh..........ccvoiviiiiiiiiiiieeiecee e 75
b Phase I1l. Documentation (Jan 98 — Jun 98) 75|
b.1 ACC Simulation - Example of SmartAHS ApPPlCAtioNnscoveeeevevveververensvrseere. 76
5.1.1 ODbJeCtiVe OF the STUAY......cccviiiiiiiiiiiciiic et eeneas 76
5.1.2 Components Of the SIMUIALION............ccuviiiiiiiiiiee e 77
5.1.3 SIMUIALION SCENAIO ..uuiiitiiiiiiitiiiie it ettt st e e st ee st e esreessseesseessseeassessseesssessreesseeasneans 77
B.1.4 Longitudinal CONEIOL............ocooooveverereserereserereserescererescerenesrerenenennsenennnenneennennes 79
.15 SUMIMAIY .ooiiiiiiiiiiiiiiiieeeieeeet ettt ettt ettt ettt et ettt ettt et et e e et e e eeeeeeeeeeeeeeeseeeeseseenesesenenenes 81

Abstract. wWe have enhanced and “tuned” SmartAHS and SHIFT to address a wide variety
of functional and user needs. SmartAHS has become an important microsimulation tool for
design, analysis and evaluation of AHS — and “pre-AHS” or AHS deployment — concepts and
scenarios in dimensions of system performance (i.e., throughput and travel time), safety and
comfort. The SmartAHS/Hybrid Systems Tools Interface Format (SHIFT) is the basis for
SmartAHS, and it is the general hybrid systems simulator for user-defined AHS architectures.

We have essentially conducted three work thrusts:

1. SmartAHS Enhancements

We added sensor and communication models to enhance functionality, upgrade the internals of
the SHIFT system for more efficient computations of large simulations and more accessible
platform options, and develop graphical user interfaces for easier use of SmartAHS model
libraries.

2. SHIFT Enhancements
We enhanced SHIFT to make it more accessible, available on multiple platforms, improve
computational efficiency and enable us to verify and implement the simulation designs.

3. Documentation

We collected the dispersed documentation of the SHIFT and SmartAHS tool sets, and integrates
it into a cogent user manual and reference guide. The document was divided into two main
parts: SHIFT and SmartAHS.

Key Words. SmartAHS, SHIFT, microsimulation, software, AHS, hybrid systems, models,
sensors, communication, verification.

1 Executive Summary

In this project, PATH has fine-tuned the development of SmartAHS, a software system for
microsimulation of Automated Highway System (AHS) design and scenarios. SmartAHS has
become an indispensable tool for design, analysis and evaluation of AHS —and “pre-AHS” or
AHS deployment — concepts and scenarios in dimensions of system performance (i.e.,
throughput and travel time), safety and comfort.

The underlying basis of SmartAHS is the SmartAHS/Hybrid Systems Tools Interface Format
(SHIFT). This is the general hybrid systems simulator for user-defined AHS architectures, and
SHIFT also specifies a high-level language invented to specify AHS-specific models for
highway layout, vehicle dynamics, actuators and sensors.

The MOU 258 work to date has focused on ease-of-use SmartAHS and SHIFT enhancements, in
areas of:

= Design and implementation of simulation checkpointing
= Component tracing
= Design and implementation of a query interpreter

We have built upon this base by focusing our extended work in three areas:

= SmartAHS enhancements
= SHIFT enhancements
= Documentation

The end-result of this extended work was a completed, practical automated highway design and
evaluation tool, suitable for use with a wide variety of users and on a wide variety of computer
platforms.

This work was complimentary with planned Federally funded efforts within the National
Automated Highway System Consortium (NAHSC), particularly with Task B5 (Evaluation,
Critical Issues and Tools) but there is no overlap. Activities within this MOU have facilitated
completion of ongoing PATH MOU and previous NAHSC efforts. However, this work is not
dependent on the progress of these PATH and NAHSC; that that respect, this MOU is stand
alone.

2 Background

SmartAHS contains the following features:

» Highway Models: Supports user-defined description, compatible with UC Berkeley/Caltrans
SmartPATH; can specify lane, segment, section, block, barrier, weather, source, sink.

» Vehicle Models: Provides simple, 2-D, 3-D and articulated simple vehicle dynamics.

» Controllers: Provides physical layer (steering, throttle, brake and tire burst) controllers; also
supports open loop trajectory following controller and cooperating independent vehicle
controller.

» Communication Models: Provides spherical, perfect receiver, transmitter and message
communications.

» Sensor Models: Provides spherical, perfect closest vehicle sensor.

* Animation: Allows simple, 2D (top view) animation and high fidelity texture-mapped 3D
animation (with reused code from SmartPATH)

» Allows full vehicle/environment/roadway processing and interaction.

These features are coded in SHIFT, as is the user-created model of the notional AHS system,
then translated to C via a compiler. SHIFT is a programming language developed at PATH for
describing dynamic networks of hybrid automata, such as AHS. Such systems consist of
components that can be created, interconnected and destroyed as the system evolves.
Components exhibit hybrid behavior, consisting of continuous-time phases separated by discrete-
event transitions. Components may evolve independently, or they may interact through their
inputs, outputs and exported events, and the interaction network itself may evolve.

SmartAHS/SHIFT applications in automated highway evaluations have included:

» Determination of the emissions and energy use of the Houston METRO Katy Freeway
scenario. The evaluation used the UCR-developed modal emissions and fuel consumption
model within SmartAHS and compared fuel consumption as well as hydrocarbon and nitrous
oxide emissions of various AHS concepts versus manual driving.

* Analysis of the merge maneuver with autonomous vehicles, cooperative vehicles, platooning
vehicles to define the degree of infrastructure involvement needed in a “merge assist”
service. Additionally, this work developed control laws that could be used in other
cooperative maneuvers such as lane changing.

SmartAHS analysis of an Intelligent Vehicle Initiative “Gen 1” safety case study is currently
underway. The objective of this study is to analyze and compare three progressively more
mature “pre-AHS” longitudinal control system concepts:

1. ACC with only engine braking and driver in the loop;
2. ACC with graduated braking authority with driver in the loop;
3. Cooperative longitudinal control system.

The safety case study will utilize and augment (and therefore also test) the SmartAHS simulation
tool with various state-of-the-art vehicle, sensor, communication and human driver models.

Potential users from PATH and other research institutions plan on conducting several more
analysis studies of specific driver assistance functions, partial automation technologies and
traffic control schemes, as well as AHS. These “new users” are the primary beneficiary of the
work proposed in this MOU; however, because of the multitude of enhancements in the work
scope, it is anticipated that the current PATH analysts will receive significant benefits.

3 Methodology

We have performed the work in three phases in parallel:

2.1 Phase |l. SmartAHS Enhancements

We added sensor and communication models to enhance functionality, upgrade the internals of
the SHIFT system for more efficient computations of large simulations and more accessible
platform options, and develop graphical user interfaces for easier use of SmartAHS model
libraries.

2.2 Phase ll. SHIFT Enhancements
We enhanced SHIFT to make it more accessible, available on multiple platforms, improve
computational efficiency and enable us to verify and implement the simulation designs.

2.3 Phase Ill. Documentation

We collected the dispersed documentation of the SHIFT and SmartAHS tool sets, and integrates
it into a cogent user manual and reference guide. The document was divided into two main
parts: SHIFT and SmartAHS.

4 Phase I. SmartAHS Enhancements (Jan — May 98)

The current release of the SmartAHS microsimulator for vehicle-highway systems provides a
stable platform with extensive functionality for a wide range of highway safety and throughput
analysis studies.

We have further enhanced SmartAHS to make it even more functional, powerful and user-
friendly. We will add sensor and communication models to enhance functionality, upgrade the
internals of the SHIFT system for more efficient computations of large simulations and more
accessible platform options, and develop graphical user interfaces for easier use of SmartAHS
model libraries.

We performed four subtasks:

Sensor Architecture Development
Communication Architecture Integration
Human Driver Model Integration
Application GUI

i N =

4.1 Sensor Architecture Development

41.1

Introduction

The SmartAHS sensor subsystem architecture has been designed to be expandable and easy to
use. The design is given as a set of superclasses that are used as the foundation of various types
of sensors. Since sensor technology can vary, it was necessary to abstract the behavior of sensing
devices by factoring their common features.

SmartAHS provides the following three-layered sensor architecture of SHIFT types:

TargetDetector . This is the bottom layer, which provides the functionality of perfect
sensors, outputting exact range and range rate with respect to the detected vehicle (if
any). This means that noise isn't dealt with at this level. The TargetDetector type should
be considered private and shouldn't be used by the SmartAHS user. It is intended to be
used by sensor designers only.

SensorModel . This is the middle layer, which works as a filter. The perfect results of the
lower level are distorted in a way that depends on the model. Noise can be added both to
range and range rate and false alarms can also be generated. The SensorModel type
should be considered private and shouldn't be used by the SmartAHS user. It is intended
to be used by sensor designers only.

Sensor . This is the top layer, which is used to hide the complex details of the lower
levels from the user (in fact it is the only public part of the architecture). The main
function of this type is that of setting up the lower level mechanisms and of providing the
user with the results coming from the middle layer.

New sensors can be written by inheriting from the described superclasses (which preserves the
interfaces). Also note that the described root types are to be considered abstract. This means that
their implementation isn't complete. They should be used only as supertypes. This structure has
been used to implement a realistic radar sensor model, which also takes into account weather
conditions.

In order to improve performance, some optimization techniques have been used. The roads are
divided in cells and sensors actually check for other vehicles only in the neighboring cells. This
avoids checking all the vehicles in the simulated world, which is an n? time process. The
managment of cells is taken care of by a special type called SEP (Sensor Environment
Processor).

4.1.2 Using Sensors

The user only needs to be aware of the SEP type, the Sensor type and their subtypes. The other
layers are hidden.

4.1.2.1 The SEP type

Implementing sensors brought up a performance problem. How is a sensor to determine whether
a car is within range? The easiest solution is to look for such a car in the set of all the cars in the
world. This is obviously very expensive.

To avoid this, road sections have been subdivided in cells. Each cell corresponds to a set of
vehicles. Cars move from cell to cell: when they cross a cell border, they add themselves to the
new cell and remove themselves from the old one.

The SEP takes care of updating the cells. The means by which this task is performed is hidden
from the user. All the user has to know is how to instantiate the SEP and how to connect it to the
other components.

If the istantiation happens inside the vehicle, the create statement looks like this (from now on
the italic font is used to denote a reference to a specific component):

SEP sep := create (
SEP,
the_vehicle
current_segnent :
current_section :
current _cell

)

sel f,

starting_segnent,
starting_section,

cells (starting_section)[0]

The inputs of the SEP can be set with the following connections:

rxp (sep) - rxp (vrep);
ryp (sep) ryp (vrep);
rzp (sep) rzp (vrep);
current_|l ane (sep) | ane (vrep);

current_segnment (sep)
current_section (sep)
fol l owLane (sep)
the_vehicle (sep)

segment (vrep);
section (vrep);
foll owLane (vrep);
sel f;

{... 1

ANNNANNNNANNANAN
O D A

AN
'

vehi cl e_sensors (sep)

The outputs of the SEP are:
e number current_cell_number
» set(Vehicle) current_cell
» set(Vehicle) previous_cell
» set(Vehicle) next_cell
» set(Vehicle) overlap_cell

Note that cell specific informations such as cell length are set up in the Section type. The number
of cells is obtained from the length of the section and that of the cells.

4.1.2.2 The Sensor Type

A SmartAHS vehicle has one SEP and zero or more sensors. Four sensor links are provided in
the Vehicle type: frontSensor, rearSensor, leftSensor and rightSensor. Others may be added in
the subtypes of Vehicle.

The Sensor abstract superclass requires the following inputs:

10

e timer sample_timer
* Vehicle vehicle

* VREP vrep
 SEPsep

The timer type is used to select a sampling time for the sensor.
The outputs of the sensor are the following:

e number range

e number rangeRate

» target detectedTarget

Range is the distance in meters from the detected vehicle. Actually the range is calculated by
subtracting half the length of the following car and half the length of the leading car from the
distance between the two cars. This method assumes that cars have circular shapes.

Range rate is the difference between the speed of the detected vehicle and the speed of the
current vehicle.

The target type encapsulates the detected vehicle. It has the following output:
* Vehicle vehicle_detected
Note that the distance in the target doesn't take into account the length of the vehicles.

4.1.2.3 Currently Implemented Sensors
A few sensors have been implemented on top of the described architecture. Their source code
can be studied as an example of implementation.

* range_sensor : it detects the nearest vehicle around it (by "around it" we mean the
vehicles in the previous, current and next cell). No noise is simulated, so detections are
perfect. Two additional parameters can be provided as input:

* number maxRange: maximum range of detection.
» symbol direction: this can be assigned the value $front or $rear, depending on the
desired direction of detection.

» RadarSensor : it detects the nearest vehicle in the area defined by the following
parameters, using a radar sensor model. Three additional parameters can be provided as
input:

» number fov: field of vision angle
* number minRange: minimum range of detection
* number maxRange: maximum range of detection

4.1.3 Designing New Sensors

4.1.3.1 TargetDetector

The lowest level of the architecture fulfills the purpose of detecting targets if any. It does not
simulate any noise. Its function is purely geometric: e.g. to understand wether a vehicle exists,
that falls within the sensor range. For this reason TargetDetectors can be categorized according
to the shape of their detection field.

11

The inputs of this type are:
* Vehicle vehicle
* VREP vrep
e SEP sensor_ep
* sensor enclosingSensor
o timer sample_timer

The outputs are the same as the sensor class. They are actually processed by the upper level
before being passed to the sensor. Three transitions take place. It is important that all of them be
present:

idle -> update {sample_timer:timer_tick}

It takes place when the timer ticks. It does the detection work and updates the outputs to
reflect the results of the detection.

update -> updateUpperLevels {enclosingSensor:update_values}

This one is needed to synchronize with the upper levels once the computation is finished. On
this level it's just a signal to notify that the values in the outputs are ready to be read.

updateUpperLevels -> idle {enclosingSensor:values_updated}

It goes back to the initial state.

4.1.3.2 SensorModel
This is the middle layer and it serves as a noise generator. The perfect results of the Target
Detectors are read and distorted according to a specific model. The only input of this type is the

fap (false alarm probability) which is optional in some models. It is a value between 0 and 1 and
it's used to generate false alarms.

The outputs are:
e number dp
e number range
e number rangeRate
» target detectedTarget

Dp is the detection probability, which is calculated according to the model. The last three values
are read from the corresponding targetDetector but can be changed according to some function of
fap and of dp.

The state variables are not inherited, so they are included in the root class only as conceptual
placeholders. They are:

» sensor enclosingSensor

» TargetDetector targetDetector

12

* number rE
* number rrE

RE and rrE are the range error and the range rate error.

There must be at least one transition synchronizing on enclosingSensor:update_values. It reads
the values in the lower levels and distorts them. Of course there may be more than one such
transition (e.g. one for regular detection, one for failed detection, one for false alarms and so on).

4.1.3.3 Sensor

The public interface ({input and outputs) of the higher layer has been described already so we'll
talk about the private one here.

Two state variables (targetDetector and sensorModel) should be used to link the sensor to its
TargetDetector and to its SensorModel. A setup clause should be present to istantiate and
initialize correctly these two components.

Two local events are exported:
e update_values
» values_updated
They are used for synchronization with lower levels.

Reading the values from the TargetDetector can be done in two ways. The easiest way is via a
flow:

flow
default {
range = range(targetDetector);
rangeRate = rangeRat e(targetDetector);

H

The second one is via transitions such as:

idl e -> update {update_val ues},
update -> idle {val ues_updated};

Note that two such transitions must be present anyway because they are used by lower level
types and also because in this way the sensor signals it is updating its values to other interested
types (e.g. automated cruise control types).

4.1.4 Implementation

Some implementation techniques can be studied by reading the sensors/sensor.hs file in the
SmartAHS distribution.

13

http://www.path.berkeley.edu/smart-ahs

4.2 Communication Architecture Integration

Work on this aspect is being done under the separately funded MOU 334. In this MOU, we will
collaborate with that project to integrate the results into SmartAHS. Communication models for
the Physical Layer (non-persistent network, semi-persistent network, persistent network) and the
Data Link Layer (with four error situations: frames corrupted, lost, duplicated, misordered, and
three error control schemes: acknowledgment, timeout, checksum) will be available to
SmartAHS users after system integration of the communication models.

This document describes SHIFT models for Automated Highway System (AHS) communication
components. These components must model the following layers of the open systems
interconnection (OSI) reference: physical layer, media access control layer, logical link layer,
network layer and transport layer. The functionalities of those layers have been adapted to AHS
communication needs.

4.2.1 Modeling communication with SHIFT

Communication in the SmartAHS introduces a major problem. We want to interface the
communication domain with the vehicle domain, but to simulate communication, the time unit
required is around exp(10, -8); using this time unit to simulate vehicle traffic implies an
extremely long simulation time. A way to solve this problem is to simulate the system (vehicle +
communication) with a ~“reasonable” step in terms of simulation last and to aggregate the
communication in this new unit. With this technique, the communication will not be modeled at
the bit level, but at the message level. This solution is restrictive in the sense that it does not
allow to observe efficiency and protocol delays. Nonetheless knowing the characteristics of a
protocol (delay, throughput, etc.), we can model what happens during each time unit.

In this document, we focus on the message level approach, and we describe SHIFT components
to simulate communication at the physical layer, at the media access control (MAC) layer and at
the Logical Link Control (LLC) Layer. Other layers are not implemented yet. Note that modeling
the communication at the bit level has also many interesting features, and should be done in the
future.

4.2.2 Communication Components

4.2.2.1 Message

The Message type model messages being sent between users. It must be sub-typed to describe
each N-Protocol Data Unit (i.e. the data format at the level N).

The messageType output specifies whether the message is a supervisory frame ($S) or an
information one ($1). The connectionType output gives information about the type of the
connection: unicast, broadcast, multi-cast. The SHIFT description of the Message type is given
below:

type Message
{

out put synbol messageType;

14

out put synbol connectionType;

}

4.2.2.2 Physical Layer

The physical layer implements an unreliable link on which bits are transmitted. A link consists of
a transmitter, a receiver, and a medium over which signals are propagated. The Transmitter
type is an interface to model the communication transmitter, and the Receiver type is an
interface to model the communication receiver. Medium properties, such as the capacity and the
transmission rate, are modeled in a component called monitor. Other medium properties, such as
propagation error, co-channel and channel interference, can be described in the Receiver. The
monitor type also models the connection (both for point-to-point and for multi-cast channel) and
the medium access control protocol (in the case of multi-cast channel).

4.2.2.2.1 Transmitter interface

The interface for the Transmitter type allows to model transmitters for point to point, broadcast
and multi-cast communication.

To send a unicast message, the higher layer must synchronize with the MAC_ready_point event
and it must provide the receiverin and messageln inputs.

In the case of broadcast communication, the higher layer must synchronize with the
MAC ready_broad event, and it must provide the messageln input .

In the case of multi-cast communication, the higher layer must synchronize with the
MAC _ready_multi event, and it must provide the receiversin and messageln inputs.

The receiver (or receivers) output refers to the destination(s) of the message and the message
output is the message to send.

When transmitting a unicast message, the transmitter issues the MAC_data_point event. The
receivers belonging to the same network as the transmitter synchronize with the transmitter's
MAC_data_point event and they check if they are the destination of the message (i.e. if they are
equal to the receiver output of the transmitter).

When transmitting a multicast message, the transmitter issues the MAC_data_multi event. The
receivers belonging to the same network as the transmitter synchronize with the transmitter's
MAC_data_multi event and they check if they are the destinations of the message (i.e. if they
belong to the receivers output of the transmitter).

When transmitting a broad-cast message, the transmitter issues the MAC_data_broad event.

The receivers belonging to the same network synchronize with the transmitter's
MAC data_broad event.

After the message is sent with unicast communication, the transmitter issues the
MAC_confirm_point event. In the case of multi-cast communication, the transmitter issues the

15

event MAC_confirm_multi or, in the case of broadcast communication it issues the
MAC _confirm_broad event.

The SHIFT description of the interface of the Transmitter type is given below:

type Transmtter

out put Recei ver receiver; /1 Destination of the transmtted nessage.
set (Recei ver) receivers; /1 Destinations of the transmtted nmessage.
Message message; /1l Message being transm tted.

input Receiver receiverln; /1 One receiver specified for

/1 uni cast communi cati on.
set (Receiver) receiversin; // A set of receivers specified
/] for nmulti-cast communication.

Message nessagel n; /1l Message to be transm tted.
export
cl osed MAC confirm point, /1 1ssued when a unicast nessage
/1 has been transmitted.
MAC confirmmulti, /1 1ssued when a multi-cast nmessage
/1 has been transmitted.
MAC confirm broad; /1 1ssued when a broadcast
/1 nmessage has been transnitted.
open MAC_r eady_poi nt, /1 lssued when the transnitter is ready
// to transmit a unicast nessage.
MAC ready_mul ti, /1 lssued when the transmtter is ready
/! to transmt a multi-cast nmessage.
MAC_r eady_br oad, /1 lssued when the transmitter is ready
// to transmit a broadcast nessage.
MAC_dat a_poi nt, /1 lssued when transmtting a unicast nessage.
MAC data_mnulti, /1 lssued when transmtting a multi-cast nmessage.
MAC dat a_br oad, /1 lssued when transmtting a broadcast nessage.
exi ting;

discrete init;
transition

all - exit {exiting}; // Each subtype of Transmitter mnust have
} /1 this transition.

4.2.2.2.2 Receiver interface for a perfect channel

The interface for the Receiver type allows to model receivers for point to point, broadcast and
multi-cast communication.

The Receiver type describes a perfect channel. It must be sub-typed in order to model errors, due
to propagation, co-channel and channel interference.

The transmitter output refers to the transmitter that sent out the message and the message
output contains the message that was sent.

The TxNetwork input is the set of transmitters that are involved in the same network. Note that
this set can be connected to the set of transmitters which is defined in the Monitor type. In this
way the user won't have to update this variable when a transmitter leaves or joins the network.

To receive a unicast message, the receiver must synchronize with the MAC_data_point event of
one of the transmitters in the TxNetwork variable.

16

To receive a broadcast message, the receiver must synchronize with the MAC_data_broad
event of one of the transmitters in the TxNetwork variable.

To receive a multi-cast message, the receiver must synchronize with the MAC_data_multi
event of one of the transmitters in the TxNetwork variable.

If the receiver is the destination of the transmitted message, it issues the MAC _indication_point
event (for unicast communication), the MAC_indication_multi event (for multi-cast
communication) or the MAC _indication_broad event (for broadcast communication).

The SHIFT description of the interface for the Receiver type is given below:

type Receiver

{
output Transmitter transmtter; /1 transmitter of the received nmessage.
Message message; /'l received nessage.

input set(Transmitter) TxNetwork; // transmitters involved in the same network.

export MAC i ndi cati on_poi nt, /1 1ssued when a unicast nessage
/'l has been received.
MAC i ndi cati on_br oad, /1 1ssued when a broadcast nessage
/1 has been received.
MAC_i ndi cation_mul ti, /1 1ssued when a multi-cast nmessage
/'l has been received.
exi ting;
di screte
init;

transition
init - exit {exiting};
}

4.2.2.2.3 Receiver interface for an imperfect channel

A subtype of the Receiver type has been implemented to model channel errors (due to
propagation and co-channel and channel interference).

For unicast communication, when the receiver issues the MAC _indication_point event, it also
issues a message status event (error_free_frame or error_frame).

For multi-cast communication, the receiver issues the event MAC_indication_multi, only if the
message arrives error free, otherwise, the receiver deletes the message.

For broadcast communication, the receiver issues the event MAC _indication_broad, only if the
message arrives error free, otherwise, the receiver deletes the message.

The probability to estimate the percentage of wrong messages is stored in a global variable called
ErrorTransmission. It has to be set when the simulation begins.

The SHIFT description for the Receiver interface is given below:
type ErrReceiver : Receiver

17

export error_free_frame, // |ssued when the nessage is error free.
error_frane; /1 1ssued when the nessage is not error free.
di screte
init;
transition
init - exit {exiting};

gl obal nunber ErrorTransm ssion := O;

4.2.2.2.4 Interface for the Monitor

The Monitor works as a centralized component and there is one for each network. It models
some physical layer and some MAC layer functionalities.

On one hand, the Monitor is a representation of a set of users adopting the same physical
medium; it models channel properties and keeps track of the transmitters sharing the channel.
The Monitor also models the connection type (point to point or broadcast channel).

On the other hand, communication is not simulated in real time, instead we aggregate many
transmissions in a time unit, called slot, the length of which is defined at the beginning of the
simulation. For each slot, a centralized algorithm (defined in the Monitor) decides which
transmitters are allowed to transmit. Since point-to-point and multi-access channel are different
from each other, Monitor has to be subclassed in order to manage the two cases.

For a point-to-point connection, the number of allowed exchanges in the next slot is a function of
channel capacity, of transmission rate and of packet length. For a broadcast channel, the number
of allowed exchanges is also function of the throughput of the media access function.

The MAC layer functionality of the Monitor are discussed, in more details, in the MAC layer
section. The SHIFT description of the interface for the Monitor type is given below:

type Monitor
{

out put
set(Transmtter) transmtters := {};

nunber Packet Lenght = L;
nunber Efficiency = a; /1 Propagation and detection del ay.
nunmber Dat aRat e =G /! Data rate in Kbps.
nunber Transm ssionTinme := Ts; // Transmission tinme in sec.
nunber Thr oughput ; /| Effective throughput of the system
nunber Theori ti cal Throughput; /1 Theoretical throughput of the system
}
gl obal nunber slot := 1; /1 Unit of the aggregate step

/1 in sec (SH FT step nust be snaller).

4.2.2.3 Data Link Layer

Networks can be divided into two categories: those using point-to-point connections and those
using a broadcast or multi-access channel (that is when the same communication link is shared
between several users). In the case of point-to-point connection, the main task of the Data Link
Layer is to provide to the higher layer a virtual error free packet link. In the case of broadcast
channel, the Data Link Layer is split into two sub-layers, the media access control sub-layer
(MAC) and the Logical Link Control sub-layer (LLC). The purpose of the MAC layer is to
allocate the multi-access medium among the various users. The functionalities of the LLC are
those of the Data Link Layer for a point-to-point connection. The MAC layer and the LLC layer
18

constitute the Data Link Layer for a multi-access channel. Access control is performed by the
Monitor type and the LinkLayer type models the LLC.

4.2.2.3.1 MAC Layer

When the same communication link is shared between several users, we need an additional sub-
layer between the LLC and the physical layer. This extra layer is called Medium Access Control
layer. Its purpose is to allocate the multi-access medium among the various users.

There are two extremes among the different algorithms designed for this issue. The fist extreme
is the "free for all" approach, in which a user sends a message hoping for no interference from
other users. The second one is "perfectly scheduled" approach, in which some order is
estabilished among the users for channel usage.

The media access function is embedded in the Monitor, which must be sub-typed in order to
support different media access algorithms.

4.2.2.3.1.1 Features of the Monitor type

As we already mentioned, the monitor is a centralized component, that is assigned to a network.
It provides informations about the medium and it monitors all the exchanges (or throughput)
allowed in a slot. For point-to-point communication, the throughput depends on slot duration and
on channel properties. For a broadcast channel, the throughput depends on slot duration, channel
properties and on the chosen MAC protocol. In both cases throughput is the number of
successfully delivered packets per packet transmission time. Note that if the used throughput is
the number of successfully sent packets, the hidden conflict and the transmission during the
critical period (collision due to the use of one channel by several hosts) are part of the model; the
propagation errors (due to interference with other networks for example) are modeled in the
receiver.

The Monitor type must be sub-typed in order to implement specific MAC layer protocols, such
as CSMA or Token Ring.

For CSMA, the monitor keeps track of how many transmitters ask to send data, and it uses this
load to compute the number of transmitters allowed to transmit in the next slot.

4,2.2.3.1.2 Interface for the Monitor

The Monitor type has a transmitters output variable. It is the set of transmitters belonging to
the network, which is described by that Monitor. This set is updated by the transmitters
themselves (in their setup action or in the initial transition).

type Monitor

output set(Transnmitter) transmitters := {};
}
4.2.2.3.2 Logical Link Layer

The purpose of the the Logical Link Layer is to transfer messages without error in the case of
unicast communication. For broadcast (or multi-cast) communication, the error correction must
be done at an upper layer.

19

The Logical Link Layer interface is described in the LinkLayer type and it has to be subtyped in
order to implement a specific error control algorithm.

Each LinkLayer component belongs to one network, and can deal with several connections at
the same time. The following two paragraphs provide a description of the Buffer type and of the
Link type. Both of them are used by the LinkLayer.

4.2.2.3.2.1 Interface for the Buffer

To write in the buffer, the user must provide the ItemIn input and he must synchronize with the
buffer's not_full event. To read and delete an item in the buffer, the user must synchronize with
the buffer´s not_empty event. After this the value to be read can be found in the ItemOut
output.

The SHIFT description of the interface for the Buffer type is given below:

functi on nodul o(nunber i ndex; /1 The nodulo functionis a C
nunber bufferSize) // function wused by the
- nunber; /'l Buffer type.
type Buffer
input Message itemn; /1l Message to record.
out put Message itemQut; /1l Message to read.
nunber get Pl ace = 0; // Index of the next nessage to read.
nunber put Pl ace := 0; // Index of the next nessage to wite.
nunmber numberOfltens := 0; // Number of recorded nessage.
nunber buf ferSi ze; /1 Size of the buffer.
array(Message) buffer; /1l Array of recorded nessages.
setup do { buffer :=[nil : i in [0 .. bufferSize - 1]];};
export open not_enpty,
not _full;
di screte
enpty, /1 Buffer accessible in witing only.
nei t her, /1 Buffer accessible in witing and reading.
full; /1 Buffer accessible in reading only.

transition
enpty - neither {not_full}

do {

buffer[putPlace] := itemn;

nunmber O | t ens ;= nunberOfltens + 1;

put Pl ace ;= nodul o((put Place + 1), bufferSize);
H

nei ther -enpty {}
when nunberOfltems <= 0,
neither - neither {not_full}

do {
buffer[putPlace] := itemn;
nunber X I t ens = nunberCOfltenms + 1;
put Pl ace = nodul o((put Pl ace + 1), bufferSize);
I
nei ther - neither {not_enpty}
do {
it enut = buffer[get Pl ace];
nunberOfltens : = nunberOfltens - 1;
get Pl ace = nodul o((getPl ace + 1), bufferSize);

b
neither - full {}
when nunberOf I tens = bufferSize,
full - neither {not_enpty}
do {
it enut .= buffer[getPlace];

20

nunberOf I tens :
get Pl ace

nunberfltems -1,
modul o((get Place + 1), bufferSize);

}

The LL_Buffer subtype doesn't delete the item immediately after reading it. To delete the last
read message, the user must explicitly synchronize with the buffer's cancel event.

4.2.2.3.2.2 Interface for the Link

Each connection between a local and a remote user is modeled at the Data Link Layer by the
Link type. There are several informations that must be remembered about a Data Link
connection. These informations are stored in a type called Link.

Among the outputs in Link are the remote and local LinkLayer (or a set of LinkLayer in the
case of multi-cast communication) and a reference to the local user's two buffers (one to read
from messages from the upper layer and one to write messages to the upper layer). In addition
there are several variables dealing with the send and receive sequence numbers.

When a LinkLayer component receives a new message from the local user to a remote user, it
creates a Link to model this connection. A few parameters must be set in the Link: the
connection type (unicast, broadcast, multi-cast), the size of the buffers and a reference to the
remote LinkLayer (or a set of remote LinkLayer in case of multi-cast communication).

A Link is also created when the LinkLayer receives a new message from a remote user.
Therefore for each connection, two Link instances are created (one at the source and one at the
destination).

Note that Link must be subtyped according to the error correction algorithm used at the Logical
Link Layer.

The SHIFT description of the interface for the Link type is given below:

type Link

{

out put synbol connecti onType,; /] $UNI, $BROAD, $MULTI.
Li nkLayer destinati on; /! Renote linkLayer(s) involved
set (LinkLayer) destinations := {}; // in the connection
Li nkLayer sour ce;
LL_Buf fer rBuffer; // Buffer accessible in reading by the |inkLayer.
LL_Buffer wBuffer; // Buffer accessible in witing by the |inkLayer.
nunber buffersSize;

/1 The following variables are used by the Stop and Wit
/1 protocol inplemented at the Logical Link Layer.

nunber sequenceNunber := 0;
nunber request Nunber : = 0;
synbol Last FranmeAck : = YES;
synbol Last FrameNack : = NO

setup define {
LL_ Buffer t_rBuffer := create(LL_Buffer,
link := self,
bufferSize := bufferSize);
LL_Buffer t_wBuffer := create(LL_Buffer,
link := self,
bufferSize := bufferSize);

21

do {

rBuffer :=1t_rBuffer;
wBuffer :=t_wBuffer;
h
di screte init,
establ i sh;
export open exiting;
transition
init - establish {}
define {
Li nkLayer t_linkLayer := source;
}
do {
Li nks(t _l i nkLayer) := Links(t_linkLayer) + {self};
all - exit {exiting};

}

4.2.2.3.2.3 Interface for the Logical Link Layer

The LinkLayer type is an interface for the Logical Link Layer. It must be sub-typed in order to
implement different error correction algorithms.

At creation time, the receiver and transmitter outputs must be properly initialized.

For unicast communication, when the network layer wants to send data, it must provide the
following inputs: messageln and destinationin (the LinkLayer at the remote host). It must also
synchronize with the LL_ready event.

For multi-cast communication, when the network layer wants to send data, it must provide the
following inputs: messageln and destinationsin (which is a set containing the LinkLayers at
the remote hosts). It must also synchronize with the LL_ready event.

For broadcast communication, when the network layer wants to send data, it must provide the
following messageln input and it must synchronize with the LL_ready event.

Each connection between local and remote users is modeled through the Link type. When an
error free frame arrives, the LinkLayer stores the frame in the write-buffer corresponding to this
connection, and issues an LL_indication event.

To receive the frame, the upper layer must synchronize on the LL_indication event and it must
also synchronize with the link's buffer where the frame was stored. The itemOut output of this
buffer contains the frame to be read. To delete the frame and free the buffer, the upper layer must
synchronize with the cancel event issued by the buffer.

The SHIFT description of the interface for the LinkLayer type is given below:

type LinkLayer

input Message messagel n; /1l Message to be transm tted.
Li nkLayer destinationln; // Message destination.
set (Li nkLayer) destinationslin; // Message destinations.

out put Recei ver receiver; /! Receiver attached to the link |ayer.
Transmitter transmtter; /1l Transmitter attached to the link |ayer.
set (Li nk) Links := {}; /1 Set of connection recorded at the link |ayer.
nunmber buf ferSi ze; /1 Size of the buffers at the link |ayer.

22

export open LL_ready,
exi ting;
cl osed LL_confirm
LL_i ndi cati on;

}

4.2.2.3.2.4 How Logical Error Control is Modeled

The problem: one protocol entity wants to send another protocol entity a sequence of frames
without errors.

The LinkLayer type has to model the four following scenarios: corrupted frames, lost frames,
mis-ordered frames, duplicated frames. It also has to set up the following three error control
mechanisms: acknowledgment, timeout, checksum (see Figurel).

Scenario Cause Detection Method
corrupted msg bit error on the link checksum

{lost msg Congestion ack/timeout
mis-ordered msg different paths and retransmission sequence #
duplicated msg Retransmission sequence #

Figure 1. Possible scenarios and detection methods

Error control mechanisms:

- acknowledgment: tells the sender what has (not) been received (ACK or NACK)

- timeout: an entity waits a given amount of time before retransmitting (sender timeout) or asking
to retransmit (receiver timeout).

- checksum.

At the sender, we model three scenarios:

(1) the receiver issues the error_free_frame event; the new frame is a supervisory frame which
acknowledges the last sent frame and asks for the next one.

(2) the receiver issues the error_free_frame event; the new frame is a supervisory frame but
does not acknowledge the last frame sent and asks for a retransmission.

(3) the receiver issues the error_frame event; the new frame is a corrupted supervisory frame.

This mechanism allows us to model the timeout. The sender retransmits the last frame.
Figure 2 shows the simplified logical error control mechanism at the transmitter.

23

Cothected]
A

Fratne Amival Emor Pree Frror Pratne Arrval
host Ready

[Supervisery J_,.[Read Buffer H Titoe Qut J
12) (3)

when fratne expected
/= frame to send

| Transmit

L

(1) Frame received by the receiver + ack correct
(2) Fratne wat not received cormectly by the receiver, the eeeiver agks for a mtrahsmisson
(37 The received ack was wronyg or Lost (model the time out)

Figume?: Logical error control at the sender.

At the receiver, we model three scenarios:
(1) the receiver issues the error_free_frame event; the new frame is a data frame and its

sequence number corresponds to the expected sequence number. The remote user sends back an
acknowledgment and asks for the next frame.

(2) the receiver issues the error_free_frame event; the new frame is a data frame but its

sequence number does not correspond to the expected sequence number (it's a duplicate). The
remote user asks for the next frame.

(3) the receiver issues the error_frame event; the new frame is a corrupted data frame. The
remote user asks for the same frame.

Figure 3 shows the simplified logical error control mechanism at the receiver.

24

Connected

Frame Anival Brior Fiee BEmor Frame Amrval

Wromr Frame

(22 (3

[Duphcata] [Expected]

To host
Build Ack /

Transmit Ack

(1) Frame recerved eirar fiee. ask for the new one

(2) Duplirated frame (Hypothese: Last ack lost or wrong), ask for the next frame
(1) Frame not recerved comectly, ask forthe same frame

Fimred: Logwral errorcontrol at the recerver

4.2.3 Examples

In this chapter we describe the subtypes of Transmitter, Receiver, Monitor and LinkLayer,
implementing a point-to-point connection using Stop-And-Wait algorithm at the Logical Link
Layer. For a broadcast channel, one can find a lot of algorithms to provide the functionalities
required by the MAC and the LLC layer. We made a selection among all these algorithms and
we decided to model a semi persistent network, and a persistent network. For the semi persistent
network, we used a Carrier Sense Multiple Access (CSMA) protocol at the MAC layer and a
Stop-And-Wait (SAW) protocol at the Logical Link Control layer.

For the persistent network, we used a Token Ring protocol at the MAC layer and a Stop-and-
Wait (SAW) protocol at the Logical Link Control layer.

4.2.3.1 Point-to-point connection

In order to model a point to point connection, Transmitter, Receiver and Monitor are subtyped
in UniPointTransmitter, GnrErrReceiver and UniPointLink.

25

4.2.3.1.1 The UniPointTransmitter type

Figure 4 shows the logical behavior of the Transmitter sub-type for a point-to-point connection.
The transmitter begins in the idle state. When creating the transmitter, the user must initialize the
monitor output. In its setup action, the transmitter adds itself to the Transmitters output
variable of the monitor. This variable is a set of Transmitter which is used by the monitor to
detect ready-to-transmit transmitters.

The higher layer must synchronize with the MAC_ready_point event. It must also provide the
messageln and receiverlIn inputs. Then the transmitter moves to the check_point state and stores
the message and the destination of the message in its message and receiver outputs. After this it
goes in the get_channel_point state and issues the get_channel event. The monitor must
synchronize with this event to keep track of all the ready-to-transmit transmitters during a slot.
The monitor must synchronize with the MAC_data_point event to begin the transmission. To
defer the transmisson to the next slot the monitor synchronizes with the backlogged event.

After transmitting the message, the transmitter issues the MAC_confirm_point event.

transmit_point

MAL_ready_poiai] check point

{backlogged] {geiChannel]
1

e 4: State machine for Pontto-Polnt tansam tter.

The SHIFT description of the UniPointTransmitter is given below in several fragments.

Output

type Uni PointTransmitter : Transmitter

out put Uni Poi ntLi nk uni Poi nt Moni t or; /1 Monitor involved in the
.} /] point-to-point connection
State

type Uni PointTransmtter : Transmtter

state number timer := O;

flow defer_law {timer' = 1;};

}

Exported events
type Uni PointTransmtter : Transmtter

export

open backl ogged,
get Channel ;
}

Transition
1. In this transition, the transmitter adds itself to the monitor's set of transmitters.
26

type Uni PointTransmitter : Transmitter

transition
init - idle {}
do {
uni Poi nt Transm t t er s(uni Poi nt Moni t or)
;= uni Poi nt Transmi tt ers(uni Poi nt Moni t or)
+ {self};

-}

The higher layer must synchronize with the transmitter's MAC_ready_point event and it
must provide the messageln and receiverIn inputs to send a message.

type GairCsmaTransmtter : Transmtter

transition
idle - check_point {MAC ready_point},
-}

The transmitter checks the status of the channel. The monitor must synchronize with the
getChannel event to keep track of all the ready-to-transmit transmitters in a slot.

type GairCsmaTransmitter : Transmitter

transition
check_point - get_channel _point {getChannel}
do {
receiver := receiverln;
nmessage := nmessagel n;
H

.
This transition is taken when the transmitter is not allowed to transmit. The monitor must

synchronize with the transmitter's backlogged event to defer its transmission.
type GairCsmaTransmitter : Transmtter

transition
get _channel _point - defer_point {backl ogged},
}

The transmitter senses again the channel, one slot later.

type GarCsmaTransmitter : Transmtter

transition
def er _point - get_channel _poi nt {get Channel}
when tinmer = slot
do {

H

timer := 0;

-}

The monitor must synchronize with the transmitter's MAC_data_point event to start the
transmission.

type GnrCsmaTransmitter : Transmitter

{

transition
27

get_channel_point - transmit_point {MAC_data_point},
¥

1. The transmitter issues the MAC_confirm_point event when the message is sent.

type GairCsmaTransmitter : Transmtter

{

transition

42312

transmt_point - idle {MAC confirmpoint},

-}

The GnrReceiver and GnrErrReceiver Types

The Receiver type is the same for point-to-point connection and for a broadcast channel. Figure
5 shows the logical behavior of the Receiver for unicast communication.

The receiver starts in the awaiting state. It moves to the forwarding_point state by synchronizing
with the MAC_data_point event of one of the transmitters in the TxNetwork variable. In this
state, the receiver checks if it is the destination of the message. If it is not, it goes back to

[Awaiting] [TxMetwork MAT_data_pointione:t) Forwarding_poin

when racaiver|tral snitter) /= salf

[MAC indication]
when receiver| o smitter] = salf

Figure5: State machine for Polnt-te-Peint recelver.

awaiting. If it is, it issues the MAC _indication_point event and goes back to awaiting.

The SHIFT description of the GnrReceiver for unicast, broadcast, and multi-cast
communication is given below.

type GnrReceiver : Receiver

state

Recei ver receiver;
set (Recei ver) receivers;

di screte

awai ti ng,
f orwar di ng_poi nt,
forwarding_mul ti,
f or war di ng_br oad;
transition
awai ting - forwarding_point {TxNetwork: MAC data_point(one:t)}
do {

b

transmtter :=t;
receiver 1= receiver(t);
message = message(t);

forwardi ng_point - awaiting {}
when receiver /= self
do {

transmtter := nil;

28

nmessage = nil;
b
forwardi ng_point - awaiting {MAC i ndication_point}
when receiver = self,
awai ting - forwarding_multi {TxNetwork: MAC data_nulti(one:t)}

do {
transmtter :=t;
receivers = receivers(t);
nmessage = nessage(t);
H
forwarding_multi - awaiting {}
when not (self in receivers)
do {
transmtter := nil;
message =nil;
H
forwarding_rmulti - awaiting {MAC.indication_nulti}

when (self in receivers),
awai ting - forwarding_broad {TxNetwork: MAC data_broad(one:t)}

do {
transmtter :=t;
message = message(t);
I
forwardi ng_broad - awaiting {MAC i ndi cation_broad},
all - exit {exiting};

The SHIFT description of the GnrErrReceiver for an non-perfect channel is given below.

type GarErrReceiver : GnarReceiver

state nunber ErrorProbability := 0;
Recei ver receiver;
set (Recei ver) receivers;

export error_free_frane, /1 1ssued when the nessage is error free.
error_frane; /1 1ssued when the nessage is not error free.
di screte
awai ti ng,

f orwar di ng_poi nt,
forwardi ng_mul ti,
f or war di ng_br oad,;

transition
awai ting - forwardi ng_point {TxNetwork: MAC data_point(one:t)}
do {
transmtter :=t;
receiver = receiver(t);
nmessage ;= nessage(t);
ErrorProbability := randon();
H

forwardi ng_point - awaiting {}
when receiver /= self

do {
transmtter := nil;
message = nil;
ErrorProbability := 0;
H

forwarding_point - awaiting {MAC indication_point, error_free_frane}
when receiver = self

and ErrorProbability = ErrorTransm ssion

do {

b

forwarding_point - awaiting {MAC. indication_point, error_frane}
when receiver = self

and ErrorProbability < ErrorTransm ssion

do {

ErrorProbability := 0;

transmtter
nessage

29

ErrorProbability := 0;

I
awaiting - forwarding_multi {TxNetwork: MAC data_mnulti(one:t)}
do {
transmtter :=t;
receivers = receivers(t);
message := message(t);
ErrorProbability := random();
b
forwarding_multi - awaiting {}
when not (self in receivers)
do {
transmitter := nil;
message =nil;
¥
forwarding_rmulti - awaiting {MAC.indication_nulti}

when (self in receivers)
and ErrorProbability = ErrorTransm ssion

do {

ErrorProbability := 0;
¥
forwarding_multi - awaiting {}

when (self in receivers)
and ErrorProbability < ErrorTransm ssion

do {
transmtter := nil;
message = nil;
ErrorProbability := 0;
H
awai ting - forwarding_broad {TxNetwork: MAC data_broad(one:t)}
do {
transmtter :=t;
nmessage ;= nessage(t);
ErrorProbability := randonm();
},

forwardi ng_broad - awaiting {MAC i ndi cation_broad}
when ErrorProbability = ErrorTransm ssion
do {

},

forwarding _broad - awaiting {}

when ErrorProbability < ErrorTransm ssion
do {

ErrorProbability := 0;

ErrorProbability := 0;

all - exit {exiting}:

}

4.2.3.1.3 The UniPointLink Monitor Type
Figure 6 shows the logical behavior of the Monitor subtype for point-to-point connection.

{Transm ttenegetChannellone:t)]
wehen T ThosSlot = 0

cvery slot, { Transm tters MAC data po_ntlone)}

C om pute

TxThlsSlat [Transm ters:petChannel(one:t) }

mhen TxThxSlot < 0

{Transm ttems:backlogsedione] |

Figure 6: State machine for Pointsgp-Point monitor.

The monitor begins in the Wait state. In every slot, the monitor allows a fixed number of
transmissions. The number of allowed transmissions is called Theoretical Throughput and it is
calculated in the monitor's setup action.

If TXThisSlot is greater than 0, the monitor moves to phasel by synchronizing with the
getChannel event of one of the transmitters in the transmitters variable. If TxThisSlot is less
than 0, the monitor moves to state phase2 by synchronizing with the getChannel event of one of
the transmitters in the transmitters variable.

In phasel, the monitor allows the transmission by synchronizing with the specific transmitter's
MAC data_point event. In phase2, the monitor defers the transmission by synchronizing with
the specific transmitter's backlogged event.

The SHIFT description of the Monitor subtype is given below.

type Uni PointLink : Monitor
out put set(Uni PointTransmitter) uni PointTransmitters := {};

state
nunber tiner := 0;
nunber TxThi sSl ot ;

Uni Poi nt Transm tter uni PointTransmtter;
flow default { timer' = 1;};

setup define {
nunber t_Transm ssionTi ne
nunber t_Theoritical Throughput

}
do {
Transm ssi onTi me
Theori ti cal Thr oughput

Packet Lenght / Dat aRate;
(slot
/ t_Transm ssionTi ne);

t _Transm ssi onTi ne;
t _Theoritical Throughput;

di screte
awai t,
phasel,
phase2;

transition
await - await {}
when tinmer = slot
do {
TxThi sSl ot :

Theori ti cal Throughput ;
tinmer ;

0;

H

await - phasel {uni Poi nt Transm tters: get Channel (one:t)}
when TxThisSlot O
do {

TxThisSl ot := TxThisSlot - 1;

uni Point Transm tter :=t;

},
await - phase2 {uni PointTransmitters:getChannel (one:t)}

when TxThisSlot = 0
do {

H

uni Poi nt Transmitter :=t;

31

phasel - await {uni PointTransmtter: MAC data_point},
phase2 - await {uni Poi nt Transmitter:backl ogged};

}

4.2.3.2 Broadcast channel: CSMA at the MAC layer

4.2.3.2.1 CSMA algorithm

At the MAC layer we use a Carrier Sense Multiple Access protocol. A description of the
algorithm is given below.

* The nodel of a transmitter Ais:
A has a nmessage to send to B.
A senses the channel (busy or idle):
if idle,
A transmits the nessage and then deletes it
A waits for a new nessage fromthe higher |ayer
el se
A wai ts a random del ay before sensing again the channel.
* The nodel of a receiver Bis:
B receives a nessage fromA
B conmputes the Cyclic Redundancy Code (CRC) and conpares it with
the CRC in the nessage:
if the CRCs are equal,
the message is forwarded to the higher |ayer
el se
the message is del eted.

In order to model CSMA, Transmitter, Receiver and Monitor are subtyped in
GnrCsmaTransmitter, GnrErrReceiver and GnrCsma. These subtypes support unicast,
broadcast and multi-cast communication.

4.2.3.2.2 The GnrCsmaTransmitter Type

The SHIFT description of the GnrCsmaT ransmitter for unicast, broadcast, and multi-cast
communication is given below in several fragments.

Output
type GairCsmaTransmitter : Transmitter

output GarCsma gnrCsmaMonitor; // Mnitor involved in the CSMA network.
}

State
type GairCsmaTransmitter : Transmtter
state nunber tinmer := 0;

flow defer_law

{ /1 When a transmitter is backl ogged, it
timer' = 1; /1l waits one slot before sensing again
}; /1 the channel. The tiner nodels this
} /1 del ay.

Exported events
type GarCsmaTransmitter : Transmtter

{

expor t
open backl ogged,
get Channel ;
}

Transition
1. In this transition, the transmitter adds itself to the monitor's set of transmitters.
32

type GairCsmaTransmitter : Transmitter

transition
init - idle {}
do {
gnr CsmaTransmi tters(gnr CsmalMoni t or)
;= gnrCsnaTransmitters(gnrCsnahbnitor) + {self};
j

-}

2. This transition is for unicast communication. The higher layer must synchronize with the
transmitter's MAC_ready_point event and it must provide the messageln and
receiverin inputs.

type GairCsmaTransmitter : Transmitter

transition
idle - check_point {MAC ready_point},
-}

3. This transition is for unicast communication. It is taken when the transmitter checks the
status of the channel. The monitor must synchronize with the getChannel event to keep
track of all the ready-to-transmit transmitters in a slot.

type GairCsmaTransmitter : Transmitter

transition
check_poi nt - get_channel _poi nt {get Channel}
do {
receiver := receiverln;
nmessage = messageln;

b
}

4. This transition is for unicast communication. It is taken when the transmitter is not
allowed to transmit. The monitor must synchronize with the transmitter's backlogged
event to defer its transmission.

type GairCsmaTransmitter : Transmitter

transition
get _channel _point - defer_point {backl ogged},
-1

1. This transition is for unicast communication. it is taken when the transmitter senses again
the channel, one slot later.

type GnrCsmaTransmitter : Transmitter

{

transition
defer_point - get_channel_point {getChannel}
when timer = slot
do{
timer := 0;
h

2}

33

2. This transition is for unicast communication. It is taken when the transmitter sends data.
The monitor must synchronize with the transmitter's MAC_data_point event to allow it
to start its transmission.

type GnrCsmaTransmitter : Transmitter
{
transition
get_channel_point - transmit_point {MAC _data_point},
..}

3. The transmitter issues the MAC_confirm_point event when the message is sent.

type GnrCsmaTransmitter : Transmitter
{ -y =
transition
transmit_point - idle {MAC_confirm_point},
.}
4. The following set of transitions are for multi-cast and broadcast communication. The
approach is the same than for point to point communication: only event names are
different.

type GnrCsmaTransmitter : Transmitter
{
transition // Multicast transitions
idle - check_multi {MAC_ready _multi},
check_multi - get_channel_multi {getChannel}
do {
receivers := receiversin; // Set of receivers.
message = messageln;
h
get_channel_multi - defer_multi {backlogged},
defer_multi - get_channel_multi {getChannel}
when timer = slot
do{
timer :=0;
h
get_channel_multi - transmit_multi {MAC_data_multi},
transmit_multi - idle {MAC_confirm_multi},

2}

type GairCsmaTransmitter : Transmitter

transition /'l Broadcast transitions
idle - check_broad {MAC ready_broad},

check_broad - get_channel _broad {get Channel}
do {

H

get _channel _broad - defer_broad {backl ogged},

34

message : = nessagel n;

def er _broad - get_channel _broad {get Channel}
when tiner = slot
do {

H

get _channel _broad - transmt_broad { MAC data_broad},

tinmer := 0;

transmt_broad - idle {MAC confirm broad},
all - exit {exiting};
}
oo}

4.2.3.2.3 The CSMA Receiver
The Receiver subtype for point to point connection can also be used for CSMA.

4.2.3.2.4 The GnrCsma Monitor Type

The monitor begins in the Wait state. In every slot, it computes the number of transmitters that
will be allowed to transmit in the next slot. This number is stored in TxThisSlot.

TxThisSlot is computed as follows.

Let the throughput S be the number of successfully delivered packets per packet transmission
time Tp. Let G be the number of transmitters which wanted to transmit in the last slot (offered
traffic load in packets per packet time). Let a be the propagation and detection delay (in packet
transmission unit) that is required for all sources to detect an idle channel after transmission
ends.

a is defined as a = tau * Tp, where tau is the propagation delay. The throughput of the non-
persistent CSMA protocol is given by: S = (G exp(-aG)) / (G*(1+2a) + exp(-aG)) .

Assuming that the Theoretical Throughput is the number of packets that can be transmitted in
one slot as a function of capacity C and packet length L, than we define TxThisSlot := floor
(Theoritical Throughput * S)

Example:

If C=11.2Kb/s, L=50Bytes, and slot=1sec, then the Theoretical Throughput is 28 packets in one
slot. Assuming that G is the number of transmitters which wanted to transmit in the last slot, say

4, and a=0.01 we get S=0.76 and we conclude that TxThisSlot = 17 packets can be successfully

transmitted during the next slot.

The SHIFT description of the Monitor is given below.

type GirCsma : Monitor

out put set(GirCsmaTransmitter) gnrCsmaTransmitters := {};
state nunber timer := 0;
nunber TxThisSlot :=0; // Transmitters allowed to transmt in
/1 the next slot.
nunber Sunirx : = O; /1l Transmitters which want to transmt during

35

/1 the slot.

GharCsmaTransmitter gnrCsmaTransmitter;
//Current requesting transmtter.

fl ow
default {
timer' = 1;
b
setup
define {
nunber t_Transm ssionTi nme = Packet Lenght / Dat aRat e;
nunber t_Theoretical Throughput := (slot / t_Transm ssionTine);
}
do {
Transm ssi onTi ne = t_Transmi ssi onTi ne;
Theoreti cal Throughput := t_Theoreti cal Throughput;
b
di screte
awai t,
phasel,
phase2;

transition
await - await {}
when tiner = slot
define {
nunber t_SunTx
nunmber t_Throughput :

Sunirx;
(t_Sunmrx * exp(-a*t_Sunix))
[(t_SunTx*(1+2*a) + exp(-a*t_Sunix));

}
do {
Throughput : = t_Throughput;
TxThi sSl ot := floor(Theoretical Throughput * t_Throughput);
Sunirx = 0;
tinmer = 0;
b

await - phasel {gnrCsmaTransm tters:get Channel (one:t)}
when TxThisSlot O

do {
gnrCsmaTransmtter :=t;
TxThi sSl ot = TxThisSlot - 1;
Sunirx = Sunirx + 1;

b

await - phase2 {gnrCsmaTransm tters: get Channel (one:t)}
when TxThisSlot =0
do {

t

gnrCsmaTransmtter : ;
Sunirx + 1;

Sumrx

H

phasel - await {gnrCsmaTransmitter: MAC data_point},
phasel - await {gnrCsmaTransmitter: MAC data_nulti},
phasel - await {gnrCsmaTransm tter: MAC dat a_broad},
phase2 - await {gnrCsnmaTransm tter:backl ogged};

}

4.2.3.3 Broadcast Channel: Stop And Wait at the Logical Link Control (using
CSMA at the MAC layer)

4.2.3.3.1 Stop And Wait algorithm

At the Data Link layer we use the simplest retransmission protocol called Stop_ And_Wait

protocol (SWP). Whenever the receiver gets a correct packet it transmits an acknowledgment

back to the sender. The sender automatically sends a copy of the packet if it does not get the

acknowledgment within T seconds. The packets and the acknowledgments are numbered. The
36

channel between the sender and the receiver is half-duplex, so the packets and the
acknowledgments can not propagate at the same time.

A description of the Stop_And_Wait algorithm is given below.

* The algorithmat node A for A-to-B transm ssion

1) Set the integer variable SN (Sequence Nunber) to O.

2) Accept a packet fromthe higher layer; assign SNto this new packet.

3) Transmit the SNth packet in a frane containing SN in a sequence
nunber field.

4) If an error-free frame is received fromB contai ning a Request
Nunber greater than SN, increase SNto RN and go to step 2. If no such
frame is received go to step 3.

* The algorithmat node B for A-to-B transm ssion

1) Set the integer variable RNto O and then repeat step 2 and 3
forever.

2) \Whenever an error-free frane is received fromA containing a
sequence nunber SN equal to RN. Rel ease the received packet to the
hi gher layer and increment RN.

3) After receiving any error-free data frame fromA, transnit a franme
to A containing RN in the requesting nunber field.

4.2.3.3.2 State machine for Stop And Wait Logical Link Layer

Figure 7 shows the logical behavior of the LinkLayer subtype implementing the Stop and Wait
algorithm for unicast communication. Broadcast and multi-cast communication are omitted for
legible reasons.

37

e
WNeterork_ready|

R

—,
b | transmit |
et
P P JLL confirm} .~ i
fread buffer 1Ll Teady el T ftransmitter = Mac
| — m\x -~ //,l i =
L r gy o T
[SN B ff:..—"! E"'\-u___ _f/ ,f"f —_—
| TEAUTO_DULET ¢ -u.hh_ﬁ Wl _______.-— __!f s‘.-].
—_— -\-\\\-\.__ﬁ l g-/ ~ _'__'_'_'_'_'_,_:—'— II u 11l IlL_ !
P Y —— —_—
|ome a1 Jel—— &
&= CUONmECIEq | !
,—-’_’ i “x__h Iftramemitter @ hlac_m
{ErTReceiver: ETI'EII’_fTEE_fTE.I‘.I"LE-}"f o . _)
.1 ErmHecelver @ error_trame}
.n-"'-’ H"-
!’ frame_armrival_erraor_free] i frame_arrival_error]
- -~ S
e - N
// /f’ “\\‘
rd ¥] r —_——
|(.1.L.‘p..,‘."--'iF.D‘.".-' frame | [information_frame| fime_out | wrong_frame |
T] ! A
\ S), —
'|F l
frame_expected dupplicata |
¥
to_hoast
)
{LL_indication} ¥

rrbuild_ack-\l"-"-

Figure 7: State machine for Logical Link Layer using Stop And Wait algorithm.

4.2.3.3.3 SHIFT description for LL_Message type
Message is subtyped to model the N-Protocol Data Unit at the Logical Link Layer.

type LL_Message : Message
{

out put synbol messageType;
nunber sequenceNunber ;
nunber request Nunber;
Li nkLayer destinati on;
set (Li nkLayer) destinations := {};
Li nkLayer sour ce;
Message message;

}

/1 Supervisory or Information.
/1 Used by the SAW protocol .
/1 Used by the SAW protocol .

/'l linkLayer at the renmote user.
/'l linkLayer at the renote users.
/1 linkLayer at the local user.
/1 N-Protocol Data Unit from

/1l the Network Layer.

4.2.3.3.4 SHIFT description for LinkLayer type

The SHIFT description for the Logical Link Layer using Stop_And_Wait protocol for unicast
communication is given below in several fragments.

38

Inputs
type Uni Csmali nkLayer : LinkLayer
{

i nput Message messagel n;

Li nkLayer destinationln;
Yoo
Outputs

type Uni CsmalLi nkLayer : LinkLayer

out put Uni Err Recei ver uni Err Recei ver;
Uni CsmaTransmitter uni CsmaTransmitter;

LL_Message message_from host;
LL_Message message_t o_host;

set (LL_Message) Acknowl edgrents : = {};
Li nk i nk;

flow default {
uni CsmaTransm tter
uni Err Recei ver

}s

narrow (Uni CsmaTransmitter, transmtter);
narrow (Uni Err Recei ver, receiver);

.

States

type Uni CsmalLi nkLayer : LinkLayer
{

st ;ate LL_Buffer rBuffer;
LL_Buffer wBuffer;
synbol ReadyToSendData : = NG
}

Discrete Transitions
1. The upper layer must synchronize with the LL_ready event and it must provide the
destinationIn and messageln inputs. The first and the third terms in the guard imply that
the transition may be taken when the connection to destinationIn does not exist: a new
Link will be created (currently there is no maximum number of connections allowed).
The second term of the guard implies that the transition may be taken when the
connection to destinationln already exists and its read-buffer is not full. Messageln is

assigned to the itemIn input of the read-buffer.
type Uni CsmalLi nkLayer : LinkLayer

transition
connected - network_ready {LL_ready}
when size (Links) =0
or exists i in Links :
(destination(i) = destinationln
and numberOf I tenms(rBuffer(i))
/= bufferSize(rBuffer(i)))

or not(exists j in Links :
(destination(j) = destinationln))
define {
Li nkLayer t _destination := destinationln;
Message t _message = messagel n;
Li nk t_link = find{i: i in Links

| (t_destination = destination(i))}

default {create(Link,

sequenceNunber := 0,

request Nunber : = 0,

destination := t_destination,

source : = self,

buf ferSize : = bufferSize,

Last FrameAck := YES)};

39

LL_Buffer t_rBuffer = rBuffer(t_link) ;
}

do {
itemn(t_rBuffer) := t_nessage;
r Buf f er = t_rBuffer;
destinationln =nil;
messagel n =nil;

b

-
Synchronization between the LinkLayer and the read-buffer that was chosen in the

network_ready state. When issuing the not_full event, the buffer stores the message that

was written in its itemlIn input.
type Uni CsmalLi nkLayer : LinkLayer
{

transition
networ k_ready - connected {rBuffer : not_full},

-
The linkLayer is looking for a new message to transmit. The first term of the guard

implies that the transition is taken only if the previous message _from_host has been
transmitted; The second term of the guard implies that at least a connection has its last
frame acknowledged and another frame to transmit. In the read_buffer state, the

linkLayer records the chosen connection in its link output.
type Uni CsmalLi nkLayer : LinkLayer

transition
connected - read_buffer {}
when ReadyToSendData = NO
and (exists i in Links : LastFrameAck(i) = YES
and (nunberOfltens(rBuffer(i)) /= 0))
define {
Link t_link :=find {i : i in Links
| LastFrameAck(i) = YES
and (nunmberOfltens(rBuffer(i)) /= 0)};

LL_Buffer t_rBuffer rBuffer(t_link) ;

}

do {
r Buf f er = t_rBuffer;
I'i nk = t_link;
ReadyToSendDat a = YES;

H

}

The linkLayer is looking for a new message to transmit. This transition is parallel to the
previous one. The first term of the guard implies that the transition is taken only if the
previous message_from_host has been transmitted; The second term of the guard
implies that at least a connection has its last frame NOT acknowledged. In the

read_buffer state, the linkLayer records the chosen connection in its link output.
type Uni CsmalLi nkLayer : LinkLayer

transition
connected - read_buffer {}
when ReadyToSendData = NO
and (exists j in Links : LastFrameNack(j) = YES
and (numberCOfltens(rBuffer(j)) /= 0))
define {
Link t_link :=find {i : i in Links
| LastFrameNack(i) = YES
and (nunmberOfltens(rBuffer(i)) /= 0)};

40

LL_Buffer t_rBuffer

rBuffer(t_link) ;

}

do {
r Buf f er = t_rBuffer;
I'i nk = t_link;
ReadyToSendDat a = YES;

b

=
5. Synchronization between the linkLayer and the read-buffer that was chosen in the

read_buffer state. When issuing the not_empty event, the buffer saves the next frame to

send in its itemOut output.
type Uni CsmalLi nkLayer : LinkLayer

H’énsition
read_buffer - record_buffer {rBuffer : not_enpty},

}
6. The linkLayer copies the next message to send from the buffer, and creates a

LL_message with the informations needed by the remote linkLayer.
type Uni CsmalLi nkLayer : LinkLayer

transition
record_buffer - connected {}
define {
Message t_message
LL_Message t_LL_nessage

itenmOut (rBuffer);
creat e(LL_Message,

messageType =1,
source := self);
}
do {
message_from host = t_LL_nessage;
message(t_LL_message) = t_nessage;
source(t_LL_nessage) = source(link);
destination(t_LL_nessage): = destination(link);
sequenceNunber (t _LL_message)
;= nodul o(sequenceNunber (i nk), 2);
request Nunber (t _LL_nessage)
;= nodul o(request Nunber (1'i nk), 2);
Last FrameAck(! i nk) = NG,
Last FranmeNack(| i nk) = NG
ReadyToSendDat a = YES;
I'i nk =nil;
r Buf f er =nil;
b

}
7. When the linkLayer is ready to send the next frame, it must synchronize with the

transmitter's MAC_ready_point event.
type Uni CsmalLi nkLayer : LinkLayer

i ;’énsi tion
connected - transmt {uni CsmaTransmitter : MAC ready_point}
when ReadyToSendData = YES

do {
messagel n(uni CsmaTransnmitter) := nessage_from host;
recei verln(uni CsnmaTransnitter)
1= recei ver(destination(nessage_from host));
ReadyToSendData : = NGO
H

41

8.

10.

11.

When the message has been sent the linkLayer issues the LL_confirm closed event.
type Uni CsmalLi nkLayer : LinkLayer

transition
transmt - connected {LL_confirnt
do {

H

message_from host := nil;

S}
A message has been received error free by the receiver. There is synchronization on the

error_free_frame event between the receiver and the linkLayer. The linkLayer stores the

new message in its output variable message _to_host.
type Uni CsmalLi nkLayer : LinkLayer

{
transition
connected - frame_arrival _error_free {uni ErrReceiver : error_free_frane}
define {
Message t_nessage message(uni Err Recei ver);

LL_Message t_I| _nessage := narrow(LL_Message, t_nessage);
}
do {

message_t o_host = t_I | _message;
b

S}
If the message is a supervisory one the linklayer goes in the supervisory_frame state

(acknowledgment from the remote linkLayer). The linkLayer copies in its link output the

link corresponding to the connection.
type Uni Csmali nkLayer : LinkLayer

transition

frame_arrival _error_free - supervisory_franme {}

when nessageType(nessage_to_host) = $S

define {
Li nkLayer t_source := source(nmessage_to_host);
Li nk t_link = find {i : i in Links

| (destination(i)
= t_source)};

}
do {

I'i nk = t_link;

r Buf f er = rBuffer(t_link);
H

oo}
The message acknowledges the last sent frame; the linkLayer goes back to the connected

state by synchronizing with the specific buffer's cancel event, and remembers that the last

sent frame (for this connection) was acknowledged.
type Uni CsmalLi nkLayer : LinkLayer

transition
supervi sory_frane - connected {rBuffer : cancel}
when (request Nunber (nessage_to_host) =
nmodul o((sequenceNunber (1ink) + 1), 2))

define {

Link t_link := link;
}
do {

sequenceNunber (t _I i nk) :
Last FrameAck(t _I i nk)
Last FrameNack(t _I i nk)

I'i nk

request Nunber (message_t o_host);
YES;

NO,

nil;

42

r Buf f er
message_t o_host
b
oo}
12. Th

nil;
nil;

e message does not acknowledge the last sent frame; the linkLayer goes back to the

connected state, and remembers that the last sent frame (for this connection) was not
acknowledged. The remote user asks for a retransmission.

type Uni CsmalLi nkLayer : LinkLayer

transition
supervi sory_frane -

when (sequenceNunber (i nk)

define {
Link t_link

}

do {
Last FranmeNack(t _link) :
i nk
rBuf fer
nmessage_t o_host

b

.
13. Th

connected {}

request Nunber (message_t o_host))

i nk;

YES;
nil;
nil;
nil;

e linklayer goes in the information_frame state if the message is an information

message (data from the remote linkLayer). In this state, the linkLayer determines which
link, among those in its set, is the one which corresponds to this connection; if no such
link exists, the linkLayer creates one.

type Uni CsmalLi nkLayer : LinkLayer

transition
frame_arrival _error_free -

when nessageType(nessage_t o_host)

informati on_frame {}

= $l

sour ce(nessage_t o_host);

find {i: i in Links
| t_source = destination(i)}

default {create(Link,
sequenceNunber := 0,
request Nunber : = 0,
destination := t_source,
source : = self,
bufferSize : = bufferSize,
Last FraneAck : = YES,
Last FrameNack : = NO};

define {
Li nkLayer t_source :
Li nk t_link
}
do {
link :=t_link;
wBuffer := wBuffer(t_Iink);
I
oo}
14. Th

information_frame.

type Uni CsmalLi nkLayer : LinkLayer

transition
informati on_frane -

e message was expected; The linkLayer passes it to the write-buffer that was chosen in

frame_expected {}

when sequenceNumber (nmessage_t o_host)

do {
item n(wBuf fer)

request Nunber (1 i nk)

request Nunber (11 nk)

message(nmessage_t o_host);

modul o((request Nunber (link) + 1), 2);

43

15. Synchronization between the linkLayer and the specific write-buffer. When issuing the

not_full event, the buffer saves the message that was written in itemin.
type Uni Csmali nkLayer : LinkLayer

transition

frame_expected - to_host {wBuffer : not_full}
do {
message_to_host (= nil;
I
}

16. The LL_indication event is issued when a message has arrived error free. In the
build_ack state, the linkLayer creates a supervisory message to acknowledge the received

message and to ask for the next one.
type Uni Csmali nkLayer : LinkLayer

transition
to_host - build_ack {LL_indication}
define {
LL_Message t_acknow edgment
;= create(LL_Message,

messageType =S,
source = self,
destination = destination(link),
sequenceNunber := sequenceNunber (link),
request Nunber = request Nunber (1ink));

}

do {

Acknowl edgrent s : = Acknow edgnents + {t_acknow edgnent};
H

17. The frame is not expected. It is a duplicate.
type Uni CsmalLi nkLayer : LinkLayer

transition
informati on_frame - duplicated_frame {}
when sequenceNunber (nessage_t o_host)
= modul o((request Nunmber (1'i nk) + 1), 2)

do {
message_to_host :=nil;
H
18. In the build_ack state, the linkLayer creates a supervisory message asking for the next
frame.

type Uni CsmalLi nkLayer : LinkLayer

transition
duplicated_frame - build_ack {}
define {
LL_Message t_acknow edgment
;= create(LL_Message,

messageType =S,
source = self,
destination = destination(link),
sequenceNunber : = sequenceNunber (Ilink),
request Nunmber = request Nunber (link));

}

do {

Acknowl edgrent s : = Acknow edgnents + {t_acknow edgnent};
b

44

19.

20.

21.

type Uni CsmalLi nkLayer : LinkLayer

transition
bui |l d_ack - connected {}
do {
l'ink
rBuffer :

nil;
nil;

}
The linkLayer synchronizes with the transmitter's MAC_ready_point event to send an

acknowledgment.
type Uni CsmalLi nkLayer : LinkLayer

transition
connected - transmt_ack {uni CsmaTransmtter : MAC ready_point}
when si ze(Acknow edgnents) /=0
define {
LL_Message t_acknow edgment
Li nkLayer t_destination

choose{i : i in Acknow edgnents};
destination(t_acknow edgnent);

}
do {
messagel n(uni CsmaTransnitter) : = t_acknow edgnent ;
receiverln(uni CsmaTransnitter) := receiver(t_destination);
Acknowl edgrent s ;= Acknow edgnent s
- {t_acknow edgnent};
H

S}
type Uni CsmalLi nkLayer : LinkLayer

i ;’énsi tion
transmt_ack - connected {},
oo}
A message has been received with an error by the receiver. There is synchronization with

the receiver's error_frame event. The linkLayer saves the new message on its output

message_to_host.
type Uni CsmalLi nkLayer : LinkLayer

transition
connected - frame_arrival _error {uni ErrReceiver : error_frane}

define {
Message t_nessage = nessage(uni Err Recei ver);
LL_Message t_I | _nmessage := narrow(LL_Message, t_nessage);
}
do {

nmessage_t o_host t_I'l _nessage;

b
}

The wrong message is a supervisory message. The linkLayer seeks the link
corresponding to this connection and remembers that the last frame, for this connection,
was not acknowledged. This mechanism allows us to model the timeout (the

acknowledgment was lost or is wrong). The sender has to resend the last frame.
type Uni CsmalLi nkLayer : LinkLayer

transition
frame_arrival _error - time_out {}
when nessageType(nessage_to_host) = S

45

define {

Li nkLayer t_source := source(nmessage_to_host);

Li nk t_link find {i : i in Links
| (destination(i)
= t_source)};

}
do {

link :=t_link;

Last FraneNack(t _link) := YES;
j

.
type Uni CsmalLi nkLayer : LinkLayer

transition
time_out - connected {}

do {
i nk =nil;
rBuf fer =nil;
message_to_host := nil;
H

S}
22. The wrong message is an information message. The linkLayer seeks the link
corresponding to this connection or creates one. The resulting link is then stored in the

link output.
type Uni CsmalLi nkLayer : LinkLayer
{

transition
frame_arrival _error - wong_franme {}
when nessageType(nessage_to_host) = |

define {
Li nkLayer t_source := source(nmessage_to_host);
Li nk t_link
= find {i : i in Links
| (destination(i) = t_source)
default {create(Link,
sequenceNunber := 0,
request Nunber =0,
destination = t_source,
source = self,
buf fer Si ze = bufferSize,
Last Fr aneAck = YES,
Last FrameNack = NO};
}
do {

link :=t_link;
b,
}

23. The frame was not received correctly by the linkLayer. A retransmission is needed.
type Uni CsmalLi nkLayer : LinkLayer

transition

wong_frane - build_ack {}
define {
LL_Message t_acknow edgment
;= create(LL_Message,
messageType =S,
source = self,
destination = destination(link),
sequenceNunber : = sequenceNunber (link),
request Nunber = request Nunber (1ink));
}
do {
Acknow edgrents : = Acknow edgrments + {t_acknow edgnent};
H

46

oo}
type Uni CsmalLi nkLayer : LinkLayer

transition
all - exit {exiting};
-}

4.2.3.4 Broadcast channel: Token Ring at the MAC layer

4.2.3.4.1 Token Ring algorithm

In a Token Ring network the hosts are connected in the shape of a ring. The protocol is based on
the use of a small frame called token, that circulates when all users are idle. A ready-to-transmit
user has to wait until it detects the next available token as it passes by. When a station seizes a
token and begins to transmit a data frame, there is no token in the ring, so other users wishing to
transmit must wait. The transmitting user will insert a new token on the ring when both of the
following conditions are met: the user has completed the transmission of its frame and an
acknowledgment from the destination of the frame has been received.

In order to implement the basic functionalities of the token ring protocol the Transmitter type
and the Monitor type have been subtyped with UniTokenTransmitter and UniToken.

Currently only unicast communication is implemented. The following features of the Token Ring
protocol are not implemented:

1) there is no initialization sequence. When a user joins the network, it should go through an
initialization sequence to become part of the ring. This is done to inform the neighbors of its
existence.

2) there is no active monitor. The active monitor is a host on the network, usually the first
recognized station when the LAN comes up. It watches over on the network and looks for
problems. The active monitor basically makes sure the network works efficiently and without
errors.

3) if the active monitor should fail, other users should be available to take its place.

To implement these features, the monitor and the transmitter subtypes for Token Ring must be
updated. A description of the Token Ring algorithm we used is given below.

* The nodel of a transmtter Ais:
A receives the token.
A wants to send a nessage to B
A sends a unicast nessage to B
A waits for an acknow edgnent from B
if A receives an acknow edgnent, then
A del etes the franme
and sends the token to the next user in the Iist
el se A sends the token to the next user in the list after the tinmeout.
* The nodel of a receiver Bis:
B receives a nessage fromA
B conmputes the CRC and conpares it with that inside the nmessage
If the CRCs are equal, B sends back an acknow edgrment and forwards the
message to the upper |ayer
else it deletes the nessage

4.2.3.4.2 The UniTokenTransmitter type

47

Figure 8 shows the logical behavior of the Token Ring subtype of Transmitter for unicast
communication. When creating the transmitter, the monitor output variable must be properly
initialized. In its setup action, the transmitter adds itself to the Transmitters output variable of
the monitor. This variable is a set of Transmitter which is used by the monitor to keep track of
the transmitters in the network.

[MIAL not ready poot)
i _hot F_T i

i
! T T e b]
; juctihanaei}
!] = ae Ao | [BAl_mady_poidt} | !
] B e T BELALdEL | - el Aata ready |
LY A e L9 s | ey)
e
T [MAL_coofirm poim}
-
Sy e — -
R . - i cooa L Y IRAALY data meiml f PR b
[MAL supervizory_pootd | transmit_data (LT §oeeoud_data
' * = i i

record ack

IWLAL_data_point}

figure 8: State machine for Token Ring transmitter.

The SHIFT description of the UniTokenTransmitter for unicast is given below in several
fragments.

Output
type Uni TokenRingTransmitter : Transmitter
out put Uni Token uni TokenMoni t or; /1 Monitor involved in the network.
nunmber priority; /Il Priority of transmtter.
}

Exported events
type Uni TokenRingTransmitter : Transmitter

export open
MAC_not _r eady_poi nt,
MAC_super vi sory_poi nt,
get Channel ;
o}
Setup action
The transmitter adds itself to the monitor's set of transmitters. This action can also be done in a
init - idle transition, like for the CSMA transmitter.

type Uni TokenRingTransmitter : Transmitter

setup do {
uni TokenTransm tters(uni TokenMonitor) :=
uni TokenTransmi tters(uni TokenMonitor) + {self};
h

oo}
Transition
1. The monitor must synchronize with the getChannel event to symbolize the reception of
the token by a transmitter.

48

type Uni TokenRingTransmitter : Transmitter

transition
idle - get_channel {getChannel}
when sel f = next Transmi tter (uni TokenMonitor),

-}

The transmitter is ready to transmit. The higher layer must synchronize with the
MAC ready_point event and provide the messageln and receiverIn inputs.
type Uni TokenRi ngTransmtter : Transmtter
transition

get _channel - data_ready { MAC ready_point}

do {

H

channel St at us(uni Tokenhoni tor) : = BUSY;

S}
The transmitter saves the message to send in its message output and the destination in its

receiver output.

type Uni TokenRi ngTransmitter : Transmitter
{

transition
data_ready - record_data {}
do {
receiver := receiverln;
nmessage = nessagel n;

-}

The transmitter is ready to transmit. If there is no message to transmit the higher layer
must synchronize with the MAC_not_ready_point event.
type Uni TokenRi ngTransmtter : Transmtter

transition
get _channel - idle {MAC not_ready_point},
-}

The monitor must synchronize with the transmitter's MAC_data_point event to start the
transmission.

type Uni TokenRi ngTransmtter : Transmtter

transition
record_data - transmt_data { MAC data_point},
}

After transmitting the message, the transmitter issues the MAC_confirm_point event.
type Uni TokenRingTransmitter : Transmitter

transition
transmt_data - idle {MAC confirmpoint},
}

The transmitter is ready to transmit an acknowledgment. In this case, the transmitter
doesn't wait for the token in order to transmit. The higher layer must synchronize with the

49

transmitter's MAC_supervisory_point event and it must provide the messageln and
receiverin inputs.

type Uni TokenRi ngTransmtter : Transmtter

transition
idle - ack_ready {MAC supervisory_point},
-}

8. The transmitter saves the message to send and the destination in its message and receiver

outputs.
type Uni TokenRingTransmitter : Transmitter

{

transition
ack_ready -record_ack {}
do {
receiver := receiverln;
nmessage := nessagel n;

b
}

9. When transmitting the acknowledgment, the transmitter issues the Mac_data_point
event.

type Uni TokenRi ngTransmtter : Transmtter

{

transition
record_ack - transmt_ack {MAC data_point}
do {

H

channel St at us(uni TokenhMonitor) := | DLE;

-1
type Uni TokenRi ngTransmtter : Transmtter

transition
transmt_ack - idle {},
-}

type Uni TokenRingTransmtter : Transmitter

{

transition

all - exit {exiting};

-}

4.2.3.4.3 The UniToken Monitor Type

In every slot, the monitor allows a fixed number of transmissions. This number is called
Theoretical Throughput and is calculated in the setup action. The SHIFT description of the
Monitor is given below in several fragments.

Output
The channelStatus flag is set to BUSY when a transmitter begins to transmit a message, and is

set back to IDLE when the transmitter receives an acknowledgment to its message.
type Uni Token : Monitor

out put set(Uni TokenTransm tter) uni TokenTransmitters := {};
Uni TokenTransni tter next Transnitter;
nunber networkSi ze = 0;
synbol channel Status := $IDLE;

50

State
The state variable nextTx refers to the next transmitter that is allowed to transmit and the state

variable TxThisSlot is the number of transmissions available in the current slot.
type Uni Token : Monitor

nunber tiner 0;
nunber nextTx := O;

nunber TxThi sSl ot '

flow default { timer' = 1;};

S}

Setup action

In the setup action the monitor computes the number of transmissions per slot.
type Uni Token : Monitor

setup define {

nunber t_Transm ssionTi ne .= Packet Lenght / DataRate;
nunber t_Theoritical Throughput := (slot / t_Transmni ssionTine);
}
do {
Transm ssi onTi ne ;= t_Transm ssi onTi ne;
Theoritical Throughput := t_Theoritical Throughput;
h
oo}
Transition

1. Inevery slot, we update the variable TxThisSlot.
type Uni Token : Monitor

transition
await - await {}
when tinmer = slot
do {
TxThi sSl ot :

Theori ti cal Throughput;
tinmer ;

0;

b,
.
2. When the slot is not full, the monitor seeks the next transmitter that's allowed to transmit.
type Uni Token : Monitor
{

await - phasel {}
when TxThisSlot O
and si ze(uni TokenTransnitters) /=0

do {
next Transmitter := find { i : i in uniTokenTransmitters
| priority(i) = nextTx};
net wor kSi ze ;= size(uni TokenTransm tters);
b,

}

3. Synchronization with the specific transmitter's getChannel event.
type Uni Token : Monitor
{
transition
phasel - phase2 {nextTransmtter : getChannel}
when channel Status = | DLE
do {
TxThi sSl ot :
next Tx

TxThisSlot - 1;
nmodul o((next Tx + 1), networkSize);

}s
) |
type Uni Token : Monitor

transition
phase2 - await {};
-}

51

4.2.3.5 Stop And Wait at the LLC (using Token Ring at the MAC layer)

4.2.3.5.1 SHIFT description for Logical Link Layer

The Token Ring linkLayer is very similar to the CSMA linkLayer. Only the following two
transitions are actually different.

Discrete Transitions
1. To send an acknowledgment the Logical Link Layer synchronizes with the transmitter's

MAC _supervisory_point event.
type Uni TokenRi ngLi nkLayer : LinkLayer

transition
connected - transmt_ack {uni TokenTransmtter : MAC supervi sory_point}
when si ze(Acknow edgnents) /= 0
define {
LL_Message t_acknow edgrent :
Li nkLayer t_destination

choose{i : i in Acknow edgnents};
destinati on(t_acknow edgnent);

}
do {

messagel n(uni TokenTransnitter) = t_acknow edgnent ;

recei verln(uni TokenTransmtter) := receiver(t_destination);
Acknow edgrents : = Acknow edgrments - {t_acknow edgnent};

H

transmt_ack - connected {},

-
2. When the transmitter is allowed to transmit (i.e. after receiving the token) but there's no

new message to send, the Logical Link Layer synchronizes with the transmitter's

MAC _not_ready point event.
type Uni TokenRi ngLi nkLayer : LinkLayer
{

transition
connected - connected {uni TokenTransmtter : MAC not_ready_point}
when ReadyToSendData = NO,

52

4.3 Human Driver Model Integration

Longitudinal and lateral control models of the human driver at the regulation level (throttle,
brake, steering) have been implemented in SmartAHS. In this MOU, we propose to implement
strategic decision making models and human perception models developed under the auspices of
NAHSC and MOU 284 into SmartAHS to complete the picture of human driving.

This functionality will help us simulate mixed traffic, partial automation and driver assist
functions and assess their safety and comfort impacts.

We describe the human driver models which we are incorporating into our vehicle-highway
microsimulator tool, SmartAHS. We discuss them in context of the well-known perception-
decision making guidance framework, drawing from previous work in each of these areas. In
particular, we select from the variety of target acquisition models; implement well-known
tracking model; and we apply the R.W. Allen's crossover model for steering and throttle control.
Our objective was to implement human diver models balanced with suitable complexity, yet
with enough computational simplification, to adequately describe the evolution of driver-assist
longitudinal control, beginning with adaptive cruise control. As a result of ongoing review
process, the best available models for different aspects of human driving were chosen. These
models are being represented in the SHIFT programming language and added to the SmartAHS
modeling environment. At this time the family of crossover control models are fully integrated
within SmartAHS. Decision making models are being constructed on case by case basis, and
some models are available within SmartAHS as a direct result of case studies conducted at
PATH. Currently the group is implementing the set of perception models of choice: BR-based
perception models.

4.3.1 Introduction

Since its inception, the AHS program has undergone a gradual refocusing toward deployment of
intermediate systems. Many of these systems are directed at improving highway safety. Our
current efforts reflect this redirection and center around near-to mid-term, deployable "partially
automated™ or, driver assist and vehicle-highway cooperative systems, the type which is under
consideration for the upcoming US DOT Intelligent Vehicle Initiative. The long term goal
remains vehicle-highway automation, but to achieve this, a progression of short-term stepping
stones must be mapped. The SmartAHS microsimulation tool is being used to assess the
dynamics and interaction of emerging driver-assist devices and features such as adaptive cruise
control (ACC), forward collision warning (FCW) or avoidance (FCA) and other potential
collision warning and avoidance systems. The microsimulation approach - where the detailed
driver-vehicle interactions are executed at a fine level of granularity with multiple vehicles -
brings the appropriate understanding of the physiology, physics and control laws necessary to
determine the efficacy of these new candidate systems. On the implementation side, we consider
the SmartAHS simulation framework developed at the California PATH program . A detailed
and validated model of a human driver is the foundation of our SmartAHS tool to address the

53

pre-AHS deployment issues of safety, driver assist and even "mature” AHS concepts which
include mixed traffic.

4.3.2 Background: SmartAHS Simulation Framework

The SmartAHS simulation framework addresses the needs of several categories of users: model
developers who provide detailed vehicle, sensor, control, and communication device libraries;
system engineers who will develop automation architectures; control and communication
engineers who will design, implement, and test individual control and communication
components; system analysts who will test and evaluate automation strategies; and system
planners who will select the automation strategy for deployment based on evaluation results.
Along with traditional software engineering requirements, the framework was developed to
satisfy the following requirements: it must provide time and event driven evolution models; it
must allow the designers to use a specification language that fits their domain, in this case
differential equations and finite state machines; it must provide a structured specification,
simulation, and evaluation environment with formal semantics; it must provide constructs that
are object-oriented; and it must represent dynamic interaction dependencies. Additionally, the
framework must model a number of entities that are particular to simulating vehicles on the
highway. These entities must be able to represent arbitrary highways; incoming and outgoing
traffic patterns; vehicles consisting of many components; roadside controllers consisting of many
components; different types of vehicles on the highway; inter-vehicle and vehicle-to-roadside
communication; accidents; and collection of arbitrary statistics.

The SmartAHS simulation framework is written in SHIFT programming language. SHIFT
combines system-theoretic concepts into one consistent and uniform programming language with
object-oriented features. It is ideal for the design, specification, simulation, control and
evaluation of large dynamical systems that consist of multiple interacting agents whose
behaviours are described by a combination of state machines and ordinary differential equations.
SmartAHS consists of different building blocks which facilitate quick development of a
simulation tailored to particular case scenario.

The highway library provides building blocks to create arbitrary highways. The roadway is
represented in terms of components of types Section, Segment, Lane. Sections consist of
segments and lanes. Segments represent the geometry of a highway. Highway types reside in the
global coordination frame meaning that each point of the highway is referenced by its global
coordinates. Each section has its own coordinate frame. Sink and Source types provide the flows
of vehicles facilitating the representation of desired Origin-Destination patterns and flow
volumes. A basic set of Monitor types collects necessary statistics used for concept evaluation.
An arbitrary vehicle consists of several types. It contains VehicleDynamics which models
vehicle dynamics at the desired level of detail, a Controller which is to provide the throttle,
steering, and brake inputs, which behavior depends on either it is automated or human controller;
and a Vehicle-Roadway Environment Processor (VREP).

The VREP is a logical object that maintains a Vehicle's position on the highway. It performs the
coordinate translations between the vehicle coordinate frame, and the roadway and global
coordinate frames. The Automated Vehicle also contains Sensor and Communication devices

54

and their environment processors. Additional SmartAHS libraries provide a set of foundation
classes for sensors and the communication infrastructure. A vehicle type may be augmented by
Sensor Environment Processor. Completely different sets of the communication and sensor
libraries may be provided by other development groups, and this interchange does not affect
other blocks of the SmartAHS framework. In modeling a human driver the sensor libraries are
augmented by perception libraries which combined together represent human perception. The
SmartAHS simulation framework can be downloaded from the PATH web page:
http://www.path.berkeley.edu/SmartAHS|

4.3.3 Human Driver Models

Several taxonomies have been developed describe the sequence of "normal”, i.e., non-
emergency, driving actions: perception-decision making-control, navigation-guidance-control,
and the 3T architecture. The perception-decision making-control taxonomy was derived to
describe localized, near-term driver actions; the navigation-guidance control conceptual
framework was developed to bridge higher level goal-setting or navigation activities with near-
term driver or control actions via monitoring, or guidance. The 3T architecture navigates an
automaton via a succession of micro-level skills, then progressing to tactical and strategic levels.
Because our application is aimed at assessing the safety of driver-assist devices, our current
focus is on the local (or borrowing from the 3T lexicon, tactical) layer. We bypass the guidance
or strategic levels, and we therefore base our model structure on the perception-decision making-
control hierarchy.

For simplicity, we assume an alerted driver - one who is already vigilant, attentive and
monitoring. The specifics of objectively modeling these precursors to perception is a complex
undertaking, and one that we defer. An advantage of not addressing this now is that by
considering only an already-alerted driver, we sidestep issues in warning and human machine
interface design for now; we can therefore initially focus on driver reactions and responses to
exogenous disturbances from outside the vehicle. Perception Models Two elements

of perception are considered in our human vision- and cognition-based detection models:
acquisition (defined for our purposes as proximal obstacle or vehicle detection probabilityat
range X) and tracking (defined for our purposes as deceleration relative to the driver). We
show currently implemented models and anticipated developments for our SmartAHS
microsimulation.

4.3.3.1 Acquisition Models

We aim to provide progressively higher fidelity models in human vision-based target acquisition
by following a work plan of implementing a sequence of three detection probability models. We
have reviewed the Bailey-Rand (BR) Contrast Model, the Doll-Schmieder (DS) Model, and the
National Automotive Center-Visual Performance Model (VPM). These models will sequentially
yield higher confidence results as we begin analyzing more specific CAS implementations and
scenarios.

4.3.3.1.1 Bailey-Rand Contrast and Similar Models.

The BR model incorporates, in a compact manner, the first- order effects of luminance contrast.
To do so in a compact manner, it assumes that targets are static and can be represented by circles

55

http://www.path.berkeley.edu/smart-ahs

with varying contrasts to an appreciably uniform (and therefore uncluttered) background. The
BR model also includes a target visibility factor. Limitations of the BR model primarily include
the aforementioned assumption of static, circular targets. (Some targets such as stalled vehicles
and stationary objects are certainly static, but the driver's vehicle is normally moving, nominally
at 30m/s or 10m during the 1/3s glimpse.) Moreover, the surround is not clutter-free,

and scenes have considerably more spatial, spectral (such as color) and temporal features that
contribute toward target discrimination, e.g., transient glare. These assumptions may be less far-
fetched under certain constrained scenarios such as with a limited search within a rural highway
and under relatively high but diffuse luminance. However, they have been successfully applied
in DoD applications, on non-circular targets and on natural backgrounds with considerably more
clutter than many highway scenes. For this reason, we have enough confidence in the BR model
to use it under carefully designed scenarios. We plan to improve the BR formulation by
incorporating an explicit driver search model. Because of its empirical foundation, we will
maintain the independent 1/3s BR glimpses. Head dwell and gaze abduction behavior
measurements have been conducted for driving, and at intersections, but there are very few field
experiments on which to build driver visual search models.

The BR model differs from the Visibility Index and Visibility Index/Fog (VI/FOG) models used
in the NHTSA-sponsored Perception-Decision-Response framework constructed to assess causes
of reduced visibility crashes, in that the BR model more rigorously defines meteorological
parameters affecting detectability. The VI/FOG models, however, take glare from artificial
illumination into consideration, including streetlights. An improvement to the psychophysics
embedded within the VI/FOG models is represented by the PCDETECT model, which takes into
account driver age and glare. All three competing models (BR, VI/FOG, PCDETECT) are based
on data from the classical Blackwell experiments, which relate differences in visual contrast over
a wide range of illumination conditions. In these experiments, targets are circular, the
background is uniform, and the target-to-background discriminant is luminance (i.e., gray scale)
contrast. As these assumptions exist within the other models, the common foundation makes use
of any of the three similar classes of models almost equally valid. We prefer the BR model
because it can be compactly expressed, and it is acknowledged outside the transportation

safety community. However, we believe that a more robust and higher fidelity representation of
the human visual system must be employed to reduce systematic errors from the simplifying
assumptions of the BR and like models.

4.3.3.1.2 Doll-Schmieder and Other TSD Models.

The DS model overcomes clutter limitations and introduces a theoretical framework-the Theory
of Signal Detection (TSD) - for detection decision-making. This framework is implicit with
Blackwell's relationships. The use of TSD puts the DS model into class of acquisition models
commonly used for in sensor processing.

To make the application of TSD in modeling detectivity by humans complete, the models must

be populated with specific background imagery, then human jury tests to determine ROC's must
be conducted. Hence, to make this model applicable for highways, appropriate vehicle, obstacle
and highway scene data must be gathered and fit. The data set could be large, as variations such
as the diurnal cycle, different highway topologies and obstacle types must be considered;

56

however, given a contained and very specific scenario, a reasonable data set with a high degree
of realistic visual cues could be collected, i.e., glint, glare and other spatially or temporally
unique features. Although the DS model overcomes the simplified target and background
assumptions of the BR model, it still applies to stationary objects. Additionally, vehicle motion
and the decision whether the detected object is an obstacle are still not addressed by this model.

4.3.3.1.3 National Automotive Center - Visual Performance Model.

The VPM introduces effects of color and motion with mathematical representations of the early
vision process from the receipt of photons on the retina through response by the photoreceptive
fields, and concluding with TSD for the target detection decision. The VPM combines aspects of
preattentive vision and human reasoning to model the human visual/detection system. As with
the human, VPM produces sequential channels for color (obtained by dividing the image into
color-opponent channels), motion (obtained by temporal filtering), spatial frequency (obtained
by transforming images into two-dimensional frequency space scenes) and orientation (obtained
by performing horizontal and vertical filtering). The model produces a signal-to-noise ratio for
each channel, then summed over all channels to essentially produce a ROC, and from TSD.
Mathematical models such as VPM have only recently been formulated to emulate the human
early vision process. Currently, the VPM search model is primarily based on human visual
search in cluttered combat backgrounds and to some extent, at roadway intersections; this may
not be extendible to highway driving without adjustment.

4.3.3.1.4 Tracking Model

In light of our near term objective of determining the efficacy of longitudinal control and
warning, we focus our tracking models to longitudinal acceleration only. To be complete, we
would also address tracking for objects moving laterally across the field of view, e.g., deer
moving on the roadway, or cars crossing at an intersection. Such a model would be complex, and
look up tables of empirically derived eye tracking data might be the most appropriate means to
approach the problem. At the present time, we do not anticipate embedding a more

complete lateral tracking model in SmartAHS. Time to collision (TTC) estimates are obtained
from empirical studies of variations from the population norm. This measure is a standard input
to highway design standards. In recent years, however, the question of how drivers

gauge TTC has arisen. It is now known that the human visual system is sensitive to the looming
angular target size and its rate of increase (or decrease), but it is not certain whether the driver is
directly sensitive to, or equivalently, TTC. and d is the forward vehicle or obstacle diameter.

4.3.3.1.5 Decision Making Models

Decision making is a difficult and very situationally dependent process to model. It involves
elements of the roadway condition and configuration, vehicle performance, the nature and
perceived intent of proximate vehicles, and quite importantly, the mood, inherent aggressiveness
and possible impairment of the driver. Various methods to incorporate risk, and complex rule-
based approaches to factor the contribution of driver risk have been proposed. However, utilizing
a simple risk model or applying a rule-based approach is oftentimes inflexible to a particular
driving situation or event. More recently, a promising computer science/artificial intelligence-
inspired genetic algorithm to "grow" successful tactical driver behavior traits has been
developed, but such a scheme was intended to produce highly successful and even selfish

57

autonomous vehicle controllers, and not necessarily a human driver decision making model.
Efforts are currently underway to evolve an algorithm with more typical human driving
behaviors, but such an effort will require substantial validation. We consider incorporating this
work once it becomes available. We plan on adopting the best features of the rule-based
modeling method by creating statistical decision making rules intended for the specific driver-
roadway and driver-assist situation. In the common construction of a "decision tree" or "decision
graph” various sources of information are input into a hierarchical if-then progression, with
subsequent alternatives branching out from the predecessor. Traveling down the tree can be as
simple as using Bayesian statistics, or the complexity can increase with more sophisticated
fusion techniques such as the Dempster-Shafer approach which uses plausibility and belief
values in lieu of single probabilities.

4.3.4 Control Models

There are two major approaches in modeling a control part of a human driver: the crossover
approach and the optimal control approach. A specific optimal control approach has been called
preview control model. The nature of the crossover model is adjusting parameters in order to get
a proper closed-loop response as viewed in the frequency-response domain. Optimal control
models, including the preview control model, predict the driver's control output using a state-
variable representation of vehicle response. Control parameters are computed automatically,
using methods from the optimal control theory, and based on the task description (cost function)
and driver limitations (phase constraints). The optimal control approach is twofold: it assumes
that estimation and control can be computed sequentially. The estimator could be based on either
Kalman filtering (stochastic approach) or a guaranteed state estimate approach. The parameter
identification should satisfy an optimality criterion in a sense that the estimate is as good as it
could be, and an uncertainty (estimation error variance) assosiated with this estimate lies within
some predefined and reasonably bounded range. The optimal control laws then provide the
control outputs based on these estimates for each system state variable. The control laws should
exhibit a certain level of robustness towards the identification errors. The preview control model
is a significantly simplified version of a generic optimal control approach. It considers a single
output variable, external disturbances are not being accounted for, and the identification of the
parameters is exact (perfect knowledge). Functionally this model is similar to the crossover
model except for the frequency domain vs. state-space. A general optimal control model is much
more flexible than the crossover model. Driver knowledge base could be modeled by state-
variable representation of all system response parameters, and driver limitations could be
expressed in terms of phase constraints, whereas the crossover model algorithm is tightly
coupled with a strictly predefined limited set of parameters. A set of perceptual inputs could be
varied in optimal control model without any significant change of the algorithm. Imperfect
knowledge could not be modeled explicitly in the crossover approach. Control outputs could be
stochastically varied in the optimal control model to achieve the effect of behavioral variability.
However, there is a steep price to be paid for this flexibility. A generic optimal control approach
requires much more computation. Moreover, in a number of applications this level of flexibility
is not required, since assuming a perfect knowledge and taking only a limited number of state
variables into account is sufficient for large-scale microsimulations in order to obtain correct

58

results. At this time we have implemented in SmartAHS the crossover models for longitudinal
and lateral control. These controllers model the ability of a human driver to steer in order to
follow the desired path and to operate the throttle to keep a desired headway to the

front car.

4.3.4.1 Steering Controller

Since the crossover model is linear, it is not suited for a highly congested traffic situations. It
represents normal and moderate driving conditions. The driver represented by the model has no
special skills for rare and extreme conditions. Hence, the controller could be

used for modeling crash avoidance maneuvers and similar studies.

The main component of the controller is a feedback loop which reduces the curvature error. The
error calculation is based on the comparison between desired and actual paths. The desired path
is constructed by choosing a look-ahead distance and setting an aim point. The controller
integrates the curvature error and modifies the steering accordingly. Another feedback is added
to maintain the vehicle at the desired y position to keep the vehicle within the lane bounds. It is
called lane position trim. This lane position error is integrated and added to the curvature error.
The last loop is the motion feedback..

As mentioned above, the driver has perfect knowledge of all input variables which are lane
position, road curvature, current velocity and yaw rate of the vehicle.

4.3.4.2 Throttle Controller

The process of calibration and validation of this model was conducted by Ford Company using
real vehicles and the number of drivers on a test track and on a highway. The model consists of
two feedback loops to regulate the velocity and the headway to the car ahead. A global delay
models both neuromuscular and visual delays. Note that while for lateral control a realistic delay
for a human driver constitutes only fractions of a second, for longitudinal control it may be as
much as 1.5 seconds since human driver tends to perform poorly in perceiving a mild velocity
change of the vehicle in front.

59

4.4 Application GUI

This “application GUI” will allow the relatively new users to correctly mix and match the
various complex models available -- sensors, actuators, vehicle dynamic models, human and
automatic controllers, and highways — and quickly combine them to create an analysis scenario.
We will call it the Java Application Wizard for SmartAHS (JAWS), a tool capable of bringing
the large set of objects (types) in the SmartAHS framework to the user in a graphical format. It
will make SmartAHS accessible to both the highly and less sophisticated user communities, all
integrated into a set of pop-up screens which will look the same on all computer platforms.

Some of these objects are specifically designed to work with others, while many of them can be
used in a wide spectrum of scenarios. In order to allow a user to create a custom component
using many of the existing structures (and optionally plugging a custom component into the
simulation), a user interface that directly gives the information to the user was needed. JAWS is
an application wizard insofar as it presents the user with a set of choices at each step of the
model construction process. One must choose a specific highway, then a specific weather
profile, some sensors, some vehicle models, and so on.

If a particular item is selected at a specific stage of the process, all items that are not compatible
with the chosen item will not be presented as choices to the user. This frees the user from having
to learn everything about every component in the SmartAHS library and it will drastically reduce
the learning curve for using SmartAHS components. This tool needs to be created in a modular,
general way, such as to make it easy to add any amount of models to the SmartAHS library and
preserve the same look and feel of the user interface. This will keep the users of JAWS from
having to learn a new user interface paradigm whenever a large amount of new models are
integrated into the SmartAHS libraries.

The use of the Java programming language for this project allows us to leverage now and in the
future the large amount of free tools available to the community.

60

5 Phase Il. SHIFT Enhancements (Jan — May 98)

The current release of SHIFT provides a stable and fully functional platform for microsimulation
development.

We have enhancee SHIFT to make it more accessible, available on multiple platforms, improve
computational efficiency and enable us to verify and implement the simulation designs.

To do so, we have performed four subtasks:

1. Enhance Simulation Data Output

2. Port SHIFT to PC Computers

3. Investigate Parallelization of SHIFT

4. Perform SHIFT Implementation and Verification Extensions

This is described below.

5.1 Enhance Simulation Data Output

For easier analysis and presentation of SmartAHS simulations, we have provideed SHIFT with
data output formats compatible with standard relational databases.

5.1.1 Introduction

A SHIFT simulation can generate a significant amount of data. Using the command line
debugger, the user can decide to dump the state of discrete and continuous variables to a file as
time flows. Unfortunately the format of the output file was not easily understandable by
spreadsheets and other analysis tools.

Therefore further analysis on the generated data required writing and using some ad hoc format
conversion script.

To reduce this problem a new set of trace commands was added to the SHIFT command line
debugger. These commands generate files in table format output. These files can be easily
imported in any spreadsheet. Converting the generated file is not mandatory anymore. In those
cases where some processing is required it is generally easier to process files in the new format
(rows and columns) than in the old one.

5.1.1.1 Data formats

Two kind of files can be generated. The first one is type oriented, that is every line contains a
copy of the state of a component of a given type at a some time. The second one is transition

61

oriented, that is each line contains informations on a transition that happened in a component of a
given type at some time.

5.1.1.1.1 Type Oriented Format
The first line is the header, which contains the column titles. Its format is the following:

time <FS> | nstance# <FS> npde <FS> <USER CHO CE_1> <FS> ... <FS> <USER _CHO CE_N>
* tine IS the title of the time stamp column.
* Instance# IS the title of the instance number column.
* node IS the title of the column containing the current state of the component in column 2.
* <rs> is the user defined field separator.
* <USER cHa ce_x> IS the title of the column corresponding to the x-th variable chosen by the
user.
The other lines of the file have the same number of entries as the header line, but they contain
actual values instead of column names.

Example: this excerpt from a trace file shows informations about four components of the same
type between time stamp 552 and 557. They switch from the safe state to the unsafe state and
they measure the time spent in each state in the timeSafe and timeUnsafe variables. To convert
the time stamp in simulation time we must know the simulation time step (sim_time =
time_stamp*time_step). Suppose the time step for this simulation was 0.25 sec., then time step
552 corresponds to time 138.00 sec.

time I nstance# node tineSafe tineUnsafe

552

0 safe 3.750000 0.770000
552 1 safe 0.720000 3.300000
552 2 unsafe 0.220000 1.800000
552 3 safe 0.620000 0.000000
552 4 unsafe 0.110000 0.010000
553 0 safe 3. 760000 0.770000
553 1 safe 0.730000 3.300000
553 2 unsafe 0.220000 1.810000
553 3 safe 0.630000 0.000000
553 4 unsafe 0.110000 0. 020000
554 0 safe 3.770000 0.770000
554 1 safe 0.740000 3.300000
554 2 unsafe 0.220000 1.820000
554 3 safe 0.640000 0.000000
554 4 unsafe 0.110000 0. 030000
555 0 safe 3.780000 0.770000
555 1 safe 0. 750000 3.300000
555 2 unsafe 0.220000 1.830000
555 3 safe 0.650000 0.000000
555 4 unsafe 0.110000 0. 040000
556 0 safe 3.790000 0. 770000
556 1 safe 0.760000 3.300000
556 2 unsafe 0.220000 1.840000
556 3 safe 0.660000 0.000000
556 4 unsafe 0.110000 0. 050000
557 0 safe 3.800000 0.770000
557 1 safe 0.770000 3.300000
557 2 unsafe 0.220000 1.850000
557 3 unsafe 0. 660000 0.010000

4 unsafe 0.110000 0. 060000

557

62

5.1.1.1.2 Transition Oriented Format
The first line is the header and it contains the column titles. Its format is the following:

tinme <FS> Transition# <FS> Type <FS> | nstance# <FS> nodel <FS> npde2 <FS> event
* tine iS the title of the time stamp column.
* Transition# IS title of the transition id column.
* Type is the title of the type column.
e Instance# IS the title of the instance number column.
* node1 IS the title of the from-state column.
e mode2 IS the title of the to-state column.
e event IS the title of the event column.
* <Fs> IS the user-defined field separator.
The other lines of the file have the same number of entries as the header line, but they contain
actual values instead of column names.

5.1.1.2 Debugger Commands
The SHIFT debugger provides 4 new commands to generate trace files in the described formats.

Type oriented commands:

» db_ctracetype <type> (db_ctt). For all components of type <type>, dump all continuous
variables every time click in table format; specific variable names can be indicated with
the -v option.

e db_ctracecomp <type> <id> (db_ctc). For component <id> of type <type>, dump all
continuous variables every time click in table format; specific variable names can be
indicated with the -v option.

Transition oriented commands:

» db_dtracetype <type> (db_dtt). For all components of type <type>, dump all transition
information before the transition happens; specific synchronization events can be
indicated with option -e.

» db_dtracecomp <type> <id> (db_dtc). For component <id> of type <type>, dump all
transition information before the transition happens; specific synchronization events can
be indicated with option -e.

The sfs <FS> command sets the field separator. <FS> can be any character. C escape sequences
are recognized (e.g. tab is \t).

The trace files can be found in the LOGXx directory, which is created in the working directory by
the SHIFT run-time system.

5.2 Port SHIFT to PC Computers

The porting of the SHIFT simulation development environment to the PC computing platform is
a very important project given the PC's widespread use in the user community. The porting
requires the following activities:

63

e The compiler was ported.

* The run-time and debugging libraries was ported ported in a general way such that any
further developments in the UNIX (the main development platform) version will be quickly
integrated in the PC version. This involved setting up, documenting, and maintaining a
rigorous multi-user software management system.

» The SHIFT graphical user interface (TKSHIFT) was be ported. At this stage, there are a few
bugs in the PC version of the TCL/TK language, and this constitutes the bottleneck in the
complete port of the system to the PC platform. Solutions for this problem include waiting
for the problem in the language to be fixed, or implementing a new mechanism for the
interface between the SHIFT runtime environment and the graphical debugger.

The Windows NT version of SHIFT and SmartAHS was developed at PATH. This effort
involved not only modifications to the original Unix-based code of the system, but also search
and adaptation of the NT-based equivalents of all supporting software: lexer and parser tools,
Tcl/Tk, gnu C compiler. This effort yielded a packaged software system along with instructions
on getting and installing all the supporting software.

5.2.1 SHIFT Compiler

The compiler code was slightly modified in order to compile with the set of GNU utilities for
Windows NT platform (gcc, lex, yacc). The development platform is built around the Windows
emacs environment. These tools were downloaded from the following locations:
ftp://ftp.cygnus.com/pub/gnu-win32/latest/ README.txt
http://www.cs.washington.edu/homes/voelker/ntemacs.html

Minor changes to the Makefile were required as well. The Windows NT version of the compiler
code and Makefile are kept within the Windows-based Visual Source Safe version control
system. Note that the set of GNU tools is used for the assembly of SHIFT compiler only. These
tools are not required for a regular use of the SHIFT system by end users.

5.2.2 SHIFT runtime environment: runtime, libDebug, and socket libraries

The SHIFT runtime core library, network support and debugger libraries were converted to the
NT using the Microsoft Visual C++ development environment. This project includes the
<runtime>, <socket>, and <libdebug> libraries. The library with debugging symbols is in the
debug subdirectory, the one that is optimized and debugger-symbol free is in the release
directory.

5.2.3 TKSHIFT debugger

The TKkSHIFT debugger is developed with MS VC++ and also uses Tcl/Tk. The Tcl/Tk
programming language is developed by a team at sun. The main homepage for Tcl/TK is:
http://sunscript.sun.com|

One of the main differences between the two versions is the way that the C files are incorporated
into the tcl interpreter. In Unix, the files were compiled into object format files, later to be linked

64

ftp://ftp.cygnus.com/pub/gnu-win32/latest/README.txt
http://www.cs.washington.edu/homes/voelker/ntemacs.html
http://sunscript.sun.com/

into an executable with a tclApplnit.c file. With the NT, the way to do this is to create a dynamic
link library (dll) out of the C files. A special function provides hooks that allow the tcl interpreter
to load the dll correctly, and have to manually load the dll, as is now done in initialize.tcl. Also it
is necessary to load the blt dll for graphical widgets used in the GUI (whereas in Unix the
libBLT.a was linked directly as a static library during the compilation of the TkKSHIFT
executable. There is an additional file, TKSHIFT.tcl that simply sources initialize.tcl (wherever
that file may be). Since it is specified in the creation of TKSHIFT that any window belonging to
the TKSHIFT application must have a certain look and feel, the main program MUST be called
TKSHIFT.tcl, otherwise the GUI windows graphics won't work. The debugging was
accomplished by running wish80.exe, then sourcing initialize.tcl from there. By doing this, there
is a console window the pops up that can print out many of the useful debugging messages,
which are lost when one starts the program with TKSHIFT.tcl (Note: In many cases, a simple
puts in the program will make the TkSHIFT.tcl program halt because the program cannot figure
out where to print the puts message. Some of these print messages need to be taken out to make
TKSHIFT.tcl work).

5.2.4 The Release Process

The release is packaged and distributed using the Install Shield program. By specifying the
location of the files that are to be installed and the path they should be installed to, this program
takes care of the presentation of the installation process in the standard Windows way. The
current distribution includes all of the compiled libraries, some examples, and two example
projects: the shop floor example, and the merge simulation example. The distribution also
includes all of the SHIFT source files that constitute the SmartAHS library, with the ¢ source
code that goes along with it. The main directories in the distribution are the following:
SHIFT-dev/lib

SHIFT-dev/lib/TKSHIFT

SHIFT-dev/docs

SHIFT-dev/bin

SHIFT-dev/include

shift-dev/projects/shopfloor

shift-dev/projects/SmartAHS

SHIFT-dev/SHIFT/examples

The release process for the NT version of SHIFT/SmartAHS goes through the following stages:

1. Make the distribution diskettes using the Install Shield program. (Need to have the complete
distribution. The current and latest one is saved in:
c:\ProgramFiles\InstallShield\ISExpress\VC\SHIFTReleasel.0.ivz)

2. Copy these distribution diskettes to somewhere on the hard drive (C:\Installation)

3. Zip these files into a single SHIFTRelease.zip file.

4. FTP this file to the PC SHIFT page on the web.

Currently the Windows NT release of SHIFT/SmartAHS is available at:
http://www.path.berkeley.edu/~danielw/pcport.html|

65

http://www.path.berkeley.edu/~danielw/pcport.html

5.3 Investigate Parallelization of SHIFT
Our objective was to increase the computational speed of SHIFT simulations.

The hardware platform to run the SHIFT simulations is assumed to be a multiprocessor
workstation with shared memory architecture (i.e., UltraSparc-2) which has a small number of
processors (1-16).

Every SHIFT simulation contains two major parts that simulate continuous and discrete behavior
respectively. Timed runs of the simulations show that modeling the continuous evolution of the
system consumes 70% to 95% of the total amount of time spent on a simulation.

The maximum achievable speedup is estimated using the Amdahl law. For example, the 70%
share of continuous part on a two-processor machine may yield a 1.54 times faster execution
when parallelized, while on a four-processor machine this figure is 2.11. This implies that a
major effort should be directed towards parallelizing the numerical integration component of the
SHIFT system.

Hence, we undertook the development of a multi-threaded version of the run-time simulation
environment to utilize the computational power of a multiprocessor system with shared memory
architecture as a feasible first step in order to meet our objective.

Consequently we explored the possibility of extending the SHIFT programming language and
simulation environment to allow distributed simulations and real-time extensions.

The hardware platform to run the SHIFT simulations is assumed to be a multiprocessor
workstation with shared memory architecture (i.e. UltraSparc-2) which has a small number of
processors (1-16). The issue of distributed memory architectures and massively parallel
systems was not considered.

Every SHIFT simulation contains two major parts which simulate continuous and discrete
behaviour respectively. Timed runs of the SmartAHS simulations show that the continuous part
consumes 70% - 95% of the total amount of time spent on a simulation even though the
algorithm for discrete part is exponential in its nature and the continuous part is linear. Note that
it is possible to construct a problem with a complicated discrete behaviour which will consume
most of the resources to compute its discrete part, however the 70%-95% figure is sound for the
domain of transportation problems SHIFT is used to model.

The maximum achievable speedup is estimated using the Amdahl law. The speedup is given as a
function of a ratio of the part to be parallelized, and the number of CPUs. For example: the 70%
share of continuous part on a 2-processor machine may yield a 1.54 times faster execution when
parallelized, while on a 4-processor machine this figure is 2.11.

These figures imply that a major effort should be directed towards parallelizing the numerical
integration component of the SHIFT system. The implementation of the multithreaded version of

66

SHIFT was successfully accomplished. The details of this implementation are provided in the
next section.

5.3.1 Distributing the Continuous Step.

The tool of choice for making a parallelized simulation is the POSIX threads library. Current
implementation of SHIFT is a highly synchronised system. The variable and fixed step Runge-
Kutta routines require a synchronisation after each internal step of this integration method.
Particularly, there is a point of synchronisation after each iteration over the list of differentible
variables. The sequence of operations performed over each variable invloves reading from
various variables but writing only to the current one. It is very natural to parallelize this loop.
The only place for potential memory-write conflict is the opeartion of advancing the gloabl
pointer through the loop. This operation is protected by a mutual exclusion lock in each

thread in order to resolve this conflict.

There are many ways to make a program parallel. There are three common paradigms though.

Each of the paradigms is characterized by load balancing method, whether each thread executes

the same code, the synchronization techniques, and what data is shared and how it is protected to

avoid memory-write (data racing) conflicts.

= [Master-slave] The main master thread spawns a set of slave threads and allocates a fixed
amount of work to be done (known in advance). Then the master waits for the slaves to reach
a synchronization point - barrier.

= [Pipeline] A task is passed to a succession of threads where each of those performs a work
required.

= [Workpile] A set of working threads request portions of work to do from the "pile”, usually
some form of a queue. The pattern terminates when the pile is empty.

The workpile paradigm suites our needs best. Each work assignment from the pile is one set of
operations over a list of differentiable variables within one component. Here different threads
process different components at the same time. Competing threads picking the tasks from the
pile provide the best load balancing possible (semi-optimal load balancing).

Memory locations to be rewritten by different threads do not overlap. Data used for the
calculation during each cycle is taken from memory locations which are never rewritten during
current loop by the definition of the integration method. Thus the only mutual exclusion lock is
necessary and should be put on the pointer advancing through the list of components with
differentiable variables.

Working threads compete for work trying to grab the component pointer and set a mutually
exclusive lock while copying and advancing it. The total number of working threads is equal to
the number of processors in the machine. The upper bound on the number of threads may be set
adaptively to optimize performance, or statically not to exceed the number of processors
multiplied by two.

In order to have truly competing threads on a multiprocessor machine the threads should be
system-bound (attached to the LWPs in case of SUN Solaris).

67

5.3.2 Benchmark Tests

A number of performance tests were accomplished. These tests reveal the benefit of using the
multi-threaded version over regular single-threaded in all test runs on a 2-CPU machine (Sun
SPARC Ultra-2) and most of the cases on a 4-CPU machine (Sun SPARC HPC).

The set of benchmark ing programs included a uniform family of programs with different
numbers of ODEs and hybrid components of the same type, and a real SmartAHS application
simulating a freeway traffic merge scenario with a few hundred cars being modeled.

The results for the following programs are presented:

1. sample SHIFT program with 20 components, 30 ODEs.
2. sample SHIFT program with 200 components, 3 ODEs.
3. sample SHIFT program with 4 components, 300 ODEs.
4. SmartAHS application - merge scenario.

The following table compares the run times in seconds for 4, 2, 1-threaded versions on a 4-CPU
Sun SPARC HPC server. Each simulation was allowed to run for 6000 steps.

4 thr 2 thr single-thr
(v 22 25 2.5
2 3 35 29
3 0 s -
(¢ 120 192 8

Note that in case of very simple continuous behavior, the single-threaded version wins because
the overhead for multi-threaded support exceeds the computaional load for integration (case (2)).
However all usual simulations contain much more sophisticated systems of ODEs; and as seen in
the table, multithreaded versions win in all these cases.

The next table shows a comparison of 2-threaded and single-threaded versions on a 2-CPU
machine (Sun SPARC ULTRA-2). The table shows how many steps of a simulation were
computed with single-threaded version when 2-threaded version reached 1000 steps.

2 threads si ngl e-t hr eaded
(1) 1000 steps 900 steps
(2) 1000 steps 970 steps
(3) 1000 steps 660 steps
(4) 1000 steps 780 steps

Note that multithreaded version wins over single-threaded for all examples on this particular
hardware platform.

Typical CPU usage shown is:

68

= 4-threaded - 225%

= 2-threaded - 158%

= single-threaded - 97%
in percents of the run time.

5.4 Perform SHIFT Implementation and Verification Extensions

The current release of the SHIFT programming language provides precise syntax and simulation
semantics. Programs written in SHIFT are compiled to an intermediate representation and linked
with the SHIFT with run-time library to produce an executable simulation of a dynamic hybrid
system.

We developed extensions to the SHIFT syntax and run-time libraries for real-time
implementation and off-line verification of SHIFT models.

In the first step, we extended the SHIFT syntax, intermediate representation, compiler and run-
time operating support, to implement a reactive, real-time hybrid system.

In the second step, we further extended the SHIFT syntax and intermediate representation to
produce outputs compatible with existing formal verification tools such as Kronos or HyTech.

In this section we report the work carried out within MOU 258 with the aim of both verifying the
correctness of SHIFT specifications and generating code to be executed on-board in real-time.

5.4.1 Motivations and Goals

SHIFT is a specification language oriented towards the modeling of so-called hybrid systems,
i.e., systems comprising of both discrete and continuous behaviors (over time). Discrete
behaviors are modeled as finite-state automata: locations correspond to the different discrete
modes or phases where the system may be at any time (e.g., high, low), edges model the discrete
events that make the system switch from one mode to another (e.g., on, off). The continuous
behavior of the system at each phase is described by means of ordinary differential or algebraic
equations over a set of real-valued variables (e.g., temperature, gas level, speed). A special case
of hybrid systems are the so-called timed systems. These systems are only equipped with
continuous variables that measure the time elapsed between different discrete events. Such
variables are usually called clocks and their evolution over time is described as differential
equation of the form x'=1.

SHIFT is used for instance to specify complex automated maneuvers such as lane changes, car
following, and platoon splitting, joining, and merging. All these maneuvers are safety critical. It
is clear that it would be desirable to verify that they satisfy the imposed safety requirements. The
difference between simulation and verification is that the former only permits studying a single
behavior of the system whereas the latter consists in analyzing all the possible behaviors of it.
That is, simulation cannot be, in general, used to prove that the safety requirements are met, but
it is very useful to debug the designs and to gain confidence on the control laws. The complexity
of these systems make them very difficult, if not impossible, to analyze by hand. Verification
should therefore be supported by a computer program. Fully-automatic computer-aided
verification of SHIFT programs is in general not possible. That is, it is neither practically nor

69

theoretically possible to construct a program that checks all the possible behaviors of a SHIFT
program. Nevertheless, a significant subset of SHIFT programs is indeed verifiable by a
computer program. Such programs are those corresponding to timed systems.

Once a SHIFT program has been extensively simulated and, if possible, verified, it would be
desirable to be able execute this program on-board. As a matter of fact, there exists today a gap
in the chain going from the specification of the maneuvers to their implementation inside the
automated cars which needs to be filled out. A solution to this problem is to automatically
generate executable code from the SHIFT program. In this manner, the code executed on-board
in real-time will behave like the one that has been simulated and verified.

In this context, the contributions made by MOU 258 are depicted in the figure below. The dashed
box shows the SHIFT simulation environment whose improvements within MOU 258 are

reported elsewhere.

5.4.1.1 Verification

70

http://www-verimag.imag.fr/

SHIFT/K ZA0OMOS —*
tra oslator

N
I

Kigh : Shic ' RT-Shic

lcompiler! lcompiler| lcompiler|
, : Sensors
: : Actiatons
Timed AZutomata C Code /
: SHIFT Beal-Tame
KIONOS : SIMULATOR Syatem
Property — E:::H Simedation Execution
Verification

The work done with the purpose of verifying the correctness of SHIFT programs focused the
integration of the SHIFT environment (language and simulator) with the tool KRONOS
developed by VERIMAG, a French research center specialized on the development of computer-
aided methods and tools for the verification of real-time and hybrid systems

54.1.1.1 The syntax

In order to be able to syntactically recognize those SHIFT programs that are indeed timed
systems, we have extended the syntax of SHIFT. To avoid confusion, we call this ~“new"
language SHIFT/KRONOS. The added features are indeed macro definitions. That is, they do
not introduce new concepts into the language as SHIFT/KRONOS can be fully and syntactically
translated into SHIFT.

The syntax SHIFT/KRONOS is the one of SHIFT, without any flow declarations and with the
following additional statements:

* kronosclocks x_1, ..., x_n Which corresponds to the SHIFT variable declaration state
continuous number x_1, ..., x_n, plusthe SHIFT flow declaration x* = 1 associated with
every discrete mode.

* kronoswhen <cond> Where <cond> IS a condition over the set of variables declared as
kronoscl ocks. This statement corresponds to the SHIFT guard when <cond>. SHIFT guards

71

are also allowed, which amounts of taking the conjunction of the conditions stated in the
when and the kr onoswhen.

* kronosi nvar <cond> Where <cond> is a condition over the set of variables declared as
kronoscl ocks. This statement corresponds to the SHIFT invariant i nvari ant <cond>. SHIFT
invariants are also allowed, which amounts of taking the conjunction of the conditions
stated in the i nvari ant and the kronosi nvar.

* kronosreset { x 1 :=v_1; : x_n :=v_n; }, where v_iis either o or another variable x_j.
declared as a kronoscl ock. This statement corresponds to the SHIFT statement do { x_1 : =
v_1;

;o X_n :=v_n; }.

5.4.1.1.2 Example of a SHIFT/KRONOS program:

type Fischer

state
nunber id ;
kr onoscl ocks
X
di screte
idle,
wai t kronosi nvar x<=1
test ,
cs ;
export
cl osed enter_cs
transition
idle -> wait {}
when N = 0
kronosreset { x:=0; } ;
transition
wait -> test {}
when true
do { N:=1id; }

kronoswhen x<=1

kronosreset { x:=0; } ;
transition

test ->cs { enter_cs }

when N = id

kronoswhen x>1

kronosreset { x:=0; } ;

}
type MonitorCS
{
state
nunber ¢ := 0 ;
di screte
good,
bad ;
transition
good -> good { S:enter_cs(one) }
when ¢ = 0
do {
c:=1
R
transition
good -> bad { S:enter_cs(one) }
when ¢ = 1 ;
}
gl obal Fischer f4 := create(Fischer, id := 4)
gl obal Fischer f3 := create(Fischer, id := 3)
gl obal Fischer f2 := create(Fischer, id :=2)

72

gl obal Fischer f1 := create(Fischer, id :=1)
gl obal nunber N:= 0

gl obal set(Fischer) S:={ f1, f2, 3, f4}
gl obal MonitorCS nts := create(MnitorCS) ;

5.4.1.1.3 The equivalent SHIFT specification of t ype Fi scher

type Fischer
{

state

nunber id ;
state

conti nuous nunber Xx ;
fl ow

kronosflow { x' =1; } ;
di screte

idle { kronosflow },

wait { kronosflow } invariant x<=1 ,

test { kronosflow },

cs { kronosflow };
export

cl osed enter_cs ;
transition

idle -> wait {}

when N =0

do{ x:=0; };
transition

wait -> test {}

when x<=1

do { N:=id ;

X :=0;

|

transition
test ->cs { enter_cs }
when N = id and x>1
do { x :=0; } ;

}

5.4.1.1.4 The compiler

Kish is the compiler that takes as input a SHIFT/KRONOS program and generates as output the
files needed for the verification. Kish is actually a modification of the SHIFT compiler Shic. The
additional work carried out by Kish with respect to Shic is the following.
» Type-checking required by the added syntactical features.
» Generation of the input files, called Ti med Aut omat a, to the verification tool KRONOS.
» Generation of C code that integrates the code generated by Shic for simulation purposes
with code needed for verification.

5.4.1.1.5 The verifier

We have developed a verification tool called Grizzly that integrates both KRONOS and the
SHIFT simulator. Grizzly is indeed the tool that explores all the possible behaviors of a
SHIFT/KRONOS program. KRONOS provides all data-structures and associated manipulation
functions required to store, update and check the consistency of the timing constraints. The run-
time library of the SHIFT simulator is the one in charge of manipulating the corresponding
SHIFT variables and dealing with the synchronization of transitions.

73

Grizzly essentially works as follows. Given a state, which is composed of a KRONOS and a
SHIFT data-structures, it calls the appropriate functions of the SHIFT run-time library to
construct all the possible successors of the state (i.e., the states reachable by all the possible
outgoing transitions from the state) only taking into account the constraints imposed by the pure
SHIFT statements (i.e., without considering the timing information). Then Grizzly calls the
appropriate functions of KRONOS to check whether the transitions found in the previous step
meet the timing constraints (i.e., the condition imposed by the kronoswhen is satisfied), in which
case the transition is taken and a new state is created, otherwise the transition is not taken.
Grizzly keeps repeating this procedure until all the states have been visited.

The algorithm described above generates all the possible states in which the SHIFT/KRONOS
program may stay. We can also ask Grizzly to check whether some given state is indeed
reachable from the initial state.

54.1.1.6 Example

We illustrate here a typical verification session. The shell-script called ksH FT should be used to
generate the C code, the KRONOS timed automata and to compile and link all the files together
with Grizzly. The result is an executable binary file named as the input file with the extension
.grz. This file is the one to be executed to perform the verification.

For instance, we can use fischer. grz to check whether the component nes (an instance of the type

noni t or cs) reaches the discrete mode bad. To do so, we use the following command:
fischer.grz -REACH nts_bad -DFS -h

The option - ReacH nes_bad indicates that we are looking whether the component ncs reaches the
discrete state bad, whereas - ors and - h are options provided by KRONOS that correspond
respectively to perform the exploration using a depth-first search and to generate a trace if the

state is reachable. The output is the following:

grizzly: Evaluating reachability: _init AND E<> _reach

grizzly: Using depth-first search with max stack size: 1000

grizzly: Max synbolic-states set size: 1000

grizzly: Synbolic states visited: 9

grizzly: reachability successfu

fa f3 f2 fl ncs

idle idle idle idle good F4_X=F3_X and F4_X=F2_X and F4_X=F1_X

idle idle idle wait good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X<=F4_X
idle idle wait wait good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X<=F4_X
idle idle wait test good F4_X<=10 and F4_X=F3_X and F4_X=F2_X and F1_X+1<F4_X
idle idle wait cs good F4_X<=10 and F4_X=F3_X and F1_X<=F4_X and F2_X<=F1_X
idle idle test cs good F4_X<=10 and F4_X=F3_X and F2_X<=F4_X and F1_X<=F2_X
idle idle cs cs bad F4_X<=10 and F4_X=F3_X and F2_X<=F4_X and F1_X+1<F2_X

oahrwbdRO

5.4.1.1.7 Practical experiments
Grizzly is currently being used in the context of MOU 258 to verify a distributed fault-diagnosis

protocol. Grizzly has demonstrated to be very useful. Several bugs (specially deadlocks due to
synchronization problems) have been found by Grizzly in early phases of the design.
5.5 Generation of Executable Code

We describe here the work carried out concerning the generation of executable code from SHIFT
programs. This is ongoing work.

74

5.5.1 SHIFT Application

We refer to a SHIFT application as a collection of a fixed number of SHIFT components. The
external interface of the application is defined to be the set of inputs and outputs of the
components. The components are allowed to synchronize with each other through events, but
they are only allowed to interact with the external world using the external interface. Such an
application is therefore open in the sense that its behavior depends on externally provided inputs.
(see the figure below).

a i
1 : Sen=sors
: | || speed, accel, .. -
1
| |
| |
: ! Conm
I : i o
: ||| il omd faulk momt, | [=—=
1 1
|

5.5.2 SHIFT Executor

Given a SHIFT application, we are interested in generating code to be executed on a real-time
operating system (QNX, for instance). We think of a SHIFT application as a single task, i.e., the
application itself, rather than as a collection of tasks, i.e., one task per component. With this in
mind, generating code for the application consists in implementing a program called “"SHIFT
executor” (see the figure below) which is going to execute the SHIFT application more or less is
the same way that the simulator does.

75

..-"-i.uputa - g cutputs .

shift
application

e oy

Figure 3: Architecture of the executor.

5.5.3 Benefits of the Approach

This approach allows us to avoid directly implementing a protocol for synchronizing the SHIFT
components on top of the operating system. The synchronization between components inside the
application is ensured by the SHIFT executor using the same algorithm implemented in the
simulator. Another advantage of this approach is that the execution of the SHIFT application on
the real-time operating system will be a single thread instead of the interleaving of multiple
threads which results when implementing each component as a separate task. Besides, the
granularity of the execution time can be set up to be equal to the time increment used for the
simulation. Thus, if the executor is scheduled in time, it will reproduce the same behavior
observed during the simulation, provided that the time needed to execute the code is smaller than
the simulation time-step (in other words, if the code can be simulated in real time). This property
can be checked during the simulation.

76

6 Phase Il1l. Documentation (Jan 98 — Jun 98)

Under this cross-cutting activity, we have collected the dispersed documentation of the SHIFT
and SmartAHS tool-set and integrate it into a cogent user manual and reference guide. The
document was be divided into two main parts: SHIFT and SmartAHS.

1. SHIFT (documentation available at http://www.path.berkeley.edu/SHIFT/publications.html)
Items and explanations which were included:

» an easy and intuitive example with extensive explanations

* object-oriented features

* hybrid behavior

» advanced topics and all the rest

» description of the associated tools such as the compiler, debugger, document generator, type
tree generator, and TKSHIFT

2. SmartAHS (documentation available at http://www.path.berkeley.edu/SmartAHS/sahs-
manual/manual.html)

Items and explanations which were included:

» description of the various vehicle and highway models

» description of scenario specification

» description of sample safety and throughput analysis applications

» description of associated tools such as the highway builder, highway compiler, JAWS,
SmartAHS canvas in TKSHIFT, and connection to SmartPATH animator.

6.1 ACC Simulation - Example of SmartAHS Applications

6.1.1 Obijective of the study

The objective of the study was to understand what benefit can be gained with the deployment of
Adaptive Cruise Control (ACC). Another objective, in sync with the MOU 258 objectives, was
to test and demonstrate the applicability of SmartAHS to the broader class of Advanced Vehicle
Control and Safety System problems outside of fully automated highways.

An ACC is the next step from Conventional Cruise Control, which is currently deployed on
vehicles, is ACC without braking authority. This type of ACC maintains a constant headway
with the vehicle ahead by controlling the throttle and by using the gear-SHIFT. That is why the
maximum possible deceleration this ACC can provide is 0.07g. The responsibility for vehicle
safety is on the driver, as he has full braking authority. He also has the authority to switch the
ACC on and off. This type of ACC is designed to be comfortable: acceleration and deceleration

77

are very mild. It is also autonomous, i.e., all the needed information for vehicle control is
obtained from the devices installed on the vehicle: there is no communication.

The next level of vehicle automation is ACC with full braking authority. In this case longitudinal
control of the vehicle is fully handled by the ACC, leaving to the driver only a supervisory role
and lateral control. The responsibility for safety with respect to longitudinal control of the
vehicle is given to the ACC. This ACC can produce uncomfortable actions, such as hard braking.
The driver can still switch the ACC on and off. This type of ACC is also autonomous, there is no
communication between vehicles or with the roadside.

What will happen if the ACC has the ability to communicate with other vehicles or with the
road? Will this ability bring more safety or more comfort to the driver?

We wanted to investigate each ACC concept from different points of view: how will the ACC
affect the driver and what consequences will it have on traffic. How safe and comfortable will
the driver be, how much time will he leave the ACC on, how will the ACC affect his travel time.
What are the traffic conditions in which ACC can successfully control the vehicle.

To answer these questions the following simulation scenario was designed, and a series of
simulation runs was conducted for the ACC without braking authority case.

6.1.2 Two Components of the simulation

The simulation was developed in such a way, that all the components can be easily changed
without affecting other components of the simulation. Existing SmartAHS components were
used: roads, simple and complex vehicle models, sensor models. ACC and driver models were
implemented in the SHIFT language and were added to the simulation.

To study the benefits of another ACC controller or to conduct a sensitivity study of ACC
parameters, the same scenario and simulation can be used. (The user just need to plug in the new
ACC model.) Batch processing facilities are provided to run a series of simulations, which differ
from each other only by some parameters. The user can specify, which variables to trace. To
facilitate data analysis, post-processing, data filtering, format conversion and display utilities are
provided.

6.1.3 Simulation Scenario

The scenario created for the simulation is the following. A few vehicles are driving on a straight
one lane road. The road surface is dry, and the vision is clear. The first vehicle is driven
manually and it follows a fixed speed-time profile, collected on a real freeway. It is followed by
a string of ACC-equipped vehicles. All of them have the same ACC controller. Number of

[R

[ACCl—~ [ACCl— [ACC]— LRRE

cource D — {8 the disturbance vefiick
ACC — is the partially automated veliicle
R — Range

RR = ‘Vp— Y — Ronge—rofe

vehicles and ACC parameters for every vehicle can be varied

The speed-time profile for the disturbance vehicle is predefined and it was collected on highway
1-880, California. We chose trajectories which correspond to various traffic conditions: stop-and-
go, moderate, and light traffic.

The stop-and-go data was collected during morning hours with heavy traffic. We know that there
was an accident at that time, which affected the traffic for about two hours. Traffic density was
220veh/mile. The data collecting vehicle entered the freeway at 45mph speed. When
approaching the accident area it began to decelerate. Its velocity dropped almost to 0 in one
minute, then it made a few ups and downs, and eventually it began to grow again.

The moderate data was also collected during the morning hours. There was an accident at that
time too. But it affected the traffic only for 15 minutes. The trajectory of the subject vehicle was
recorded when the traffic began to recover after the incident. Traffic is smoother than the stop-
an-go traffic, but it still has some islands of congestion. The density in the accident area reaches
up to 220 veh/m, but in general it is around 100-140 veh/h.

The light data was collected during early morning hours, when traffic was free flowing.

6.1.3.1 Vehicle

Two vehicle models are integrated in the simulation: simple point mass kinematic model with
lag, and complicated 2D dynamical model. The user can switch between the models. All vehicles
are equipped with perfect sensors, which output range and range-rate with respect to the
preceding vehicle. The maximum sensor range is a user-defined parameter.

6.1.3.2 Data collection and data processing

Components state can be traced and recorded at every time step. This feature allows to use the
output data for further analysis. Special components, called monitors, watch particular aspects of
the simulation: when the driver is safe/unsafe, comfortable/uncomfortable, or when the ACC is
on/off. The user can specif what information to save for every simulation run.

Typically analysts need to run a set of simulations that differ from each other only in some of the
ACC parameters. Often to change the parameters by hand is not feasible because the
combinations are too many. For this reason batch processing facilities are provided to automate
the compilation process.

On the other hand data analysis requires post-processing, data filtering, format conversion and
display utilitiesm, which are also provided.

The whole process can be summarized in the following pseudo-code algorithm:
* loop on a list of ACC parameter values
» substitute the current values in the source files
e compile the simulation
* run the simulation, activating data collection
» post-process collected data

79

e end loop
» load data for display/analysis

6.1.4 Longitudinal Control

As we already mentioned, for modeling the ACC without braking authority we used a model by
P.Fancher, UMTRI. The driver has full braking authority and he is responsible for safety. He
decides when to switch the ACC on, and he can intervene or switch the ACC off at any time. We
assume, that a driver wants to keep the ACC on as much as possible: he switches it on as soon as
he can, and he takes back control when he feels unsafe.

Safety is defined through a surface, which is function of vehicles’ accelerations and velocities,
current range and range-rate, and driver’s reaction time.

When the vehicle is above the surface - it is safe, when it is below - unsafe.

The figure below shows how safety surface divides (velocity,Range,Range-Rate) space into safe
and unsafe regions.

t2o.
ton-f..

go~..

range

range rate -5 15

welocity

Different people perceive safety differently, so they override ACC at different time in the same

situation. To capture this fact we distinguished between risky drivers, who prefer to drive close,
from conservative drivers, who prefer to keep longer distance to the preceding vehicle. This risk
diversity among the drivers was simulated by varying the braking capability of the preceding

80

vehicle parameter in the definition of the safety
surface.

The switching from the unsafe to the safe region is happening when a similar safety surface is
crossed back. The only difference from the previous safety surface is that the varying parameter

(the braking capability of the preceding vehicle) lis
0.1g more. This gives some kind of gap between the switching lines, which helps reduce
switching and make traffic smoother.

6.1.4.1 ACC model

When the ACC is on, it can operate in two modes: velocity control and headway control. It
works over the existing cruise control system and it assumes it is functioning properly.

Range and range-rate outputs from the sensor are the inputs for ACC control algorithm. If there
is no vehicle within the sensor range then the ACC is in velocity control mode. If there is a
vehicle within sensor range then an algorithm decides in what mode the ACC should be: velocity

81

mode or headway mode. This control algorithm can be described using a Range/Range-Rate
diagram. It consists of the following steps:

1. Choose the desired headway distance for a selected velocity and headway time.
RH=th*Vp;

I(Desired headway distance = headway time

* velocity of the preceding vehicle).
Select point A=(0,RH)
2. Choose the deceleration D to be used.
3. Construct (plot) the parabola through (0,RH) using deceleration level D.
4. Choose the maximum range Rmax to consider.

82

5. Determine point B from intersection of R=Rmax

and constructed

parabola

83

6. Draw the line from point A to point B to determine its slope (-T).

Switching Ene for ACC R

-
n
~

Driver gives control to ACC "7 o--- ool

84

ER

The line (AB) is the switching line between velocity
and headway modes. For ranges above this line the system operates as a velocity control. The
ACC vehicle tends to follow the speed set by the driver. It accelerates comfortably to the target
speed. When the switching line is crossed from above, the system gets to headway control and
applies the maximum available deceleration. Eventually trajectory reaches the switching line
(AB) again. It tries to follow the line by applying the appropriate deceleration, and approaches
target point (0,RH) exponentially.

This algorithm can be illustrated in two situations: when approaching a slower moving vehicle,
and when a disturbance vehicle suddenly appears within a range that is closer than the switching
lane. The trajectories of the vehicle in both situations are portrayed in the figure below.

100 — 40—
80 —| 7
75 —
60 —|
U | U I u I u I
I . I . [. [. -3 -2 -1 0
-8 -6 -4 -2

If the vehicle trajectory crosses the safety surface, then driver begins to act.

6.1.4.2 Driver model

We assume, that the driver wants to use the ACC as much as possible. The driver overrides the

ACC when he feels unsafe. When the vehicle trajectory crosses the safety surface the driver

begins to brake, more than the ACC, but not very hard. As mentioned above various levels of
85

deceleration of the lead vehicle determine various
risks, which the driver accepts. In our simulation this parameter varied from 0.3g to 1.0g. If this
level of deceleration is not enough, and at the some point the vehicle trajectory crosses a lower
safety surface, then the driver brakes hard. This lower switching surface between hard and soft

braking is the safety surface with the parameter
equal to 0.1g.

The driver continues to brake hard until he feels safe enough to give back control to the ACC.

6.1.5 Summary

The simulation is designed and implemented for evaluation and sensitivity studies of ACC. The
simulation is designed such a way, that all components are interchangeable without affecting
other components. One model of ACC without full braking authority is implemented. Batch
facilities are provided to automate compilation and simulation runs. Data processing and display
software was developed to facilitate data analysis.

86

87

	1 Executive Summary
	Background
	3 Methodology
	Phase I. SmartAHS Enhancements
	Phase II. SHIFT Enhancements
	Phase III. Documentation

	Phase I. SmartAHS Enhancements (Jan – May 98)
	Sensor Architecture Development
	Introduction
	Using Sensors
	The SEP type
	The Sensor Type
	Currently Implemented Sensors

	Designing New Sensors
	TargetDetector
	SensorModel
	Sensor

	Implementation

	Communication Architecture Integration
	Modeling communication with SHIFT
	Communication Components
	Message
	Physical Layer
	Transmitter interface
	Receiver interface for a perfect channel
	Receiver interface for an imperfect channel
	Interface for the Monitor

	Data Link Layer
	MAC Layer
	Features of the Monitor type
	Interface for the Monitor

	Logical Link Layer
	Interface for the Buffer
	Interface for the Link
	Interface for the Logical Link Layer
	How Logical Error Control is Modeled

	Examples
	Point-to-point connection
	The UniPointTransmitter type
	The GnrReceiver and GnrErrReceiver Types
	The UniPointLink Monitor Type

	Broadcast channel: CSMA at the MAC layer
	CSMA algorithm
	The GnrCsmaTransmitter Type
	The CSMA Receiver
	The GnrCsma Monitor Type

	Broadcast Channel: Stop And Wait at the Logical Link Control (using CSMA at the MAC layer)
	Stop And Wait algorithm
	State machine for Stop And Wait Logical Link Layer
	SHIFT description for LL_Message type
	SHIFT description for LinkLayer type

	Broadcast channel: Token Ring at the MAC layer
	Token Ring algorithm
	The UniTokenTransmitter type
	The UniToken Monitor Type

	Stop And Wait at the LLC (using Token Ring at the MAC layer)
	SHIFT description for Logical Link Layer

	Human Driver Model Integration
	Introduction
	Background: SmartAHS Simulation Framework
	Human Driver Models
	Acquisition Models
	Bailey-Rand Contrast and Similar Models.
	Doll-Schmieder and Other TSD Models.
	National Automotive Center - Visual Performance Model.
	Tracking Model
	Decision Making Models

	Control Models
	Steering Controller
	Throttle Controller

	Application GUI

	Phase II. SHIFT Enhancements (Jan – May 98)
	Enhance Simulation Data Output
	Introduction
	Data formats
	Type Oriented Format
	Transition Oriented Format

	Debugger Commands

	Port SHIFT to PC Computers
	SHIFT Compiler
	SHIFT runtime environment: runtime, libDebug, and socket libraries
	TkSHIFT debugger
	The Release Process

	Investigate Parallelization of SHIFT
	Distributing the Continuous Step.
	Benchmark Tests

	Perform SHIFT Implementation and Verification Extensions
	Motivations and Goals
	Verification
	The syntax
	Example of a SHIFT/KRONOS program:
	The equivalent SHIFT specification of type Fischer
	The compiler
	The verifier
	Example
	Practical experiments

	Generation of Executable Code
	SHIFT Application
	SHIFT Executor
	5.5.3 Benefits of the Approach

	Phase III. Documentation (Jan 98 – Jun 98)
	ACC Simulation - Example of SmartAHS Applications
	Objective of the study
	Two Components of the simulation
	Simulation Scenario
	Vehicle
	Data collection and data processing

	Longitudinal Control
	ACC model
	Driver model

	Summary

