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 Radiation therapy aims at delivering a prescribed amount of radiation 

dose to cancerous targets while sparing dose to normal organs. Treatment 

planning and delivery in modern radiotherapy are highly complex. To ensure 

the accuracy of the delivered dose to a patient, a quality assurance (QA) 

procedure is needed before the actual treatment delivery. This dissertation 

aims at developing computational and physical tools to facilitate the QA 

process.  
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In Chapter 2, we have developed a fast and accurate computational QA 

tool using a graphics processing unit based Monte Carlo (MC) dose engine. 

This QA tool aims at identifying any errors in the treatment planning stage and 

machine delivery process by comparing three dose distributions: planned dose 

computed by a treatment planning system, planned dose and delivered dose 

reconstructed using the MC method. Within this tool, several modules have 

been built. (1) A denoising algorithm to smooth the MC calculated dose. We 

have also investigated the effects of statistical uncertainty in MC simulations 

on a commonly used dose comparison metric. (2) A linear accelerator source 

model with a semi-automatic commissioning process. (3) A fluence generation 

module. With all these modules, a web application for this QA tool with a user 

friendly interface has been developed to provide users with easy access to our 

tool, facilitating its clinical utilizations.  

 Even after an initial treatment plan fulfills the QA requirements, a 

patient may experience inter-fractional anatomy variations, which compromise 

the initial plan optimality. To resolve this issue, adaptive radiotherapy (ART) 

has been proposed, where treatment plan is redesigned based on most recent 

patient anatomy. In Chapter 3, we have constructed a physical deformable 

head and neck (HN) phantom with in-vivo dosimetry capability. This phantom 

resembles HN patient geometry and simulates tumor shrinkage with a high 

level of realism. The ground truth deformation field can be measured from 

built-in surface markers, which is then used to verify the accuracy of an 
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important ART step of deformable image registration. Our experiments also 

demonstrate the feasibility of using this phantom as an end-to-end ART QA 

phantom with an emphasis on testing the dose deliver accuracy. 
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1. Introduction  

 

1.1 Overview of Radiation Therapy 

 Cancer is a term used for diseases caused by an overgrowth of 

abnormal cells. These cells are able to divide and grow rapidly to make new 

cancer cells, leading to the formation of malignant tumors and invasion into 

healthy tissue. Cancer is the second most common cause for death in the US 

after heart disease. More than 550 thousand Americans died of cancer in 2012 

with over 1.5 million newly diagnosed cancer cases. Radiation therapy is one 

of the three modalities of cancer treatment, along with chemotherapy and 

surgery. A patient may receive radiation therapy before, during or after the 

surgery. When surgery is not an option due to risks of complication, radiation 

therapy is usually used alone to eliminate a tumor or in combination with 

chemotherapy. Nowadays, about two thirds of all cancer patients receive 

radiation therapy during the course of their treatments. 
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1.1.1 Radiobiology 

 Radiation therapy kills cancer cells by damaging their DNA through 

direct and indirect action. In direct action, the radiation excites or ionizes 

molecules in the DNA structures directly, while in indirect action, the radiation 

interacts with neighboring molecules (mainly water molecules) creating free 

radicals within the cells that can in turn damage the DNA.  Biological damage 

to DNA usually refers to single or double strand breaks of the helical structure, 

and approximately 2/3 of these damages are due to indirect action. While a 

single strand break is often repairable by a number of mechanisms, most 

double strand breaks are lethal. Cancer cells eventually stop multiplying or die 

if the damage caused by radiation is not repaired.  

 Although normal cells are more likely to repair DNA damages than 

cancer cells, radiation still damages  normal cells, potentially leading to severe 

complications. Figure 1.1 illustrates dose-response curves describing the 

observed effects of radiation exposure in relation to the radiation dose. A 

tumor control probability (TCP) curve represents the probability of tumor 

control (fraction of cancer cells killed) as a function of dose while a normal 

tissue complication probability (NTCP) represents the probability of a particular 

normal tissue complication from the dose. To achieve good treatment quality,  

a radiation dose is chosen such that it maximizes the TCP while minimizing 

the NTCP. The therapeutic ratio for a given dose level is defined as the ratio of 

TCP and NTCP. 
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Figure 1.1: The therapeutic ratio from the tumor control probability and the normal 
tissue complication probability curves. 

 

1.1.2 Typical Treatment Forms 

  External beam radiation therapy directs the X-ray beam to the tumor 

from outside patient. It is the most common type of radiation therapy and the 

subject of this dissertation. The radiation beam is usually generated by a 

machine call a linear accelerator (LINAC). The details of a LINAC with its 

beam modulators will be discussed in the following section.  

 The goal of radiation therapy is to deliver sufficient dose to the cancer 

cells while minimizing the dose to normal healthy tissues (Hall and Giaccia, 

2006). To achieve this goal, many planning and delivery techniques have 

been developed, especially after the invention of computed tomography (CT) 
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technology. A series of CT slices represent the 3D shape of the tumor and its 

relationship to surrounding organs. With this information, 3D conformal 

radiation therapy is possible. This method shapes the radiation beams from 

multiple angles to the shape of the tumor with the use of multileaf collimators 

(MLC) or custom fabricated heavy metal blocks. Due to the shielding of 

radiation beams, the dose to the normal tissue is reduced.  

 From the 1990’s onward, modern radiation technology has evolved 

dramatically due to the advancement of computer power and related 

algorithms. One particular advancement is intensity modulated radiation 

therapy (IMRT) that delivers the radiation from a few fixed beam angles with 

variable intensities inside each beam. This method is able to increase the 

dose to the tumor target while reducing the dose to surrounding tissue. Figure 

1.2 displays examples of prostate treatment plan with 3D conformal radiation 

therapy and IMRT techniques. Later, a rotational form of IMRT, volumetric 

modulated arc therapy (VMAT), was invented (Otto, 2008). This technique 

delivers radiation dose while continuously rotating the beam angle, which 

greatly reduces the clinical treatment time while maintaining the plan quality 

technology (Bedford, 2009; Bedford et al., 2008; Popescu et al., 2009). More 

details of modern treatment planning and technologies will be presented later. 
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Figure 1.2: Examples of a prostate plan with different technologies. (A) 3D conformal 
radiation therapy. (B) IMRT with 5 fields. (Adopted from Zelefsky et al. (2000)) 

  

1.2 Linear Accelerator 

 A LINAC is usually mounted isocentrically on a gantry, so that the 

radiation source can rotate 360º about a horizontal axis. The intersection of 

the beam axis and the axis of the gantry rotation is known as the isocenter. A 

typical LINAC machine is shown in Figure 1.3.  

 A LINAC produces a photon beam by accelerating a high energy 

electron beam to strike a target. Photons are mainly produced by 

A 
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bremsstrahlung while the characteristic X-ray emission is negligible for 

electron energy in the megavoltage range. The bremsstrahlung X-rays have a 

spectrum of energies with the maximum energy equal to the peak incident 

electron energy.  

 The intensity of the photon beam exiting the target is peaked in the 

forward direction and the beam passes through a system of collimators and 

beam modulators, shown in Figure 1.4. The primary collimators shape the 

beam to a large fixed area and a flattening filter is designed to attenuate the 

forward peaked beam more in the middle area than the peripheral region in 

order to make the beam intensity uniform across the field at a certain depth in 

water (e.g. 10cm). Then the flattened beam passes through the dual flat ion 

chambers which monitor the radiation output and beam flatness. The above 

mentioned components in the LINAC head are fixed and patient-independent.  

 After passing through the ion chambers, the beam is further collimated 

by two pairs of moving jaws into a rectangular field . The maximum field size is 

typically 40x40cm2. The MLC consists of multiple pairs of tungsten leafs, 

ranging from 40 to 60 pairs, shown in Figure 1.5. Each leaf is individually 

controlled by a motor and can move independently in and out in order to block 

to the beam. The MLC can shape the radiation beam to the shape of tumor 

and it also allows for the complex intensity modulation.  
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Figure 1.3: A Varian version of a linear accelerator with cone beam computed 
tomography mounted. (Image courtesy of Varian Medical System Inc.) 

 

Figure 1.4: Schematic representation of LINAC head components. (Adopted from  
Verhaegen and Seuntjens (2003)) 
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Figure 1.5: Multileaf collimator. (Image courtesy of Varian Medical System Inc.) 

 

1.3 Radiation Treatment Process 

 Planning and delivery of external beam radiation therapy is a complex 

process and a brief overview of the process is explained here. The first step is 

treatment simulation, where a CT scan of a cancer patient is often performed  

and used to build a virtual patient model in a treatment planning system (TPS).  

A optimization algorithm in TPS generates a treatment plan that delivers a 

highly conformal dose to the target while keeping the dose level to important 

normal organs below tolerances. Due to the complexity of  modern treatment 

planning and delivery techniques, a patient-specific plan quality assurance 

(QA) process must be performed to ensure the accuracy and deliverability of 

the plan. Once the treatment plan passes the QA tests, it is ready for delivery. 

In most cases, the patient will have to receive radiation dose through multiple 
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treatment fractions where each time a fraction of the total planned dose is 

given. This allows normal cells to repair and increases the likelihood that 

cancer cells are exposed to radiation in the radio-sensitive phase of the cell 

cycle (Connell and Hellman, 2009). In each treatment fraction, the patient 

must be first positioned carefully under the treatment machine to match the 

virtual patient model as closely as possible and the treatment plan will be then 

delivered. The treatment fractions usually last over a course of several weeks. 

The whole radiation therapy process diagram is shown in Figure 1.6. 

 

 

Figure 1.6: Radiation therapy process. 
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1.3.1 Treatment Simulation 

 The treatment simulation is primarily based on a CT scan. In a CT scan. 

a 3D volume of a patient's anatomy is reconstructed using advanced 

numerical algorithms. The resulting volumetric image is a discretized 

description of the patient body using a 3D data array. Each entry of the array, 

called a voxel,  measures the linear attenuation of the X-ray locally at the voxel 

(Kak et al., 1988). A voxel in a CT scan is expressed in terms of relative 

radiodensity in the Hounsfield Unit (HU) scale. For a voxel with a linear 

attenuation coefficient   , HU is defined as: 

          
         

           
,                                                                             (1.1) 

where        and      are the linear attenuation coefficients of water and air, 

respectively. In this HU scale, the radiodensity of distilled water at standard 

pressure and temperature (STP) is defined as zero HU and the radiodensity of 

air at STP is defined as -1000 HU. 

 The acquired CT scan is imported into a TPS to form a virtual patient 

which is used in the next step, treatment planning. 

 

1.3.2 Treatment Planning 

 The treatment planning process consists of tumor and organs 

contouring, plan optimization, and final dose calculation. On the virtual patient, 

tumor target (or planning target volume (PTV)) and surrounding critical organs 
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at risk (OAR) are first delineated by a physician. Then the anatomic properties 

(i.e. size and shape) and relationship are used in subsequent plan optimization 

step.  

 Current TPS approaches plan generation as an optimization procedure. 

As such, one first defines a set of dose constraints on various OARs and PTV. 

Then a powerful optimization algorithm finds the treatment beam parameters 

(e.g. the number of beams, beam angles, etc.) to best match all the input 

criteria. Modern treatment techniques such as IMRT delivers radiation from a 

set of fixed beam angles and allow for the intensity of each beam to be 

modulated. Specially, a board beam field is de-composited into a grid of small 

beamlets and the weights of thousands of beamlets from different beam 

angles are adjusted iteratively in the optimization algorithm. After the non-

uniform beam intensities, called optimal fluence maps, are obtained, they must 

be translated into deliverable MLC leaf motion sequences, considering MLC 

transmission and MLC mechanical constraints (e.g. leaf width, leaf speed, and 

leaf motion range, etc.). VMAT is an advanced rotational form of IMRT that 

delivers dose in one or two continuously rotating arcs around the patient while 

the radiation beam in constantly on. In VMAT, MLC shape can be varied and 

optimized as well as the dose rate and gantry speed of the LINAC, making it 

far more complicated than IMRT.  

 In the last step of treatment planning, the TPS uses the models of the 

virtual patient and the treatment machine to calculate the expected dose 
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distribution in the patient with the set of optimized beam parameters. Dose 

volume histogram (DVH) is generated to evaluate the plan quality. Specifically, 

a DVH for a given organ is a function      which quantifies the volume of this 

organ that receives at least a dose level  . Typical DVHs for an OAR and a 

PTV are displayed in Figure 1.7. The PTV DVH appears almost as a step 

function with a jump at the prescription dose, indicating a good coverage with 

the prescribed dose level. But the OAR near the PTV is unavoidably irradiated, 

as nonzero doses cover part of its volume. 

 

Figure 1.7: A typical DHV plot. 

 

1.3.3 Treatment Delivery 

 After treatment planning, a patient-specific plan QA step needs to be 

performed to ensure the patient safety. Since this is  the focus of the 

dissertation, we will give a detailed description of this step in the next section.
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 On the day of the treatment, it is necessary to first properly position the 

patient on the treatment couch relative to the LINAC to match the virtual 

patient model in the TPS as closely as possible. Recently, cone beam 

computed tomography (CBCT) technology has been introduced to obtain a 

volumetric image of the patient in treatment position.  A typical on-board CBCT 

imaging system, is shown in Figure 1.3. The CBCT image can be 

automatically registered to the CT image used in the planning stage and 

therefore assist the patient alignment. After the patient setup, the radiation 

delivery starts and it is important to monitor the patient such that the well set 

patient position remains throughout the treatment.  

 

1.4 Adaptive Radiotherapy  

 In a conventional radiation therapy process, a treatment plan is 

generated based on a snapshot of the patient anatomy captured during the 

treatment simulation, and the plan is delivered fractionally over a number of 

weeks. However, patient’s anatomy may change significantly from fraction to 

fraction during the whole treatment course. Examples of such variations 

include tumor regresses in response to the treatment, organ deformations due 

to different filling status or changes in relative position between tumor and 

neighboring tissue. (Barker et al., 2004; Lee et al., 2004; Yan et al., 2005; Lee 

et al., 2008; Beadle et al., 2009; Tyagi et al., 2011). Figure 1.8 shows an 
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example of a head and neck (HN) cancer patient treated at the UC San Diego 

experiencing the tumor shrinkage (contoured in blue) from the pre-treatment 

CT scan and the re-CT scan in the fourth week of the treatment course.   

 

Figure 1.8: An example of a head and neck cancer patient experiencing tumor 
shrinkage. (A) CT scan before treatment. (B) Re-CT scan in the fourth week of the 
treatment course. Blue contours indicate the tumor area.  

 

 These anatomical variations can compromise the initial treatment plan 

quality and therefore treatment outcomes (Antolak et al., 1998; van de Bunt et 

al., 2006). To solve this problem, adaptive radiation therapy (ART) has been 

proposed in which the treatment plan is modified or re-optimized based on the 

latest patient anatomy to maintain the plan quality (Yan et al., 1997).  In a 

typical clinical practice, the main workflow of ART includes (1) obtaining the 

new anatomy geometry before a fraction, (2) contouring PTV and OARs on the 

new geometry and (3) modifying the plan or conduct re-optimization to 

generate a new plan. If the new plan is immediately delivered at the current 
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fraction, we refer this as an online ART approach. In contrast, an offline ART 

refers the case where the new plan is used for future treatment fractions. 

 In the past decade, a lot of research efforts have been devoted to 

developing novel ART techniques (e.g.(Burridge et al., 2006; Schulze et al., 

2009; Foroudi et al., 2009; Gu et al., 2010; Men et al., 2010)). Among them, 

deformable image registration (DIR) algorithm is an important one. DIR refers 

to the problem of establishing a correspondence between voxels in a 

reference planning CT image and that in a daily image. Once such a 

correspondence is obtained, it can be used to propagate the contours of the 

PTVs and the OARs from the initial planning CT to the daily patient images 

(Wang et al., 2005; Lu et al., 2006; Zhang et al., 2007; Hardcastle et al., 

2012). This enables an auto-segmentation on the daily patient geometry and 

increases the efficiency for both online and offline ART implementation in 

clinics. The correspondence derived from a DIR algorithm has also been used 

for dose accumulation, whereby the delivered dose is reconstructed on the 

daily patient image and is transferred back to the reference planning CT 

geometry (Lu et al., 2006). The delivered dose accumulation helps the 

physician to objectively evaluate the treatment and decide when and how a re-

plan or plan modification is needed. Moreover, DIR can also facilitate the re-

planning process. Studies have been conducted to use the generated 

deformation fields between the planning CT and the daily CBCT or CT to 
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morph the pre-existing MLC apertures or leaf sequences for a fast online re-

planning (Ahunbay et al., 2009). 

 For the details of plan modification or re-planning, please refer to 

multiple references (Wu et al., 2002; Mohan et al., 2005; de la Zerda et al., 

2007; Wu et al., 2008; Lu et al., 2008; Men et al., 2009; Men et al., 2010). 

 

1.5  Quality Assurance 

1.5.1 Plan Quality Assurance 

 Compared with conventional radiation therapy, the treatment planning 

for modern IMRT and VMAT technologies are much more complicated, in 

which a long list of beam parameters are optimized. Meanwhile, the machine 

deliveries are also more challenging. In IMRT, since the dose gradient may be 

large near OARs, the MLC leaf position accuracy is curial. In VMAT, the 

precise controls of beam gantry rotations and dose rate variations are 

additional requirements for an accurate deliver of the planed dose. Therefore 

potential errors in IMRT and VMAT may occur both in the dose calculation 

stage in TPS and in the beam delivery stage. Considering the serious 

consequences caused by those errors, a QA procedure is needed before the 

first treatment fraction for patients' safety to ensure the intended that plan 

dose is delivered to patients. This is referred as a patient-specific plan QA.   
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Current IMRT and VMAT patient-specific plan QA procedures can be 

separated into 2D dosimetry and 3D dosimetry approaches. The 2D dosimetry 

approaches compare the calculated planar dose distributions with the 2D 

measurements using radiographic film, matrices of detectors (Korreman et al., 

2009; Li et al., 2009) or portal imagers (Nicolini et al., 2008). For instance, a 

treatment plan is delivered to a phantom in which a radiographic film and an 

iron chamber are is inserted, or is directly irradiated to a 2D detector matrix. 

The calculated plan doses are then compared to the measured values. 

However, one of the limitations is that these measurements are time 

consuming and tedious, since they require accurate phantom or detector set 

up on the LINAC. Portal imagers have also been used for plan QA, where 

photon fluence is measured directly and is compared to the calculations. One 

critical problem in all of these 2D dosimetry methods is that the plan accuracy 

and delivery precision are only checked in a plane. Ideally the 3D dose 

distributions should be verified considering the complexity of IMRT and VMAT. 

 3D patient-specific plan QA methods include 3D dose measurements 

with advanced 3D dosimetric phantoms or dosimeters (Richardson et al., 

2003; Islam et al., 2003; Feygelman et al., 2009; Letourneau et al., 2009) and 

3D plan dose reconstruction using exit portal dosimetry or machine delivery 

records. The first popular method is to deliver a plan to 3D dosimetric 

phantoms and compare measurements with calculations. Examples of 

commercially available 3D dosimetric phantoms are shown in Figure 1.9. 
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Those 3D phantoms and detectors also require set up procedure and they 

don't represent patient geometries or tissue heterogeneity. Hence, these 

measurements cannot directly verify the plan dose on the patient's geometry 

and therefore they are not fully patient-specific QA methods. Another method, 

exit portal dosimetry, uses the electronic portal imaging device (EPID) to 

reconstruct 3D dose distributions within a patient or a phantom using a back 

projection method or Monte Carlo (MC) simulations (van Elmpt et al., 2007; 

McDermott et al., 2008; van Etmpt et al., 2008). Yet, the accuracy of this 

approach heavily depends on dosimetric calibrations of EPID imagers and the 

verification of the imagers' geometrical accuracy, which becomes a barrier to 

implement this method in most clinics. Recently, LINAC log file based QA has 

been proposed. Machine log files record delivery information, such as 

cumulative dose fraction, beam on status, and MLC leaf positions, etc, during 

the plan deliveries. The accuracy of the recorded information has been 

validated by many research groups using film measurement, 2D detector array 

and portal imagers (Li et al., 2003; Zygmanski et al., 2003; Zeidan et al., 

2004). Hence using the delivery information recorded in the log files to 

reconstruct the dose distribution on patient images is a straightforward and 

accurate approach (Luo et al., 2006; Schreibmann et al., 2009; Teke et al., 

2010).  Luo et al. (2006) and Teke et al.  (2010) have incorporated log files 

into MC simulations for IMRT and VMAT QA purpose. However, based on our 

knowledge, computational time for these MC simulations is long due to the 
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nature of the MC method and thus limiting the adoptions of these 

computational tools in clinics.  

 In light of these facts, the first goal of this dissertation is to develop a 

fast and practical computational tool for IMRT and VMAT plan QA purpose. 

The tool should comprehensively check potential errors in plan dose 

calculation in TPS and beam delivery. It should also add minimum burden onto 

current clinical practice to facilitate clinical adoptions. 

 

Figure 1.9: Examples of commercially available 3D dosimetric phantoms. (Image 
courtesy of ScandiDos AB and Sun Nuclear) 

 

1.5.2 Adaptive Radiotherapy Quality Assurance 

 Clinical implementation of ART brings new challenges to the normal 

IMRT and VMAT QA program. As mentioned previously, the DIR algorithm 

that is heavily used in image segmentation, delivery dose accumulation and 

possibly re-planning, is a very crucial tool for ART. Hence the accuracy of a 

DIR algorithm has a significant impact for a safe and accurate implementation 
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of ART technology. Over the years, a lot of efforts have been devoted to 

developing accurate DIR algorithms (Thirion, 1998; Zitova and Flusser, 2003; 

Lu et al., 2004; Brock et al., 2005; Yang et al., 2008; Holden, 2008; Gu et al., 

2010; Zhen et al., 2012). It has also been a research topic to evaluate the 

accuracy of these algorithms. Common evaluation methods include comparing 

the calculated deformation vector fields (DVF) with that derived based on 

landmark points (Lu et al., 2004; Brock et al., 2005; Kaus et al., 2007; Gu et 

al., 2010), calculating reference and deformed image similarity metrics (Lu et 

al., 2004; Castadot et al., 2008; Zhen et al., 2012) and inspecting contours on 

both reference and deformed images (Foskey et al., 2005).  

 Phantom-based deformable registration validation has also received a 

lot of attentions. Physical deformation displacements can be directly derived 

from the phantoms and compared with the calculated ones. Several 

deformable phantoms have been built for this purpose. Kashani et al., (2007) 

and Serban et al., (2008) designed two different lung phantoms that can mimic 

the diaphragm motion and thus to deform the modeled lung tissue. They 

performed quantitative evaluation of DIR algorithms based on the embedded 

landmarkers in the phantoms. Yet, the landmarks are usually visible in the 

images and DIR algorithm actually use them to achieve good registrations 

locally. In contrast, registration errors may be somewhat large elsewhere, 

especially in homogenous tissue regions. The research group at UC San 

Francisco have also designed two anthropomorphic deformable phantoms, a 
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HN phantom and a pelvic phantom (Kirby et al., 2011; Kirby et al., 2013), 

shown in Figure 1.10. Both of them resemble the corresponding tumor sites 

closely. A grid of nonradiopaque surface makers are placed in the phantom, 

which can be captured in the optical camera images but are invisible in the CT 

images for DIR algorithms. The actual deformation can be extracted from the 

optical camera images and used to verify the DIR algorithm output.   

 However, as pointed out by Yan (2008), a clinical QA workflow for ART 

demands a deformable phantom for both (1) DIR algorithm accuracy test and 

(2) delivered dose verification. So far, there is a lack of a deformable phantom 

that also provides dosimetric information for the complete ART QA purpose. 

Therefore, the second goal of this dissertation is to design and fabricate a 

physical deformable phantom tool, which should represent realistic patients' 

anatomy and include in-vivo dosimetry. This phantom tool will be used to verify 

the DIR algorithm accuracy, as well as to serve as an end-to-end QA for ART 

dosimetry.

 

Figure 1.10: UC San Francisco deformable phantoms. (A) A HN phantom. (B) A pelvic 
phantom. 
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2. Computational Quality 

Assurance Tool  

 

2.1 Overview  

 The purpose of a patient-specific plan QA is to identify possible errors 

in the TPS plan dose calculation and in the beam delivery before the treatment 

is actually delivered the patient. The accuracy of plan dose calculation in the 

TPS plays a crucial role in the success of radiotherapy. For instance, an 

inaccurate dose calculation in the treatment planning stage leads to a 

consequently faulty radiation dose delivered to the patient over the entire 

treatment course. Because of the high accuracy of the MC method, it is 

desirable to verify the plan dose calculated by TPS by comparing it with 

another dose independently calculated using the MC method (Yang et al., 

2005; Calvo et al., 2012). Recently, the extension to incorporate machine log 

files into MC dose calculation helps to detect the potential beam delivery 

failure, since the machine log files record all bean delivery information 
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necessary for the reconstruction of the delivered dose (Luo et al., 2006; Teke 

et al., 2010).  

 Yet, MC method is a statistical approach for dose calculations. A large 

number of particles are to be simulated in order to yield a satisfactory level of 

uncertainty. In both of the two aforementioned applications, the long 

computational time of existing MC dose engines limits their applications in 

routine clinics. Recently, with the advancements of graphics processing unit 

(GPU) in general purpose scientific computations, MC simulation codes have 

been successfully developed on the GPU architecture and high speed-up 

factors have been achieved, making the computational efficiency acceptable 

for clinical applications. (Jia et al., 2010; Hissoiny et al., 2011; Jia et al., 

2011a).  

 In this chapter, we will present our researches on the developments of 

a fast and accurate QA computation tool based on a GPU based MC dose 

engine. This tool performs secondary dose calculations to verify the plan dose 

accuracy. It also reconstructs delivered dose using machine log files to ensure 

beam deliverability, as well as to validate the delivery dose accuracy. 

 The rest of this chapter will be organized as follows. Section 2.2 

introduces the MC simulation methods for radiation dose calculations with a 

focus on the GPU based MC dose engine, gDPM. Section 2.3 will present our 

investigations on the effects of statistical uncertainty in MC based dose on a 

commonly used dose comparison matrix, γ-index. To avoid those effects on 
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the γ-index evaluation test, a GPU based denoising method for MC based 

dose calculations is presented in Section 2.4. In Section 2.5, a beam source 

modeling and the commissioning method have been developed particularly for 

this QA computation tool. Additionally, fluence map generation is discussed in 

Section 2.6. A web application for this GPU based MC QA tool is finally 

presented in Section 2.7.  

 

2.2 Monte Carlo Simulation for Dose Calculation  

2.2.1 Basics of Monte Carlo Method for Dose Calculation 

 MC method is commonly considered as the most accurate one for dose 

computation in radiotherapy. This method follows a particle propagation 

through medium step by step based on fundamental physical interaction 

process between the radiation and the matters. A large number of particle 

histories is simulated to provide a description of the average quantities, i.e. 

dose distributions, while reducing the uncertainty to an acceptable level.  

 A brief introduction of photon and electron interactions in the 

radiotherapy energy range is presented here. When a photon propagates 

through the medium, it may be absorbed or scattered by the medium due to 

various physical interactions. There are four main interaction types: Compton 

scattering, photoelectric effect, pair production and Rayleigh scattering. In 
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Compton scattering, the incident photon interacts with a valence electron 

resulting in the ejection of the electron and the emission of a deflected and 

less energetic photon. In the photoelectric effect, all of the incident photon's 

energy is absorbed by an orbital electron which is ejected from the atom with 

kinetic energy equal to the incident photon's energy less the binding energy. In 

pair production, the incident photon is transformed into an electron and a 

positron through interaction with a nucleus. In Raleigh scattering, an atom 

absorbs the incident photon and immediately radiates photon of the same 

energy in a different direction. In the therapeutic photon beam, Compton 

scattering is the dominant interaction in mega-voltage energy range, while the 

Rayleigh scattering occurs with a very low probability and is typically neglected 

in MC simulations.  

 In contrast to photons that interact with the matter in a discrete manner, 

electrons are constantly affected by the surrounding medium due to the long 

range Coulomb interaction. It is computationally prohibitive to simulate all of 

these interactions. Yet, most of these small interactions do no alter the 

electron status significantly. Hence, a "condensed history" technique has been 

proposed to combine these many "small-effect" collisions into  a single, large-

effect, virtual interaction (Berger, 1963) for the purpose of speeding up 

computations. Occasionally, electrons also undergo elastic collisions with 

large deflection angles, and other interactions, e.g. bremsstrahlung and 

inelastic collisions, resulting in loss of energy and excitations and ionizations 
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of the medium. These effects have to be simulated accurately to maintain 

overall calculation accuracy. Secondary electrons, called “delta particles”, are 

also tracked following the same process described above.  

 Over the years, a number of general purposed MC codes have been 

written in radiation therapy, such as EGS4/5 (Nelson et al., 1985; Bielajew et 

al., 1994; Hirayama et al., 2010), EGSnrc (Kawrakow, 2000), MCNP 

(Briesmeister, 1993), PENELOPE (Baro et al., 1995; Sempau et al., 1997; 

Salvat et al., 2009), EGSnrc (Kawrakow, 2000) and GEANT4 (Agostinelli et 

al., 2003). High efficiency dose calculation packages, for instance VMC++ 

(Kawrakow et al., 1996), MCDOSE/MCSIM (Ma et al., 1999; Ma et al., 2002) 

dose planning method (DPM) (Sempau et al., 2000),etc.. have also been 

developed by employing variance reduction techniques or simplify particle 

transport physics. Readers who are interested in this topic are referred to 

multiple references  for a comprehensive review of the simulation techniques 

and variance reduction and efficiency enhancing methods (Larsen, 1992; 

Kawrakow and Bielajew, 1998; Kawrakow, 2000; Ma et al., 2002; Kawrakow et 

al., 2004; Kawrakow, 2005). 

  

2.2.2 GPU Based Monte Carlo Code 

 A straightforward way of boosting MC simulation efficiency is to port the 

MC codes onto parallel computing architectures. For instance, Tyagi et al., 
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(2004) parallelized DPM on a CPU cluster and achieved almost linear speed-

up with the number of processors being used. However, using a CPU cluster 

for dose calculation in clinics are impractical due to the high cost of facility 

deployment and maintain, as well as inconvenience to access.  

 Recently, GPU based high performance computing has offered us a 

new approach to accelerate computational demanding tasks. Originally 

designed for manipulating computer graphics-related operations, GPU is a 

specialized electronic hardware in almost all modern computers. It consists of 

an enormously large number of computational cores as well as dedicated 

memory spaces. A typical hardware structure of a GPU card is shown in 

Figure 2.1. Although the processing speed of each core may not be as high as 

a typical CPU, the total processing power of a GPU is much higher. One can 

typically obtain a Tera flops (float operations per second) on a single GPU 

card, making it a personalized supercomputer on a desktop workstation.  

 In late 2006, NVIDIA introduced Compute Unified Device Architecture 

(CUDA) architecture and tools to make GPU programming straightforward 

(NVIDIA, 2013). A bloom of GPU computing appears after that. In particular, 

GPUs have been employed to successfully accelerate many computationally 

intensive tasks in medical physics (Xu and Mueller, 2005; Sharp et al., 2007; 

Samant et al., 2008; Yan et al., 2008; Men et al., 2009; Gu et al., 2010; 

Jacques et al., 2010; Jia et al., 2010; Men et al., 2010; Gu et al., 2011a; Gu et 
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al., 2011b; Hissoiny et al., 2011; Jia et al., 2011b; Jia et al., 2011a; Townson 

et al., 2013), ranging from image processing to radiation dose calculations. 

 

Figure 2.1: A typical hardware structure of a GPU card. (Image courtesy of NVIDIA) 

 

 One successful GPU based MC dose calculation engine is gDPM (Jia 

et al., 2011a). In this package, each GPU thread simulates one particle 

transport. By carefully designed simulation scheme to separate photon 

transport and electron transport, the so-called GPU thread divergence problem 

is partially relieved, which would severely degrade computational efficiency if it 

is not addressed appropriately. Besides this simulation scheme, hardware 

supported linear interpolation and a high-performance random number 

generator are also utilized to further speed up the MC calculations. With all of 

these novel techniques, gDPM can finish a realistic IMRT or a VMAT plan 

calculation well within a minute, achieving 69-87x speedup compare to CPU 

based dose computations. Please refer to the reference (Jia et al., 2011a) for 

the details of this GPU based MC dose calculation engine. Throughout the 
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whole dissertation, gDPM will be used whenever MC based dose calculation is 

needed.  

 

2.3 Monte Carlo Dose Uncertainty on Gamma-index 

Evaluation  

2.3.1 Overview of Gamma-index Evaluation 

 Dose distribution comparison is a frequently performed task in 

radiotherapy especially for QA tasks, where the degree of agreement between 

an evaluation dose distribution and a reference one is established using some 

quantitative metrics. For example, in a typical plan QA procedure, a treatment 

plan is delivered to a phantom before the actual treatment, and the measured 

dose distribution is compared with the calculated dose distribution by TPS. 

Over the years, several dose comparison methods have been developed, 

including the quantitative dose difference test, the distance-to-agreement 

(DTA) test (Vandyk et al., 1993; Harms et al., 1998), the composite analysis 

for both dose difference and DTA (Shiu et al., 1992; Cheng et al., 1996; Harms 

et al., 1998), the γ-index test (Low et al., 1998; Depuydt et al., 2002; Low and 

Dempsey, 2003; Bakai et al., 2003; Stock et al., 2005; Wendling et al., 2007; 

Ju et al., 2008; Chen et al., 2009; Yuan and Chen, 2010; Low, 2010; Gu et al., 

2011b), and the test based on the maximum allowed dose difference (MADD) 
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(Jiang et al., 2006). Among these methods, the γ-index test is the one most 

commonly used. This method combines quantifications of dose differences 

between two dose distributions in both the dose domain and the spatial 

domain. This allows for the toleration of spatial shifts when comparing the two 

dose distributions, which is clinically acceptable, and avoids an exaggeration 

of dose differences in the area of a high dose gradient. Moreover, the γ-index 

test is quantitatively comprehensible. Based on the user specified criteria, e.g. 

3% for the dose difference criterion and 3 mm for the DTA criterion (3%-3mm), 

the user can judge how good the agreement is based on the value of the γ-

index. The smaller the γ-index value is, the closer the two dose distributions 

are. 

 When we have two dose distributions to be compared,    and   , the γ-

index at a comparison point             is defined mathematically as  

           
  

        

   
 

                

   
 . (2.1) 

Here        is the reference dose distribution at the position    and        is 

the evaluation dose distribution at position   .    and    are dose difference 

and DTA criteria. If the γ-index is equal to or less than 1, the dose at the 

spatial point    is considered to pass the test.  

 The graphical interpretation of the γ-index has been established 

previously (Ju et al., 2008) and illustrated in Figure 2.2(a). Specifically, the γ-

index is defined as the minimum Euclidian distance from the point    to the 
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evaluation dose curve. In practice, the evaluation dose is usually defined at 

discrete spatial locations. To the first order approximation, Ju et al assumed a 

linear interpolation of the dose values between neighboring spatial points, and 

developed a simple and efficient γ-index calculation algorithm. This method is 

widely used nowadays, including the GPU base γ-index algorithm presented 

following.  

 

2.3.1.1 GPU Based Gamma-index Evaluation 

 Due to the interpolation of dose grid and exhaustive search of the 

closest Euclidean distance in dose-distance space, the γ-index algorithm is a 

computational intensive task, especially when dealing with 3D γ-index 

calculations. Gu et al (2012b) implemented the γ-index algorithm on GPU 

using the CUDA programming environment with the geometric method (Ju et 

al., 2008). As opposed to processing data in a serial manner, the search of 

closest Euclidean distance in dose-distance space can be parallelized for a 

large number of reference points and executed simultaneously using multiple 

threads. However, the number of involved evaluation points varies among 

threads depending on the dose difference at each spatial point, leading to 

threat divergence and hence longer computational time. To solve this issue, a 

radial pre-sorting technique (Wendling et al., 2007) has been employed to pre-

sorted the voxels according to the dose difference to make all threads 

simultaneously executed by the GPU have similar computation burdens. This 
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strategy minimizes the divergence between GPU threads, considerably 

increasing computational efficiency.  

 With these techniques, this GPU based γ-index algorithm, gGamma, 

can accomplish a 3D dose comparison within a few seconds, yielding 45–75x 

speedup compared to CPU implementations. We are going to use this code 

for all the γ-index evaluation tasks throughout the whole dissertation. 

 

2.3.2 Motivation 

 In many contexts, especially in QA procedures, the γ-index test is used 

to evaluate the agreement between two dose distributions, where one of them 

is calculated by MC simulations. In addition, in our proposed QA tool workflow, 

we will encounter a situation where two dose distributions to be compared are 

both calculated by MC simulations. However, MC is a statistical method and 

the statistical fluctuation is unavoidable in the resulting dose distributions. This 

fluctuation may have non-negligible impacts on the γ-index values and hence 

lead to biased conclusions from the γ-index test (Low and Dempsey, 2003; 

Low, 2010). This fact is easily understood from the graphical interpretations of 

the γ-index (Ju et al., 2008).  Let us consider a simple case where two 1D 

dose distributions are compared as in Figure 2.2(a). Suppose we plot the two 

dose distributions,   
    and   

    with normalized coordinates      and     , 

where   
    and   

    are the normalized reference dose distribution and the 



33 

 

 

normalized evaluation dose distribution respectively;    and    are DTA and 

dose-difference criteria, respectively. It has been shown that the γ-index value 

at a coordinate  , denoted as   , is simply the minimum Euclidian distance 

from the point    to the evaluation dose distribution, which is graphically 

represented by a circle centered at    such that the evaluation dose 

distribution is tangent to it. Figure 2.2(b) illustrates an example of how the γ-

index value changes due to the MC statistical fluctuations in the evaluation 

dose. Suppose with fluctuations the evaluation dose distribution   
    becomes 

  
     , the new γ-index value   

  could be different from the original one  Similarly, 

Figure 2.2(c) illustrates an example where the γ-index value is affected by the 

MC statistical fluctuations in the reference dose. Considering these scenarios, 

a few key questions need to be answered before comparing two dose 

distributions where MC doses are involved: while the γ-index value apparently 

depends on a specific random realization of the dose distributions, what is the 

impact on average? How significant is this impact on, the clinically more 

important quantity, gamma passing rate? Also, since the γ-index value is not 

symmetric with respect to the two distributions (Low and Dempsey, 2003; Low, 

2010), we have one more question: Is the impact different when the statistical 

fluctuation exists in the reference dose, in the evaluation dose, or in both of 

them?  

 In the next section, we will systematically investigate the impacts of the 

MC statistical fluctuations on the γ-index test. Specifically, we will demonstrate 
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that to the first order approximation, statistical fluctuation in the reference dose 

tends to overestimate γ-index values, while that in the evaluation dose tends 

to underestimate γ-index values when they are within the clinically relevant 

range.  

 

Figure 2.2: (A) Graphical interpretation of the γ-index in 1D. (B) An example 
demonstrating how the γ-index value changes due to MC statistical fluctuations in the 
evaluation dose. (C) An example demonstrating how the γ-index value changes due 
to MC statistical fluctuations in the reference dose. 

 

2.3.3 Theoretical Molding 

 The γ-index value for a particular random realization of  dose 

distributions is essentially a random variable. It is more meaningful to 

investigate how the γ-index test is affected on average, i.e. the average impact 

over all the random dose realizations.  

 

2.3.3.1 MC Statistical Fluctuations in Reference Dose 

 Let us start the theoretical investigations based on the graphical 

representation of the γ-index  (Ju et al., 2008). In Figure 2.3,         is the line 
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segment of the evaluation dose curve,    is the reference point,    is the 

original γ-index value and   parameterizes the deviation due to the statistical 

fluctuation. In this simplified model, the new γ-index value is always the 

minimum Euclidian distance from the point    to the line segment         of 

the evaluation dose curve, not to the other line segment of the evaluation dose 

curve. Here we first introduce the concept of signed-gamma index   , such that 

its magnitude is the radius for a circle centered at the reference point on the 

reference dose and tangent to the evaluation dose curve, but its sign is 

positive if the center of the circle is below the evaluation dose curve (e.g. 

Figure 2.3(a)) and negative if the center is above the curve (e.g. Figure 

2.3(b)). Since the number of particles in the MC simulation is usually very 

large to ensure a small uncertainty level of clinical relevance; and with the 

large number of particles, the dose to a voxel in an MC simulation is 

commonly considered following a Gaussian distribution (Sempau and 

Bielajew, 2000). In this study, we assume that probability density function      

is symmetric around zero. Note that             where   is the angle 

between    and vertical axis, it is straightforward that 

                  
  

  
,  (2.2) 

For the average gamma index,  

     
  

  
                           

  
    
  

                   
  
  

    

.   (2.3) 

Now, subtracting Equations 2.2 and 2.3 leads to  
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  (2.4) 

Since         when   
  

    
, we can conclude that 

      . (2.5) 

 This conclusion is valid for a general symmetric probability density 

function     . It has also been theorized that the statistical fluctuations of the 

dose distribution in an MC calculation, termed as “noise” from here on, follow a 

Gaussian distribution (Sempau and Bielajew, 2000). So in this case, the 

average gamma index is then specified to be 

  
 

     
                

    
   

  
,   (2.6) 

where    is statistical uncertainty value on the reference point. Then the 

Equation 2.6 can be rewritten as  

  
 

     
               

   

   
  

  
    
  

  
 

         
 

     
               

   

   
    

  
    

  (2.7) 

          
  

        
  

 

   
          

   
 

        
 
   (2.8) 

The derivative of Equation 2.8 with respect to    is 

  

   
  

 

 
        

   
 

        
 
 .  (2.9) 

Since 
  

   
  , and when              we get the same conclusion as 

Equation 2.5.   
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 The increase of the average γ-index   can be understood as following. 

When there is a finite deviation  , there are two scenarios resulting different 

impacts on the average γ-index. First, when   is small for the original γ-index 

  , i.e.   
  

    
, the average of the γ-index pair         and          equals   . 

Second, when   is large, i.e.   
  

    
, the average of the pair         and 

         is larger than    due to the flipped sign in one of them caused by the 

absolute value operation. It is the latter scenario that causes the increase of  

 . Hence when the original γ-index value is relatively large for the noise 

standard deviation, the increase of the average γ-index   will be relatively 

small due to the small contributions from the second scenario. 

 

Figure 2.3: (A) and (B) Illustrations of two different contexts where noise is present in 
the reference dose. 

 

2.3.3.2 MC Statistical Fluctuations in Evaluation Dose 

 In Figures 2.4(a) and (b), suppose without noises,         is the line 

segment of the evaluation dose curve. With the MC noises, the line         



38 

 

 

moves. As in the last section, similarly we assume in this simplified model, the 

new γ-index value is only related to the line segment         of the evaluation 

dose curve, not to the other line segment of the evaluation dose curve.    ,     

are the statistical uncertainties on the dose values at the points      and    , 

the average γ-index value   can be calculated as,  

                              
  

  

  

  
, (2.10) 

where   ,        parameterizes the deviation of dose values at the two points 

     and     and          is the probability density function. For some noise 

realizations, the signed-gamma index    may change its sign from positive to 

negative. For instance, in Figure 2.4(a) when both    and    are large negative 

values. However, the probability of this situation is relatively small, given that 

    are small for   . Hence, we first ignore the contributions of γ-indices from 

these situations. The consequence when this contribution cannot be ignored 

will be discussed later. Given this assumption, all    are positive regardless of 

the values of   .  

As for the probability distribution, for the large number of particles 

simulated in an MC dose calculation, we assume that                     . 

When the noises at two points      and     are statistically independent, this 

assumption is apparently valid, as the noise distribution at each point is 

symmetric about zero. In reality, there exist correlations of noises between 

these two points. This correlation is caused by an electron track that passes 
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through the two voxels. In one MC simulation, the number of electron tracks 

simultaneously passing the two voxels fluctuates about its average, and the 

probability of having more tracks is equal to that of having less tracks. Hence 

our assumption is still valid. Under this assumption, we can rewrite Equation 

2.10 as 

  = 
 

 
                                

  

  

  

  
        . (2.11) 

From Figure 2.4(c), we further separate the integral domain into four different 

quadrants, 

  
 

 
                    

  

 
                         . (2.12) 

Since the integrals in the domain    and    equal to those in the domain    and 

   , respectively, Equation 2.12 reduces to 

                       

 
                          . (2.13) 

Figure 2.4(a) illustrates the context when    and    are both positive (in domain 

  ). Suppose    
     

  and    
    

  are the new evaluation dose lines, such that 

      
  and       

   are of the same length, similarly       
  and       

  are of 

the same length, and           is represented as     while             is    . 

    is the original γ-index     If we set CF     
     

 , we have 

                  . (2.14) 

Since                    and                  , combining with 

Equation 2.14, we can get  
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                            (2.15) 

Moreover                   . From the geometric relationship, we also 

have                    and                 . Hence, 

                              . (2.16) 

This indicates that 

                                             
≤                        

  (2.17) 

Similarly, Figure 2.4(b) illustrates a context where    is negative and    is 

positive (in domain   ).             is represented as     while             is 

   .     is the original γ-index   . With a similar derivation, we can generate 

the same conclusion as Equation 2.17.  

                                             
≤                      

  (2.18) 

Combine Equation 2.13, 2.17 and 2.18, we then have 

                            

 
        (2.19) 

Since                      

 
     , we can conclude that   

       (2.20) 

 This indicates that the presence of noise will lead to an underestimation 

of the γ-index value. It is important to note that when the probability for 

negative signed γ-index           is not negligible, i.e. when the noise standard 

deviation is relatively large for the original γ-index value, Equation 2.20 is no 

longer valid. The simplest case is when the reference dose distribution is the 
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same as the evaluation dose and γ-index values are all zero. In this case, the 

MC noise in the evaluation dose distribution leads to an overestimation of γ-

index values. However, as later shown in our numerical experiments, this 

situation is not clinically relevant because it only happens when the original γ-

index values are very small and their variation due to the MC noise does not 

affect the γ-index passing rate. 

 

Figure 2.4: (A) and (B) Illustrations of two different contexts where noise is present in 
the evaluation dose. (C) Split of the integration domain for Equation 2.11. 

 

2.3.4 Numerical experiments 

 To validate the theoretical model, we conducted numerical experiments 

on two realistic clinical cases: a 7-beam IMRT prostate plan and a 2-arc VMAT 

HN plan. To study the effect of using an MC dose as the reference dose or the 

evaluation dose in γ-index tests, a non-MC dose distribution and a set of MC 

dose distributions at various   levels (including zero   level) are required for 

each clinical case. For the non-MC dose, we used the dose distribution in the 
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patient plan extracted from a commercial TPS (Eclipse, Varian Medical Inc., 

Palo Alto, CA) which was computed using the Analytical Anisotropic Algorithm 

(AAA). The resulting dose from the Eclipse system is at a resolution of 

2.5×2.5×2.5mm3 and interpolated to the MC dose resolution of 

1.953×1.953×2.5mm3. The AAA algorithm is an analytical algorithm hence 

there is no noise in the dose. To get the set of MC dose distributions, we first 

extracted the MLC leaf sequences of all beam angles from the patient plan. 

Using different number of particle histories in the simulation, the dose 

distributions of various   level were calculated on the patient geometry using 

the GPU based MC dose engine, gDPM. We define the term   level as the 

average   value normalized to the maximum dose      within regions of dose 

values higher than 50% of      (VOI50%). The dose distributions with   level of 

0.5%, 1%, 1.5%, and 2% were calculated, which are the most clinically 

relevant noise levels for MC dose calculations. An additional dose distribution 

of   level of 0.2% was also computed and a de-noising technique was 

performed across the special domain so that de-noised dose was considered 

to be the MC dose with zero noise level. The details of this denoising 

technique is presented later. 

 We would like to point out that the beam parameters in the gDPM code 

were not purposely tuned to match the Eclipse results. To analyze the 

situation when both the evaluation and reference doses are generated by the 

MC method, another set of MC dose distributions at various   levels (including 
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zero   level) is desired. For this set of MC doses, we used the same MC dose 

engine gDPM, but shifted the isocenter position of all beams by 3mm to the 

patient's left, posterior, and superior directions, respectively, to simulate the 

dosimetric effects due to a set up error in a clinical situation.  

 To study the impact of the MC noise on the γ-index value, we first 

needed to conduct a base comparison between the non-MC dose and the MC 

dose with zero   level; the resulting γ-index values of a selected group of 

voxels are treated as the base values. Then the γ-index results for the same 

voxels were followed when the non-MC dose is compared with the MC doses 

of increasing   levels. These voxels are selected as the ones with more 

clinical relevance. Since the passing rate within a region of interest (ROI) is 

the most common criteria used to compare two dose distributions, we focused 

on a range of γ-index values that contribute to the calculation of the gamma 

passing rate. We also noticed that the behavior of average γ-index variation 

due to the MC noise is similar for close γ-index values. Thus, based on the 

base comparison, we selected four groups of voxels in the reference dose 

distribution with γ-index values from value 0.6 to 0.8 (0.6, 0.8), from value 0.8 

to 1 (0.8, 1.0), from value 1 to 1.2 (1.0, 1.2), and from value 1.2 to 1.4 (1.2, 

1.4). For each group of voxels, we followed the variation of the average γ-

index value with the increase of the   level in the MC dose distribution. 

Furthermore, the γ-index passing rates were also reported for each 

comparison between the non-MC dose and the MC dose. In this study, in 
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addition to VOI50%, we also selected another ROI where dose values were 

higher than 10% of      (VOI10%). 

 Since the MC noise is a random variable, for the comparison at each   

level, we repeated the γ-index test ten times for ten different random 

realizations of the dose distributions to get the mean of the γ-index test results. 

And during our experiments, all dose distribution comparisons were performed 

using the GPU based fast γ-index algorithm, gGamma. 

 

2.3.5 Experiment Results 

2.3.5.1 MC reference dose vs Non-MC evaluation doses 

 To study the effect of using an MC dose as the reference dose in γ-

index tests, we treated the set of MC doses as the reference doses and the 

non-MC dose as the evaluation dose. Figures 2.5 (A) and (B) show the 

average γ-index values of voxels whose original γ-indices fall within the range 

of (0.6, 0.8), (0.8, 1.0), (1.0, 1.2) and (1.2, 1.4) as functions of the   level in the 

reference dose (         ) for both prostate and HN cases. For Figures 2.5(A) and 

(B), we used the most common clinical γ-index test criterion: 3%-3mm. We 

can see that the average γ-index value within each group slightly increases 

with          . Figures 2.5 (C) and (D) show the passing rate within VOI50% and 

VOI10% as function of           for two different γ-index test criteria: 3%-3mm and 

2%-2mm. It is noted that, although the average γ-index value does not change 
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much, the gamma passing rate decreases significantly with the increase of the 

  levels in the reference dose, especially for VOI50% for these two clinical 

cases. 

 To better understand the effect of the MC noise on the gamma passing 

rate, we examined the voxels that contribute to the gamma passing rate 

calculation. We defined Type-I voxels as those with γ-index values larger than 

one in the base comparison when the MC   level is zero and γ-index values 

smaller than or equal to one when the MC   level is 2%. Type-II voxels are 

those with the opposite situation, i.e., γ-index values increasing from below or 

equal to one to above one when the   level increases from zero and 2%. 

Since the MC noise is a random variable, for a γ-index test with a random 

realization of the MC dose distribution, a particular voxel with the γ-index value 

around one can be either Type-I or Type-II. However, when running the γ-

index test for many random realizations of the MC dose distributions, this 

voxel will have more chance to be Type-II than Type-I when using the MC 

dose as the reference dose. Table 2.1 summarizes the average percentages 

of Type-I and Type-II voxels within two ROIs for two comparison criteria after 

running the γ-index test for 10 different random realizations of the MC 

reference dose distributions. It is noted that percentage of Type-II voxels is 

higher than that of Type-I. The net effect, Type-II percentage minus the Type-I 

percentage, is equal to the change of the gamma passing rate with the MC 

dose of 2%   level, as shown in Figures 2.5 (C) and (D). 
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Figure 2.5: Average γ-index and gamma passing rate as functions of   level in the 
reference dose for MC reference doses vs non-MC evaluation dose. (A) and (C) 
Prostate case. (B) and (D) HN case. 

 

Table 2.1: Percentages of Type-I and Type-II voxels within VOI50% and VOI10% for MC 

reference doses of 2%   level vs the non-MC evaluation dose with 3%-3mm and 2%-
2mm criteria. 

Clinical case Prostate HN 

Criteria 3%-3mm 2%-2mm 3%-3mm 2%-2mm 

ROI VOI50% VOI10% VOI50% VOI10% VOI50% VOI10% VOI50% VOI10% 

Type-I Voxels (%) 1.09 0.23 5.92 1.19 0.33 0.30 2.24 1.04 

Type-II Voxels (%) 10.31 2.87 12.27 6.70 7.31 2.04 11.93 5.14 

Type-II – Type-I (%) 9.22 2.64 6.35 5.51 6.98 1.74 9.69 4.10 
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2.3.5.2 Non-MC reference dose vs MC evaluation doses 

 To study the effect of MC noise in the evaluation dose in γ-index tests, 

we treated the non-MC dose as the reference dose and the set of MC doses 

as the evaluation doses. Figures 2.6 (A) and (B) show the average γ-index 

values of voxels whose original γ-indices fall within each range as functions of 

the   level in the evaluation dose (          ) for prostate and HN cases. The 

average γ-index value within each group decreases dramatically with           . 

Figures 2.6 (C) and (D) show, for two different γ-index test criteria, 3%-3mm 

and 2%-2mm, the passing rate within VOI50% and VOI10% as function of           . 

We observed that, the gamma passing rates saturated for 3%-3mm criterion, 

while the gamma passing rates for 2%-2mm criterion increases with the 

increase of           , especially for VOI50%. Table 2.2 summarizes the average 

percentage of Type-I or Type-II voxels within the ROIs. For the non-MC 

reference dose vs the MC evaluation dose of 2%   level, the percentage of 

Type-I voxels is higher than that of Type-II which means that, statistically, 

there are more voxels where the γ-index value sinks below one than voxels 

where the γ-index value rises above one. The net difference between Type-I 

percentage and Type–II percentage, is the same as the change of the gamma 

passing rate with the MC dose of 2%   level, shown in Figures 2.6 (C) and 

(D). 

 In Section 2.3.3.2, we have noticed that, when the statistical standard 

deviation in the MC evaluation dose distribution is relatively large for the 
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original γ-index value, the γ-index value will be overestimated on average due 

to the noise. Figures 2.7 (A) and (B) show the average γ-index value of voxels 

with small original γ-index values, ranging from 0.1 to 0.24, as functions of 

           for the prostate and HN cases. From Figure 2.7 we can see that when the 

original γ-index value is large enough, i.e. larger than 0.2, the average γ-index 

decreases with            (shown in blue and dashed lines); however, when the 

original γ-index value is very small, i.e. smaller than 0.14, the average γ-index 

increases with            (shown in green and dotted lines). For the in-between 

original γ-index value, the average γ-index first decreases and then increases 

with            (shown in red and dashed/dotted lines). We would like to point out 

that voxels with this range of original γ-index values do not contribute to the 

passing rate change.  

 

Table 2.2: Percentages of Type-I and Type-II voxels within VOI50% and VOI10% for the 

non-MC reference dose vs MC evaluation doses of 2%   level with 3%-3mm and 2%-
2mm criteria. 

Clinical case Prostate HN 

Criteria 3%-3mm 2%-2mm 3%-3mm 2%-2mm 

ROI VOI50% VOI10% VOI50% VOI10% VOI50% VOI10% VOI50% VOI10% 

Type-I Voxels (%) 0.50 0.09 7.20 1.22 0.510 0.097 3.63 1.06 

Type-II Voxels (%) 0.02 0.01 0.48 0.20 0.004 0.003 0.38 0.16 

Type-I – Type-II (%) 0.48 0.08 6.72 1.02 0.506 0.094 3.25 0.90 
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Figure 2.6: Average γ-index and gamma passing rate as functions of   level in the 
evaluation dose for non-MC reference dose vs MC evaluation doses. (A) and (C) 
Prostate case.  (B) and (D) HN case. 

 

  

Figure 2.7: Average γ-index as functions of   level in evaluation dose for non-MC 
reference dose vs MC evaluation doses. (A)  Prostate case.  (B) HN case. 
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2.3.5.3 MC reference dose vs MC evaluation dose 

 To analyze the situation when both the evaluation and reference doses 

are generated by the MC method, we considered the set of MC doses as the 

reference doses and the other set of MC doses with the shifted isocenter as 

the evaluation doses. Figure 2.8 shows the color maps of the gamma passing 

rate in high dose region VOI50% under 3%-3mm criterion. The  -axis is the 

  level in the evaluation dose, while the  -axis is the   level in the reference 

dose. The values at origin of the two maps are the base value with zero   level 

in both reference and evaluation doses. Along the  -axis, the results 

correspond to the cases for the non-MC reference dose versus MC evaluation 

doses, same as in Figures 2.6 (C) and (D). Along the  -axis, the results 

correspond to the cases for MC reference doses versus the non-MC 

evaluation dose, same as in Figures 2.5 (C) and (D). The black lines in Figure 

2.8 illustrate iso-value lines on which the passing rate is the same as the base 

value for MC doses of zero   level. The iso-value line splits the map into two 

regions: the upper-left region, where the MC noise level is relatively high in the 

reference dose leading to the underestimation of the gamma passing rate, and 

the lower-right region, where the MC noise level is relatively high in the 

evaluation dose leading to the overestimation of the gamma passing rate. The 

shape of iso-value line and the way that it splits the map are case-dependent. 

When both doses are the MC doses, we redefine Type-I voxels as those with 

γ-index values larger than one when the   level is zero in both the evaluation 
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and the reference doses and less than or equal to one when the   level is 2% 

in both doses; Type-II voxels are those with the opposite situation, i.e., γ-index 

values increasing from below or equal to one to above one when both   levels 

increase from zero and 2%. From Table 2.3, the average percentage of Type-I 

is higher than the percentage of Type-II voxels and the net contribution 

matches with the increased gamma passing rate in the right upper corner with 

2%   level in both reference and evaluation doses. 

 

   

Figure 2.8: The color maps of gamma passing rate within VOI50%  as functions of 

  level in the reference and evaluation doses for MC reference dose vs MC evaluation 
dose with 3%-3mm criterion. (A)  Prostate case.  (B) HN case. 
 
 
 
Table 2.3: Percentages of Type-I and Type-II voxels within VOI50% for the MC 

reference dose of 2%   level vs the MC evaluation dose of 2%   level with 3%-3mm 
criterion. 

Clinical case Type-I Voxels (%) Type-II Voxels (%) Type-I – Type-II (%) 

Prostate 7.80 3.91 3.89 

HN 6.54 4.39 2.15 

 



52 

 

 

2.3.6 Discussion and Conclusion 

 In this section, we have first demonstrated in a simplified 1D model that, 

to the first order approximation, MC statistical fluctuation in the reference dose 

tends to overestimate the γ-index, while that in the evaluation dose tends to 

underestimate the γ-index when the original γ-index value is relatively large. 

To validate the theoretical conclusions, we conducted numerical experiments 

on two clinical cases: an IMRT prostate case and a VMAT HN case. We 

focused on voxels with clinically relevant γ-index values in the absence of 

noise, range of 0.6 to 1.4, and found that when performing γ-index tests 

between an MC reference dose and a non-MC evaluation dose, the average γ-

index is overestimated but the change is not significant. Second, when 

performing γ-index tests between a non-MC reference dose and an MC 

evaluation dose, the average γ-index is underestimated and decreases with 

the increase of noise level in the evaluation dose. This is doubly confirmed by 

the blue dashed curves in the Figure 2.7. When the original γ-index value    is 

larger than 0.2, the average γ-index monotonically decreases with the 

increase of the noise level. For the green dotted curves in the Figure 2.7, 

when the    is smaller than 0.14, the average γ-index increases with the noise 

level. For those cases with    lying in between the above two limits, the 

average γ-index first decreases when the noise level is low and then 

increases. Nonetheless, in the latter two situations, the changes of γ-index 

values due to the MC noise are not expected to considerably impact the 
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gamma passing rates, since the small original γ-index values are much 

smaller than one. Hence these two situations are not clinically relevant. 

 The change for the gamma passing rate within the ROI due to the MC 

noise is most relevant for the clinical applications of γ-index test. In the 

experiment, we defined two quantities, percentage of Type-I voxels and 

percentage of Type-II voxels and we found the following. (1) When performing 

γ-index test between an MC reference dose and a non-MC evaluation dose, 

the gamma passing rate decreases with the increase of the statistical noise 

level in the reference dose. (2) When performing γ-index test between a non-

MC reference dose and an MC evaluation dose, the gamma passing rate 

increases with the increase of the noise level in the evaluation dose. In these 

two situations, the magnitude of the change of gamma passing rate when 2% 

  level exists in the MC dose equals to the difference between the percentage 

of Type-I and that of Type-II voxels. (3) When the reference dose and the 

evaluation dose are both MC doses, the gamma passing rate increases when 

the statistical noise in the evaluation dose increases. It decreases when the 

statistical noise in the reference dose increases. Considering again the 

correlation between the neighboring voxels in the MC evaluation dose, this 

effect on the γ-index is usually local in the spatial domain. However, since the 

gamma passing rate is a statistical overall effect from all the voxels within the 

ROI, the local effect will be smeared out in the whole ROI. 
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 For the two clinical cases we have tested, the effect on the gamma 

passing rate is quite significant. Taking the 3%-3mm test criterion as an 

example, when there exists 2% MC   level in the reference dose, the gamma 

passing rate in VOI50% drops from 97.5% to 88.3% and in VOI10% from 99.4% 

to 96.8% for the prostate case. For the HN case, the gamma passing rate in 

VOI50% drops from 97.7% to 90.7% and in VOI10% from 98.6% to 96.9%, 

respectively. On the other hand, when 2% MC noise level exists in the 

evaluation dose, the resulting increase of the gamma passing rate is not 

significant under the 3%-3mm criterion. This is because the passing rate is 

already very close to one in the absence of noise for this relatively loose 

criterion. However, the changes are more obvious under 2%-2mm criterion. 

Especially in VOI50%, it increases from 91.9% to 98.6% for the prostate case 

and from 95.3% to 98.5% for the HN case. Based on our theoretical and 

numerical results, we conclude that great caution is needed when dealing with 

MC doses in γ-index tests. The MC statistical fluctuation effect should be 

considered when analyzing the γ-index test results to avoid biased 

conclusions. 
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2.4 Denoising for Monte Carlo Based Dose  

2.4.1 Overview of Monte Carlo Based Dose Denoising 

 Besides the effects of statistical uncertainty in MC based dose 

calculations on γ-index evaluation tests studied in the last section, the impacts 

of noise on other treatment plan evaluation criteria have also been examined 

(Keall et al., 2000; Buffa and Nahum, 2000). These studies indicate that it is 

necessary to reduce the MC noise to a certain level to avoid any bias when 

MC calculated doses are involved. A simple way to reduce the statistical 

fluctuations in MC based dose calculation is by performing the MC simulation 

with a very large number of particle histories. Yet, this is generally impractical 

in routine clinics due to the long computation time especially before the 

advancements of fast MC algorithms.  

 Another possibility is to post process the MC based dose by removing 

or reducing the statistical uncertainty using a smoothing or denoising 

algorithm. A powerful denoising algorithm estimates the true dose distribution 

based on MC simulation results with reduced number of particle histories. It 

hence improves the computational efficiency. In the past, many research 

groups have been devoted to develop denoising methods. Such methods 

include image digital filtering (Deasy, 2000), wavelet thresholding (Deasy et 

al., 2002), adaptive anisotropic diffusion (Miao et al., 2003), content adaptive 
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median hybrid filtering (El Naqa et al., 2003) and denoising based on an 

optimization problem (Fippel and Nusslin, 2003; Le et al., 2007a).  

 The denoising algorithms are typically well suited for the GPU 

architecture, because the voxels data can be divided into different GPU 

threads and the executions can be conducted at the same time. To our 

knowledge, however, no work has been done to develop a denoising algorithm 

for MC based dose distributions on GPUs. In light of this, as well as the needs 

of reducing MC noise in the calculated dose distributions to avoid bias in dose 

evaluations, we have also developed a denoising module in our computational 

QA tool. In addition to the GPU implementation, a novel model taking into 

consideration the noise property is also invented.  

 

2.4.2 Denoising Algorithm 

 It has been well known that the noise signal        at a voxel in a MC 

based dose distribution follows a Poisson distribution. With this knowledge, we 

propose to estimate the true dose value      by solving an optimization 

problem 

                      

                         
 

 
                       

(2.21) 

     is the objective function where the first term is a data-fidelity term 

considering the Poisson noise (Le et al., 2007) and the second term is a 
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penalty term to ensure the smoothness of the de-noised dose     .   is a 

parameter to control the relative importance between the two terms.  

 Since this is a convex objective function with a nonnegative constraint, 

we employ a well-known gradient projection method (e.g.(Bazaraa et al., 

2006)) to solve this problem. At each iteration the new solution is given by  

                     ,  (2.22) 

where   denotes the projection of the dose onto the feasible set and     

denotes the step size at iteration  . Specifically, the non-negativity constraint 

is handled by 

                                    .  (2.23) 

 To obtain the step size    , we combine the Barzilar-Borwein method 

(Barzilai and Borwein, 1988) with the Armijo's line search rule (Armijo, 1966). 

The line search starts with an initial step size   , which is calculated using the 

formula from the Barzilar-Borwein method.  After updating the solution with 

this step size using Equation 2.22, if the new objection function is less than a 

threshold   , we will accept this step size and update the solution. Otherwise 

the step size is decreased by a factor   >1. This process is repeated until the 

threshold objective function value is met. Since the line search direction is the 

negative gradient direction, the Armijo's rule gives an expression for the 

threshold as follows with 0<   <1: 

         
 

 
                    . (2.24) 
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We iterate this process to minimize the objective function. The iteration 

process is terminated when the relative decrease of the objective function 

between two successive steps  is less than a user defined value  , 

                            , where       . (2.25) 

The entire algorithm is summarized as following: 

Initialization: Set initial solution       ; Select parameters     . 

Main loop: 

       1. Set          ; 

       2. If          
   

        
   

           else 

                            ,             ; 

                      

    
     

    
     

          

    
     

    
     

          

 ;  

           End if 

                               

       3. If            , go to step 5; else go to step 4. 

       4.   
 

 
;                   ; go to step 3. 

       5.                             , stop; else k=k+1, go to step 1. 

  



59 

 

 

 Figure 2.9 illustrates the flow chart of our GPU implementation of this 

algorithm. The major computations shown in the grey boxes are parallelized 

on GPU, e.g. objective function evaluation, gradient calculation, and smoothed 

dose update. Only those simple arithmetic operations shown in the white 

boxes run on the CPU side. The utilization of GPU greatly enhanced the 

computational efficiency.   

 

Figure 2.9: Flow chart of our GPU based denoising algorithm. Grey boxes denote 
CUDA kernels and white boxes denotes C code on CPU. 
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2.4.3 Numerical Experiments 

 To verify the accuracy of this denoise algorithm, we conduct numerical 

experiments using two realistic clinical cases: a 7-beam IMRT prostate plan 

and a 2-arc VMAT HN plan. For each patient cases, first we simulate the MC 

dose distribution using the GPU based MC code, gDPM with a very large 

number of particle histories, such that the   level, defined as average 

uncertainty value normalized to the maximum dose      within the 50% 

isodose line, is less than 0.15%. This dose distribution is considered as the 

ground truth dose distribution, MCg. The noisy MC dose, MCn is obtained by 

the same MC code, such that the defined   level is around 2.0%. Then the 

denoising algorithm is applied to the MCn to obtain the denoised result, MCs. 

Three test criteria, maximum dose difference, root-mean-square difference 

(RMSD) and the visual inspection of iso-lines and dose profiles, are used to 

evaluate the denoise algorithm's performance by comparing MCn and MCs 

with the ground truth MCg, respectively (Kawrakow, 2002). The maximum 

dose difference       and the RMSD are reported in a unit of       of MCg. 

The spatial resolution of all MC dose cases is 1.953×1.953×2.5mm3.  
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2.4.4 Experiment Results 

 Table 2.4 summarizes the values for maximum dose difference       

and RMSD results. For both the prostate and the HN patient cases, a 

significant decrease on the maximum dose difference and the RMSD is 

observed in the smoothed dose distribution compared to the noisy dose. 

Figure 2.10 and Figure 2.11 show the iso-lines for the ground truth, the 

smoothed and the noisy dose distributions in the central transversal slices of 

the prostate and the HN patients. Corresponding dose profiles are also 

plotted. The improvements via the denoising approach is obvious. In 

particular, the iso-lines and the dose profiles of the denoised dose are almost 

the same as those of the ground truth dose and no essential information is lost 

by the denoising process. 

 The MC simulation time    and    for MCg and MCn together with the 

running time for smoothing process     are summarized in Table 2.5. The 

denoise process takes only a couple of seconds to obtain the smoothed dose 

distribution. The time        represents the time required to obtain a dose 

distribution that has very low   level. Compared to the time    necessary to 

yield a dose with the same level of uncertainty but from full and long MC 

simulations, the denoising method effectively improves computational 

efficiency considerably without sacrificing result accuracy.  
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Table 2.4: Maximum dose difference and RMSD for smoothed dose distributions and 

doses with 2%   level compared with ground truth dose distributions. 

Patient case                RMSD          

 MCg vs. MCn MCg vs. MCs    MCg vs. MCn MCg vs. MCs    

HN 5.04 0.37 0.37 0.17 

Prostate 6.20 1.05 0.46 0.26 

 

 

 

 

 

Table 2.5: Computational time for simulating ground truth and dose with 2%   level  
using gDPM and denoising. 

Patient case Volume size   (sec)    (sec)    (sec) 

HN 256×256×186 3224 35.6 2.7 

Prostate 256×256×160 2534 27.8 1.8 
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Figure 2.11: Dose profiles. (A) HN case and (B) Prostate case. 
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2.5  Monte Carlo Source Modeling  

 Another module necessary for our computational QA tool is source 

model in a MC simulation. Without an accurate characterization of a LINAC 

source in a MC dose calculation process, the sampled photon from the LINAC 

cannot represent the clinical realism and hence the resulting dose accuracy is 

deteriorated. In this section, we will first briefly discuss dosimetric properties of 

a clinical photon beam in radiation therapy. Then we will present our 

researches towards the development of a simple yet practical LINAC source 

model specifically for the QA purpose.  

 

2.5.1 Dosimetric Properties of Photon Beams 

 Figure 1.2 illustrates the LINAC beam head components for the 

production of X-ray with LINAC machines. The major component of the output 

radiation beam is a source of primary photon radiation that is produced directly 

from the target without any intermediate interactions. Meanwhile, an extrafocal 

scattered radiation is generated by the primary photon interacting with the 

LINAC head components. In addition, the contaminating charged particles, 

e.g. electrons, are also released in these interactions.  

 The range of the contaminating charged particles is fairly short, and 

hence their contribution to the absorbed dose inside a patient is only within the 

first 1-2cm from the surface. Since a photon beam is primarily used to treat 
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deeply seated tumors, the dose contributions from the contaminating electrons 

can be safely ignored. Inside a patient, the dose is deposited through photon 

interacting with the medium. Primary dose denotes the dose deposited by the 

charged particles released from the interactions of the incident primary photon. 

Scattered dose denotes the dose deposited by electrons released from the 

scattered photons. Depending on the source of the scattered photon, the 

scattered dose can be further divided into head scattered if the scattered 

photon is produced in the LINAC head or the phantom scatter if the photon is 

scattered inside the  medium. 

 Since it is hard to measure the dose directly inside a patient or in-air, a 

water phantom which has close radiation absorption and scatter properties to 

real patients is always utilized to qualify the dosimetric properties of a photon 

beam. The most common quantity defined is called percentage depth dose 

(PDD), that characterizes the dose variation along the central axis of the beam 

in the water phantom. It is defined as a percentage of the dose at any depth   

to the dose at a fixed reference depth   . Usually the reference depth is 

chosen at the depth of the maximum dose     .  A typical PDD curve for a 6 

MV photon beam in a homogenous water phantom is shown in Figure 2.12. 

The dose rise from a relative low value at the surface to the maximum value at 

    . This region is referred to the buildup region. This is due to the fact that 

the ejected electrons by incident photons at the surface or at the shallow depth 

travel along a forward direction. The increased electron density with increase 
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depth lead to elevated dose levels. After the buildup region, the dose 

decreases with the depth because of the photon beam attenuates. The depth 

of      and the shape of PDD curves depend on the beam energy, filed size 

and source to (phantom) surface distance (SSD), etc.. 

 Figure 2.13 plots dose profiles at different depths, i.e. 5cm, 10cm and 

20cm, for a typical 6MV photon beam with 40x40cm2 open field. The profile 

has three regions: plateau, penumbra and umbra. The flattening filter in the 

LINAC head is designed to attenuate the forward peaked photon beam 

ejected from the LINAC target more in the center than in the periphery region, 

so that the plateau (central region of the beam) is relatively uniform at 10cm in 

water. However because of different level of beam hardening and scattering at 

different depths, the profiles are over flattened at shallow depths (i.e. 5cm) and 

exhibit horns in the plateau near the field edge. Penumbral is usually defined 

as the region between the 80% and the 20% dose level of the central axis 

value, which is contributed mainly by scattered dose. Umbra is the region far 

from the radiation field edge where the dose is ascribed to the scatter photons, 

as well as the radiation transmitted from the LINAC head. 

 The third important quantity is beam output factor. For a given field size, 

it is defined as the ratio of the dose on the central axis at the reference depth 

to the dose for the reference field size under the same geometry condition. In 

most of cases, 10x10cm2 is referred to as the reference field size. A typical 

6MV photon beam output factor curve is depicted in Figure. 2.14. The 
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monotonically increasing trend of the curve is due to more and more head 

scatter and phantom scatter, as the field size is increased.  

 

Figure 2.12: A typical PDD curve for a 6MV photon beam. 
 

 

Figure 2.13: Dose deposition profiles at difference depths for a typical 6MV photon beam. 
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Figure 2.14: Beam output factor curve for a typical 6MV photon beam. 

 

2.5.2 Overview of Monte Carlo Source Modeling 

 In an MC simulation for dose calculation, the overall accuracy is 

determined by the accuracy of LINAC beam source model and that of particle 

transport inside the patient. Therefore, developing a source model and 

commissioning it against a specific LINAC are important for implementing the 

MC based dose calculations for clinical use (Jiang et al., 2000; Deng et al., 

2003). Several types of source models and the associated commissioning 

methods have been developed over the years. (1) Direct use of a phase-space 

file generated from LINAC head simulations. A phase-space file stores 

information of output particles from the LINAC head, including particle type, 

energy, position, direction, progeny and weights. Direct use of a phase-space 

file has the potential to provide the most accurate beam characteristic and has 
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been employed by many popular CPU based MC dose calculation tools such 

as DOSXYZnrc (Walters et al., 2005), MCNP (Siebers et al., 1999), some 

versions of VMC++ (Gardner et al., 2007) and the GPU based, gDPM 

(Townson et al., 2013). The phase-space file is usually generated by another 

full MC simulation by simulating the physical process inside a LINAC head. 

This simulation is time consuming and requires detailed knowledge about the 

specific LINAC head geometry and materials, which may not be available to 

normal clinical users. (2) Phase-space-derived multiple-source models with or 

without enhancement from measurements (Ma et al., 1997; Ma, 1998; von 

Wittenau et al., 1999; Deng et al., 2000; Fix et al., 2004; Davidson et al., 

2008). These models divide the whole source model into different sub-

sources, where the energy spectrum and particle fluence are derived from a 

phase-space file. However, this approach depends on the availability of a 

phase-space file for the LINAC. (3) Measurement based analytical or hybrid 

models (Jiang et al., 2001; Fippel et al., 2003). In these models, energy 

distributions and direction distributions are expressed in certain functional 

forms and parameters in these functional forms are tuned to match calculated 

data with measurement data in a commissioning process. Nonetheless, the 

commissioning process usually requires a large set of measurement data 

which are tedious to obtain. In addition, tuning the parameters usually requires 

solving a highly nonlinear and non-convex optimization problem, making it 

hard to control the algorithm convergence and numerical stability. 
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2.5.3 Our Source Model and Commissioning Method 

 We approach the source modeling and commissioning problem from a 

different angle compared to a mentioned available methods. For a QA 

purpose, identifying significant or catastrophic errors are most important and 

hence a few percents of error in source modeling is tolerable. The simplicity of 

the model is also important to ensure its practicality, as a clinical user may not 

have the expertise to finely tune the model. As such, we have proposed a 

practical point source model in the GPU based MC QA tool. Three main 

factors are considered in our model. (1) a source energy spectrum is used to 

tune the dose deposition behavior along the depth direction. (2) a beam 

fluence is used to modulate the dose along the lateral direction, particular the 

"horn effect". (3) The omitted scatter component in the source model leads to 

incorrect beam output, which is compensated by an output correction factor.  

All of those parameters in this source model are derived from a minimum 

number of clinical measurement data.  

 As for the commissioning process, it should be accomplished semi-

automatically and requires no knowledge about the LINAC head geometry 

details. This makes it easy for the normal clinical personals to adopt it for 

various versions of the LINAC machines. Hence, we proposed a 

commissioning process associated with our beam model as following. (1) It is 

known that under a reference condition the shape of PDD curve in water 

phantom mainly depends on the energy spectrum. Therefore, we first evenly 
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divide a full energy spectrum into different energy bins. Then compute dose in 

water from a point source with a uniform photon fluence for different energy 

bins.  When it comes to the dose for a full energy spectrum case, it is simply a 

sum of the doses from those energy bins weighted by the factors associated 

with the bin. Hence, the energy spectrum is derived by adjusting the weighting 

factor for each energy to match the resulting PDD with the measured one. (2) 

We partition the beam front with a 2D rectangular grid and each of the grid 

space is called a beamlets. Once the spectrum is determined, We first 

compute dose from each beamlet with the previously commissioned spectrum 

considered. Then for a beam with a nonuniform photon fluence, the total dose 

is a sum of the doses from all beamlets weighted by the factors associated 

with those beamlets. These factors can be obtained by matching the dose 

profiles at several depths with the corresponding measured ones. (3) Lastly, to 

correct the output factors, we compute the output factor for various field size 

using the previously commissioned spectrum and fluence factors. We also 

measure real beam output factors in water. The ratio of the measured output 

factor to the calculated factor at each field size is the correction factor.   

 

2.5.4 Implementation Details 

 There are two parts of input data required to conduct our 

commissioning procedure. One part is a small set of standard beam 
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measurement data, such as PDD and lateral profiles, which already exist at 

the commissioning stage of the LINAC beam. At UCSD, the beam 

commissioning is performed using a homogeneous water tank with 100cm 

SSD setup. The data we need is the PDD curve for the reference field size 

10x10cm2, dose profiles at different depths for open beam of 40x40cm2 field 

size, as well as the beam output factor for square fields of various sizes.  

 The second part of input data are the MC pre-calculated beamlet PDDs 

and dose profiles. In our implementation, we evenly divide the 2D 40x40cm2 

beam front into a grid of small beamlets with 1x1cm2 resolution, and divide the 

energy range of a 6MV beam into 10 energy bins, i.e. [0MeV,0.66MeV], 

[0.66MeV,1.32MeV],..., [5.96MeV,6.6MeV]. We pre-calculated the dose 

deposition in a water phantom for each energy bin at each beamlet location 

using the MC dose engine gDPM. In all of these calculations, the resolution of 

the water phantom is 0.5 0.5 0.5cm3 and the phantom is set at 100cm SSD. 

With the dose distribution indexed by the beamlet and the energy, the data 

required in the commissioning can be obtained by summing doses along the 

energy or the spatial dimension. For instance, the dose data required in the 

spectrum commissioning stage, i.e. dose for each energy bin with a flat beam 

fluence can be obtained by summing the pre-generated dose data along the 

spatial dimension.   



74 

 

 

 

 

  

  

F
ig

u
re

 2
.1

5
: 

W
o

rk
fl
o

w
 o

f 
co

m
m

is
s
io

n
in

g
 p

ro
c
e
d
u

re
 t
o

 o
b
ta

in
 e

n
e

rg
y
 s

p
e
c
tr

u
m

 a
n
d

 b
e
a

m
 f

lu
e
n

c
e
. 



75 

 

 

 Figure 2.15 illustrates the commissioning workflow to obtain the energy 

spectrum and the beam fluence. There are a few details that we would like to 

present. First, being able to adjust each energy bin weights provides the 

maximum flexibility to fine tune the energy spectrum comparing with those 

methods of modeling the spectrum shape using some function forms 

(Davidson et al., 2008). However some constraints can still be helpful to 

ensure the correctness of the resulting spectrum. From our experience and 

MC simulation results for LINAC head, there are several characteristics of a 

6MV beam spectrum: (1) there is only one peak; (2) the peak usually appears 

at the energy bin [0.66MeV,1.32MeV]; (3) the average energy value for 6MV 

beam is usually between 1.5 MeV to 2 MeV. Considering these constraints, we 

have designed a graphical user interface (GUI)  in Matlab (MathWorks Inc., 

Natick, MA) for users to easily adjust the energy bin weighting factors. Once a 

user updated a weighting factor at an energy bin, factors at other bins are also 

automatically modified to reflect the spectrum characteristics. Meanwhile, the 

corresponding PDD curve is generated and its max difference with respect to 

the measured PDD is calculated, as well as the average energy value from the 

current energy spectrum. The user can easily modify the spectrum using this 

GUI to achieve a desire one.   

 Once the user is satisfied with the energy spectrum shape and the 

commissioned PDD curve. The user confirms the energy spectrum and the 

dose profiles with the spectrum for each beamlet can be immediately obtained. 
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The following step of determining beamlet weights is conducted in an 

automatic fashion. Mathematically, we would like to solve a linear equation,  

where   is a vector containing the weighting factors of all beamlets that are 

needed to be commissioned. Each column of the matrix   represents a vector 

of the pre-calculated dose profiles of full energy spectrum for a corresponding 

beamlet and   is a vector of the measured dose profiles. For the measured 

dose profiles, they are taken at depths greater than      to exclude the dose 

contributions from the electron contaminations. 

 Since the number of beamlets is typically more than the number of 

measurement data due to the fine spatial resolution of the beamlets, the 

problem is apparently underdetermined and there exist infinitely many 

solutions. In order to solve this issue, we add a symmetric property to the 

vector   such that 

Here,       is a function of radius   on the beam front and   is a linear 

operator that extends       to the entire 2D plane by rotating    around the 

origin. In addition, we suppose the beam fluence is smooth along the spatial 

dimension. Therefore, we minimize the gradient of       to enforce the 

smoothness requirement. These considerations lead to an optimization 

problem of: 

    , (2.26) 

     . (2.27) 
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 Augmented Lagrangian (Hestenes, 1969; Powell, 1969) method is 

adopted to solve the problem in Equation 2.28, which iteratively performs the 

two steps: 

Here,   is the parameter to adjust the relative weight between the smoothness 

penalty and data fidelity term.   controls the convergence speed. For the sub-

problem (P1), since the cost function defined in this minimization problem is 

quadratic, it is sufficient to consider its optimality condition: 

Here, we use      for convenience.   denotes the matrix transpose,  and   

is the Laplacian operator. Since the operator           is symmetric and 

positive definite, we use conjugate gradient method to solve the problem 

     , where         . The two steps are iterated, until the objective 

function doesn’t decrease more 0.1% in five consecutive steps. 

 After finishing commissioning the energy spectrum and the beam 

fluence, the output factors of our model for different field sizes are corrected 

against the beam measurement. Specifically, the point dose at the depth of 

5cm is calculated using the commissioned spectrum and beam fluence. The 

                    , 

s.t.         
(2.28) 

(P1):                           
 

 
           

 

 
, (2.29) 

(P2):              (          ). (2.30) 

                 . (2.31) 
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result is normalized by the dose at the same depth for the reference field size 

10x10cm2. For the clinical relevant field size, we measure the beam output 

factors for various square field from 4x4cm to 30x30cm. The ratio between the 

measured value and the calculated value for each field size is the correction 

factor. 

 

2.5.5 Commissioning Results  

 Figure 2.16 displays the MATLAB GUI for our energy spectrum 

commissioning. For this dissertation, we commission the source model against 

a Varian TrueBeam 6MV energy photon beam. Individual PDD curves of 

reference field size of 10x10cm2 for different energy bins are shown in Figure 

2.17. The commissioned energy spectrum is displayed in Figure 2.18. The 

spectrum shape is very reasonable with our pre-knowledge and the average 

energy value is 1.65 MeV. The commissioned PDD and its difference with the 

measurements are also plotted in Figure 2.19. Good agreement between the 

two PDD curves is observed and the maximum difference after the      is 

below 0.5%. 

 Figure 2.20 displays the commissioned beam fluence as well as line 

profile along the center axis. The increased fluence with the off-axis distance 

accounts for the "horn effect" seen in the dose profiles at the shallow depths. 

In Figure 2.21(A), the commissioned dose profiles at different depths are 
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plotted in blue and the measurements are in red. Profiles calculated using a 

uniform beamlet fluence is also shown in green curves. It is observed that a 

much better agreement with the measurement is achieved when considering 

the "horn effect" in the beam fluence. In Figure 2.21(B), differences of profiles 

with respect to measurement data at 10cm depth are shown. The average 

dose difference in the plateau region drops considerably after the 

commissioning. Yet, a relatively large discrepancy still appears at the beam 

penumbra region, which can be ascribed to the LINAC head scatter dose that 

is not considered in our beam model. Finally, the source model output factor 

before correction is compared with the measured beam output factor data in 

Figure 2.22. This yields the correction factor ranging from 0.93 at the field size 

4x4cm2 to 1.04 at the field size 30x30cm2. 

 

Figure 2.16: MATLAB GUI for our source commissioning. 
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Figure 2.17: Reference field size PDD curves for different energy bins. 

 

 

Figure 2.18: Commissioned energy spectrum for a 6MV beam. 
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Figure 2.19: (A) Commissioned PDD vs measured PDD. (B) Difference plot. 
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Figure 2.20: (A) 2D commissioned beam fluence. (B) Line profile along the center.  
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Figure 2.21: (A) Dose profiles at 5cm,10cm and 20cm depths. (B) Difference of 
profiles at 10cm depth. 
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Figure 2.22: The source model output factor before correction is compared with the 
measured beam output factor data. 

 

2.5.6 Patient Case Validation 

 We have also validated our source model in a prostate case and a HN 

patient case. In these cases, the ground truth dose data is calculated using 

MC code gDPM together with a source model developed by Townson et al. 

(2013) based on the pre-processed patient-independent phase-space file of a 

Varian TrueBeam 6MV beam obtained at www.iaea.org. This beam model is 

referred as the phase-space-let (PSL) method from here on. The accuracy of 

the dose calculation results using this PSL beam model has been well 

accepted, since the phase-space file provides the most accurate beam 

characteristic. 

 To calculate a patient plan dose, either using our beam model or the 

PSL beam model, plan fluence maps are first derived from the MLC leaf 
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motion sequence stored the patient-specific treatment plan in a DICOM 

format. We have developed a computational module to achieve this goal. The 

details of the fluence map generation will be presented later. 

  To eliminate the effects of statistical uncertainty in dose comparisons, 

we simulated a large number of particles histories in each MC dose 

calculations, so that the average uncertainty level within 50% isodose line is 

less than 0.2% of Dmax. In all the cases, the dose voxel resolution is 

2.5x2.5x2.5cm3. GPU based 3D γ-index test, gGamma, is performed to 

compare the dose calculated using our beam model with the ground truth dose 

with 2%/2mm criteria.  

 Table 2.6 summarized the γ-index evaluation results. For both cases, 

the maximum γ  and the mean γ are very low. This fact holds both for the high 

dose region inside the 50% isodose line and the low dose region inside the 

10% isodose line. In particular, over 99% of the voxels within the two regions 

pass 2%/2mm criteria. These results clearly show the good agreement 

between the dose results calculated by our source model and the PSL model, 

indicating that the accuracy of our model is sufficient for QA purpose. 
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Table 2.6: γ-index test results for MC dose distributions using our source model and 
using PSL model. 

Case High dose region statistics Low dose region statistics 

 max γ mean γ passing rate(%) max γ mean γ passing rate(%) 

Prostate 1.38 0.23 99.79 1.38 0.15 99.98 

HN 1.39 0.16 99.98 1.39 0.17 99.99 

 

 

2.6 Fluence Map Generation 

 Once the MC beam is commissioned, it can be used in dose 

calculations for real patient cases. Nonetheless, in an IMRT or a VMAT case, 

the intensity is not homogeneous across the entire beam region. Instead, a 

beam modulation is achieved by a MLC leaf motion sequence that is 

specifically designed for a patient, so that the resulting dose distribution 

focuses on the tumor area, while maximally sparing critical organs. The beam 

modulation is typically described by a fluence map, a 2D function 

characterizing the photon fluence on a plane perpendicular to the beam 

direction. Hence it is necessary to develop another module to calculate the 

fluence map from a MLC leaf sequence. In this chapter, the transmission 

property of a MLC will be first discussed. Our fluence map generation module 

will be then presented. 
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2.6.1 MLC Transmission Property  

 A MLC that has 60 pairs of opposing leafs is installed on a Varian 

TrueBeam LINAC machine. It is 53.9cm away from the X-ray target. Each leaf 

has a rounded leaf end with 8cm radius of curvature. Let us consider an MLC 

leaf position e in Figure 2.23. The leaf-tip position e projected to the iso-center 

level is E. Because of the rounded leaf end, a light field boundary is defined by 

a ray line that is tangent with the rounded end, i.e. the line SdD. Boyer and Li 

(1997) analyzed the geometric relationship between the light field edge,    and 

the leaf-tip projection position,   , yielding 

   
                              

  

                 
 

,             (2.32) 

where SCD and SAD denote source to collimator (MLC) distance and source 

to axis (isocenter) distance, respectively and R is the radius of the leaf end. 

The plus sign is used in the solution for leaves that are not across the beam 

central axis and the minus sign is used otherwise.  

 In contrast to the light field, X-ray can penetrate through the MLC with 

its intensity attenuated by the MLC material. Beyond the light field boundary, 

the more lateral an X-ray is, the longer the X-ray path length intersecting with 

the MLC, leading to gradually reduced X-ray intensity. To compute the profile 

of transmission intensity as a function of spatial location, it is necessary to first 

compute the length that an X-ray line intersects with the leaf.  
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Figure 2.23: Diagram showing the relation between the light field edge and leaf-tip 
projection. C is the machine isocenter. The points A,B,C,D and E at the SAD distance 
are the projection of the points a,b,c,d and e at the leaf end distance, respectively. 
(Adopted from Boyer and Li (1997)) 

 

As in Figure 2.24, suppose an X-ray ray line passes through the leaf 

end with a pass lengths  , it is displaced from the light-field ray by a distance 

d. d' denote the projection of d onto the horizontal planes at the point where 

the light-field is tangent to the rounded leaf end. Denote   the projection of d' 

on the isocenter plane, we can derive that 
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.                                                                (2.33) 

The transmission factor   through the rounded leaf end is  

    
   

   
                                                                                                   (2.34) 

where HVT represents half-value thickness of the leaf material, which is 

0.95cm for the tungsten material in our MLC . Considering Equation 2.33, the 

transmission   is derived as 

          
      

  
 ,                                                                                (2.35)     

where    
                  

 

        
 

 and    
   

    
. An example of the transmission 

factor through the rounded MLC leaf end as a function of the distance   from 

the light-field edge, when the light-field edge is at the middle of beam, is 

shown in Figure 2.25. The transmission initially stays at 100% level where the 

X-ray is not blocked. It then monotonically decays in a region called a 

penumbra region. When the distance is far away from the light-field edge, the 

transmission reaches the background value 0.19%. This is determined by the 

path length when the X-ray intersects with the portion of the MLC with parallel 

up and down sides, as opposed to intersecting with the rounded leaf end.  

In dose calculation for a patient case, we always compute fluence 

through a beamlet with a finite size. If the beamlet is in the transmission 

penumbra region, the average transmission in a beamlet is given by, 
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 ,                                                                                      (2.36) 

where a and b are the coordinates of the beamlet edges. Combing Equation 

2.35 and 2.36, we obtain that 

        
  

      
        

 

 
  

    

    
.                                                                 (2.37) 

 

 

 

Figure 2.24: Diagram of X-ray passing through MLC rounded end leaf (adopted 

from Boyer and Li (1997)). 
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Figure 2.25: An example of radiation transmission ratio with the distance to light field 
edge when light field edge is at the middle of beam field (adopted from Boyer and Li 
(1997)). 

 

2.6.2 Fluence Map From DICOM Files 

 The Varian version of 60-pairs MLC consists of 40 central leave pairs 

and 20 outer pairs and the projected widths of the central and the outer leafs 

at the isocenter plane are 0.5cm and 1cm, respectively. We divide the 2D 

40x40cm2 open field beam into a grid of beamlets with a resolution 

0.5x0.2cm2, where 0.5cm is along the leaf width direction, which is the highest 

resolution we can achieve in this MLC due to the leaf widths. 0.2cm is along 

the leaf motion direction.  

 A treatment plan for a patient case is usually stored in an DICOM file, 

where the beam intensity modulation at a particular beam angle is defined as 

a MLC leaf motion sequence at a set of control point series. At each control 
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point, the leaf positions and fractional MU are recorded. Assume there are K 

control points for this beam, the fluence intensity   of beamlet    is the 

summation of the contributions of all the control points, 

                 
   ,                                                                                (2.37) 

where    is the fractional MU of the i th control point and        is the 

transmission factor at    corresponding to the MLC configuration at the i th 

control point. These transmission factors are simply calculated using the 

formula shown in the previous subsection. Moreover, we assume the jaws are 

perfect collimators, such that the transmission factor is 0% for those beamlets 

outside the jaw opening.  

 Here, we give an example of fluence maps for a typical 7-beam IMRT 

prostate plan. To demonstrate the fact of the MLC rounded leaf end, we also 

compute the fluence maps generated without considering the transmission in 

the penumbra area. Figure 2.26 displays example fluence maps at two 

selected beam angles, as well as the difference fluence map between maps 

computed with and without the round leaf end considered. It is apparent that 

the MLC transmission from the rounded end leaf is important to accurately 

generate a fluence map for subsequent dose calculation accuracy. 
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Figure 2.26: Fluence map examples. (A) and (B) Considering MLC rounded end leaf 
transmission. (C) and (D) Without considering MLC rounded end leaf transmission. 
(E) and (F) The fluence intensity differences. The two columns are for two beams in a 
IMRT plan. 
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2.6.3 Fluence Map From Log Files 

 During treatments, the Varian TrueBeam system logs segmental 

machine delivery information every 10 ms by the MLC controller, including 

MLC leaf positions, beam angle, collimator angle, cumulative dose fraction, 

jaw positions, beam hold status, etc., The recording continues till the treatment 

is completed, and the segmental information is stored to a trajectory log file 

afterwards. Each of these data has a planned value designed in the treatment 

plan and an actual value achieved during the delivery. An extensive summary 

of the data contained in the trajectory log file can be found in the reference 

(System, 2010). The accuracy of the recorded information has been validated 

using film measurement, 2D detector array and portal imagers (Li et al., 2003; 

Zygmanski et al., 2003; Zeidan et al., 2004). 

 Calculating fluence maps from a trajectory log file follows the similar 

idea to that from a DICOM file. The fluence intensity   of a beamlet    is the 

summation of the contributions of all recorded segments in the log file. Hence,  

                 
      ,                                                                            (2.38) 

where S is the total number of segments,    is the fractional MU of the i th 

segment,        is the transmission factor of the i th segments at the beamlet 

  . Comparing to Equation 2.37, there is an additional factor    , which is one 

or zero depending on the beam status on or off for the i th segment.  

 Two example fluence maps derived from a typical 7-beam IMRT 

prostate plan are shown in Figure 2.27. Results computed from both the plan 
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through the DICOM file and from the log file are shown. A small difference is 

observed between them. The small magnitude of the difference indicates the 

high fidelity of beam delivery process with respect to the plan. 

 

Figure 2.27: Fluence map examples. (A) and (B) From Dicom. (C) and (D) From 
Trajectory Log File. (E) and (F) The fluence intensity differences. The two columns are 
for two beams in a IMRT plan. 
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2.7 Web Application for Quality Assurance Tool 

2.7.1 Quality Assurance Tool Workflow 

 With all of the issues studied in the previous part of this chapter, as well 

as those modules developed, we proceed to present our GPU based MC 

computational tool for QA purpose. 

Figure 2.28 presents the workflow for this proposed tool. After a 

treatment plan is obtained from the TPS, all the beam parameter and the MLC 

leaf motion sequence are stored in the DICOM format. First we can obtain the 

initial plan DICOM and generate the plan fluence maps. Then the GPU-based 

MC dose engine, gDPM, is employed to calculate secondary dose (SD) on the 

patient CT using the generated plan fluence maps along with our source 

model. In this process, the resulting dose is smoothed using the GPU-based 

denoising algorithm to effectively reduce the MC uncertainty.  

We also transfer the treatment plan to the TrueBeam LINAC machine 

and deliver the plan on it without any phantom setup. After the delivery, the 

trajectory log file which records machine delivery information is available. With 

the log files, we extract actually delivered fluence maps and calculate 

delivered dose (DD) using gDPM and denoising algorithm. γ-index evaluation 

tests and DHV comparisons are conducted among SD, DD and TPS plan dose 

(PD) to check for all possible error sources. (1) SD vs. PD can be used to 

check the TPS plan dose calculation accuracy. (2) Since DD and SD are 
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obtained by the same dose calculation algorithm, the difference between them 

can demonstrate machine deliverability errors. (3) The comparison between 

DD and PD shows the accumulative errors including both the plan dose 

calculation inaccuracies and the beam delivery errors.  

 

2.7.2 Web Application 

 To facilitate the clinical utilization of our tool, we have also developed a 

web application using HTML5, Python and Django. It provides a user‐friendly 

interface for users to upload zipped DICOM data and machine log files and set 

parameters for the MC dose calculation and dose comparison criteria. After 

the files are uploaded, the MC dose calculation is then executed on the remote 

GPU server and the resultant dose distributions are displayed in the web GUI 

for the user to review. A 3D γ-index map and DVH curves are also displayed 

to the user. Finally, a QA report that summarizes the QA results can be 

downloaded in PDF format. Figure 2.29 presents the screen captures for the 

web application and a sample QA report is attached in the appendix. Such a 

tool is supported by all modern web browsers and it can be run on any major 

platform, even on all mobile devices. This web application makes remotely 

access possible and users can test and utilize this QA tool without purchasing 

expensive GPU hardware. 
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Figure 2.29: Screen captures of the web application of the QA computational tool. (A) 
Data uploading. (B) Parameter setting. (C) Result Review. 

A 

B 

C 
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2.7.3 Patient Quality Assurance Results 

 We demonstrate the clinical utility of our GPU-base MC QA tool using a 

typical IMRT prostate cancer case and a VMAT brain cancer case. The plan 

dose and the MC based SD and DD are displayed on an axial CT slice in 

Figure 2.30 and Figure 2.31 together with the γ-index maps for three pairs of 

comparisons. Table 2.7 summarizes the γ-index results in low dose region 

within 10% isodose line for three pair comparisons with 3%-3mm criteria. Very 

good agreements between SD vs PD, SD vs DDC and DD vs PD for both 

cases have been observed. Please note that both the IMRT and the VMAT 

plans have already been through a QA process in our clinic and have been 

delivered to patients. Hence the plan calculation accuracy and machine 

deliverability have already been ensured. Table 2.8 lists the computation time 

for obtaining the dose distributions using MC simulations and the three pairs of 

γ-index comparisons for both cases. With the use of the web application, the 

whole process from data upload to viewing results and downloading report 

takes less than five minutes and the efficiency of this tool is well suitable for 

clinical uses. 
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Table 2.7: γ-index result for three pairs of dose comparisons. 

 SD vs PD SD vs DD DD vs PD 

 Mean γ Passing 

Rate (%) 

Mean γ 

 

Passing 

Rate (%) 

Mean γ 

 

Passing 

Rate (%) 

HN 0.34 99.0 0.05 100.0 0.34 98.9 

Prostate 0.18 99.3 0.09 99.9 0.24 99.5 

 
 
 
Table 2.8: Computation time in seconds for MC simulations and γ-index comparisons. 

 MC Simulation  γ-index Comparisons 

 SD DD SD vs PD SD vs DD DD vs PD 

HN 35.7 38.0 2.6 1.5 2.4 

Prostate 25.4 27.6 2.1 1.2 2.2 

 

2.8 Summary  

 In this chapter, we have developed a fast and accurate computation 

tool for the patient-specific QA purpose. At the center of this tool is a GPU-

based MC dose calculation engine. It was first developed by Jia X, et al (2011) 

by implementing a MC dose calculation code, called dose planning method, on 

the GPU platform to achieve high computational efficiency, while maintaining 

the dose calculation accuracy. Other modules necessary for the streamline of 

the QA process have also been developed.  
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First, we have investigated the impacts of MC noise on plan QA and 

developed a denoising module to post-process the MC calculated doses. We 

have found that the statistical uncertainty in MC dose leads to biased results 

for a commonly used dose comparison matrix, γ-index. Both theoretical 

modeling and simulation experiments using clinical patient cases have 

demonstrated that MC statistical fluctuation in the reference dose tends to 

overestimate the γ-index, while that in the evaluation dose tends to 

underestimate the γ-index, when the original γ-index value is relatively large. 

Moreover, simulation studies show that, when the reference dose and the 

evaluation dose are both from MC simulations, the gamma passing rate 

increases when the statistical noise in the evaluation dose increases. It 

decreases when the statistical noise in the reference dose increases. To 

mitigate the impacts caused by the MC uncertainty, a GPU based denoising 

algorithm is proposed to reduce the noise level in MC calculated dose 

distributions. This denoising method is implemented as an optimization 

problem. Noise property from a Poisson distribution is considered in our 

approach. Numerical experiments show that this method is able to reduce the 

2% noise level in a MC dose distribution to about 0.15% noise level without 

prolonging simulation time. 

 The second module is a LINAC point source model used in MC 

simulations particularly designed for the QA tool. This source model contains 

three main factors: a source energy spectrum to model the penetration 
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property of the beam, a beam fluence to model the "horn effect", and an output 

correction factor to compensate the omitted scatter components in a real 

LINAC. The commissioning process is very straightforward and requires only a 

small set of clinical beam measurements. No knowledge about the LINAC 

head geometry details is needed. The source energy spectrum is obtained by 

a manual adjustment of each energy bin weights and the beam fluence and 

the output correction factor are achieved automatically. We have validated the 

source model accuracy by comparing the MC calculated dose distributions 

using our proposed model and that using the most accurate phase-space file 

source model. Over 99% of the voxels within the high and the low dose 

regions pass 2%/2mm criteria in γ-index evaluations. These results clearly 

show that the accuracy of our source model is sufficient for the QA purpose. 

 The last module is fluence map generation, which computes a fluence 

map specific to a treatment plan or a delivery process. MLC geometry and 

transmission properties have been modeled. The plan fluence map is derived 

from MLC leaf sequence stored in a DICOM file, while the actual delivered 

fluence map is obtained from machine delivery information recorded in 

trajectory log files.  

With all the modules in our QA tool, we have built a system that 

employs the GPU based MC dose engine to perform an independent plan 

dose calculation (secondary dose (SD)) and delivery dose reconstruction 

(delivered dose (DD)) using the planned fluence maps and the delivered 
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fluence maps, respectively. The TPS plan dose calculation accuracy can be 

verified by comparing SD and plan dose, while the machine deliverability is 

checked by DD-SD comparison. The comparison between DD and plan dose 

shows the cumulative errors from both the plan dose calculation inaccuracies 

and the beam delivery errors. Meanwhile, a web application is developed to 

facilitate the clinical utilization of our QA tool. This user-friendly web 

application allows users to upload the data, to run the QA tool remotely on a 

GPU server, and to view and download the QA results.  

Chapters 2 contains material published in Physics in Medicine and 

Biology 2013. Graves, Yan J.; Jia, X.; Jiang, Steve B., IOP Publishing. The 

dissertation author was the primary investigator and author of this paper. 

Chapters 2 also contains material being prepared for submission to Physics in 

Medicine and Biology. Graves, Yan J.; Folkerts, M.; Kim, G.; Teke, T.; 

Popescu, I. A.; Cerviño, L.; Jia, X. and Jiang, Steve B. 2013. The dissertation 

author was the primary investigator and author of this manuscript.  
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3. Physical Quality Assurance 

Phantom 

 

3.1 Overview  

 It is desirable to incorporate ART into modern radiation treatment to 

overcome the problem caused by inter-fractional anatomy variation in order to 

achieve the optimal treatment quality (Yan et al., 1997; de la Zerda et al., 

2007; Lu et al., 2008). However, before being fully integrated into routine 

clinical practice, the novel ART technology should undergo a comprehensive 

QA procedure to ensure its quality and feasibility. So far, the QA procedure 

and clinical tools for ART are not well established compared to various 

commercially available clinical tools for other mature technologies, such as 

IMRT QA, let alone the QA guidelines  

One core component in ART procedure is DIR, which play an important 

role for its success. It is hence of central importance to QA the performance of 

DIR algorithms. In the past, several deformable phantoms have been 

developed to validate the accuracy of DIR algorithms (Kashani et al., 2007; 
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Serban et al., 2008; Kirby et al., 2011; Kirby et al., 2013). However, none of 

them provides any dosimetry verification information and hence cannot serve 

as an end-to-end ART QA phantom. With the increased interests in the 

implementation of ART in clinics, an ART QA phantom which could be used 

for both DIR algorithm accuracy test and delivered dose verification is in high 

demand (Yan, 2008). 

 To solve this problem, we have developed a deformable phantom with 

a real HN patients' geometry, that also has in-vivo dosimetry capability. In this 

chapter, we will first present the design of this physical phantom and its 

fabrication process in Section 3.2 and the phantom property in Section 3.3. In 

Section 3.4, we will discuss the diode dosimeter. The DIR accuracy test and 

its result are presented in Section 3.5, while the experiment and results of ART 

dosimetric verifications are in Section 3.6. 

 

3.2 Design and Fabrication 

3.2.1 Phantom Design 

 It is common for a head and neck cancer patient to experience tumor 

and normal tissue changes during the course of radiation treatment. These 

changes can be dramatic, including shrinkage of primary tumor and parotid 

glands, medial shift in parotid glands, and alterations in body contours due to 
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weight loss (Barker et al., 2004). Hence we choose the HN cancer patient 

case as a representative site.  

The geometrical content of this phantom is determined based on a 

single CT slice of a typical HN cancer patient who most likely requires ART 

during their treatment (Figure 3.1(A)). The key anatomic components to be 

modeled in this slice are tumor, parotids, pharynx, mandible, spinal cord, skin 

and soft tissue, including dense soft tissue (i.e. muscle) and light soft tissue 

(i.e. fat). The PTV and the parotids contours are displayed on the patient CT 

slice in Figure 3.1. To make the phantom realistic, the materials are selected 

such that they have x-ray attenuation coefficients similar to those in the human 

body. These deformable tissues are sandwiched between two parallel acrylic 

plates. Inside the tissue, a balloon catheter acts like a tumor, such that the 

deflation of the balloon by injecting various amount of saline water simulates 

the tumor variations. Small glow-in-dark nonradiopaque marker dots are glued 

on the two sides of the deformable material surfaces. These markers don't 

appear on CT images but are visible in optical camera images through the 

acrylic plates, based on which the tissue deformation ground truth can be 

derived.  

 As a HN ART QA phantom, the in-vivo measurements of interest are 

the dose to the normal organs, i.e. mandible, cord and parotid, especially the 

one near the tumor, and the dose inside the PTV. To acquire these doses, we 

select the SRS diode as our detector. The details of the SRS and its properties 
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will be presented later. To hold the diode inside the phantom, a detector holder 

is designed particularly for the diode dimension. We have selected four 

measurement locations of interest. diode 1 is near the mandible, diode 2 is 

inside the cord, diode 3 is inside the PTV, and diode 4 is inside the left parotid. 

Since there is negligible deformation from tumor shrinkage near the mandible 

or inside the cord, the detector holders for diode 1 and diode 2 are fixed inside 

the local tissue. In contrast, diode 3 and diode 4  should move with tissue 

deformation, when the simulated tumor shrinks. To allow for the movement of 

these diodes inside the phantom, we have designed rails for the detector 

holders, shown in Figure 3.2. Specifically, the tissue deformation directions 

from the tumor shrinkage at diode 3 and diode 4 locations are estimated and 

then the rail tracks are installed along these directions in the acrylic plates, so 

that the detector holders are guided and can move along the rails inside the 

phantom. The construction diagram with the marked diode detector locations 

and rail trackers is shown in Figure 3.1(B) 

 This phantom is designed to have a thickness of 4.5 cm along the 

superior-inferior (SI) direction. But its content remains unchanged among 

different transverse planes and the deformation is constrained only inside 

plane perpendicular to the SI direction, as will be presented below. Therefore 

this phantom is essentially considered  a 2D one.  
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Figure 3.2: Design diagram of the diode holders on rail. 

 

3.2.2 Material Selection and Fabrication 

 To make this phantom anthropomorphic, not only should the geometric 

contents represent a HN patient, the phantom material should also have 

similar X-ray attenuation properties to the tissue in a real patient anatomy.  

Since the HU value from a CT scan is directly related to the material linear 

attenuation coefficient, we utilize a GE CT scanner (GE Four-Slice Qxi 

LightSpeed CT, GE Healthcare, USA) to scan different sample materials, as 

shown in Figure 3.3, and then choose the ones with HU values close to the 

values for patient anatomy components. Besides the material for major 

anatomic contents, the construction components, such as the supporting bolts, 

detector holders and rails cannot have metal components to avoid metal 

artifacts seen in CT images. 
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 As such, gypsum plaster is used for casting the bony anatomy, i.e. 

mandible and spine, and they are rigidly attached to the acrylic plates with 

small size nylon bolts. Soft tissue is made of highly flexible silicone rubber. 

The base silicon rubber represents the dense soft tissue. Micro-balloon filler is 

added into silicon rubber gel to create lighter weight casting. Parotids and light 

soft tissue are mixtures of base silicone gel with 10% and 20% micro-balloons 

filler, respectively. The soft tissue and parotids solidifies around the bones with 

a nylon tube in the pharynx position to create an air cavity. Urethane rubber is 

painted on the soft tissue surface to simulate skin. A latex balloon catheter 

filled with saline water acts as a tumor. The balloon catheter is connected to a 

plastic tube that passes through the acrylic plate. A syringe is attached to the 

plastic tube so that the balloon volume can be adjusted by modifying the 

amount of saline water injected. The concentration of the water inside the 

balloon is adjusted to have a similar HU value to the surrounding tissue. On 

the two sides of deformable material surfaces, small glow-in-dark 

nonradiopaque marker dots are glued to form a 2D grid with approximately 

1.5cm spatial resolution. Middle size nylon bolts are installed at the four 

corners of the acrylic plates to hold the deformation tissue in place and four 

glow-in-dark markers are also glued on the bolt tops as calibration markers to 

assist optical image distortion correction and CT to optical images alignment. 

In addition, a water based lubricant is applied to the acrylic plates to reduce 

friction between the plates and deformable material surfaces. The diode holder 
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is made of acrylic and fits to the diode with 2mm tube thickness. All the 

components for detector rail trackers are made of plastic. Since the radiation 

sensitive area is at the tip of the diode, the diode holder is constructed such 

that, when the diode is in place, its tip aligns with the middle plane of the 

deformable phantom. 

 

Figure 3.3: CT scanning for different dense tissue material samples. 

 

3.3 Phantom Properties 

 The prototype of this deformable HN phantom is presented in Figure 

3.4. The orange latex balloon, which mimics the tumor, is easily seen through 

the acrylic plate. The deformable phantom consists of six materials that 

represent bone, shrinking tumor, air cavity, parotids and soft tissue including 

light and denser tissue. Figure 3.1 displays a comparison between the CT 
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slice at the middle of the deformable phantom, the represented HN patient CT, 

and the phantom design diagram. From the CT slices, the geometry of each of 

the components is easily observed, and the anatomic relationships of the 

phantom are similar to that of the patient. The average HU values for bone, 

dense and light soft tissue, and parotids from the phantom and the 

representative HN patient are summarized in Table 3.1. For each component 

material, we are able to reproduce similar HU values to that in the real patient.  

 

 

Figure 3.4: Prototype of the deformable HN phantom. 
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Table 3.1: Average HUs for phantom and patients' anatomic components. 

Components Bone Dense soft 

tissue 

Light soft 

tissue 

Parotids 

Phantom 865 140 -35 9 

Patient 920 100 -50 65 

 

3.4 Radiation Diode 

 Figure 3.5 presents a SRS diode that we select as the in-vivo 

dosimeter. It is an unshielded p-type silicon diode with 5mm diameter. 

Because of its small size, it is commonly used for small field photon beam 

measurement (i.e.<5x5cm2).  

 

Figure 3.5: SRS diode. Dimensions are in mm. 

 

3.4.1 Angle Dependence Property 

 A conventional setup for the diode is to align its cylindrical long axes 

parallel to the beam axis. However, in our application, the diode is inserted 
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into the phantom such that its long axes is perpendicular to the beam axis. 

Hence, before adopting this setup, the angular dependence of this diode 

performance should be evaluated. A calibration procedure should also be  

performed for absolute dose measurements.  

The angle dependence is defined as the response of the diode to 

different beam angles around the diode’s long axis under the isocentric 

condition, normalized to the reference response. The reference condition 

refers to the isocentric setup with beam angle at zero degrees. In our 

experiments, an acrylic buildup cap, shown in Figure 3.6(A) is designed and 

built for this investigation to increase dose depositions to the diode.  

The reference response is obtained when 100 MU radiation is delivered 

with a 5x5cm2 field size. Different diode responses with 100 MU radiation from 

7 evenly distributed angles (i.e. at 0, 51, 102, 153, 207, 258, 309 degrees) are 

measured and are normalized to the reference response. The beam angles 

with respect to the orientation of the diode is illustrated in Figure 3.6(B). Figure 

3.7 shows the isocentric setup for the diode to obtain the reference response.  
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Figure 3.6: (A) Diagram of the buildup cap. Measurements are in mm. (B) Orientation 
of beam angles with respect to the diode. 

 

 

Figure 3.7: Isocentric setup to obtain the diode symmetry property. 
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Figure 3.8: Graph of diode response at different angles against response at zero 
degree gantry angle. 

  

 The responses are averaged from two rotations of radiation beam 

delivery and the results values are plotted in Figure 3.8. The greatest 

asymmetry appears at 207 degree angle, at which the response is 1.36% 

lower than the reference value. Derivations from the reference response at 

other angles are within 0.5%. Because of the low angular dependence of the 

diode response, we will ignore this issue when using it for in-vivo 

measurement inside of the phantom with its long axes being set perpendicular 

to the beam axis. 
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3.4.2 Dosimetry Calibration 

 Before we conduct dosimetric validations using the SRS diode, we 

need to calibrate the diode dosimeter reading. Specifically, the diode 

calibration is performed at the isocentric condition for a 10x10cm2 field size at 

10cm depth in a solid water phantom. The long axis of the diode is 

perpendicular to the beam axis and the tip of the diode is aligned with the 

isocenter. The electrometer reading    of the diode under a 100 MU 6MV 

beam radiation is recorded. Then the calibration factor      is obtained, which 

converts the electrometer reading to dose in water : 

      
  

  
, 

(3.1) 

where    and    are the electrometer reading and dose to water at the 

calibration condition. Here,    can be easily obtained, since the dose to water 

under the setup in our experiments is well studied in external beam calibration 

process. It is also found that the diode sensitivity slightly depends on the 

radiation history. Therefore, the diode is frequently calibrated every time right 

before a dosimetric verification experiment. Once the calibration coefficient 

     is obtained, in a dose measurement, we can obtain the absolute dose 

value     as: 

               (3.2) 

where    is the electrometer reading of the diode response in the 

measurement. 
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3.5 Deformable Image Registration Algorithm Accuracy 

Test 

 To represent the original large tumor volume, 160ml salt water is 

injected into the latex balloon catheter using a syringe. Optical camera images 

with a pixel size of 0.33mm are acquired in the dark. To simulate the tumor 

shrinkage, we deflate the balloon volume to 65ml and the diode 3 and diode 4 

holders move towards to the tumor’s center with the tissue deformation. Again, 

optical images of the surface markers are acquired with the camera location 

the same distance as that for the original large tumor geometry. An example of 

the optical images is shown in Figure 3.9. In addition, two sets of CT images 

are obtained for the phantom before and after the deformation using the GE 

CT scanner. The CT image resolution is 0.98mm and the slice thickness is 

2.5mm. 

 The grids of small nonradiopaque markers on the deformable phantom 

surface provide the ground truth to verify the accuracy of the DVFs calculated 

from DIR algorithms. An in-house program is developed to detect the physical 

marker dots in the optical images taken before and after the deformation. This 

is achieved by applying a threshold value in the green channel of the RGB 

optical images. After that, we set the origin of a 2D coordinate at the 

calibration marker on the anterior-right corner of the image. y and x denote the 

patient's anterior and left directions, respectively. The calibration markers on 
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the nylon bolts are known to form a square with 29.7cm size. This information 

is then used to interpolate the x and y coordinates of the initial and final 

centroid positions of the surface marker dots from the optical images to correct 

for any camera geometry distortion. Finally, the deformation motion vectors 

are obtained from the phantom surface markers and are considered as the 

measured deformation ground truth, denoted by         .  

 To test the accuracy of a DIR algorithm, the measured deformation is 

compared to the DIR calculated DVFs. As such, the vectors at 94 marker 

locations are extracted from the calculated vector field, denoted as              . The 

average error between the measured deformation and the calculated one is 

used to characterize the algorithm accuracy as  

  = 
                                   

 

   
   

 
  

(3.3) 

where  =94.  

 

Figure 3.9: Example of the optical image of the markers in dark. 
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3.5.1 Overview of Demons Algorithm  

 In this dissertation, we select a GPU based demons algorithm (Gu et 

al., 2010) as our tested DIR algorithm example. The basic idea of demons 

algorithm is to register the moving image        and the reference image        

by a vector field      which relates the two images by                   . 

     is solved in an iterative fashion, where the incremental displacement 

vector       is determined based on the image intensity at the voxel   in each 

iteration step. There are six variants of the demons algorithm and they differ 

from each other in the way of calculating      . In this test, we choose to use 

the double force demons where    is defined as: 

        
   

   
       

   
   

    
 

       
 

   
   

       
   

   
   

    
 

     
   

 
   

(3.4) 

where the   
   

 and    are the intensities of the moving image at the kth iteration 

and the original reference image, respectively. 

 However, we would like to emphasize that the main focus of this study 

is not to investigate the demons algorithm accuracy but to demonstrate the 

feasibility of utilizing our phantom for the DIR algorithm accuracy test. 

 

3.5.2 Algorithm Performance 

 The CT slice of the middle of phantom is used in the demons algorithm 

to calculate the DVF. As such, the CT slice with the large tumor before the 
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shrinkage is considered as the reference image and that with the small tumor 

is the moving image. The moving image (Figure 3.10(B)) is registered to the 

reference image (Figure 3.10(A)) to produce the deformed image (Figure 

3.10(C)). The demons performance is qualitatively evaluated by comparing the 

difference image between the reference and the moving images (Figure 3.10 

(D)) with the difference image between the reference and the deformed one 

(Figure 3.10 (E)). After the deformation, the intensity in the difference image is 

greatly reduced and the mean pixel difference drops from 2% to 0.038% of the 

maximum reference image intensity, indicating the accuracy of the registration. 

Figure 3.10 (F) displays the generated deformation vector fields overlaid on 

the reference image.  

 The detected grow-in-dark surface markers before and after the tumor 

shrinkages are shown in Figure 3.11(A) and (B).  We have also plotted the 

centroid positions of the markers overlaid on the reference CT image in Figure 

3.11(C), with the initial positions of the markers in red, the final positions in 

green. A marker motion vector field is also drawn in blue by connecting the 

initial and the final locations of each marker. A good visual agreement 

between the measured deformation and the DIR output shown in Figure 

3.11(D) is observed. The quantitative difference of the vector field is also 

summarized in Table 3.2. The average error magnitude at the 94 surface 

markers is 2.1mm. It is also found that there exists larger variance for left-right 

(LR) direction than for the anterior-posterior (AP) direction.  
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Table 3.2: Mean and standard deviation of the average error for DIR calculated 
deformation vectors compared with the measured deformation vectors. 

AP (mm) LR (mm)   (mm) 

1.0±1.0 1.5±2.0 2.1±2.2 

 

 
Figure 3.11: (A) Initial marker positions. (B) Final marker positions. (C) Initial and final 
marker position with the measured deformations overlaid on the reference CT image. 
(D) Generated deformation vector filed overlaid on the reference CT image. 
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3.6 Adaptive Radiotherapy Dosimetry Verification 

 To use this phantom as an end-to-end test for ART QA, this deformable 

phantom is treated exactly in the same way as for a real patient, going through 

initial CT scan, treatment planning, plan delivery, geometry deformation, re-CT 

scan, re-planning and re-plan delivery procedure.  

 First, after the CT image is acquired for the phantom with a large tumor 

geometry (160ml salt water into the latex balloon), the PTV and organ 

contours are drawn. We deliberately extend the tumor contour to include diode 

3 inside the PTV, so that the diode provides the dose measurement inside the 

PTV target. Then an IMRT plan with a set of seven co-planer equiangular 6MV 

beams are generated on the large tumor geometry using Eclipse (Varian 

Medical Inc., Palo Alto, CA) treatment planning system, with clinically relevant 

constraints to organs satisfied. After the phantom is properly set up on the 

treatment couch using the on-board CBCT system for image guidance, the 

plan is delivered to the phantom and the four diode readings are obtained and  

compared to the calculated results from the TPS. After the tumor shrinkage 

(60ml salt water into balloon), the PTV and organ contours are re-drawn in the 

new CT image. Figure 3.12 shows PTV and organ contours on both 

geometries. With the same beam angles and plan constraints, the new 

geometry is used for re-planning in Eclipse. Then both the new plan and the 

initial plan are delivered to the new phantom geometry to evaluate the 

dosimetric gain from ART re-planning. The diode readings are compared with 
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the calculation from Eclipse to verify the ART accuracy. The calculated dose of 

the new plan irradiated on the small tumor geometry is transferred back to the 

large one given the DVFs derived from the demons algorithm and is added to 

the initial plan dose. The summation of the diode measurements of the initial 

plan radiated to the large tumor geometry and that of the new plan delivered to 

the small tumor geometry is then used to verify the dose accumulation 

calculation accuracy. 

 

Figure 3.12: PTV and organ contours. (A) On the large tumor geometry. (B) On the 
small tumor geometry. 

 

3.6.1 Experiment Results 

 To evaluate the dosimetric influence from the tumor shrinkage, we 

deliver the initial optimized plan to the large tumor geometry as well as to the 

small tumor geometry; here we name them as delivery I and delivery II. After 
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we obtained the re-plan, we deliver the re-plan to the new small tumor 

geometry to study the dosimetric gain from ART re-planning; here we name it 

delivery III. Table 3.3 summaries the dosimetry results from three radiation 

deliveries.    and    present diode measurements and TPS plan calculations. 

The values are converted into a unit of percentage of the prescribed dose. A 

good agreement, with a maximum difference of 3.1%, is obtained between the 

diode measurements and plan calculations. The point dose to the parotid 

(diode 4) is dramatically increased when the original plan is delivered to the 

new small tumor geometry phantom due to the parotid shift into the high dose 

area after tumor shrinkage. This dose is greatly decreased when the re-plan is 

applied, indicating the necessity of ART in this situation.  This is consistent 

with the observations on DVHs shown in Figure 3.13. When the initial plan is 

applied to the new geometry, increase of doses to organs is observed. With 

the re-optimized plan for the new geometry, the organ doses are brought back 

to low levels, particularly for the left parotid. This observation also agrees with 

the diode measurements and plan calculations for the lower point dose to 

organs (diode 1, diode 2 and diode 4) in delivery III compared to delivery II. In 

addition, good matches between the calculated values and the measurements 

are also obtained in terms of accumulating dose from delivery I and delivery III 

to a reference geometry, i.e. the large tumor geometry in our study. The 

quantitative results are summarized in Table 3.4. 

 



130 

 

 

 

 

Table 3.3: Plan calculations and diode measurements (and the absolute difference) in 
percentage of the prescription dose before and after deformation with the original plan 
and the re-plan irradiated. 

Dose 

 

Diode 1 

   |    

Diode 2 

   |    

Diode 3 

   |    

Diode 4 

   |    

Delivery 1 
72.6 | 74.9 

(2.3) 

42.9 | 46.0 

(3.1) 

103.0 | 105.1 

(2.1) 

35.5 | 35.6 

(1.0) 

Delivery 2 
71.6 | 73.8 

(2.2) 

44.0 | 47.1 

(3.1) 

106.8 | 108.8 

(2.0) 

49.5 | 49.5 

(0.0) 

Delivery 3 

57.7 | 59.7 

(2.0) 

36.6 | 37.6 

(1.0) 

102.1 | 103.8 

(1.7) 

29.9 | 32.0 

(2.1) 

 

 

 

Table 3.4: The plan calculation and diode measurements (and the absolute 
difference) in percentage of prescription dose for accumulative dose from delivery 1 
and delivery 3. 

Diode 1 

   |    

Diode 2 

   |    

Diode 3 

   |    

Diode 4 

   |    

64.8 | 67.3 (2.5)  38.8 | 41.8 (3.0) 102.4 | 104.5 (2.1) 32.2 |33.8 (1.6) 
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Figure 3.13: DVH plots of initial optimal plan on new small tumor geometry (solid 
lines) and re-plan on new tumor geometry (dash lines). 

 

3.7 Discussion and Conclusions  

 In this chapter, we have presented the design and construction of a 

deformable HN phantom. This phantom consists of six anatomic components 

that resemble a real HN patient geometry with accurate HU numbers. The 

nonradiopaque surface markers, which do not influence DIR algorithms, 

provide the deformation ground truth. A quantitative error analysis is 

performed to evaluate the DIR accuracy using the physically measured 

deformation from the surface markers and the calculated deformation fields 

using the demons algorithm. The homogeneous phantom tissue regions 

present a challenge to the demons algorithm because this algorithm is an 

intensity based DIR algorithm, where the registration is more accurate in high 
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contrast regions. However, most of the surface markers lie within the 

homogeneous tissue region, the obtained average deformation error is 2.1mm. 

The main focus of this study is not to investigate the DIR algorithm but to 

utilize the surface markers for the accuracy test, so future study will be carried 

out to comprehensively compare a set of DIR algorithms' accuracy using this 

deformable HN phantom. 

 We also demonstrate the feasibility of using this deformable phantom 

as an end-to-end ART QA phantom, going through all the ART treatment 

steps. It is found that the dose to parotid significantly increases when the 

original plan is delivered to the small tumor geometry phantom, because the 

parotid shifts into the high dose area due to tumor shrinkage. In contrast, the 

dose to parotid dramatically decreases, when the re-optimized plan is applied. 

This indicates the necessity of ART in this situation. The in-vivo diode 

dosimeters provide point dose measurements and the results match with the 

calculated dose from the planning system, with a maximum 3.1% absolute 

difference in the unit of percentage of the plan prescription dose. The biggest 

point dose difference appears at the high dose gradient region which is always 

a challenge for any dose measurement and calculation methods. The 

discrepancy between the accumulative dose calculation and the diode 

measurements from two radiation deliveries illustrate the combination of error 

from the dose calculation and the DIR algorithm.  
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 With the advancements and the clinical use of on-board image system,  

daily CBCT images become available for ART. Several studies demonstrate 

the use of CBCT for dose reconstruction and ART re-planning (Yong et al., 

2007; Fu et al., 2009). This deformable phantom is not limited by image 

modality and can be a truly end-to-end QA phantom for any new ART 

technologies before they are implemented in clinics.   

 Chapter 3 contains material being prepared for submission to Physics 

in Medicine and Biology. Graves, Yan J.; Smith, A.; Rice, R.; Mell, L.; Jia, X.; 

Jiang, Steve B.; Cerviño, L. 2013. The dissertation author was the primary 

investigator and author of this manuscript.  
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4. Conclusions 

 

 The aim of radiation therapy is to deliver a prescribed amount of 

radiation dose to the cancer target, while maximally sparing dose to 

surrounding health organs. Although current treatment planning system can 

effectively design a high quality treatment plan to best meet this goal, a series 

of quality assurance tests are highly demanded to ensure the plan calculation 

accuracy, as well as its deliverability.  

Currently, QA methods of different types for advanced IMRT and VMAT 

treatments have been available and are routinely employed in radiotherapy 

clinics. Yet, they usually suffer from issues such as high cost, intensive labor, 

and inaccurate calculations. This dissertation is motivated by this fact and 

hence, its first half is devoted to developing a computational QA tool. In 

Chapter 2, we have developed a fast and accurate computational tool for 

patient-specific QA using a GPU based Monte Carlo dose engine. Several 

modules necessary to the QA process have been built, including a denoising 

method to post-process the MC calculated doses, a LINAC beam source 

model with a semi-automatic commissioning process, and a fluence map 

generation module. A web application has been developed for the QA tool 
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incorporating all modules to facilitate its clinical utilization. This QA tool verifies 

the plan dose calculation accuracy by comparing the TPS plan dose and the 

secondary dose calculated by the MC method, as well as checks the machine 

delivery errors by comparing the MC simulated secondary dose and the 

delivered dose reconstructed using machine log files. The accumulative error 

from both error sources can be checked by plan dose and delivered dose 

comparisons.  

 Another motivation of the dissertation is to develop a physical phantom 

for adaptive radiation therapy QA. Holding the promise of always generating 

the optimal treatment plan corresponding to the patient geometry at each 

treatment fraction, ART is gaining more and more clinical and research focus. 

One aspect to facilitate its clinical introduction is comprehensive QA of the 

ART process. To solve this problem, in Chapter 3, a physical deformable head 

and neck phantom with in-vivo dosimeter has been designed and fabricated. 

This phantom resembles HN patient geometry and simulates tumor shrinkage 

with a great level of realism. Our experiments have demonstrated the 

feasibility of using this proposed phantom to verify a DIR algorithm's accuracy 

by comparing the DIR calculated deformation vector field with the physically 

measured ground truth based on the surface markers on the phantom. This 

deformable HN phantom can also be utilized as an end-to-end ART QA 

phantom to check the ART technology accuracy by measuring the point doses 

to organs and PTV using diode dosimeters. 
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 In conclusion, a computational QA tool and a physical phantom QA tool 

have been successfully developed in this dissertation. Comprehensive tests 

regarding the accuracy and feasibility of these tools have been conducted. 

Being preliminary studies, this dissertation presents initial results in these 

developments. Ongoing research work will continue improving these tools 

from many aspects, as well as conducting tests in real clinical contexts. We 

believe that the ultimate clinical implementations of these tools will greatly 

facilitate radiation therapy QA process, ensuring effective and safe 

radiotherapy treatments to every patient.    
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Appendix A. A Sample Quality Assurance Report Using the GPU based Monte 
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