Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Watching Electrons Transfer from Metals to Insulators using Two Photon Photoemission

Abstract

Ultrafast angle-resolved two photon photoemission was used to study the dynamics and interfacial band structure of ultrathin films adsorbed onto Ag(111). Studies focused on the image potential state (IPS) in each system as a probe for measuring changes in electronic behavior in differing environments.

The energetics and dynamics of the IPS at the toluene/Ag(111) interface are strongly dependent upon coverage. For a single monolayer, the first IPS is bound by 0.81 eV below the vacuum level and has a lifetime of 50 femtoseconds (fs). Further adsorption of toluene creates islands of toluene with an exposed wetting layer underneath. The IPS is then split into two peaks, one corresponding to the islands and one corresponding to the monolayer. The wetting layer IPS shows the same dynamics as the monolayer, while the lifetime of the islands increases exponentially with increasing thickness. Furthermore, the island IPS transitions from delocalized to localized within 500 fs, and electrons with larger parallel momenta decay much faster. Attempts were made using a stochastic model to extract the rates of localization and intraband cooling at differing momenta.

In sexithiophene (6T) and dihexyl-sexithiophene (DH6T), the IPS was used as a probe to see if the nuclear motion of spectating side chains can interfere with molecular conduction. The energy and band mass of the IPS was measured for 6T and two geometries of DH6T on Ag(111). Electrons injected into the thicker coverages of DH6T grew exponentially heavier until they were completely localized by 230 fs, while those injected into 6T remained nearly free electron like. Based off of lifetime arguments and the density of defects, the most likely cause for the mass enhancement of the IPS in this system is small polaron formation caused by coupling of the electron to vibrations of the alkyl substituents. The energetic relaxation of the molecular adsorbate was also measured to be 20 meV/100 fs for the DH6T, and 0 meV/100 fs for the 6T. This relaxation is consistent with the localization of the charge creating a barrier for it moving from one lattice site to a neighboring one.

Finally, the IPS was used to study the evolution of the surface band gap at the Mg/Ag(111) interface. The Mg(0001) surface band gap lies 1.6 eV below the Fermi level, and consequently shows no peak in the projected density of states for the IPS. A method for creating layer by layer growth of Mg on Ag(111) was determined using Auger Spectroscopy and low energy electron diffraction. By monitoring the decay of the intensity of the IPS versus coverage, it was determined that four layers of magnesium on Ag(111) is sufficient to completely eliminate the surface band gap

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View