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Time and the Price Impact of a Trade

ABSTRACT

We use Hasbrouck (1991)’s vector autoregressive model for prices and trades to empirically test and

assess the role played by the waiting time between consecutive transactions in the process of price

formation. We find that as the time duration between transactions decreases, the price impact of trades,

the speed of price adjustment to trade related information, and the positive autocorrelation of signed

trades, all increase. This suggests that times when markets are most active are times when there is an

increased presence of informed traders; we interpret such markets as having reduced liquidity.

Keywords: Price Impact, Liquidity, ACD, Autoregressive Conditional Duration, Asymmetric

Information, Inter-trade Duration.

JEL Classification: C15, C22, C32, G14
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Time and the Price Impact of a Trade

THE AVAILABILITY OF LARGE data sets on transaction data and powerful computational devices has

generated a new wave of interest in market microstructure research and has opened new frontiers for

the empirical investigation of its hypotheses. The microstructure literature is mainly devoted to the study

of the mechanics of price formation, examining questions such as, “What are the determinants of the

behavior of prices?” and “How is new information incorporated into prices?”1. Hasbrouck’s analysis

(Hasbrouck (1991)) reveals that the change in prices depends on characteristics of trades (sign and

size) and the market environment as measured by bid-ask spread, in addition to the current and past

levels of prices. At time t, when a trade is performed, larger transaction size and spread imply a larger

price revision after the trade. Furthermore, not only does volume affect prices, but it has a persistent

impact on prices, which means volume conveys information. The intuition, supported by theoretical

predictions, is that other trade related variables might also be informative. The primary objective of this

paper is to show empirical evidence that the time between trades, which is a measure of trading activity,

affects market price behavior. Moreover, by measuring how much and how fast prices respond to

trades at any point during the trading day, we illuminate the dynamic behavior of some aspects of

market liquidity that could be used to design optimal trading strategies.

The background of this study goes back to Bagehot (1971), who first considered a scenario with

heterogeneously informed traders. According to Bagehot, the specialist, possessing only publicly

available information, faces informed and uninformed traders, but cannot distinguish between them.

Uninformed traders are also called liquidity traders because their trading is either motivated by

consumption needs and portfolio strategies or simply reflects personal price sensitivity, or specific

trading rules (Easley and O'Hara (1992)). The market-maker fixes a spread which compensates on

average for the losses suffered from trading with the informed. These are the basic elements of the

asymmetric information models which were introduced by Bagehot (1971), analyzed by Copeland and

Galai (1983), and formalized and developed by Kyle (1985), Glosten and Milgrom (1985), Easley and
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O'Hara (1987), Admati and Pfleiderer (1988), Foster and Viswanathan (1990, 1994), Allen and Gorton

(1992).

A key element of asymmetric information models is that trades convey information. The specialist,

by observing trading activity, gradually learns the information held by informed traders and adjusts prices

so that at any point in time they are the “consensus” of all the traders in the market. Consequently, only

in the long run will prices fully incorporate the new information. It becomes fundamental for the

understanding of price behavior to describe how the market maker’s learning process works. For this

purpose, Hasbrouck (1991, 1996) focuses on the study of the price effect of a trade and identifies a

short-run effect and a long-run effect. Hasbrouck (1991) shows empirical evidence that the market

maker, through the observation of trade attributes such as sign and size, infers information from the

sequence of trades. We extend Hasbrouck’s results in two main directions. First, we test the

informational role of market activity measured by the time interval between two consecutive

transactions, and second, we show how to exploit the information content of time durations to enhance

models for price and trade dynamics.

The theoretical motivations for our empirical investigation on the role of time between trades are

found in the models of Diamond and Verrecchia (1987) and Easley and O'Hara (1992). In Diamond and

Verrecchia (1987), at any moments of the trading day, one of two possible events happens, either good

news or bad news. Thus, informed traders will always trade unless they do not own the stock and short-

sell constraints exist. Accordingly, long durations are likely to be associated with bad news. In Easley

and O'Hara (1992) instead, informed traders trade on either side of their signal, but only when there is a

signal ("news") and therefore long durations are likely to be associated with no news. Prior to these two

contributions, market microstructure literature assigned no role or informational content to time2. On the

contrary, the following arguments lead us to believe that time actually conveys information. By

definition, uninformed traders’ decision to trade is independent of the existence of any information.

However, informed traders only trade when they have information, hence variations in trading rates in
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Easley and O'Hara (1992) are associated with changing numbers of informed traders. More generally,

informed traders would presumably choose to trade as quickly as possible and as much as possible once

they have received their information. However, as analyzed by Easley and O'Hara (1987) for volume,

this will quickly distinguish them and reduce their profit opportunities. Thus the incentives to trade

quickly are reduced.  On the other hand, if large volume trades are broken up, this will lead to a larger

number of informationally based trades. Thus, it is reasonable to assume that variations in the trading

intensity are positively related to the behavior of informed traders. Therefore trading intensity, which

results in short and long durations between trades, may provide information to market participants.

The theoretical models above formulate a plausible role for time, but we agree with O'Hara that “…

the importance of time is ultimately an empirical question… ” (O'Hara (1995)). Even though ours is not

the first attempt to empirically test the importance of time, no prior work, to our knowledge, has

definitely assessed the role that time plays in the process of price dynamics. Hasbrouck (1991) suggests,

as a promising idea for a better understanding of the price impact of a trade, the study of time-of-day

patterns in trade impact on prices. Hausman et al. (1992) estimate ordered probit models for transaction

prices with time between the current and the last trade as an explanatory variable. From this analysis,

time seems to matter, but the interpretation of the role of time is inconclusive. The importance of time is

confirmed by two other studies on transaction data for the IBM stock, 1) Engle and Russell (1994) find

evidence of comovements among duration, volatility, volume, and spread, and 2) Engle (1996) observes

that longer (shorter) durations lead to lower (higher) volatility. Thus trading intensity is correlated with

volatility. Our analysis is similar in objective to Easley, Kiefer and O'Hara (1997), however, their method

for extracting information from the daily number of no-trade intervals relies on assumptions, such as the

independence of trades, that are difficult to reconcile with empirical results on intraday data.

The original contribution of this paper lies in providing strong empirical evidence of the relevance of

time in the process of price adjustment to information, which confirms Easley and O’Hara’s predictions.

Our investigation reveals that the time between trades is informative, and higher trading intensity is
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associated with a higher price impact of trades, a faster price adjustment to new trade related

information and a stronger autocorrelation of trades. In order to describe a general pattern, we base our

results on a large sample composed of 18 of the most frequently traded stocks on the New York Stock

Exchange (NYSE) covered by the TORQ data set. Furthermore, we relate this result to the existing

microstructure literature on time, and describe the important role of time in a model of price formation.

In this framework, we use the data to shed light on the theoretically ambiguous relation between

transaction rate and liquidity traders' behavior. On one hand, high trading intensity is caused by informed

and uninformed traders pooling together in order to trade at low costs (see Admati and Pfleiderer

(1988)). Alternatively, high activity is due to informed traders whose presence on the market deters the

uninformed from trading (see Foster and Viswanathan (1990)). Only this latter view is, in fact,

consistent with our findings.

Our results have relevant practical implications for studying the liquidity process. In general, liquidity

is related to the ease with which securities are bought and sold without wide price fluctuations. The

literature, however, recognizes the complexity of liquidity and identifies four dimensions: width, depth,

immediacy and resiliency (Harris (1990)). Grossman and Miller (1988) and Brennan and

Subrahmanyam (1996) criticize earlier studies that focus on spread as a liquidity-cost measure,

neglecting the dynamic aspect of liquidity.  Seppi (1997) refers to market liquidity as the temporary or

non informational price impact of different sizes of market orders. In the context of asymmetric

information models, liquidity suppliers (specialist and limit orders) do not know whether the trade initiator

is motivated by private information or exogenous needs. Therefore, in our empirical analysis, we define

a liquid market as a market in which trades have a lower impact on prices and, consequently, new trade

related information takes longer to be fully incorporated into prices. Thus using a general model for price

dynamics to measure the value and the speed of price change after trades is a natural framework for

studying the liquidity process and assessing the level of liquidity risk3.
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The paper is organized as follows. Section I presents Hasbrouck’s framework (Hasbrouck, 1991)

and explains the generalization used in our study. Section II describes the data and variables used in the

analysis. Section III develops the estimation techniques employed and discusses the results of our study,

while focusing on the relation between time and the price impact of trades. Finally, Section IV

summarizes and concludes.

I.  The Model

Prices, qt , are measured by the average of the bid and the ask quotes just prior to the tth trade,  xt.

We adopt the common convention of using t to index trades. Prices are often modeled as the sum of an

informationally efficient price disturbed by transitory perturbations. The usual assumption is that the

informational component of prices follows a nonstationary process with a unit root and, consequently,

we study price variations, ∆qt.  Note that, in agreement with previous literature (see Hasbrouck (1991)),

∆qt is conventionally defined as the quote change subsequent to the tth trade. Furthermore, the

informational component of price variation can be related to two different sources of information, public

and private. These informational shocks are commonly represented with two white noise processes v1,t

and v2,t. In particular, v1,t is the update to the public information set and v2,t is the update from the

private information, which is gleaned from unexpected trades.

A. Hasbrouck Model

Hasbrouck (1991) suggests considering the following vector autoregression (VAR)

ti itii itit

ti itii itit

vxdqcx

vxbqaq

,211

,101
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++∆=∆

∑∑
∑∑
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= − , ( 1 )

to study the effects of trade related information on prices4. This general model for changes in quotes

and trade dynamics includes as special cases many of the microstructure models introduced in the

literature. We consider the simplest version of this model where xt is a univariate limited dependent
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variable, the trade sign. Hasbrouck (1991) also proposes generalizations with xt a vector of trade related

variables (e.g. trade sign, the interaction between trade sign and volume, the interaction between trade

sign and spread). We assume that summations in (1) can be truncated at 5 lags and the model can be

estimated consistently by ordinary least squares (OLS)5. Conjecturing that public information previous to

the tth trade does not help forecast future trade innovations6, an estimable version of (1) is obtained with

the current trade in the first equation and further assuming that v1,t and v2,t are jointly and serially

uncorrelated with zero mean.

While it is unusual to have a limited dependent variable in a vector autoregression, this presents no

econometric difficulties when it is an explanatory variable, which is the case for the relation of primary

interest, the price equation. When estimating the trade equation, the linear specification is potentially

inappropriate, but, OLS estimation still yields consistent parameter estimates, if the price-trade process

is covariance stationary and the disturbances are serially uncorrelated with mean zero. Nonetheless,

analogously to the case of the linear probability  model for binary dependent variables, the estimates

are inefficient and standard errors are biased. We correct the standard errors by using White's

heteroskedasticity consistent covariance estimator to construct Wald and t- statistics (White, 1980). Our

main concern is a better understanding of the price impact of a trade. As discussed by Hasbrouck

(1991, 1996), there are permanent and transitory effects on prices. Specifically, transitory effects are

measured by the bi coefficient for the current trade in the price equation whereas permanent effects

can be computed (Hasbrouck (1991)) by calculating the impulse response function from the vector

moving average (VMA) representation:
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where L is the lag operator. The impact of an unexpected trade on prices after k  transactions, x
ktq +∆ ,

will be measured by the sum of the coefficients of the impulse response function
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Hence, the long-run impact of a trade on prices, x
tq ∞+∆ , is given by the limit of the summation in (3) for

k→ ∞.

The approach presented above is very attractive for its relative simplicity and generality. It allows

Hasbrouck to successfully model the dynamic interrelation of trade sign, trade volume, spread and quote

revision, with the following main results. When the transaction size is larger and the spread is wider, the

quote revision after the trade is also larger. Furthermore, quote revision and volume have a non-linear

concave relation. We propose to expand this model by including the time between consecutive

transactions among the determinants of the price impact of a trade.

B. Generalizing with Time

In terms of understanding the role of time in security markets, we are still at the beginning. The

economics of the situation is the following. The driving forces of model (1) are private and public

information processes that evolve in time in a non-homogeneous fashion7. Quote-setters, broadly defined

to include market makers and limit order traders, post schedules conditional on their information, which

includes the history of trades and quotes and more generally is identified with the public information set.

Quote-setters are assumed to react immediately to the release of new public information. The signed

trade generation process instead, is driven by the information processes, liquidity needs and in some

models a random selection mechanism that determines who has the opportunity to trade.

Theoretical analyses such as Garman (1976), Easley and O'Hara (1992) and Diamond and

Verrecchia (1987) claim a role for the process of trade arrival times in models of market

microstructure. Explicitly modeling this time process though, is not an easy task. It requires modeling not

only traders' behavior and, in particular, how much of the information known by the insiders has been

made public (Glosten and Milgrom (1985)), but also any friction and imperfection that may be present in
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the trading mechanism (e.g. program trading) (Easley and O'Hara (1992)). It is common to take these

arrival rates as exogenous, at least as a first approximation.

The assumption that the arrival process of trades is exogenous, or more precisely according to Engle,

Hendry and Richard (1983), strongly exogenous, implies that optimal forecasts of the arrival of trades

depend only on past arrival times and the time of the day.  Prices and quotes are assumed not to

influence the arrival of trades.  One can certainly visualize situations where price movements would

influence the arrival rates of trades.  For example, a sudden drop in the asking price could call forth a

series of market buy orders and thus increase the transaction rate.  Similarly, a wider spread should

reduce the transaction rate all else being equal. The empirical importance of these effects is not clear.

In this paper, we maintain the exogeneity assumption for the time process treating inter-trade time

durations {Tt} as strongly exogenous to both the price and trade processes. We also present evidence

questioning the validity of this assumption in Section III.E.  The probabilistic structure for trade arrivals

is modeled with a point process for irregularly spaced data, such as Engle and Russell (1998)'s

Autoregressive Conditional Duration model.

We proceed by extending model (1) to allow the trade coefficients to vary with time, where time is

considered to have a deterministic component (time-of-day) plus random variations. Our objective is to

investigate if the time between trades Tt (where T is measured in seconds) affects the price adjustment

to trades in the return equation, and affects the correlation between current and past trades in the signed

trade equation. We adopt the simple bivariate model for trades and quote revisions (1), introducing time

as a predetermined variable that influences both the price impact of a trade and the correlation between

trades. Defining rt as the change in the logarithm of mid-quote prices, the quote revision equation can be

written as

[ ] t
i

it
r

iit
r
i

i
itit vxrar ,1

5
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0
5
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 +++= ∑∑

=
−−

=
− δγ z ( 4 )
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where 0
tx  is the trade sign; zt-i, and δi are vectors. The quantity in square brackets, which replaces bi

in (1), is the parameterization for the trade impact on quote revision. For i=0, it measures the immediate

effect of a signed trade on the specialist's quote. In particular, zt-i is a row vector of observations for the

determinants of the trade impact, and δi is the column vector of corresponding coefficients. Since we

are interested in studying the role of time and in particular if it has any distinguishable effects from the

time-of-day effects8, we initially consider the case where the only variables in zt are current and past

time durations, Tt-i, and a set of  time-of-day dummy variables, Dj,t-i. We then specify the trade impact as

( )it
r
i

J

j
itj

r
ij

r
ii TDb −

=
− ++= ∑ ln

1
,, δλγ  ( 5 )

where inter-transaction time enters nonlinearly in the dynamic model for price changes and trades9. If

all the δ 's and λ's in (5) are jointly zero, then equation (4) is the same as the first equation in (1).

Moreover, if r
iδ  i=0,…,5 in (5) are jointly zero and at the same time at least one r

ij,λ i=1,...,5; j=1,...,J is

not zero, then the trade impact on prices exhibits only intra-day periodicities.

The trade equation can be similarly modified in order to examine own-variable effects of trade

durations on trades. In particular, if 0
tx replaces xt in (1), we can think of the di coefficients as also

being time-varying and having, for example, a parameterization analogous to (5)

( )it
x

i

J

j
itj

x
ij

x
ii TDd −

=
− ++= ∑ ln

1
,, δλγ . ( 6 )

In the system (1), the impact of a 10,000-share transaction is the same regardless of what time during

the trading day it is performed. On the contrary, in equation (5) the impact of a trade on the subsequent

quote revision varies with the time of the day and the level of trading intensity, measured by the time

between consecutive trades. Analogously, in equation (6) we allow the correlation between trades to

vary throughout the trading day. With regard to the daily component of both the trade impact on prices

and the autocorrelation of trades, we conduct a thorough experimentation on the explanatory power of
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lagged diurnal dummies as we describe at the beginning of Section III. The results strongly indicate that

(5) and (6) can be greatly simplified by excluding lagged diurnal dummies.

The relevance of time in the dynamic relationship of quote revisions and trades can be verified by

testing if the coefficients, δi, are significantly different from zero. Moreover, according to previous

empirical findings, a general specification for the price impact of a trade will also include in zt-i trade size

and spread. We therefore test the specific contribution of time when these other determinants are

included in zt-i.

Before turning to the data and the empirical analysis, we have to complete the description of our

model with the introduction of a process for time durations. As we discussed above, price and trade

dynamics are modeled conditional on the process of time durations and therefore the modified VAR

specification can be directly estimated. However, when the joint density of prices, trades and time

durations is needed, for example to compute the impulse response function for the generalized system,

we have to explicitly specify the Data Generation Process for time durations.

C. A Model for Inter-Trade Arrival Times

In the econometric literature, two different approaches have been taken to modeling irregularly

spaced data: Time Deformation (TD) models (see for example, Clark (1973), Stock (1988) and Ghysels

and Jasiak (1994)) and Autoregressive Conditional Duration (ACD) models (see Engle (1996) and

Engle and Russell (1998)). The TD approach uses auxiliary transformations (Stock (1988)) to relate

observational/economic time to calendar time. Instead, we prefer the ACD approach that directly

models the time between events (e.g. trades). The ACD is a type of dependent point process10

particularly suited for modeling characteristics of duration series such as clustering and over-dispersion.

We initially remove the deterministic diurnal component Φ t−1 of inter-trade arrival times and we

consider the diurnally adjusted series of time durations 1/~
−Φ= ttt TT . The ACD model consists first,
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of a distributional assumption for the conditional density of adjusted durations ) ~ ( tTg . The Weibull

distribution is a plausible assumption and we can thereby write

.0 ,           
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The exponential is a convenient and particular alternative. It is obtained as a special case of (7) when

the scale parameter θ =1. The Weibull distribution is to be preferred if the data show over-dispersion

with extreme values (very short and long durations) more likely than the exponential would predict. In

our sample this is clearly indicated by estimated θ 's lower than unity. Second, we need a specification

for the tth duration conditional mean ( ) ( )θφ 11~,...,~|~
11 +Γ≡− ttt TTTE , where Γ(⋅) is the gamma function.

For example, φ t may have the following linear ARMA-type parameterization

1
11

~
−

=
−

=
− +++= ∑∑ t

q

i
iti

p

j
jtjt DT λφζρωφ . ( 8 )

Dt represents exogenous and dummy variables that may affect the conditional mean duration. For

example, we include a dummy variable for the first observation of the trading day to correct for inter-

day variations. Finally, we assume that standardized durations ( )θ
φε

 ~
ttt T≡ , which have unit

exponential distribution, are i.i.d. for every t. This testable assumption insures that all the temporal

dependence in the duration series is captured by the mean function (Engle (1996)). The ACD models

have close resemblance to GARCH models and share many of their properties. Having specified a

conditional density, it is straightforward to estimate the parameters
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where φ t is specified as in (8) and η is a column vector containing the parameters of interest. Outer-

product-of-the-gradient (OPG) estimators11 are found which are consistent for the parameters
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II.  The Data

We use transaction data extracted from the TORQ (Transaction ORders and Quotes) database

compiled by Hasbrouck (1992). The TORQ database contains information relative to transactions,

orders and quotes for 144 stocks recorded on the tape of the New York Stock Exchange (NYSE)

computer system in the three months from November 1, 1990 to January 31, 1991. The sixty-two day

trading sample is long enough to allow reasonably precise estimations (Easley et al. (1993) and Easley et

al. (1996)). In our analysis, we consider price, time stamp, and size of trades and quotes for eighteen of

the most transacted stocks on the first day of the sample 12. Summary statistics for the chosen stocks

are presented in Table I. Notice the very low average price of Calfed (CAL) compared to the average

price of the other stocks. If we look at the average duration, Calfed appears to be also the least

frequently traded stock, while General Electric (GE), with an average transaction rate of one transaction

every 20 seconds, is the most frequently traded.

The details of the data adjustments, the description of the new variables, and some preliminary

insights from correlation analysis are presented in the following subsections.

A. Preparation of the Data for the Analysis

We prepare the data for our analysis as follows. First, we filter out anomalous data. All transactions

and quotes that occurred November 23, 1990 are discarded because they reflect a very peculiar trading

day pattern (the NYSE internal information computerized system had been down for a few hours that

day and it is the day after Thanksgiving). In addition, we identify and eliminate reporting errors for BA

and GE series of bid and ask quotes13. Second, we keep only New York’s quotes because they are the

most representative of the prevailing consolidated prices (see Hasbrouck (1991, 1995) and Blume and
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Goldstein (1997) for empirical evidence). Third, we add up the size for consecutively recorded trades

that are performed on the same regional exchange, with the same time stamp and at the same price and

thus we treat them as one trade. Fourth, the data are viewed in transaction time, and for every

transaction the prevailing quote is the last quote which appears at least five seconds before the

transaction itself. This is a conventional procedure proposed by Lee and Ready (1991) to correct

reporting errors in the sequence of trades and quotes. Fifth, we omit the opening trade and the overnight

price change in order to avoid contamination of prices by overnight news arrival. Thus we drop

transactions occurring before the first quote and treat the overnight price change as a missing value for

all lagged variables. Sixth, we also drop the transactions occurring after 4:00 p.m., the official closing

time14. Despite these adjustments the sample remains very large, as it appears from the first column of

Table I; for example, there are more than 70,000 observations in each data series for GE.

B. Variables

We define rt as the change in the natural logarithm of the mid-quote price which follows the current

trade at time t

( ))ln()ln(100 1 ttt qqr −= + .

It is interesting to notice that the great majority of the time the specialist does not revise the quotes after

a trade. This results in rt series with a high percentage of zeros from a minimum of 72% for CL to a

maximum of 96% for T. Time duration, Tt, is the difference in seconds between the time stamp for the

trade xt and the previous trade xt-1. Without loss of generality we add 1 second to the whole series of

durations, so that the lowest log-duration is still zero.

We use a dummy variable, 0
tx , which Hasbrouck calls the trade indicator. This variable assumes a

value of 1 if a trade is initiated by a buyer, a value of –1 if a trade is initiated by a seller, and zero if the

trade is just a match of two opposite orders at the mid-quote. In order to create an approximate trade

variable, since we do not have any information on the actual identity of the trade initiator, we adopt a
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classification rule known as the mid-quote rule (see Lee and Ready (1991)). We classify a trade as a

purchase if the transaction price is higher than the mid-quote price, as a sale (trade initiated by a seller)

if the transaction price is lower than the mid-quote price, or as unidentified if the transaction price is

equal to the mid-quote price15. This procedure results in classifying, on average per stock, 35.82% of

transactions as sales, 44.81% as buys, and leaves a residual average of 21.50% of unclassified trades.

The predominance of buys over sells is remarkable for FPL, NI, and POM where more than 60% of the

trades are classified as buys.

Before presenting the estimation results, we examine simple correlations among the relevant

variables: absolute value of returns, spread, lagged time durations and lagged trade size. Logarithmic

time durations, log(Tt), are negatively correlated with the absolute value of the subsequent quote

revision for 16 of the 18 stocks considered. The  spread, defined as the difference between ask and bid

prices divided by their average, is also negatively correlated with lag duration. This is compatible with a

market maker that reduces the spread after a long interval of no trading activity. These preliminary

results are perfectly consistent with Easley and O’Hara (1992)’s predictions. Furthermore, the absolute

value of a quote change after a large trade, is large (see Hasbrouck (1991)). It is possible that these

correlations simply reflect intra-day deterministic patterns common to all the variables considered.

However, similar, although weaker, results are obtained even after diurnally adjusting the series and, as

we show in the next section, intra-day periodicities have only a marginal role in explaining both quote

changes and signed trade dynamics.

III.  Estimation and results

In this Section we study the effects of inter-trade time durations on quote revision and

autocorrelation of trades. Previous empirical analyses have shown that dynamics of trade durations

(Engle and Russell, (1998)), analogously to other market variables, can be attributed partly to intra-day

periodicities and partly to stochastic variations. Our first concern is then to use a set of dummy variables

in the VAR estimation, to distinguish between these two components. We consider 9 diurnal dummy
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variables: one for the trades performed in the first 30 minutes after the open, then one for every hour of

the trading day until 3:00 p.m., and finally a 30 minute plus two 15 minute intervals during the last trading

hour. We estimate the VAR defined by (1), (5) and (6) with current and lagged values of all but one of

the above dummy variables. As a starting point, we perform a Wald test of the null that all lagged

diurnal dummies are jointly zero. Out of the 18 stocks in the sample, we reject the null for only two

stocks in the quote revision equation (IBM and XON with respectively a p-value of 0.0463 and 0.0002)

and for two other stocks in the trade equation (BA and T with respectively a p-value of 0.0374 and

0.0001). The significance of δi coefficients in such regressions is not weakened, but rather strengthened

by the presence of diurnal dummies. Given this corroborating evidence, we exclude from the model past

lags of diurnal dummies, focusing only on their current values. Re-estimating the VAR, we do not

recognize any prevailing daily pattern either for the price impact or for the autocorrelation of trades.

Moreover, the estimates indicate that time effects in both equations can be predominantly attributed to

the stochastic variation of trade durations Tt. Since most of the coefficients for the diurnal dummies are

not significantly different from zero, we drop all but one of them. Only the trades performed in the first

30 minutes of the trading day tend to have a significantly different effect from the other trades.

Therefore, we estimate the following system for quote revisions and trades
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A. The Relevance of Time in the Trade Equation

We consider first the effects of the time between trades on the autocorrelation of signed trades.

That is, we investigate first own-variable effects before studying how time durations affect quote

revisions. The bottom part of Table II contains the estimated coefficients for the trade equation in the

case of a representative stock, FNM. The estimated coefficients for all the other stocks are in Appendix

II. We format in bold the values of the coefficients that are significantly different from zero at 5% level
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of confidence. Because heteroskedasticity is present in the residuals, we use White's heteroskedasticity

consistent standard errors to compute Wald and t- statistics. Results relative to the first two sets of

coefficients have been discussed in Hasbrouck (1991). Signed trades exhibit strong positive

autocorrelation. However, we are more concerned with the time coefficients, δ 's, which are typically

negative (at least at the leading lags). Typically, the coefficient of the dummy variable for trades

performed around the open is not significant. Thus, time effects in the trade equation are not attributable

to daily variations but instead they seem to be primarily due to the stochastic component of time

durations Tt. This interpretation is confirmed by the results of tests on time coefficients presented in

Table III. The first column of this table shows Wald statistics for the null hypothesis that time

coefficients are jointly zero. The null hypothesis is rejected for 11 out of the 18 stocks in the sample.

This is particularly evident for T and GE, which are the most frequently traded stocks of our sample.

However, the coefficient of the dummy for trades performed around the open, is significantly different

from zero in only three cases. In the last two columns of Table III we show respectively Wald statistics

for the null hypothesis that all the coefficients for the stochastic component of time, δi, are jointly zero

and that the sums of these coefficients are zero. The sums of the δi coefficients are negative for 16

stocks and are significantly different from zero for 11 stocks. Thus summarizing, high trading activity

induces stronger positive autocorrelation of signed trades.

B. The Relevance of Time in the Quote Revision Equation

We then turn to study the relevance of time effects in the first equation of the system. The estimated

coefficients and t-statistics for the quote revision equation of the system (9) for FNM are presented in

the top part of Table II. Similar results for all stocks are in Appendix III. The coefficients on lagged

price changes are generally negative at the first lag, indicating negative correlation in returns. The most

important sets of coefficients for our investigation are the γi's and δi's, which are respectively the

coefficients on the trade indicator and the interaction of trade indicator and duration. These coefficients
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reflect the price impact of a signed trade. By observing the estimates for these coefficients, we notice

that the price impact of a signed trade is positive, generally persistent, and negatively related to

durations. The λopen coefficient corrects for any anomalous price effects due to opening trades.

Although for FNM there is evidence of higher price impact of trades around the open, this is not a

general result (see the second column of Table IV). The coefficients on the interaction between the

trade indicator and the time duration are negative and significantly different from zero at the first lag for

13 out of the 18 sample stocks. A buy transaction arriving after a long time interval has a lower

price impact than a buy transaction arriving right after a previous trade. The interpretation is that

the market maker infers a higher likelihood of informed traders if the trades are close together. The

presence of informed traders may also deter the uninformed from trading, further increasing the

proportion of informed trading. Therefore, it is more difficult to find liquidity suppliers willing to take the

opposite side of a transaction, and so trades have a higher impact on prices. In order to assess the

significance of the role played by time, we perform a Wald test of the null hypothesis that δi coefficients

are jointly zero. The results of the Wald test are presented in the third column of Table IV. We reject

the null for 13 stocks. To determine whether time affects only short term price variations or also long

term price adjustments to information, we perform a Wald test of the null that the sum of δi coefficients

is zero. We reject the null with 5% level of confidence for 13 out of 18 stocks and the sum is negative

for 17 of these (see Table IV).

These equations predict returns and trade directions on a trade by trade basis.  Naturally, the R2 of

these regressions are quite low.  When time is added to the model, the fit may be significantly better on

statistical grounds, but reflects still only minimal predictability.   For instance, if we compare the R2 (see

Appendix II and III) for the trade and the return equations with and without the time coefficients, we

observe only small enhancements to the R2 of the regressions. Nevertheless, since we are studying the

dynamics of prices at the transaction level, even an imperceptible systematic improvement on the per
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share price paid (which in this case, as we showed, is statistically significant) could translate into

substantial effects. This will become more apparent when the impulse responses are computed.

C. Analysis of the System’s Dynamics

 In the analysis of the system's dynamics we use the bivariate VAR for quote changes and trades as

defined in (9) and we assume time durations are strongly exogenous. By computing the impulse

response function for quote revision )(⋅rI , we can determine the expected long-run price impact of an

unexpected trade (i.e. of a shock to the trade equation).

 We assume that the trade shock disturbs an equilibrium phase of the system for prices and trades.

We define a steady state equilibrium to be when traders trade at the mid-quote (i.e. 0
tx = 0) and the

specialist does not change quotes (rt=0). All future returns are then expected to be zero in

equilibrium. )(⋅rI  is defined as the conditional expectation of rt , k  steps into the future, after a trade-

shock hits the system in t, and the tth trade has a time duration of τ. If we define ω t-1 as the specific

history of the variables in the model up to time t-1, then we can write

 [ ]1,2
 

1 ,,1| ),,,( −+− === tttkttttr TvrETvkI ωτω ( 10 )

 where we integrate out all other contemporaneous and future shocks. In particular, to calculate the

impulse response, we must recognize that we have modeled prices conditional on durations. Thus the

joint density of prices and durations is needed to compute impulse responses. This however is simply the

product of the conditional density of prices times the marginal density of durations. Here we use the

ACD model to represent the future stochastic paths of durations. Furthermore, since )(⋅rI  is a nonlinear

function of time durations, we adopt a similar methodology to the one introduced by Koop et al. (1996)

to numerically integrate out time durations via a Monte Carlo experiment



20

 [ ]  .)|,()(
 

 
0
 TxrEEI T=⋅

 Once we average the impulse responses over all possible time sequences that originate from given initial

conditions ω t-1 and Tt=τ, then the computation becomes straightforward as in the case of a linear

system with diagonal variance-covariance matrix of disturbances.

 We now consider a limiting case. Specifically, we compare the price impact of an average buy trade

when the market activity is very low with the impact of an average buy trade when the market activity

is high. To this purpose, we select from the sample a trade performed around 12:30 p.m. on December

24, 1990, and a trade performed around 10:00 a.m. on January 17, 1991. These are the days with

respectively the lowest (highest) number of transactions and highest (lowest) average durations. In

addition, 12:30 lies in the intra-day period with the lowest trading intensity (because of the lunch effect),

while 10:00 lies in the intra-day period with the highest trading intensity. The histories, which correspond

to these two trades, are used as initial conditions for the computation of the impulse responses. In

particular, to model and simulate the trading rate, we proceed through the following steps.

1) We filter out the time-of-the-day effect (deterministic component) from the duration series, by

fitting a piece-wise linear spline. Hence, we divide the original data by the deterministic

component to obtain a diurnally adjusted series, tT~ , with unit mean.

2) We fit the Weibull ACD model (W-ACD) on the adjusted durations tT~ , and estimate the series

of conditional mean durations tφ . The estimated coefficients for a W-ACD(2,1) model fitted on

time durations for FNM and IBM are presented in Table V.

3) We simulate the W-ACD for k  steps, given initial conditions ωt-1 and τ, and we put back the

deterministic component for each realization. In our particular case, the initial conditions for the

simulation are simply the current and lag duration Tt , Tt-1 and the conditional mean duration tφ .
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4) We compute the impulse response function for the k  steps into the future. This is a realization of

the random variable )(⋅rI  for a given time path. At the same time, we tabulate prices as function

of calendar time.

5) We repeat (3) and (4) 10,000 times and then average the 10,000 conditional expectations at

every step k , obtaining an estimator of the impulse response function in trade time.

The cumulative percentage price impact of an unexpected trade performed in both cases of high and

low trading intensity with k=21 is presented in Figure 1a (for FNM) and Figure 2a (for IBM). These

two scenarios (the most active time on the most active day versus the least active time on the least

active day) are useful in that they establish a range of what we are likely to encounter. As expected, the

impulse response function for the VAR specification with time ignored (Hasbrouck (1991)) lies in

between the other two. These impulse responses are plotted in “event time”, that is we measure the

evolution of prices as the number of transactions grows. When trading intensity is higher (short

durations), the long-run price impact is also higher.

Furthermore, with the ACD model we can compute the percentage price variation following an

unexpected buy not only in event time, but also in calendar time. To generate the impulse responses in

calendar time, we repeat step (3) and (4) in the algorithm above, but this time we compute longer

impulse response functions (201 steps) for 10,000 times. Hence, we sample the cumulative price

changes every 5 seconds and we take averages. We consider, as an example, the case of the FNM

stock (see Figure 1b). If an unexpected buy occurs at 10:00 a.m. of January 17, 1991, the cumulative

percentage price variation, exactly 6 minutes and 15 seconds after the trade, will be 0.0689 percentage

points. This is more than three times the cumulative price variation that follows an unexpected buy at

12:15 of December 24, 1990.

The inclusion of duration into the system makes it possible to solve three different types of problems.

First, by drawing a vertical line on the graph in Figure 1b, we can answer the question, "How much will

price change after an unexpected buy in a given period of time?" Second, by drawing a horizontal line on
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the graph in Figure 1b, we can determine how long it will take until prices change by a given amount.

For example, we can compute the time it takes to change prices by 0.04 percentage points, which will

be different at any moment of the trading day. Last, by defining a sufficiently small value ε>0, such that

every percentage price change lower than ε  is considered zero, we can compute the time it takes for

prices to converge to the full information level after a trade. In Figure 1b we show that prices converge

to the full information level in about 4 minutes when trading intensity is high, while it takes more than 23

minutes when trading intensity is low.

When trading activity is high, the convergence rate of prices to the full information value after an

unexpected trade is faster. This supports the picture of a market with higher proportion of informed

traders which consequently shows faster adjustment of prices to information and greater sensitivity of

prices to trades.

 This Section clearly points out the general applicability of the ACD model to event-time market

microstructure results. The ACD model can be employed to shift from event time to calendar time, and

gain further useful information on the process of price dynamics. Even if time durations were not

explicitly incorporated into the model for prices and trades, the ACD model could still be used to show

that in real time, prices respond more quickly when the market is fast than when it is slow.

 

 D. Robustness of Results for Time

 At this point we know that time per se is informative, yet time may not offer any new information

besides that conveyed by other variables such as volume and spread. By adding these variables to the

specification of both the trade impact and autocorrelation of trades we have

 itiitiitiiii SPREADSIZETdb −−− +++= ,3 ,2 ,1  )100/ln()ln(),( δδδγ . ( 11 )

SIZE is the trade size, and SPREAD is the difference between ask and bid price. SIZE enters the price

impact specification nonlinearly as in Hasbrouck (1991).
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 The use of spread and volume in the trade impact parameterization is consistent with the theory of

asymmetric information models and with previous empirical results. When the market maker observes

large trades, s/he fears the possibility of losses by trading with the informed and widens the spread.

 When we add spread and volume to time duration as determinants of the trade impact on quote

revision, time duration still enters significantly for 8 stocks and with negative sign (at least at the first

lag) for 15 stocks. We perform two tests on each group of coefficients related to every single

explanatory variable in the trade impact specification (11). For every stock in the sample we test the null

hypothesis that all the coefficients in each group are jointly zero and after computing their sum we also

test that the sum is zero. The sum of the coefficients for each group provides a first raw approximation

of the long-run impact on prices of any specific explanatory variable. A summary of the results for the

quote revision equation is presented in Table VI. Time duration enters significantly for 8 stocks out of 18

in the most general specification and for 6 of these also preserves its negative sign. The evidence

suggests that dynamics of volume and spread predominantly characterize the price impact of trades and,

especially for some stocks, the net effect of time duration is only marginal. These results for transaction

data seem to differ from what Jones et al. (1994) have fund for daily data.  At the aggregate daily level,

the number of trades rather than the average trade size is the component of aggregate volume that best

explains daily price volatility.

 In the trade equation time seems to be slightly more robust to the presence of volume and spread

than for the quote revision equation. In fact, time duration is still significant for 10 stocks, nine of which

also have the expected negative sign (we do not present the results for the trade equation, but these are

available from the authors upon request)16.

 

 E. Exogeneity of Trade Arrival Process

At least two important asymmetric information models (Glosten and Milgrom (1985); Easley and

O'Hara (1987) resort to exogeneity of the trade arrival process when dealing with trades' timing in
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models for prices and trades. The exogeneity of time duration, which in our paper becomes strong

exogeneity (in the sense of Engle et al. (1983)), is used as a simplifying operative assumption. In our

model in particular, it is required for the computation of impulse response functions (see Section III.C

above) and it implies that the information set for forecasting the next transaction arrival does not include

past prices and trades. However, this assumption may be too restrictive. Starting with the pioneering

work of Garman (1976), many contributions to the market microstructure literature conjecture, in fact,

that the trade arrival rate might depend on market variables such as prices. Engle and Russell (1994)

offer some preliminary empirical evidence for IBM data. Easley and O'Hara (1992) theorize

correlations between inter-trade times and respectively prices, spread and volume. Yet, their model

formalizes only the effects of time on the other variables. We do not have knowledge, to this date, of

any theoretical model that shapes the reciprocal interactions of price, trade and time, thus also offering

an explanation for any causality running in the opposite direction. In particular, it might be interesting to

study the effects, if any, of market-maker's quote revision on the trading flow. A scenario consistent

with asymmetric information models would be that the quote change chokes off the trading flow in the

absence of an information event thus leading the market back to a "normal" trading level. From an

inventory-model perspective instead, quote-change would immediately attract opposite side traders (see

O'Hara (1995)).

We therefore investigate if the residuals of the ACD estimation contain any evidence supporting

these conjectures. We first diurnally adjust the duration series for every stock with a piece-wise linear

spline17. Second, we estimate W-ACD(2,1) models on the adjusted duration series18. We stated in

Section I.C above that a particular transformation of the ACD residuals gives the so-called standardized

durations ( ) θφε  ~
ttt T≡ , which under the null of correct specification are i.i.d. exponential(1). We then

run the following regression
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where m, ai, bi, ci, di and ei, i=1,...,5 are all parameters. This regression is used to test for omitted

variables in the specification of the conditional mean of the ACD model. We take 5 lags in order to

account for persistent effects. We use respectively the following regressors: diurnally adjusted absolute

value of returns tr
~ , diurnally adjusted ln(SIZEt /100) tx~ , diurnally adjusted spread (ask price minus bid

price) ts~ , a trade dummy variable x
tD , which takes a value of one for trades with transaction price

different from the mid-quote and, finally, past standardized durations tε . The presence of a daily

periodic component in most of high frequency variables is well-documented (see footnote 8). We

eliminate this component from absolute return, log size, and spread by applying the same methodology

used for durations. We include in the regression also past standardized durations because, even though

the W-ACD model captures most of the autoregressive structure, very often we cannot accept the null

hypothesis of zero autocorrelation of residuals. This test also has power to detect inadequacies in the

dynamic specifications of the ACD.

P-values for Wald tests of the null hypothesis that all of the coefficients related to every single

regressor are jointly zero and that the sums of these coefficients are zero are presented in Table VII.

The sum of the coefficients is a robust indicator for the direction of the effect of each regressor on

durations. In Table VII, we format in bold stocks for which the null hypothesis that the coefficients for

each group are jointly zero is rejected at 5% level of confidence. Past volume and standardized

durations seem to have the greatest explanatory power. Short durations and thus high trading intensity

follow large returns and large trades (see columns for return and volume). Not surprisingly, the results

for the trade dummy variable stress the relevance of correlation among trades. That is, trades not at the

mid-quote are rapidly followed by other trades. The evidence for spread is weak. Spread is, in fact,

significant for only few stocks and the direction of its effect is not clear19.

Our results show preliminary evidence that incorporating feedback effects of returns, trades

and volume on time durations may improve the in-sample performance of the model. Yet, elaborating a

complete system, where prices and trades fully interact with spread, volume and durations, is beyond the
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scope of this paper and a task for future research. Such research could ultimately provide more

accurate impulse response functions.  We therefore use the ACD - a time series model for time - and

limit ourselves to a detailed empirical analysis of omitted variables in the ACD specification. Most

importantly, these findings do not invalidate the results on the relevance of time durations for models of

prices and trades. We hope our work will motivate future research to fill the open gaps.

IV.  Conclusions

In this paper, we generalize the model suggested by Hasbrouck (1991) for the dynamics of trades

and quote revisions. We suggest adding the time between consecutive transactions among the

determinants of both the price impact and the autocorrelation of trades. We obtain two main results.

First, short time durations, and hence high trading activity, are related to both larger quote revisions and

stronger positive autocorrelations of trades. Second, when trading activity is higher, the speed of price

adjustment to trade related information is also higher. We distinguish between a periodic and a

stochastic component of time duration, and we show that the latter is mainly responsible for the above

time durations' effects. Combining these with Hasbrouck's original results, high trading activity is

coupled with large spread, high volume and high price impact of trades. This leads to the following

scenario. When the informed traders step into the market, the liquidity providers will demand larger

spreads, some of the liquidity traders may decide to postpone their trading, and the specialist will adjust

prices more rapidly in response to trading. Active markets are thereby illiquid in the sense that trades

have greater impact on price and higher informational content.

In addition, the incorporation of time in modeling price dynamics has a range of empirical

applications. For instance, it lets us directly measure how the price impact of a trade varies throughout

the trading day and enables us to compute the time it takes for an average trade to induce a price

revision of a given amount.
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Table I
Summary Statistics

Price is mid-quote price. Spread is given by the difference between ask

and bid price. Duration is measured in seconds. Size is measured in

number of shares.

Stock N
Average 

Price
Average 

Size
Average 
Spread

Average 
Duration

BA 38305 45.64 1617.39 0.180 37.08
CAL 5674 3.30 1844.96 0.158 230.62
CL 8068 70.45 1286.02 0.226 169.56
CPC 6388 78.31 1399.34 0.237 211.15
DI 9517 20.43 2119.26 0.198 144.39
FDX 5947 34.27 2086.50 0.234 225.99
FNM 28876 33.86 2944.03 0.163 48.93
FPL 19500 28.42 1037.47 0.153 72.69
GE 71080 56.00 1246.46 0.162 20.08
GLX 21223 32.79 1982.47 0.166 66.19
HAN 7439 18.41 3231.19 0.152 186.56
IBM 57882 114.22 1679.81 0.176 24.65
MO 59980 50.54 1753.57 0.152 23.68
NI 6052 18.68 1245.85 0.173 219.01
POM 9506 20.15 1104.97 0.153 145.50
SLB 14984 55.20 2016.42 0.245 93.44
T 66832 30.95 1419.26 0.158 21.40
XON 27246 50.62 2033.95 0.160 52.23

Note: for the full names of the stocks see the Appendix I.
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Table II

Estimated Coefficients for Quote Revision and Trade Equation in the FNM Case

Coefficient estimates, and t-statistics (in parenthesis) for both quote revision and trade equations
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rt is the quote change after the trade in t, 0
itx − is the trade indicator (1 for a buy; -1 for a sale; zero

otherwise). Tt is the time between two consecutive transactions (plus 1 second). Dt is a dummy variable

identifying trades performed in the first 30 minutes of the trading day. The t-statistics for the trade

equation are computed using White's heteroskedasticity-consistent covariance etsimator. See Appendix

II for the results on the other stocks.

Adj. R2

Part a: Quote Revision Equation

a 1 -0.0428 γ 0 0.0259 δ 0 -0.0023 λ open 0.0052 0.0629
(-7.04) (16.31) (-5.35) (2.61)

a 2 -0.0144 γ 1 0.0078 δ 1 -0.0003
(-2.35) (4.94) (-0.58)

a 3 0.0047 γ 2 0.0073 δ 2 -0.0010
(0.77) (4.57) (-2.42)

a 4 0.0149 γ 3 -0.0004 δ 3 0.0006
(2.45) (-0.27) (1.39)

a 5 0.0179 γ 4 0.0014 δ 4 0.0000
(2.95) (0.87) (-0.02)

γ 5 0.0003 δ 5 0.0002
(0.19) (0.46)

Part b: Trade Equation

c 1 -2.2713 γ 1 0.3112 δ 1 -0.0155 λ open -0.0021 0.1819
(-41.81) (19.97) (-3.64) (-0.11)

c 2 -1.1206 γ 2 0.1670 δ 2 -0.0064
(-20.60) (11.02) (-1.55)

c 3 -0.4838 γ 3 0.1056 δ 3 -0.0067
(-8.69) (7.01) (-1.64)

c 4 -0.2339 γ 4 0.0619 δ 4 0.0021
(-4.17) (4.18) (0.52)

c 5 0.1010 γ 5 0.0590 δ 5 -0.0088
(1.78) (4.09) (-2.21)

Lag Quote Revision Lag Trade
Lag Trade*                

Lag Duration
Lag Trade*          

Diurnal Dummy

Note: we format in bold the coefficients that are significant at 5% confidence.
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Table III

The Significance of Time in the Trade Equation

Wald and t tests on the λopen and δi coefficients in the trade equation
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rt is the quote change after the trade in t, 0
itx − is the trade indicator (1 for a buy; -1 for a sale; zero

otherwise). Tt is the time between two consecutive transactions (plus 1 second). Dt is a dummy

variable identifying trades performed in the first 30 minutes of the trading day. Wald and t-statistics

are computed using White's heteroskedasticity-consistent covariance estimator.

Stock
Diurnal 
Dummy

H0: λ open = 0 Σδ i  =0

Wald Test 100 * λ open Wald Test 100 * Σδ i
BA 33.846**      0.848        32.467**    -4.0286**  
CAL 8.771          -0.037        8.712          -3.3355*    
CL 8.981          6.974          5.411          -1.3619      
CPC 15.350*      -2.416        15.254**    -5.1191**  
DI 9.267          2.693          8.595          -1.9924      
FDX 5.792          3.513          5.560          1.6917       
FNM 26.677**      -0.208      26.576**    -3.5232**  
FPL 15.233*      3.732          13.872*      2.9681**   
GE 120.934**  5.108**      88.444**    -5.0962**  
GLX 15.321*      0.911          14.147*      -2.7636**  
HAN 18.632**    0.438          18.105**    -5.5525**  
IBM 18.993**    3.042*        11.238*      -1.4861**  
MO 50.725**    2.376          43.065**    -4.1709**  
NI 9.816          5.691          8.517          -0.1250      
POM 4.952          -0.041        4.948          1.4127       
SLB 13.627*      3.979          11.088*      -2.5540*    
T 152.508**  6.925**      105.614**  -5.8919**  
XON 7.941          2.038          6.620          -0.7804      

Diurnal and Stochastic 
Components

λ open = δ i =0 (i=1,…,5) δ i =0 (i=1,…,5) 

Stochastic Component

Note: (**) and (*) indicate respectively significance at 1% and 5% level of confidence.
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Table IV

The Significance of Time in the Return Equation

Wald and t tests on the λopen and δi coefficients in the quote revision equation
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rt is the quote change after the trade in t, 0
itx − is the trade indicator (1 for a buy; -1 for a sale; zero

otherwise). Tt is the time between two consecutive transactions (plus 1 second). Dt is a dummy

variable identifying trades performed in the first 30 minutes of the trading day.

Stock
Diurnal 
Dummy

H0: λ open = 0 Σδ i  =0

Wald Test 100 * λ open Wald Test 100 * Σδ i

BA 22.884**    0.203          18.531**    -0.2184**  
CAL 11.148        6.056          9.110          -2.8622*    
CL 128.663**  0.413          124.217**  -1.1140**  
CPC 42.806**    0.746          40.009**    -0.6772**  
DI 19.247**    2.020*        12.779*      -0.5362      
FDX 43.436**    1.047          40.944**    -1.2901**  
FNM 47.626**    0.524**      37.922**    -0.2821**  
FPL 24.603**    0.508**      13.985*      -0.2410**  
GE 15.017*      0.129*        8.777          -0.0025      
GLX 8.040          0.207          6.374          -0.1040      
HAN 26.453**    0.154          26.065**    -0.3180      
IBM 257.475**  -0.244**     244.399**  -0.2301**  
MO 20.642**    -0.139*       17.256**    -0.1158**  
NI 6.292          -1.048        5.135          -0.1858      
POM 10.827        0.573          8.595          -0.4050**  
SLB 63.653**    1.235**      44.165**    -0.6928**  
T 20.558**    0.103          18.273**    0.1091**   
XON 23.416**    0.028          23.011**    -0.1118*    

Diurnal and Stochastic 
Components

λ open = δ i =0 (i=0,…,5) δ i =0 (i=0,…,5) 

Stochastic Component

Note: (**) and (*) indicate respectively significance at 1% and 5% level of confidence.
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Table V

W-ACD estimation for FNM and IBM

We estimate the Weibull Autoregressive Conditional Duration (W-

ACD) model on FNM and IBM inter-trade durations (plus 1

second) after removing the time-of-the-day effect through a

piece-wise linear spline. )1( −Φ tt is the seasonal component of

inter-trade arrival times, and depends on trade's time up to t-1.

The deseasonalized duration T~  is defined as )1(~ −Φ≡ tTT ttt .

Assuming that T~  has a Weibull distribution, the estimated W-

ACD(2,1) model is

112211
~~

−−−− ++++= ttttt DTT λζφρρωφ    and

.0,          
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exp~)~( 1 >

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Dt is a dummy variable for the first observation of the trading day.

FNM IBM
Coeff. Coeff.

(T-Stat.) (T-Stat.)

 ω 0.0072 0.0048
(8.61) (10.57)

 ρ 1 0.1262 0.0804
(18.60) (18.56)

 ρ 2 -0.0803 -0.0334
(-11.58) (-7.52)

 ζ 0.9445 0.9457
(367.18) (566.60)

 θ 0.8962 0.8845
(213.10) (292.96)

 D new day -0.0912 -0.1806
(-3.12) (-6.84)

Γ(1+1/θ )a 1.055 1.062

Likelihood -26943.6 -52718.4

aThe condition for stationarity Γ(1+1/θ)*(ρ 1 + ρ 2)+ζ <1, where

Γ(⋅) is the gamma function, is satisfied for both stocks.
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Table VI

Robustness of Results on Time for the Quote Revision Equation

This table presents tests on the coefficients of the quote revision equation
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where the trade impact on quotes, bi, is parameterized as

itiitiitiii SPREADSIZETb −−− +++= ,3 ,2 ,1  )100/ln()ln( δδδγ .

rt is the quote change after the trade in t, 0
itx − is the trade indicator (1 for a buy; -1 for a sale; zero

otherwise). Tt is the time between two consecutive transactions (plus 1 second), SIZE is the number of

transacted shares, SPREAD is the difference between ask and bid price. Dt is a dummy variable

identifying trades performed in the first 30 minutes of the trading day. We consider the group of

coefficients for each regressor and we test the null hypothesis that these δi coefficients are jointly zero.

We also compute the sum of the coefficients in each group and test the null hypothesis that this sum is

zero. The tail probabilities for the Wald statistics are presented. At the bottom of the table we summarize

the number of stocks for which the null hypothesis is rejected, and the prevailing sign of the sum of the

coefficients (e.g. (+) 18/18 means that the positive sign prevailed for all stocks).

H0: δ 1,i 

jointly null
H0: Σδ 1,i =0 H0: δ 2,i 

jointly null
H0: Σδ 2,i =0 H0: δ 3,i 

jointly null
H0: Σδ 3,i =0

Prob>χ2 Prob>χ2 Prob>χ2 Prob>χ2 Prob>χ2 Prob>χ2

BA 0.877 -0.033 0.578 0.013 0.091 0.000
CAL 0.376 -2.044 0.129 0.175 2.862 0.000
CL 0.000 -0.880 0.000 0.020 0.068 0.001
CPC 0.000 -0.589 0.000 0.017 0.028 0.197
DI 0.452 0.079 0.782 0.035 0.184 0.000
FDX 0.000 -1.254 0.000 0.024 -0.106 0.009
FNM 0.259 0.047 0.618 0.017 0.258 0.000
FPL 0.443 -0.082 0.271 0.013 0.312 0.000
GE 0.000 0.167 0.000 <0.001 0.010 <0.001 <0.001 0.133 0.000
GLX 0.874 -0.018 0.835 0.013 0.085 0.000
HAN 0.014 0.019 0.940 0.034 0.531 0.000
IBM 0.000 -0.046 0.047 0.007 0.074 0.000
MO 0.978 0.004 0.896 0.007 0.085 0.000
NI 0.856 -0.056 0.774 0.032 0.068 0.080
POM 0.537 -0.259 0.079 0.022 0.433 0.000
SLB 0.000 -0.542 0.000 0.015 0.008 0.587
T 0.000 0.155 0.000 0.006 0.092 0.000
XON 0.120 -0.001 0.979 0.009 0.091 0.000
Summary 8/18 (-)  12/18 7/18 18/18 (+)  18/18 18/18 18/18 (+)  17/18 15/18

             Time Duration                                   Volume                                         Spread                     
Stock

100 * Σδ 1,i   Σδ 2,i Σδ 3,i

Note: we format in bold cases for which the null hypothesis is rejected at 5% level of confidence.
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Table VII
Standardized Duration Equation

We first diurnally adjust the duration series with a piece-wise linear spline. Second, we estimate W-ACD(2,1) models for the
adjusted duration series. A particular transformation of the ACD residuals gives the standardized durations, which under the null of
correct specification for the ACD's conditional mean are i.i.d.exp(1). We then run the regression:

t
i

iti
i

iti
i

iti
i

x
iti

i
itit vsexdcDbram ++++++= ∑∑∑∑∑

=
−

=
−

=
−

=
−

=
−

5

1

5

1

5

1

5

1

5

1

~~~ εε

where tε is standardized duration, tr
~ is absolute value of diurnally adjusted return, x

tD is a dummy variable for trades not at the
mid-quote, tx~  is diurnally adjusted )100/ln( itSIZE −  and ts~ is diurnally adjusted spread. Absolute return, log size and spread
series are adjusted with the same method used for durations. Spread is defined as the difference between ask and bid price.

Stock Regression R2

H0: a i 

jointly  = 0
Σ a i

H0: b i 

jointly = 0
Σ b i

H0: c i 

jointly = 0
Σ c i

H0: d i 

jointly = 0
Σ d i

H0: e i 

jointly  = 0
Σ e i all 25 coeffs=0

Prob>χ2
Prob>χ2

Prob>χ2
Prob>χ2

Prob>χ2
Prob>χ2

BA 0.000 -0.027 0.008 -0.088 0.000 0.063 0.000 -0.075 0.424 0.024 0.000 0.008
CAL 0.419 0.002 0.891 0.098 0.009 0.080 0.001 -0.166 0.136 0.038 0.000 0.012
CL 0.000 -0.046 0.000 -0.167 0.090 0.051 0.000 -0.027 0.011 0.071 0.000 0.013
CPC 0.022 -0.046 0.100 -0.037 0.110 0.061 0.039 -0.054 0.000 0.132 0.000 0.010
DI 0.012 -0.020 0.049 -0.039 0.346 0.028 0.005 -0.068 0.281 0.035 0.000 0.006
FDX 0.000 -0.034 0.003 -0.101 0.000 0.117 0.134 -0.052 0.004 0.097 0.000 0.014
FNM 0.269 0.008 0.000 -0.180 0.000 0.056 0.000 -0.191 0.026 -0.125 0.000 0.010
FPL 0.635 0.000 0.009 -0.186 0.624 0.006 0.000 -0.120 0.443 -0.045 0.000 0.005
GE 0.359 -0.005 0.918 -0.008 0.642 0.006 0.766 -0.011 0.987 -0.016 0.896 0.001
GLX 0.129 -0.005 0.259 -0.071 0.006 0.040 0.000 -0.061 0.574 0.019 0.000 0.003
HAN 0.434 0.000 0.272 -0.129 0.008 0.068 0.000 -0.123 0.812 0.009 0.000 0.010
IBM 0.000 0.020 0.000 -0.238 0.000 0.011 0.000 -0.147 0.000 -0.091 0.000 0.010
MO 0.000 -0.005 0.020 -0.083 0.000 0.029 0.000 -0.121 0.000 -0.077 0.000 0.007
NI 0.098 -0.011 0.986 0.024 0.000 0.137 0.776 -0.024 0.068 -0.027 0.000 0.010
POM 0.009 -0.015 0.064 -0.084 0.016 0.079 0.001 -0.049 0.349 0.058 0.000 0.008
SLB 0.000 -0.047 0.016 -0.084 0.000 0.075 0.000 -0.049 0.000 0.086 0.000 0.008
T 0.973 0.001 0.774 0.001 0.001 0.054 0.984 -0.004 0.146 -0.006 0.103 0.002
XON 0.003 -0.013 0.000 -0.251 0.104 -0.006 0.000 -0.158 0.366 -0.081 0.000 0.009

Spread                    Trades not at 
Midquote              

Return                    Standardized 
Duration      

Volume                  

Note: we format in bold cases for which the null hypothesis is rejected at 5% level of confidence.
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Appendix I

Symbol Name

BA Boeing Company
CAL Calfed Inc.
CL Colgate-Palmolive Company
CPC International Inc.
DI Dresser Industries Incorporated
FDX Federal Express Corporation
FNM Federal National Mortgage Association
FPL FPL Group Inc.
GE General Electric Company
GLX Glaxo Holdings PLC ADR
HAN Hanson PLC ADR
IBM International Business Machines Corp.
MO Philip Morris Companies Inc.
NI Nipsco Industries Inc. Holding Co.
POM Potomac Electric Power Company
SLB Schlumberger LTD
T American Telephone and Telegraph Company
XON Exxon Corporation
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Appendix II
Trade Equation in the Vector Autoregression

Coefficient estimates and t-statistics for the trade equation. Tt is the time interval between two consecutive transactions; x0
t is the trade

indicator (1 if pt>qt; -1 if pt<qt; and 0 if pt=qt, where respectively pt is the transaction price and qt the mid-quote price). rt is the
percentage quote change after a trade. Dt is a dummy variable for trades around the open. The t-statistics are computed using
heteroskedasticity-consistent covariance estimators.
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Lag Quote Revision Time No Time
c 1 c 2 c 3 c 4 c 5 γ 1 γ 2 γ 3 γ 4 γ 5 δ 1 δ 2 δ 3 δ 4 δ 5 λ open R

2
R

2

-2.1360 -1.1914 -0.8339 -0.3670 -0.1201 0.2323 0.1313 0.1116 0.0933 0.1008 -0.0120 -0.0061 -0.0073 -0.0039 -0.0109 0.0085
(-34.72) (-19.09) (-12.89) (-5.22) (-1.86) (18.36) (10.72) (9.14) (7.71) (8.59) (-3.18) (-1.66) (-1.99) (-1.07) (-3.03) (0.51)

-0.1655 -0.0970 -0.0576 -0.0242 -0.0111 0.2962 0.1761 0.1407 0.0746 0.0517 -0.0157 -0.0087 -0.0130 0.0006 0.0034 -0.0004
(-11.11) (-6.38) (-3.77) (-1.57) (-0.74) (7.26) (4.37) (3.48) (1.87) (1.34) (-1.92) (-1.08) (-1.62) (0.08) (0.44) (-0.01)

-2.4266 -0.4836 -0.1196 -0.0254 0.0879 0.3832 0.0916 0.0253 0.0435 0.0479 -0.0084 -0.0045 0.0075 -0.0021 -0.0061 0.0697
(-19.36) (-4.45) (-0.99) (-0.22) (0.77) (13.40) (3.23) (0.88) (1.55) (1.84) (-1.41) (-0.76) (1.26) (-0.35) (-1.09) (1.78)

-2.0736 -0.4481 -0.1005 -0.0454 -0.1345 0.3853 0.1567 0.0615 0.0368 0.0969 -0.0083 -0.0216 -0.0074 -0.0017 -0.0121 -0.0242
(-15.50) (-3.62) (-0.80) (-0.37) (-1.10) (10.51) (4.37) (1.70) (1.04) (2.90) (-1.13) (-3.01) (-1.02) (-0.24) (-1.76) (-0.46)

-0.6710 -0.3417 -0.1799 -0.1466 -0.0675 0.2939 0.1760 0.0678 0.0583 0.0444 -0.0091 -0.0153 0.0018 -0.0004 0.0030 0.0269
(-13.54) (-6.82) (-3.66) (-2.99) (-1.43) (9.97) (6.16) (2.37) (2.05) (1.59) (-1.42) (-2.45) (0.30) (-0.06) (0.49) (0.64)

-1.1171 -0.3043 -0.1229 -0.0205 0.0632 0.2614 0.0706 0.1004 -0.0029 0.0333 0.0161 0.0063 -0.0052 0.0017 -0.0019 0.0351
(-16.07) (-4.46) (-1.81) (-0.30) (0.96) (6.62) (1.85) (2.72) (-0.08) (0.94) (2.05) (0.83) (-0.69) (0.22) (-0.26) (0.65)

-2.2713 -1.1206 -0.4838 -0.2339 0.1010 0.3112 0.1670 0.1056 0.0619 0.0590 -0.0155 -0.0064 -0.0067 0.0021 -0.0088 -0.0021
(-41.81) (-20.60) (-8.69) (-4.17) (1.78) (19.97) (11.02) (7.01) (4.18) (4.09) (-3.64) (-1.55) (-1.64) (0.52) (-2.21) (-0.11)

-1.3392 -0.9888 -0.8979 -0.5586 -0.3657 0.1552 0.1404 0.0828 0.0828 0.1182 0.0136 0.0023 0.0095 0.0063 -0.0020 0.0373
(-13.99) (-10.35) (-9.26) (-5.90) (-3.54) (7.56) (6.92) (4.05) (4.14) (5.96) (2.67) (0.46) (1.87) (1.24) (-0.41) (1.49)

-3.3007 -1.7921 -1.0377 -0.6522 -0.3526 0.2771 0.1460 0.0812 0.0777 0.0685 -0.0227 -0.0087 -0.0044 -0.0075 -0.0076 0.0511
(-43.04) (-22.27) (-13.18) (-8.30) (-4.54) (31.73) (17.03) (9.52) (9.21) (8.34) (-7.40) (-2.87) (-1.48) (-2.52) (-2.61) (4.42)

-1.6707 -1.1117 -0.5138 -0.3959 0.0237 0.2592 0.1316 0.0988 0.0787 0.0890 -0.0151 -0.0017 -0.0032 -0.0008 -0.0069 0.0091
(-24.40) (-15.62) (-7.04) (-5.44) (0.32) (13.93) (7.22) (5.45) (4.38) (5.08) (-3.15) (-0.35) (-0.68) (-0.17) (-1.49) (0.39)

-1.0563 -0.7185 -0.4385 -0.4059 -0.0910 0.2431 0.1608 0.1727 0.0538 0.0707 -0.0131 -0.0152 -0.0235 0.0026 -0.0063 0.0044
(-14.66) (-10.18) (-5.71) (-5.27) (-1.20) (6.26) (4.19) (4.52) (1.42) (1.90) (-1.65) (-1.91) (-2.99) (0.33) (-0.82) (0.10)

-6.6343 -2.3648 -0.8261 -0.2032 0.1841 0.3354 0.1412 0.0852 0.0468 0.0515 0.0009 -0.0017 -0.0048 -0.0028 -0.0065 0.0304
(-41.77) (-18.64) (-6.98) (-1.73) (1.58) (35.95) (15.53) (9.55) (5.32) (6.13) (0.32) (-0.59) (-1.70) (-1.02) (-2.36) (2.56)

-2.8712 -2.0047 -1.2543 -0.9570 -0.5642 0.1690 0.1196 0.1023 0.0866 0.0636 -0.0149 -0.0096 -0.0060 -0.0073 -0.0040 0.0238
(-38.04) (-24.76) (-15.06) (-11.50) (-6.70) (16.77) (12.22) (10.54) (8.99) (6.66) (-4.39) (-2.88) (-1.80) (-2.22) (-1.21) (1.79)

-0.8951 -0.5246 -0.3464 -0.1694 -0.0096 0.4021 0.1285 0.0752 0.0528 0.1474 -0.0187 0.0077 0.0063 0.0069 -0.0035 0.0569
(-9.66) (-6.40) (-4.75) (-2.18) (-0.12) (10.78) (3.31) (1.91) (1.39) (4.03) (-2.58) (1.05) (0.84) (0.95) (-0.49) (1.14)

-0.5219 -0.4543 -0.4973 -0.3609 -0.1420 0.2301 0.1179 0.0545 0.0443 0.1046 -0.0047 0.0028 0.0075 0.0107 -0.0021 -0.0004
(-5.67) (-5.11) (-5.60) (-3.89) (-1.50) (7.64) (3.95) (1.85) (1.50) (3.60) (-0.73) (0.43) (1.16) (1.66) (-0.33) (-0.01)

-1.3272 -0.4448 -0.1079 0.0124 0.0972 0.3244 0.1267 0.0503 0.0258 0.0571 -0.0130 -0.0061 0.0021 0.0021 -0.0107 0.0398
(-16.94) (-5.89) (-1.43) (0.17) (1.27) (13.78) (5.48) (2.17) (1.13) (2.62) (-2.31) (-1.11) (0.39) (0.39) (-2.03) (1.38)

-1.9386 -1.3414 -0.9900 -0.7611 -0.4495 0.2252 0.1445 0.0893 0.1091 0.0903 -0.0177 -0.0166 -0.0036 -0.0122 -0.0088 0.0692
(-27.70) (-19.14) (-14.08) (-10.68) (-6.20) (24.67) (16.07) (9.98) (12.29) (10.41) (-5.55) (-5.21) (-1.14) (-3.87) (-2.85) (5.59)

-2.6221 -1.6158 -0.9951 -0.5732 0.0340 0.2114 0.1005 0.1174 0.0918 0.0752 -0.0089 0.0068 -0.0022 -0.0034 -0.0001 0.0204
(-25.73) (-15.97) (-9.58) (-5.38) (0.32) (12.51) (6.07) (7.19) (5.70) (4.74) (-1.95) (1.50) (-0.51) (-0.77) (-0.02) (0.99)
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0.1260
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Lag Trade Lag Trade*Lag Duration

HAN

0.1041

0.1087

0.1200

0.0429

0.1852

0.0812

0.0668

-0.0238

0.1675

0.1823

0.0254

0.1171

0.1238

0.1592

0.1448

0.1162

0.1223

0.1582

0.1427

0.1032

0.1666

0.1815

0.0245

0.1244

0.0945

0.0986

0.1849

0.1179

0.0426

0.0804

0.0651

-0.0244

0.1078

Note: we format in bold all coefficients that are significantly different from zero at 5% level.
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Appendix III

Quote Change Equation in the Vector Autoregression
Coefficient estimates and t-statistics for the quote revision equation. Tt is the time interval between two consecutive transactions; x0

t is the trade
indicator (1 if pt>qt; -1 if pt<qt; and 0 if pt=qt, where respectively pt is the transaction price and qt the mid-quote price). rt is the percentage quote
change after a trade. Dt is a dummy variable for trades around the open.
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-0.0095 -0.0045 0.0070 0.0132 0.0160 0.0102 0.0055 0.0022 0.0013 0.0004 0.0004 -0.0008 -0.0006 -0.0001 -0.0001 -0.0002 -0.0003 0.0020
(-1.82) (-0.87) (1.35) (2.58) (3.14) (11.23) (6.12) (2.46) (1.50) (0.48) (0.45) (-3.03) (-2.18) (-0.43) (-0.41) (-0.84) (-1.21) (1.64)

-0.0403 -0.0084 -0.0373 0.0065 -0.0019 0.1448 0.0146 0.0428 0.0740 0.0366 -0.0334 -0.0101 0.0010 -0.0068 -0.0135 -0.0005 0.0013 0.0606
(-2.99) (-0.62) (-2.77) (0.48) (-0.14) (4.58) (0.46) (1.35) (2.33) (1.16) (-1.08) (-1.60) (0.16) (-1.07) (-2.14) (-0.09) (0.20) (1.25)

0.0014 0.0178 0.0379 0.0209 -0.0193 0.0567 0.0113 0.0041 0.0038 -0.0007 0.0074 -0.0059 -0.0014 -0.0007 -0.0011 -0.0004 -0.0017 0.0041
(0.12) (1.55) (3.30) (1.82) (-1.69) (20.42) (3.96) (1.44) (1.31) (-0.23) (2.77) (-9.94) (-2.43) (-1.18) (-1.85) (-0.60) (-2.92) (1.01)

0.0451 0.0757 0.0357 0.0375 0.0485 0.0544 -0.0024 0.0020 0.0031 0.0050 -0.0017 -0.0039 0.0009 -0.0007 -0.0013 -0.0014 -0.0004 0.0075
(3.51) (5.90) (2.77) (2.93) (3.80) (15.29) (-0.65) (0.53) (0.86) (1.37) (-0.49) (-5.37) (1.26) (-1.00) (-1.82) (-1.87) (-0.51) (1.27)

-0.0056 -0.0059 0.0032 -0.0125 0.0188 0.0523 0.0125 0.0002 -0.0029 0.0101 -0.0045 -0.0038 -0.0012 0.0006 0.0001 -0.0018 0.0007 0.0202
(-0.55) (-0.57) (0.31) (-1.22) (1.85) (9.22) (2.18) (0.04) (-0.50) (1.76) (-0.81) (-3.03) (-0.98) (0.45) (0.10) (-1.41) (0.57) (2.25)

0.0486 0.0630 0.0833 0.0345 0.0217 0.0954 0.0148 -0.0020 -0.0066 0.0042 0.0027 -0.0089 -0.0005 0.0000 0.0003 -0.0016 -0.0023 0.0105
(3.64) (4.72) (6.31) (2.64) (1.67) (13.25) (2.03) (-0.28) (-0.91) (0.59) (0.39) (-6.07) (-0.35) (0.03) (0.24) (-1.10) (-1.60) (0.96)

-0.0428 -0.0144 0.0047 0.0149 0.0179 0.0259 0.0078 0.0073 -0.0004 0.0014 0.0003 -0.0023 -0.0003 -0.0010 0.0006 0.0000 0.0002 0.0052
(-7.04) (-2.35) (0.77) (2.45) (2.95) (16.31) (4.94) (4.57) (-0.27) (0.87) (0.19) (-5.35) (-0.58) (-2.42) (1.39) (-0.02) (0.46) (2.61)

-0.0107 -0.0295 -0.0006 0.0019 -0.0163 0.0086 0.0038 0.0007 0.0004 -0.0002 0.0024 -0.0007 -0.0004 0.0001 -0.0003 -0.0003 -0.0007 0.0051
(-1.48) (-4.07) (-0.08) (0.26) (-2.25) (6.40) (2.86) (0.50) (0.27) (-0.19) (1.83) (-2.11) (-1.06) (0.18) (-0.99) (-0.99) (-2.20) (2.97)

-0.0127 0.0084 0.0141 0.0104 0.0211 0.0071 0.0031 0.0016 0.0006 -0.0002 0.0004 -0.0001 -0.0002 0.0000 0.0000 0.0003 0.0000 0.0013
(-3.34) (2.20) (3.70) (2.73) (5.56) (18.48) (8.14) (4.12) (1.63) (-0.40) (1.13) (-1.07) (-1.38) (0.04) (0.14) (2.39) (-0.29) (2.39)

-0.0393 -0.0097 -0.0110 0.0050 -0.0088 0.0100 0.0051 0.0012 0.0021 -0.0002 0.0007 -0.0008 -0.0003 0.0002 -0.0004 0.0003 0.0001 0.0021
(-5.65) (-1.39) (-1.57) (0.72) (-1.27) (6.34) (3.24) (0.80) (1.34) (-0.12) (0.48) (-2.02) (-0.76) (0.37) (-0.99) (0.71) (0.13) (1.01)

-0.0360 -0.0194 -0.0195 -0.0243 -0.0127 0.0449 0.0041 0.0043 0.0029 0.0116 -0.0136 -0.0048 0.0009 -0.0003 0.0001 -0.0020 0.0029 0.0015
(-3.06) (-1.64) (-1.65) (-2.06) (-1.09) (7.97) (0.73) (0.77) (0.52) (2.07) (-2.44) (-4.17) (0.77) (-0.22) (0.08) (-1.69) (2.50) (0.23)

-0.0279 0.0099 0.0211 0.0249 0.0179 0.0133 0.0046 0.0015 0.0005 -0.0002 -0.0006 -0.0014 -0.0006 -0.0002 -0.0001 0.0000 0.0001 -0.0024
(-6.51) (2.29) (4.89) (5.78) (4.19) (40.74) (14.01) (4.71) (1.49) (-0.48) (-1.78) (-13.71) (-6.07) (-1.84) (-1.19) (-0.15) (1.18) (-5.48)

-0.0217 -0.0070 -0.0041 -0.0042 0.0027 0.0054 0.0033 0.0023 0.0016 0.0013 0.0004 -0.0004 -0.0002 -0.0002 -0.0002 -0.0002 0.0000 -0.0014
(-5.26) (-1.69) (-0.98) (-1.01) (0.65) (12.17) (7.54) (5.41) (3.63) (3.02) (0.96) (-2.93) (-1.42) (-1.40) (-1.29) (-1.14) (0.32) (-2.32)

-0.0339 -0.0283 -0.0023 0.0051 0.0027 0.0215 -0.0012 -0.0042 0.0100 -0.0016 -0.0064 -0.0012 -0.0001 0.0010 -0.0019 0.0003 0.0001 -0.0105
(-2.61) (-2.19) (-0.18) (0.39) (0.21) (4.00) (-0.23) (-0.77) (1.82) (-0.30) (-1.22) (-1.14) (-0.08) (0.91) (-1.82) (0.30) (0.07) (-1.17)

-0.0186 -0.0297 -0.0250 -0.0176 -0.0347 0.0154 0.0054 0.0028 -0.0022 0.0047 0.0011 -0.0010 -0.0005 -0.0005 -0.0001 -0.0012 -0.0007 0.0057
(-1.81) (-2.91) (-2.45) (-1.72) (-3.40) (4.93) (1.73) (0.89) (-0.71) (1.50) (0.35) (-1.51) (-0.78) (-0.78) (-0.22) (-1.70) (-0.98) (1.29)

0.0194 0.0441 0.0478 0.0341 0.0405 0.0371 0.0120 0.0054 0.0014 -0.0027 0.0043 -0.0030 -0.0012 -0.0013 -0.0006 0.0005 -0.0014 0.0123
(2.34) (5.32) (5.79) (4.13) (4.92) (15.05) (4.83) (2.17) (0.57) (-1.11) (1.82) (-5.00) (-2.11) (-2.21) (-0.93) (0.84) (-2.37) (3.92)

-0.0077 -0.0090 0.0014 0.0090 0.0076 0.0017 0.0013 0.0005 0.0004 0.0004 -0.0008 0.0002 0.0000 0.0001 0.0002 0.0002 0.0004 0.0010
(-1.98) (-2.31) (0.35) (2.30) (1.95) (4.38) (3.57) (1.23) (1.05) (1.17) (-2.29) (1.74) (0.14) (0.99) (1.19) (1.26) (2.87) (1.84)

-0.0239 0.0014 0.0061 0.0031 0.0072 0.0080 0.0050 0.0005 0.0005 -0.0005 -0.0007 -0.0009 -0.0006 0.0001 0.0000 0.0001 0.0001 0.0003
(-3.89) (0.22) (1.00) (0.50) (1.17) (9.30) (5.88) (0.58) (0.62) (-0.55) (-0.88) (-3.76) (-2.72) (0.57) (-0.05) (0.61) (0.53) (0.26)

HAN

IBM

T

MO

NI

POM

XON

CL

CPC

DI

FDX

FNM

FPL

GE

SLB

GLX

0.0230

0.0327

0.1434

Stock

BA

CAL

0.1470

0.0480

0.1096

0.0635

0.0171

0.0417

0.0193

0.0462

0.0896

0.0086

0.0200

0.1045

0.0232

0.0174

0.0205

0.0224

0.0308

0.1296

0.1412

0.0461

0.1030

0.0619

0.0159

0.0415

0.0189

0.0427
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0.0083

0.0192

0.0228

0.0164

0.0194

0.0857

Note: we format in bold all the coefficients that are significant at 5% confidence.
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Figure 1. FNM stock. Cumulative impulse response functions for the percentage quote revision after an unexpected

buy. The impulse responses are computed for two different initial conditions on time duration. We use respectively the

time duration and the conditional duration for a trade that occurred around 10:00 on January 17, 1991, and again the time

duration and the conditional duration for a trade that occurred around 12:30 on December 24, 1990. For part (a), we

compute 10,000 impulse response functions for 21 steps into the future. Then, we compute the average of the cumulative

quote change at every step. The impulse response for a model with time durations’ effects ignored (Hasbrouck (1991))

is also charted. For part (b), we use the methodology described in Section IV.C. That is, we compute 201 steps for

10,000 responses. Then, we sample every 5 seconds from the 10,000 impulse responses, and we compute the average

cumulative quote revision.

(a) (b)
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Figure 2. IBM stock. Cumulative impulse response functions for the percentage quote revision after an unexpected

buy. The impulse responses are computed for two different initial conditions on time duration. We use respectively the

time duration and the conditional duration for a trade that occurred around 10:00 on January 17, 1991, and again the time

duration and the conditional duration for a trade that occurred around 12:30 on December 24, 1990. For part (a), we

compute 10,000 impulse response functions for 21 steps into the future. Then, we compute the average of the cumulative

quote change at every step. The impulse response for a model with time durations’ effects ignored (Hasbrouck (1991))

is also charted. For part (b), we use the methodology described in Section IV.C. That is, we compute 201 steps for

10,000 responses. Then, we sample every 5 seconds from the 10,000 impulse responses, and we compute the average

cumulative quote revision.

(a) (b)
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1 We refer the interested reader to O’Hara (1995) and Hasbrouck (1996). These are two major efforts in trying to

synthesize the existing and fast growing literature on market microstructure.

2 In Kyle (1985) orders are accumulated and executed together at a specific point in time and at a single price so that the

order arrival is not important. In Glosten and Milgrom (1985), orders arrive according to some exogenous probabilistic

process known to the specialist.

3 Biais et al. (1995) investigate the relation between trading intensity and the supply of liquidity in the Paris Bourse.

4  de Jong et al. (1995) have recently employed this model to study the price effect of trading on the Paris Bourse.

5 Covariance stationarity of the price-trade process is typically assumed (see Hasbrouck (1991) and de Jong et al. (1995)).

6  See Hasbrouck (1991) for the justification of this identifying hypothesis.

7 See Berry and Howe (1994) for a study of the effects of public information arrival on market activity.

8 Intraday periodicities have been found to characterize the behavior of several market variables: public information arrival

(Berry and Howe, (1994)), trading volume (Jain and Gun-Ho (1988) and Foster and Viswanathan (1993)), return (Harris

(1986) and Wood et al. (1985)), time durations (Engle and Russell, (1998)).

9 Since Tt can indeed be zero, without loss of generality we add 1 second to each duration. A further consideration is

worthwhile. Hasbrouck (1991) finds that the trade impact on prices is positive and persistent. Easley and O'Hara (1992)

predict that this impact will be lower for trades arriving after a long period of inactivity. Therefore, γi's are presumably

positive, δi's are negative and such that the net effect is positive. However, in our parameterization, the negative duration

effect may still increase without bounds and therefore trades arriving after a sufficiently long duration may potentially have

a negative price effect. To avoid this, we would need a nonlinear specification for the time effect that also allows for some

saturation, for example bi=γi+...+δiexp(-κTt-i). Our experience with such parameterization is that it offers greater flexibility,

but at the same time it requires more computation in the estimation process, and often the interpretation of the parameters
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is not easy.  For example, when testing for the significance of time durations in the trade impact specification, the

distribution of κ is not known under the null hypothesis of δi  jointly zero.

10 For a recent survey, stressing the duality of Poisson processes for counts and model for durations, see Cameron and

Trivedi (1996).

11 OPG estimator, also called BHHH estimator from the initials of its original advocates (see Berndt et al. (1974)), is a

byproduct of a computationally efficient algorithm for the maximization of the likelihood function. It is used in this paper,

despite the well-known poor small sample performances (Davidson and MacKinnon (1993), p.447), because such a

problem is alleviated by the very large size of our data series.

12 The names of the selected stocks appear in the Appendix I. Note that among these stocks there are two American

Depository Receipts (ADR); these are receipts representing shares of foreign corporations held by US depository

institutions which are quoted in US dollars and trade just like any other stock.

13 The presence of errors is revealed by the compilation of summary statistics for the variables to be used in the estimation

process. Given the limited amount of errors found, we do not use any general filtering criteria (see for example Brennan

and Subrahmanyam (1996)).

14 We also noted that the market closed early at 2:00 p.m. on December 24 and opened late at about 11:00 a.m. on

December 27 when the first recorded trade is for GE at 10:42 a.m.. We therefore adjusted the diurnal dummy variables

accordingly.

15 Lee and Ready (1991) suggest using the tick rule to reduce the number of unidentified trades, which means classifying a

trade as a sale if the transaction price is lower than the previous transaction price or as a buy if the transaction price is

higher than the previous transaction price. In the case of further uncertainty on the sign of the trade, this procedure can be

iterated by comparing the current price with the price of earlier trades, moving further and further into the past.

16 The model can also be used to study the impact that specific trades have on prices. For example, we add to the trade

impact parameterization bi, dummy variables that identify respectively off-exchange, mid-quote, and buy trades. Our
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results show that trades performed on regional exchanges and NASDAQ significantly affect NYSE quotes, but have a

relatively lower impact, that is are less informative, than trades performed on NYSE (see Hasbrouck (1995) and Blume

and Goldstein (1997) for further evidence). Mid-point trades, classified through the tick test (Lee and Ready (1991)) do

not cause a unidirectional change in quotes and have a smaller price effect. This result reinforces the strategy adopted in

the paper of assigning a zero weight to price effects of mid-quote trades. Finally, we do not find conclusive evidence of

asymmetric price impact of buyer and seller initiated transactions.

17 In particular, we define a piece-wise linear spline with eight nodes. The nodes are fixed respectively at: 9:30 a.m. (the

official opening time), 10:00, 11:00, 12:00, 1:00 p.m., 2:00, 3:00, 3:30, 4:00 (the official closing time). That is, we use a linear

approximation for every hour period except for the opening and the closing where due to higher trading intensity we further

break the time intervals in 30 minute spans.

18 As noted previously, we deal with zero durations by augmenting them by one second before eliminating the periodic

component.

19 The result of the test for the omission of spread alone suggests that spread tends to be positively correlated with

durations.




