UC Berkeley

Research Reports

Title
A Specification Of An Automated Freeway With Vehicle-borne Intelligence

Permalink
https://escholarship.org/uc/item/67b3b8z\

Author
Hitchcock, Anthony

Publication Date
1992

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/67b3b8zv
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORMIA FATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

A Specification of an Automated Freeway with
Vehicle-Bornelntelligence

Anthony Hitchcock

UCB-ITS-PRR-92-18

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of
Transportation; and the United States Department of Transportation,
Federal Highway Administration and National Highway Traffic Safety
Administration.

The contents of this report reflect the views of the author who is
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

DECEMBER 1992

ISSN 1055-1425

> w N

©® N o v

CONTENTS

List of Figures
Glossary of Terms
I ntroduction
Some Definitions
Hazards
System Architecture
4.1 Architecture, Level 5: Law
4.2 Architecture, Level 4: Network
4.3 Architecture, Level 3: Link
4.4 Architecture, Level 2: Platoon
4.5 Architecture, Level 1: Regulation
4.6 Architecture, Level O: Physical
Physical Layout
System Modes
Faulty Vehicles
Operation of the System
81 Manoeuvres
8.1.1 Merge
8.1.2 Split
8.1.3 Change-Lane
8.1.4 Emergency-Change
8.1.5 Forced-Split
8.2 Probes
8.2.1 Platoon-L eader Probe
8.2.2 In-Platoon Probe
8.3 Entry and Exit
8.4 Operation of the Vehicle-Borne Controller
8.5 Operation of the Roadside Controller
Work of Hsu, et a. (1991)
Acknowledgements
References

—->_»~
< &

0 OO OO BB W DN

W W W W N DN DN DN DN DD DD - | —
R RS8R RIRESCODIEGEREEREBEBS

Al
A2
A3
A4
AS

A.6
A7
A.8
A9
A.10
A.ll
A.12
A.13

Introduction

Appendixes

How to Use the Module Definitions

General

Supervisor

Busycheck

A.5.1 Merge

A.5.2 Split

A.5.3 Change-Lane
A.5.4 Forced-Split
A.5.5 Emergency-Change
Platoon-Leader’s Probe
Receipt of Messages
New Faults

New Actions

Control Data

Joining and Leaving
System

List of Messages

i

A-1

A-3

A-7
A-13
A-13
A-19
A-25
A-42
A-57
A-68
A-73
A-79
A-83
A-87
A-90
A-94
A-98

List of Figures

Figurel. IVHS Control Architecture (after Varaiya and Shladover). 5
Figure 2. Merge (after Hsu, et al., 1991). 16
Figure 3. Split (after Hsu, et al., 1991). 18
Figure 4. Change-Lane. 20
Figure 5. Emergency Change-Lane. 22
Figure 6. Platoon Leader Probe. 25
Figure 7. In-Platoon Probe. 27
Figure A. 1. Supervisor. A-6
Figure A.2. Merge. A-14
Figure A.3. Split and Split-change-lane. A-20
Figure A.4. ChangeLane (initiator). A-26
Figure A.4a. Change Lane (recipient). A-27
Figure AS. Forced Split (initiation). A-43
Figure A.5a. Forced Split (implementation). A-44
Figure A.6. Emergency Change (initiator). A-59
Figure A. 6a. Emergency Change (participant). A-60
Figure A.7. Forward Probe. A-69
Figure A.8. Messages. A-74
Figure A. 8a. Messages (continued). A-75
Figure A.9. Fault Flags. A-80
Figure A. 10. Action Calls. A-84
Figure A. 11. Control Data. A-88

Figure A.12. Joining and Leaving. A-91

111

GLOSSARY OF TERMS

In this paper, anumber of specially-defined terms of art are used, which include abbreviations.
The following table refers to the definitions of the terms and spells out the abbreviations.

Term Section
AL = automated lane 1
AL license 4.1
AR = asynchronous record 4.4
b.eem. = block entry marker 4.5
block 4.5
C mode = Crashstop 6
CA mode = Closed-Ahead 6
dormitory 4.1
fence 5
follower 2
free agent 2
full platoon braking 2
gate 5
loc = location = odometer reading and lane # 4.5
manual spacing 2
MON = self-monitor 4.5
N mode = Normal 6
NE mode = No-Entry 6
platoon |eader 2
platoon spacing 2
R mode = Resume 6
S mode = Stop 6
SA mode = Slow-Ahead 6
TL = Transition lane 4.6
turning-point 4.6
VPD = Vehicle Presence Detector 4.6
v sv = Vehicle-borne State V ector 4.4

A-Specification of an Automated Freeway
with Vehicle-Borne Intelligence

1. INTRODUCTION

This paper is complete in itself. However, along with another paper (Hitchcock, 1992b) it can
also be regarded as an appendix to “ Methods for Analysis of IVHS Safety: Final Report of
PATH MOU 19" (Hitchcock, 1992a). Readers not familiar with the area are strongly advised
to read the other report first. An even shorter account of the background can be found in
Hitchcock 1991.

Further, the work here extends the work of Hsu, et al. (1991). The work plan of the whole
study included two worked examples of automated freeways. The overall objective was to
demonstrate and refine the techniques of specification and safety analysis. The two examples
should therefore be very different. The first was asingle-AL system (AL = automated lane).

Intelligence was concentrated in the infrastructure. It was therefore natural to look at a multi-
AL systemwith mainly vehicle-borneintelligence.

Hsu and her colleagues had quite different concerns. Their purpose was to investigate a method
of proving conformity of a conceptual design to its specification. This method used the logical
technique enshrined in a computer program called COSPAN. The example they used to make
their tests concrete was a partial design of an automated freeway. The freeway had many lanes.
Intelligence was entirely vehicle-borne in the lower levels of the architectural hierarchy (see
Section 4). This work was also part of the PATH program. It seemed sensible to build on
Hsu's design in the present work. This was particularly the case since Hsu and her colleagues
were able to show that their design did meet their partial specification. Accordingly, the
permission of the authors was sought. The design proposed by Hsu, et a. (1991) is close to
being a subsystem of the design set out here. However, Hsu's design is incomplete for the
present purpose. We have extended it very considerably. Some changes have aso been made
to what Hsu, et al. (1991) proposed.

The specification for an automated freeway is set out in a fully formal manner in this paper.

Subsequently, a series of safety analyses was carried out on the specification. These are
reported elsewhere (Hitchcock, 1992b). The objective of the programme of work, of which this
is part, isto derive atechnique of safety analysis for such systems. The system reported here
is the second example on which atria analysis has been demonstrated. The analysis depends
on the precise nature of the system specified. It is therefore necessary that the specification be
recorded without possibility of ambiguity. Great detail is thus required. Also, the method of
analysis recommended by Hitchcock (1992a) does require formal documentation. This paper
Is consequently intended as an exemplar of such documentation. This applies especidly to the

1

appendixes. In the appendixes a formalized language has been used, which is analogous to some
computer languages.

This report specifies the second example. To demonstrate the method of safety analysis a
procedure called fault tree analysis was then applied. The fault tree for the present example is
discussed in Hitchcock, 1992b.

The freeway specified here operates with vehiclesin platoons. Thisis the basis on which other
work in PATH has been carried out. There was no good reason to do other here. The safety
argument in favour of platoonsisreviewed in Hitchcock, 1992a.

The method of demonstrating safety used in the larger programme starts by defining certain
hazards. A safety criterion is selected. The criterion used here is that two or more
simultaneous faults must occur independently before the hazards can arise. The processis
described in Hitchcock, 1991. Hazards are detailed later (see Section 3).

In what follows, we describe the whole design. Later, a short section (see Section 9)
distinguishes the part that is due to Hsu and her colleagues from what is new.

2. SOME DEFINITIONS

Each vehicle will have a maximum deceleration when brakes are applied, which will vary
between vehicles. Under some circumstances it will be necessary to decelerate as quickly as
possible, short of generating within-platoon collisions. The appropriate deceleration is called
full platoon braking. It isclearly afunction of the road surface condition, and is therefore set
by each block as vehicles enter.

Platoon spacing is that spacing within which avehicle decelerating at full platoon braking can
avoid colliding with one ahead when the latter is decelerating at some standard greater rate (one
might choose 0.8 g — apractical maximum). The following platoon is supposed to be warned
within some standard interval.

Manual spacing is the spacing at which drivers normally drive without being alarmed. Itisa
function of vehicle speed and road surface condition. A parameter to describe the latter is
passed by the block controllers on entry.

On ALs, vehicles move in platoons. Thefirst isthe platoon leader; others are followers. A
one-vehicle platoon is called a free agent.

3. HAZARDS

A hazard is defined as a situation in which if one further fault occurs, a high speed collision may
ensue. The safety criterion as explained in Hitchcock, 1992a is that a hazard will not arise
without two simultaneous faults of system components. What we have to guard against are
crashes arising from the way the system is designed. Not all accidents are of this kind. If, in
particular, adriver causes hig’her vehicle to collide with an automated one in a place where the
presence of both is permitted, thisis not a hazard.

High-speed collisions may occur:

a when al platoons involved are under control, automated or manual (a free agent is a
one-member platoon). In this case vehicles were too close to each other before a final
control failure.

b. when one platoon is not under control. This will happen if automatic control is switched
off before the driver is ready, or not switched on when the driver lets go.

In case a above, we are only concerned when the rear platoon is under automatic control. In
this case (remembering that a free agent is a one-member platoon), afurther failure will cause
a catastrophe if:

Hazard 1. A platoon is separated from one ahead of it, or from a stationary object in its path,
by less than platoon spacing; or

Hazard 2. A vehicle, not under system control, is at an unmeasured or unknown distance in
front of a platoon.

Case b above refers to the case where neither driver nor system isin fact controlling the vehicle,
or where adriver is placed in a situation where he/she cannot control it.

Hazard 3. A vehicle is released to manual control before the driver has given a positive
indication that he/she accepts it.

Hazard 4. A vehicleisreleased to manual control at less than manual spacing from the vehicle
ahead of it; or at such a relative speed that manual spacing will be realized in less than 2
seconds; or while the brakes are being applied.

Danger may arise if adriver tries to surrender control before the system acceptsit. Thisisan
aberration of amanual driver, but, by definition, it does not give rise to hazards.

4. SYSTEM ARCHITECTURE

An AVCS system architecture of a system similar to this one has been described by Varaiya and
Shladover (1991). This architecture is more general than the authors claim, and we shall use
Varaiya and Shladover’ s language to describe the architecture of the present system. The
architecture is illustrated in Figure 1. It is hierarchical. Also, it is composed of modules.
Modules may be hardware or software. The modules communicate with others at the same level
in the hierarchy, and also with modules one level up and one level down. Their interfaces are
fully specified. The significance of thisisthat if an improved module design is subsequently
produced it can be dotted into the system without redesigning of the whole. In particular, it
becomes possible to replace a single non-safety critical module with impunity. A total
reappraisal of safety is not required.

The lower levels of the hierarchy are responsible for control of vehicle movement. They are
safety-critical, asFigure 1 indicates. The highest level (thisis an addition to the Varaiyaand
Shladover description) is law.

4.1 Architecture, Level 5: Law

The relevant law will control operations of automated freeways in many cities. Many of the
problems which will arise are not covered by the present law. Here we shall state only the law,
common to al city systems, which isrequired for operation. There are also a variety of wider
areas where legal or quasi-legal regulation will be required. These include the mechanism for
setting standards and ensuring or certifying conformity with them. We assume that the law will
say:

a Every vehicle trying to enter the AL will bear a remotely readable record which certifies
that it is equipped with equipment of appropriate design. There will be avalidation bit
which indicates that the equipment has not been diagnosed as faulty, either by the vehicle
itself or by the system. This bit, together with some data about the vehicle, will be
caled the AL, license. Only vehicles with avalid AL license may enter or remain on the
ALs. Only asuitably qualified person may revalidate an invalid AL license. If alicense
becomes invalid while on the Als (i.e., if the vehicle develops a fault) the vehicle should
quit the ALs at once.

b. It will be an offence to fail to resume manual control on exit from the ALs. If arequest
to do so is disobeyed, the vehicle may be re-admitted to the system and carried to some
point where it is safe to leaveit. (Periodically there will be areas where such vehicles
can be parked. We call them dormitories.)

Attty LAW feeccmcene- 1 Layer 5

: :

H 1

4 4
Network Layer 4
= Link] Link > Link -+ Layer 3
- Platoon am— Platoon fe—> Platoon -+ Layer 2
4= Regulation J— Regulation p— Regulation -+ Layer |
¢~ Physical Physical Physical -+ Layer O

Figure 1. IVHS Control Architecture (after Varaiya and Shladover).

C. It will be an offence to enter the system carrying an external or ill-secured load, or with
atrailer not itself equipped with communication devices.

d. “Hacking," that is, emitting signals designed to influence the system to do something
which it would not normally do, isillegal. This applies particularly to manually-
controlled vehicles which declare themselves to have valid licenses.

4.2 Architecture, Leval 4: Network

This controls more complex aspects of routing in the light of overall flows on the network. It
also sets the parameters which correct the values of platoon spacing, etc., in the light of
prevailing weather conditions. Physically, the network controller isinfrastructure based. It will
be connected to the link-level controllers, probably by hard-wiring.

4.3 Architecture, Leval 3: Link

Link level prescribes the route to be followed by a vehicle through the system. The desired
route is stored in the vehicle. The choice isinformed both by the data from the network level

and the destination stated by the vehicle on entry. When the time comes to change lanes, the
lower levels read the internal record, and determine if local conditions permit the manoeuvre.

If they do not, the change is made later. Under some conditions (e.g., lane closures) route may
be updated after entry. The efficiency of thelink level algorithms clearly affects the capacity
of the ALs. Efficiency hereisthus of economic importance.

Link level controllers are infrastructure-based. There will be one for every 5-20 miles of
freeway. They can communicate directly (presumably at high or optical frequencies) with
platoon-level controllers on vehiclesin their area, and also with the platoon-level infrastructure-
based controllers. This latter link is probably accomplished by hard-wiring. The platoon-level
controllers at the roadside are effective only in fault conditions. Data are exchanged about lane
closures, emergency operations, and thelike. It is at this level, for example, that human
supervisors or the Highway Patrol will interveneif it is necessary to manoeuvre an emergency
vehicle on to the ALs.

Link level does need to know which vehicles are in its area and where they are going.
However, thisis not a safety-critical function.

4.4 Architecture, Level 2: Platoon

Platoon level is responsible for the manoeuvres which lead to entry, exit, changes of lane, and
the formation and dissipation of platoons. Most of it is vehicle-borne. There is a platoon-level

controller on each vehicle which oversees the actions of lower-level controllers of vehicle motion
in such away as to execute platoon manoeuvres safely and successfully at the right time and
place. We will describe its operation later (see Section 8.3).

There is also avehicle state vector (VSV). The VSV is a software record containing the AL

license, the route and a number of variables describing the current position of the vehicle and

what it isdoing. The VSV ished in an asynchronous record (AR). An AR is a computer

storage device which can be written to and read from by several different computers which are
not in sync. The VSV, in fact, can be accessed by all the controllers on the vehicle. It can aso

be accessed, via the communication devices, by other vehicles and the various roadside
controllers. Among other fields, it contains a “busy” flag. Thisis set during any manoeuvre,

and will usually preclude any other manoeuvre.

Thefieldsin the VSV are these below:

ID# vehicle identity

In# lane number

optsize platoon optimum size

pltn# platoon number

pos position in platoon

busy busy marker (see above)

sectlen section length

fault identity of any fault (see below)

mode operating mode (see below) of current lane
xspeed optimum speed in lane to right

hwy# highway identity

sect# section number

optspeed platoon optimum speed

ownsize size of own platoon

loc odometer reading (see Section 4.5)
validation vaid AL license

Speed actual speed of vehicle

maxspd maximum speed on freeway

safsp minimum platoon separation at maxspeed

The state variables maxspd and safsp are set by the system on entry and are system-wide
constants. They may vary from time to time, with the weather. There is a formula contained
inside every vehicle which enables the safe interplatoon spacing to be calculated from these
variables at any speed. Oprsize is two numbers specifying a range of sizes within which
platoons will neither merge or split. Like optspeed, it is set on entry by link and updated on
each lane change.

At the roadside, there is a platoon-level controller associated with each block of freeway. A
block is alength of some I-5 miles of freeway. It may be convenient to have one entrance and
one exit point per block: the point is of no great importance. There is a platoon-level controller
at each point where a lane-change can occur. These controllers are hard-wired to the other
platoon-level controllersin the same block. They can also communicate with vehiclesin their
immediate neighbourhood. Their function is more fully discussed later (see Section 8.5).

4.5 Architecture, Level 1. Regulation

The regulatory layer controls the movements of individual vehiclesin response to signalsfrom
the platoon level and sensor readings from the physical level. It is entirely vehicle-borne. There
are many components:

a Longitudinal Control System. Thiswill maintain avehiclein platoon. If the vehicleis
aplatoon leader or afree agent, the control system will maintain the vehicle at platoon
spacing from the next vehicle ahead in the same lane. Alternatively, the system may be
falling back from the vehicle ahead or joining up to it when some special manoeuvre is
being carried out.

b. Lateral Control System. This will maintain a vehicle on track in lane. It will also
change lane at appropriate locations when requested to do so.

C. Odometer. As will be seen, at the entry to every block there is a block entry marker
(b.e.m.). The odometer measures the distance of the vehicle from the b.em. and
records this number in the VSV. The lane # is also recorded there. We call this data
Zoc, the vehicle' s location. On entry, aloc isinput by the system.

d. Forward Sensor. This instrument measures the distance of the vehicle from the one
ahead. It a'so measures relative velocity directly. The readings are stored in an AR.
It will operate at close range, in platoon. At longer ranges, it can keep track of which
of several vehicles ahead is in the same lane. It will aways detect vehicles up to a range
exceeding the maximum value of platoon spacing.

Communication Devices. The description will imply that there are eight independent
devices here. If any pair of the functionsis lost, a hazard arises. Itis possible to
combine the functions in various ways. This will reduce the number of separate pieces
of equipment. However, each function must then be carried out by more than one
device. It is simpler, in specification, to speak of independent devices for independent
functions. The devices are:

. Forward transmitter and receiver. In platoon, the devices can distinguish signals
from the vehicle ahead from all others. Otherwise, their range is at least equal
to sensor range. However, at a distance, there may be several vehicles with
which communication is possible.

. Rearward transmitter and receiver. These have the same specification as the
forward ones, except that they react to vehicles behind.

. Lateral transmitter and receiver. These communicate with vehicles in lanes on
either side. Their range is such that they can reach vehicles adjacent to those in
contact with those reached by the forward and rearward communicators.

. System transmitter and receiver. These communicate with the platoon-level
roadside controllers.

. Message stores and flags. There are ARs for storing messages and flags
indicating their presence. When a message is received, aflag is set in an AR.
The message itself is stored in another AR. If the message is received from
another vehicle in the same platoon, it is also passed to the appropriate
transmitter. Thus a message is passed along the length of the platoon by the
regulatory level controllers. There are two exceptions to this. A message clearly
cannot be passed on by the first and last vehicles of aplatoon. Also, thereisa
message type called “acknowledge-control” (see Section 8.2.2) which is not
passed on. A message containing control data is also passed to the longitudinal
controller.

Self-monitor. This will be called MON. MON checks the behaviour of the other
vehicle-borne controllers and devices. |If any fail, an appropriate fault marker is set in
the VSV. The transmitters and receivers are “looping” at all times. Thus faults here are
detected at once without special action at platoon level. Asavehicle passes the places
where change of lane can occur, it receives a message which, among other things gives
the current loc. This enables a check to be made on the odometer. The forward sensor

Is checked at these points also. Here a specia platoon-level-controller routine is
provided.

4.6 Architecture, Level 0: Physical

The physical level, as the name indicates, is the one at which physical controls operate. An
example is the way in which movements of the steering axle affect the vehicle heading. Another
is the way reflections from other vehicles are interpreted by the forward sensor. In this paper
these operations will be taken for granted.

S. PHYSICAL LAYOUT

Along the center of every AL thereisa lateral reference. Thisisread by the vehicles' lateral
control systems and serves to keep vehicles on track.

As explained in Hitchcock, 1991, the hazards constrain the physical layout. In an automated
lane, flows of 6000 vehicles/hour or more are envisaged. Maximum flow on a manual laneis
around 2000 vehicles/hour. At such high densities, we must clearly admit the possibility that
one vehicle will lose speed and be rear-ended. Operation in platoons is chosen for the design
because, then, if thereisasuch arear-end collision it occurs at low relative speed. We call this
a follower’s collision. Follower’s collisions were first discussed by Shladover (1979). In
platoon, a follower’s collision may be followed by a platoon crush, in which several vehicles
successively rear-end one another at low relative speed. The resulting mass of vehicles will

contain uninjured people, but will be moving at 50 mph or so. All will bewell, provided there
are no further collisions with platoons or the infrastructure. The following platoons in the same
lane are separated by platoon spacing and so can brake to rest without collision. If, however,

the platoon crush strays into an adjacent lane, it is very likely to hit some fixed bit of
infrastructure, provided it is not hit by another platoon first. To prevent these high-relative-
speed collisions, we must design the system with barriers, called fences, between the ALs.
There are also fences between the leftmost AL and any other lanes that may be on the freeway.

In order to permit change of lane there are gaps in the fences. These are called gates.

It violates the safety criterion to permit a manually-controlled vehicle onthe ALs. Thedriver
cannot be compelled to keep platoon spacing from the vehicle ahead. Therefore vehicles must
be admitted to the system under automatic control. They enter through a gate from the transition
lane (TL). The TL has both manually and automatically controlled vehicles on it. However the
TL exists only in the neighbourhood of the gates which permit entry and exit. We shall see later

10

that automatically controlled vehicles on the TL must assume manual control or be brought to
rest in adormitory off the TL.

At the entry and exit gates there are system transmitters and receivers which, stimulated by a
message from the driver, switch manual control off and on. At the exit gate this message is
duplicated through the lateral and system communicators in case of failure of one channel on the
vehicle. At every gate, including the entrances, there are also communicators at both link and
platoonlevels. Thelink level communicators receive destination messages and update the
routing.

The platoon level communicators at gates “overhear” messages between vehicles concerning lane
changing. On the lane to which the transfer is made, there is, by the gate, a vehicle presence
detector (VPD). On lane from which transfer is made there is an active turning point, which
is controlled by the platoon-level infrastructure controller. The turning point, when active, gives
some form of electromagnetic signal which defines a precise location. If the design admits two-
way gates there are VPDs and turning points on both sides. The turning point is probably a
succession of electromagnets of particular polarity, but the technology used for the turning points
isnot important here. If avehicle is arranging to pass through a gate, the controller inspects
the VPD. If the VPD revedls that passage will not create a sideswipe, the turning point is
activated. The vehicle control system detects the turning point, and commences passage through
the gate. If the turning point is not activated it will remain initsoriginal lane.

6. SYSTEM MODES

In fault conditions, it may be necessary to close a lane. It may contain a stalled vehicle, or even
acrash. Less serious faults may require less fully degraded conditions. Operation can then
continue, in aless effective way, which still permits the freeway to be used. The whole length
of alane between two off-gates (a section) must be in the same mode. There are some rules
determining the modes admissible in one section when a nearby section is in some degraded
modes. Apart from this different sections can be in different modes. We distinguish the
following system modes.

a Normal (N). Thisis used at al times when no faults are present.
b. No-Entry (NE). Here speeds are the same as in normal mode, but the gate

controllers will not activate turning points to permit entry. NE mode is used
when the section contains a vehicle which cannot communicate laterally.

11

C. Slow-Aheud (SA). Here speeds are reduced, but there are no other restrictions.
This is used when an adjacent lane is Closed-Ahead (see below). In this case,
many vehicles are trying to enter thislane. It is also used in some other fault
conditions; for example, if a vehicle which cannot maintain full speed istrying
to enter the lane.

d. " Closed-Ahead (CA). This applies when there are sections of the lane ahead
which are closed. It also applies in some other fault conditions. Speed in a CA
section is reduced. Adjacent lanes are in SA mode. Gate controllers deny entry
to the lane. At each gate, link-level messages advise vehicles how far they can
travel in this lane and indicate a route change. If there is only one exit remaining
before the stopped section is reached, speed is further reduced. If need be,
vehicles stop and line up at the last gate.

e. Crushstop (C). In an emergency the system will send a message placing a section
or sections into this mode and identifying aloc. There is some stationary object
at this loc which blocks the lane. (For example, debris from an accident may
have passed a gate.) Except in one case, al vehicles in the section immediately
brake at full platoon braking and remain at rest. The exception is that vehicles
within platoon spacing of the identified loc apply maximum braking. This will
normally lead to in-platoon collisions. These are accepted as alesser evil. Speed
Is thus reduced to the greatest extent possible. Perhaps collision with the obstacle
is avoided altogether. At least the impact is ameliorated. Entry is barred.
Further action is determined by the system controllers. They are likely to start
by entering Stop mode (see below).

f. Stop (S). This may be initiated in the same way as C mode, except that there is
no maximum braking. Alternatively, it may be entered after C mode. In this
mode the system controllers can order some otherwise forbidden manoeuvres.
These manoeuvres will include instructing vehiclesto back up onthe AL, and to
exit through on-gates. The objectives will be to get emergency vehiclesto an
accident or breakdown, to get unaffected vehicles on their way, and generally to
clear up the consequences of some untoward event. Detailsof all thisremainto
be designed.

g. Resume (R). Thisis used to restart a section in S, SA or CA. Again, details

remain to be designed. The resumption is seen as ordered by the system
controllers advised by human observation.

12

Modes can be degraded by the system. Reversion to normal operation is seen as requiring direct
orders by ahuman. An exception is made for NE mode. When the faulty vehicle leaves the
section, the section revertsto N mode.

1. FAULTY VEHICLES

The fault element inthe VSV is set asfollows:

0.

10.

11.

This indicates no faults, and is the only value consistent with setting of the
validation marker inthe AL license.

Thisindicates an unreliable forward sensor. The vehicle cannot tell how far it
is from the vehicle ahead of it, whether that vehicle is in the same platoon or
another.

Thisindicates loss of the ability to transmit messages or datato a vehicle ahead.
Thisindicates loss of the ahility to recelve messages or data from a vehicle ahead.
This indicates loss of the ability to transmit messages or data to a vehicle behind.
Thisindicates |oss of the ability to receive messages from vehicles behind.
Thisindicates loss of ability to transmit to vehicles in adjacent lanes.
Thisindicates loss of ability to receive from vehicles in adjacent lanes.
Thisindicates loss of ability to transmit to the system.

Thisindicates loss of ability to receive from the system.

Thisindicates|oss of ability to locate accurately.

Any other fault (e.g. inability to maintain speed, inability to remain on track).

If a vehicle develops two or more faults, a hazard can arise at once. The vehicle is immediately
brought to rest, and Stop mode is called. The design is such, however, that if one fault only
is present, the vehicle can proceed without hazard, provided no other fault interacts. The other

13

fault may be on anothervehicle. Therefore, the controller is such that if a fault flag is set the
vehicle will immediately start a series of manoeuvres to quit the ALs. [t may be possible for
it to be driven normally on ordinary roads, so the driver need not be stranded. Further, a
message, identifying the faulty vehicle is sent to the system, which keeps a list of faulty

vehicles. They might decide to continue, to enter a degraded mode or to call for Stop mode.

On leaving, the faulty vehicle advises the system that it has|eft. |f the vehicle does not exit in
areasonable time the system controllers are advised, for in this position, human intervention is
called for. The sameistrueif the system detects two faulty vehicles which are in danger of
interaction.

8. OPERATION OF THE SYSTEM

We shall now describe how the system behaves as awhole, and then go on to describe how the
platoon-level controllers achieve this. In the appendixes, detailed specifications of the modules
making up the controllers are presented. System operations are divided into manoeuvres and
probes. There are some minor other activities associated with entry and exit. The probes are
concerned to discover fault conditions by using equipment which is not otherwise engaged in
such away that non-functioning can be detected. We will discuss the manoeuvres first.

There are five basic manoeuvres. Only three, however, apply in normal operation. These are,
ininverse order of priority:

a Merge. A platoon of lessthan optimal size joins on to another.

b. Split. A platoon divides into two, separated by platoon spacing.

C. Change-lane. A free agent (only) transfers through a gate into an adjacent AL.
Entry and exit are basically change-lane manoeuvres. The processis dightly

different. Control has to pass from manual to automatic (or the reverse) at the
right time.

The other two manoeuvres are initiated when there is afaulty vehicle.

d. Emergency-Change. A faulty free agent moves from one lane to another on its
way out.

e Forced-Split. A platoon dividesin such away that a faulty vehicle is either at
one end of the platoon or becomes afree agent. One of the probes provides

14

means by -which a non-faulty vehicle in a platoon can tell that one of its
neighbours has faulty communication equipment, and therefore cannot advise it
directly.

The three normal-operation manoeuvres are sufficient to enable a vehicle to do what is needed,
provided it does not become faulty. It first enters the system, declares a destination, and
receives aroute. Therouteis updated every timeit passesagate. On its way through the
system it will join with other vehicles to form aplatoon when and if thisis appropriate. When
the vehicle's route requires it to change lanes or exit, split manoeuvres enable it to become a
free agent. Change-lane makes the lane change or exit. Hsu and her colleagues (Hsu, €t al.,
1991) showed rigorously that these three manoeuvres are sufficient to meet the requirement
specification if no faultsarise. A similar proof that the addition of the two extra manoeuvre
protocols similarly conform to an appropriately revised requirement specification would require
further research.

We shall now describe the manoeuvres, the probes, and the way the vehicle-borne controller
works. However, full detail will not be given here. The usual procedure will be described.

Anindication will also be given of what happens if the usual procedure is inappropriate. The
appendixes contain formal specifications of each module. First, we shall explain the purpose
of the “busy” flag. Platoon manoeuvres are controlled, in the main, by platoon leaders.

Usually, aleader will engage in only one manoeuvre at once. When the manoeuvre starts, the
“busy” flag is set, and a message "request_[manoeuvre]" iS sent, initiating it. At the end of the
manoeuvre, the “busy” flag is reset. |If the message initiating a manoeuvre is received by a
second vehicle, the latter’s controller will consult the “busy” flag. If it is already set, the
message “"nack_request_[manoeuvre]” IS sent. The "nack_request_[manouevre]" message
acknowledges receipt of the message, but indicates inability to join in. This usually means that
the would-be manoeuvrer must await completion of the existing activity. Then the request can
be sent again. There is an exception to this. If a forced-split manoeuvre is requested, the
existing manoeuvre, if thereisone, will be suspended. Thisis because the forced-split request
indicates the presence of a faulty vehicle in the platoon. For thisreason, it may not be possible
for the first manoeuvre to be completed normally.

8.1 Manoeuvres
8.1.1 Merge
Figure 2 shows a flow diagram for the merge manoeuvre. The merge manoeuvre is initiated by

the leader of a platoon which is following another at alittle over platoon spacing. Merge will
beinitiated when the following conditions are met:

15

Merge complete:
B sends to A

confirm_merge

!

A resets busy

AR updates VSV
and sends
control data

|

B resets busy
B passes on

control data

B establishes
1ink with

R’s platoon

|

B is not busy:
B sends request_merge
and ounsize to A

B sets busy

A checks

if busy

checks if
total
too big

A

sets busy

l

A sends ack_

request _merge

A sends nack._

request _merge

to B to B

B B
accelerates resets
1o merge busy

S

Figure 2. Merge (after Hsu, et al., 1991).

16

a The leader is not otherwise busy. Itsbusy flag is not set.
b. The route does not call for any manoeuvre.

C. There is no fault flag newly set, nor is the “busy” flag set.
d. Thereis a platoon ahead in the same lane.

e. The platoon is smaller than link control’s minimum.

The sequence of events needs little description. In Figure 2, A is the leader of the leading
platoon. B is the initiator, the leader of the following platoon. If A is busy, or a merged

platoon would exceed the optimum size, A sends the message "nack_request_merge."
Otherwise, A sends "ack_request_merge." On receipt of this B increases speed until itisa
metre or so behind C, the final vehicle of A’s platoon. It then sends “confirm-merge” which
is passed up the platoon to A. A responds by updating its state vector. New control data are
passed the length of the new platoon. Merge is complete.

Figure 2 does not show what happens if no reply is received to "ack_request_merge.” |nfact
a message which indicates a potential fault somewhere is sent to the system. If many such
messages are received, action will be taken to resolve the problem. Figure 2 does not indicate,
either, that C also setsits “busy” flag during the manoeuvre. This has no effect unless aforced-
splitiscalled in A’s platoon during the manoeuvre. Full details are in the appendixes.

8.1.2 Solit

Figure 3 shows the flow diagram for the split manoeuvre. Split is usualy initiated by a member
of a platoon that, because its route demands it, wishes to become a free agent and change lanes.

It can also be initiated by the platoon leader if the size of the platoon exceeds the optimum.
This will not happen as a result of a norma merge, but it can happen if a vehicle joins a platoon
following a lane change.

Part of the change-lane protocol is a manoeuvre called split-change-lane. This makesagap in
an existing platoon. When the gap reaches a gate a vehicle can change lane into the gap. Except
for the manner of itsinitiation, split-change-laneisidentical with the split manoeuvre.

Three vehicles become busy during a split. In Figure 3, A isthe origina platoon leader. B is

the vehicle which will become leader of the new platoon. C, not shown in Figure 3, is the
vehicleimmediately ahead of B. If A isimmediately ahead of B., thereisno C. There are two

17

R sets busy
A sends to B

invite_split

B sends
request _split

to A

A checks

if busy

No

A sets busy

A sends ack_--.

to B

A sends mack_. -

to B

!

Both A and B
update YSV,
and send
control data

B decelerates

l

B sends to A

confirm_split-

B resets busy

l

A

resets

busy

Figure 3. Split (after Hsu, et al., 1991).

18

variants. If A wishes to become a free agent, it sends “invite-split” to B, which is then the
second vehiclein the platoon. On receipt of “invite-split” or "ack_request_split” B sets new
control data, which are passed to vehicles behind it. B, and the following vehicles, decelerate
until B is platoon spacing behind C. It then sends “confirm-split.” Vehiclesreset “busy.” The
split manoeuvreiscomplete.

Not shown in Figure 3 are the messages sent to the system if no reply is received to these

messages. Again, the “busy” flag for Cisonly effectiveif aforced-split occurs between A and
C while the split isin progress. The appendix gives details.

8.1.3 Change-Lane

Figure 4 is the flow-diagram for change-lane. Here, again, three vehicles may be involved. A
is the free agent wishing to change lanes. B is, if it exists, a platoon leader or free agent in the
lane into which the change is to be made. C is a platoon leader or free agent in the lane beyond
B. C becomes involved only if B does not exist. A starts the procedure with the message
“request-change-lane” giving its ownloc, speed, and the direction of the intended lane-change.
Nearby platoon leaders in the two adjacent lanes on the appropriate side of A’s lane respond
with an "ack_request_change lane." If they are busy they respond with a
"nack_request_change lane.” These messages include the locs of the senders. A now works
out with whom it has to cooperate. A message "thanx_but_no" is sent to al those who sent
"ack_request_change lane," but need not become part of the manoeuvre. These may be vehicles
in the lane two over (i.e., potential C’'s) when there isavalid response from the closer lane
(i.e., a potentia B). Alternatively they may be too far away from A.

If thereisaB, B itself will work out the best strategy. There are three variants. First, B may
request A to decelerate (message “request-decelerate”’). This message refersto agate and a
time when its final member has just passed the gate. A decelerates appropriately, and as it
reaches the gate it sends "confirm_dropt." The gate also receives this message and, provided
the receiving side is unoccupied, A will be able to change lane. A does so, and sends
“confirm-change-lane." This initiates a merge procedure, as already discussed. When the
mergeis complete, change-laneis aso complete.

Second, B may send “request-split-change-lane” to one of the members of its own platoon. The
split takes place as already discussed. The message “confirm-split” will be received by B in due
course. As B reaches the gate, it sends "confirm_split_change lane" to A. This message
includes a gate and a time at which the change will be made. Meanwhile, A has been
maintaining speed, and should therefore reach the specified gate at or very near the stated time.
The gate reacts to the message also. A changes lane. A’s message “confirm-change lane’
starts a merge procedure, as aready discussed.

19

Replies
received from
lane

(’s set busy

A sends

A sends
thanx _but _no
to all C’s:

C’s reset busy

Right C sends
rack_- -

R sends to rest
thanx _but _no

B B decelerates:
request _ chooses B sends at gate
change_lane- confirm_
A sets busy strategy decelerate
Replies B sends Gate
No replies received from
lane 1 request _ activates
received
B's set busy decelerate turning-point

A reaches gate Right B sends A decelerates A
nack_- -
—N A sends — A sends at gate changes
A sends to rest

change_to_void thanx_but _no confirm_dropt lane
GCate A Gate A sends
activates resets activates confirm_

turning-point busy turning-point change_lane

A sends to rest
thanx_but_no

change_lane

reset busy

A A Right B sends A B
ack_---
resets changes changes merges
A sends to rest
busy lane thanx_but _no lane to A
Right C sends A sends A sends B sends to B’
ack_. .- Rest of B’s
confirm_ — confirm_ reguest _split_

change_lane

change_lane

Rest of C’'s

reset busy

A resets busy
Any C

resets busy

Figure 4. Change-Lane

e
g
Split

A
merges

to B

B’ sends to B
confirm_split
B sends te A
confirm_split_
change_lane

(Change is to lane 1: platoon-leader B is in lane 1.)
(lane 2 is adjacent to lane 1: leader C is in lane 2.)

20

I

Finally B may itself decelerate. Having done so, B sends “confirm-decelerate” as it reaches the
gate. Again, this message names a gate and a time, which will be just ahead of B. Again A’s
message “confirm-change-lane” starts a merge procedure as already discussed. Change-lane
is complete.

If thereisaC, al that isrequired of it isthat it hold its relative position to A. In particular it
will not change lane itself. Furthermore, it occupies the position where avehicle inits lane
would have to be for a change-lane to interfere with the changer. A will send the message
“change-to-void” which names the gate through which A will change lane, as well asthe time
of the change. The specified gate will activate the turning point, provided thereis no obstacle
to doing so. A will pass through the gate, and will send “confirm-change-lane.” Both A and
Cwill reset “busy. " Change-lane is complete.

If there is neither aB nor a C, A must still send “change-to-void” to activate the gate. A
changes lane and the manoeuvreis complete.

Not shown in Figure 4 are the actions taken if no reply is received after some time. Under these
conditions a message is sent to the system, and the manoeuvre is canceled. It may be restarted
later. If, when it has changed lane, A finds itself too far away from the platoon with which it
IS trying to merge, a message is again sent to the system. The most likely reason for thisis that
one vehicle has developed a fault in the odometer. Finally, if during the earlier stages of the
manoeuvre forced-split is called, change-laneis called off. If however, the change of lane is
already committed, thefollowing merge continues. All these extra details are discussed in the
appendix.

8.1.4 Emergency-Change

Figure 5 isthe flow diagram for emergency change. Emergency-changeisinitiated by afaulty
vehicle which has become afree agent. Such a vehicle is now programmed to leave the ALs
as soon as possible. Because the vehicle is faulty, the usual change-lane procedure is
inappropriate. Change-lane requires several subsystems, any of which may be the site of the
fault. Change-lane involves close approach to other vehicles and formation into new platoons,
which is also inappropriate when avehicleisfaulty.

Emergency-change involves cooperation with four other platoon leaders. These are requested
to run a platoon spacing ahead, and a platoon spacing behind the faulty vehicle. Two of the four
are in the lane into which the change will be made. The other two are in the lane beyond. All
smply maintain themselves in this position while the change is made into a large gap. The four
shepherding vehicles adopt the speed, whatever it may be, of the faulty vehicle. When the

21

Tuo replies

A sends

B, C, 0, E

No replies lane 1 One reply reques?t _
lane 1, any emer _change all send
lane 1 zero or one number lane 2 in-position
lane 2 A sets busy messages
System sets System sets System sets B, C, 0, E
A sends
lanes 0, 1, 2 lanes 0, 1, 2 lanes 0, 1, 2 reply, -
emrch_at _gate_x
to SA mode to SA mode to SA mode They set busy

|

!

!

l

L

A assigns

R assigns
positions to

A assigns
position to C

Right B, etc-
sends nack: .-

Gate

positions to B and C. hen E, AR sends to rest activates
Then E, if possible, thanx_but _no
any D or E if possible then D They reset busy turning-point
A sends A A
A sends
emerch_to_void._ resets changes
emrch_at_gate_x
at_gate_x busy lane
Bate Gate Right B8, etc- A
all send ack: .-
activates activates A sends to rest sends

turning-point

l

turning-point

thanx_but_no
They reset busy

confirm_emerch

|

|

l

A A Acks received If old lane in
NE mode, system
changes changes from all of restores 1t
lane lane 8, C. 0, E New lane to NE
A A resets busy A A assigns A resets busy
sends B8, C, D, E j—1 sends positions = B, C, D, E

confirm_emerch

all reset busy

confirm_emerch

to B, C, 0, E

all reset busy

Figure 5. Emergency Change-Lane.

(Change is to lane 1: B and C in lane 1, B leading)

(lane 2 is adjacent to lane 1: D E in lane 2, D leading)
SA mode = Slow-Ahead, NE = No-Entry

22

vehicle has changed lane it sends “confirm-emergency-change. " Busy flags are reset. The
shepherds are free to engage in other manoeuvres.

There are a number of special features, activated in particular circumstances. The fault may be
in alateral communicator (fault 6 or 7). If so, the lane in which it is running isin NE mode.

When the change is made, the clear lane revertsto N mode. The one which now contains the
faulty vehicle is put to NE. Another feature which comes into play when fault 6 or 7 is present
is that the system communicators come into play. Messages which cannot be transmitted or
received by the lateral communicators are relayed through the system communicators. As will
be seen, the gate controllers communicate with both the lateral and system communicators, so
that if a vehicle is faulty in either the lateral or the system communicators the non-faulty one of
the pair passes the message to activate the turning point.

If forced-split is called in either shepherding platoon, the manoeuvre is broken off. We now
have two faultsin different vehiclesinteracting. The system controllers are advised. Thisis

an area where hazards can be readily generated and human supervision is therefore necessary.
Full details are given in the appendixes.

8.1.5 Forced-Split

The forced-split manoeuvre isinitiated by a vehicle in a platoon which develops afault. A

faulty vehicle has to quit the ALs. The first step is to become a free agent. Usually, the
reaction is to call for a split ahead so that the faulty vehicle becomes platoon leader. If,
however, the fault is in the rearward communicators, the initial split is behind the faulty vehicle.
If the faulty vehicle is platoon leader, the split is also behind it. We shall see later that even if
the fault prevents full communication with other vehicles in the platoon, the probes enable the
other vehiclesto operate the forced-split.

Forced-split differs from split in these ways:
a A confirm-forced-split message is sent when the manoeuvre is complete.
However, no reliance is placed on its being received. After areasonable interval

of time, the manoeuvre is terminated.

b. The original platoon may send a message breaking off some other activity; if not,
thisleader checks, when the forced-split is over, to seeif another activity should
be resumed.

C. The last vehicle in the rear platoon will receive data indicating that it is a member
of anew platoon. It consults it own “busy” flag. If the flag is set, another

23

manoeuvre is in progress. A message is sent to the new platoon leader indicating
as much.

Because these differences do not show up well in aflow diagram, none is shown for this case.
Figure 3 applies here too.

Forced-split-differs from other manoeuvresin that it overrides the “busy” flag. A faulty vehicle
In a platoon is either an imminent danger causing a crash (probably a low speed one) or
interferes with the execution of the manoeuvre. Therefore the manoeuvre is preempted.

In the case of a split or merge manoeuvre, the manoeuvre continues in the unaffected platoon.
The leadersin aplatoon which is engaged in aforced-split manoeuvre can receive messages. If
they do, however, the message is stored and is not responded to until the forced-split is
complete. Then the system recovers stored messages and either sends the
"confirm_[manoeuvre]" message or continues with amerge or split. If the forced-split occurred
in the first of the two platoons engaged in a merge or split, the original leader of this platoon
IS now inaccessible. The last member, however, does have “busy” set, and has stored the
necessary data about the previous manoeuvre. Thislast member sends this forward to the new
leader. An exception arises when the faulty vehicle is itself the last member of the platoon.
Now amerge manoeuvre will be terminated. A message is passed to the following platoon to
fall back at the time the forced-split is initiated.

If forced-split is called in acooperating platoon, a change-lane manoeuvreis terminated unless
the change of lane has already taken place, or the gate has been activated for the change. At
this stage in a change-lane manoeuvre, a merge is in progress or about to begin. It will continue
as other merges do.

Further detail about this manoeuvre is given in the appendix. Formal specifications of all
modules are included.

8.2 Probes
8.2.1 Platoon L eader Probe

Figure 6 gives a flow diagram for the platoon leader probe. The platoon leader probe is a check
on the continued function of the forward sensor. The probe is initiated whenever a platoon
leader reaches a gate, unlessit is “busy.” If the forward sensor perceives at least one vehicle
ahead, a message is sent giving the loc of the sender and indicating the distance of the vehicle
perceived. A vehicle receiving this message may reply if it isthe last vehicle in a platoon.
There may be many such vehicles. Each will reply if its own loc makesit likely that it isthe

24

No vehicle [47

No seen: ‘zhicle seen:

Vehicle
(pos = 1) Yes
reaches gate

Faults #1,
#3

,
Probe_no_veh_l ‘obe_1 sent.
sent

present?
Loc corrected

]

Reply from Invalid reply Valid
No reply vehicle uhich
should be or reply
received detectable
no reply received

l |

Probe_no_veh_2
oK Probe_2 sent 1]

sent

Reply from Invalid reply Valid
No reply vehicle which
should be or reply
received detectable
no reply received
Set fault #1 Set fault #1
Vehicle Vehicle
(pos = last) Yes Clearly (pos = last}
within range
receives stated? receives
Probe_no_veh_x Probe_1
Vehicle
Reply with Yes Perhaps {(pos = last}
No action

within range
stated” receives

Probe_2

state vector

Figure 6. Platoon Leader Probe.

25

vehicle addressed. If the sender receives areply from a vehicle whose loc makesit likely that
it isthe one seen, all iswell.

If, however, no reply is recelved by the first sender, another message is broadcast. This
message calls for areply from any vehicle credibly being addressed. This is because, if the road
isstrongly curved, it may be difficult to be precise about the relative position of locs on diverse
lanes. If, again, areply is received and appears to be valid, al is well. Otherwise there are
two possibilities. Either the sender is seeing things which are not there, or the receiver, is
unable to communicate. If there is or seems to be more than one potential receiver, the first
aternativeisvalid. Fault #1 is set by the probing vehicle and the system is advised. If there
is or seemsto be just one potential receiver, amessage is sent to the system. The system may
reply that indeed, there is a vehicle in this general area with such a fault. If so, no further
action is taken. Otherwise fault #1 is set by the prober. The other possibility is that no vehicle
is perceived, in which case a message is broadcast to any potential receiver ahead saying so.

If areply isrecelved, onetriesagain. If again areply is received, fault #1 is set. The system
is informed.

8.2.2 In-Platoon Probe

Figure 7 is aflow diagram of the in-platoon probe. If a vehicle in a platoon develops a
communication fault, it will set afault flag. From its side, the faulty vehicle will start aforced-
split. However, if the fault isin the forward or rearward communication system, the vehicle
with which communication has failed may not be aware of the need to forced-split. The in-
platoon probe deals with this. Every time a message with control datais sent with the leader’s
VSV data down the platoon, each vehicle responds ahead with an “acknowledge-control”

message. Asexplained in Section 4.5, this message, uniquely, is not passed on up the platoon.
It is recognized that a number of temporary conditions will interfere with the passage of one
message. Two consecutive failures to receive a control message are required before the vehicle
deduces that there is a failure ahead of it. It then sends a temporary leader’s message, giving
its own control data. The would-be leader may subsequently receive a message from another
temporary leader ahead of it. This can occur when the break in communication is not
immediately ahead of it. |f atemporary leader receives a message from ahead, it adopts a
follower’s role again. If not, it will send amessage in both directions, indicating that aforced-
split will be formed ahead of it.

Alternatively, there may be no acknowledgment. Once again, confirmation that the lossis
permanent isawaited. After that, a message is sent, both ways, indicating that a forced-split
will occur behind the vehicle sending the message.

26

(The probe operates cyclically: strictly, there is no entry point. Comprehension is eased by

forced_split_
ahead
both ways

Leader sends Each A message
j——| cycle received?
Control data
Yes
Vehicle Vehicle
receives receives
leader’s temp-leader’s
message message
Vehicle Vehicle
Wait 2
acknowledges passes
cycles message message on
ahead behind
Still Vehicle
no message sends
temp-leader’s
received message
Send

A message
received?

Figure 7. In-Platoon Probe.

starting at the point indicated.)

27

Message
acknowledged?

Send

forced_split_
behind
both ways

8.3 Entry and Exit

Entry has two components. First the vehicle must signal the system that it wishes to join the
system, and give adestination. The system will regject the vehicle' s request for entry if it does
not signal that its AL license isvalid. It will also reject the request if the destination is
inaccessible. This could happen if the driver is trying the wrong direction, or if thereis some
breakdown ahead.

If avehicle is accepted, the next stage is a change-lane. This differs in two ways from other
change-lane manoeuvres. The driver, before requesting entry, can match speed and position so
asto make entry ssimpler. Also, should entry prove to be impossible for any reason, the vehicle
will ultimately pass the last on-gate. It will now be treated as if it had just exited. The driver
will be invited to resume manual control.

Exit, too, starts with a change-lane, like any other, on to the TL. However, in this case, the
system sends a warning to be ready to resume manual control on exit. Immediately after exit
Is confirmed by the VPD, the driver is offered the opportunity to resume manual control. If
manual control is not taken, the vehicle will be first Slowed down as it passes a particular
communicator near the end of the TL. If it reachesthe end of the TL, it will be brought to rest
inadormitory.

8.4 Operation of the Vehicle-Borne Controller

The controller has many functions, and cannot remain with any operation for a significant
period. Instead it cycles, continually, through six functions. If any of these is active, the
controller will enter it. The controller will initiate some operation, if it is time to do so.
Otherwise, the controller will simply set aflag. When control returns on the next cycle, the
controller will pick up the operation where it |eft off. Intheinterval it has examined the need
for operation in the other five categories.

All thisis set out in detail in the appendixes. Figure A. 1 shows a schematic, naming the
modules. A full description of the latter will be found in the appendix “ Supervisor.” The six
elements operate as described below. We have given the elements mnemonic names.

a Buschek. “Buschek” is“check busy." If the busy flag is reset, control passes on.
Otherwise the controller consults flags to discover which manoeuvreisin progress.
Another flag indicates the role played by this vehicle, while a third records the stage
reached.

28

b. Forprob. *“Forprob” is*“Forward probe." This section progresses the platoon leader’s
probe. Again, flags are set, indicating that the probe is in progress. Another flag
advises how far the probe has progressed.

C. Messrec. “Messrec” is” Messagesreceived” Thismoduleisresponsiblefor initiating
new actions in response to messages. Flags have been set in the message register by the
regulatory level communicator controllers indicating which messages have been received.
Thislevel will also already have passed on many up or down platoon. Regulation level
will also have discarded messages which do not apply to thisvehicle. Other messages
are of concern to particular elements, and their flags are noted there.

However, some messages are initiators. “Request merge’ is an example. Another is
“Probe-l,” the first forward probe message from a vehicle to the rear. “Messrec” notes
these. It examines each incoming message in turn, and transfers control to appropriate
elements.

d. Newfalt. “Newfdt” is“ New fault.” Fault flags are inspected to seeif any are set. The
fault-1 probeis called from here. This probeis used by a vehicle which has lost forward
sensor capacity, and has no vehicle ahead of it in platoon. It callsforward giving itsloc.
Vehicles ahead in the same lane give their own locs. These data are passed to the
longitudinal control system instead of the sensor readings. Here too, messages are sent
if avehicleisfor some reason moving very slowly.

e Actcalled. “Actcaled” is*“ Cals for Action.” If faults are present, the appropriate
manoeuvre is called. If there are none, the module examines the routing to see if any
manoeuvre needsto beinitiated. If the platoon is above or below the optimum range,
it may be appropriate to send a “regquest-merge”’ or "request_split." At a gate, it may
be appropriate to initiate the platoon-leader’ s probe.

f. Contdat. “ Contdat” is*“ Control data.” The control data are passed aong the platoon by
the regulation level which also makes them accessible to longitudina control. However,
the in-platoon probe also needs these data, and the logic of this probe is carried out in
Contdat.

This completes the general description of the system. For further details the appendix should
be consulted.

29

8.5 Operation of the Roadside Controller

In fault-free operation, the only activities of the roadside controllers are to send signals causing
manual and automatic control to be switched, and to activate the turning points at gates. In fault
conditions, the system communicators aso act as a backup to the normal ones. The gates
communicate both with the lateral and with the system communication subsystems. The system
is called on, whenever there may be a vehicle that cannot communicate over adistance. (The
description of the platoon leader’s probe in Section 8.2.1 contains an example.) Also, the system
maintains two lists of faults and potential faults. Whenever afault flag is set, the roadside
controller is advised. When a faulty vehicle exits it is removed from the list. The system
controllers are advised if thereistoo long an interval before a faulty vehicle exits. These people
also receive amessage if there are several faulty vehicles close together.

Further, there are a number of events which are reported to the system which indicate that
something is faulty somewhere, but do not enable a culprit to beidentified. Excessive delays
or failures to respond in a merge process are examples. Another example is a vehicle changing
lane too close to or too far away from a partner in the change or emergency-change protocol.

Such events result in vehicles being put on a potential-fault list. If they appear several times,
amessage is sent declaring them faulty.

9. WORK OF HSU, et al. (1991)

It has already been explained (see Section 1) that this specification is the completion of one due
to Hsu and her collaborators. These authors have agreed to their work being used in this way.
While their work is not alarge part of what is described here, it did, of course, inspire the
whole. In particular Hsu and her colleagues did not specify a physical layout. They did not
describe the cyclic action of the vehicle-borne controller. Two of the manoeuvres (forced-split
and emergency-change) have been added. So have both the probes. The whole of the treatment
of non-reply to messages described hereis new.

However, the small fraction of the pages do contain avision of how a system might work that
permeates the whole of thisreport. Thiswork does not address the same topics as Hsu, et .
Its conclusions are, it is believed, useful and are not trivial consequences of the previous work.
Nevertheless, this work has been greatly aided by being able to build on the earlier work.

30

ACKNOWLEDGEMENTS

The author wishes to acknowledge the technical support and encouragement of Dr. Steven E.
Shladover, Technical Director, PATH. The author experienced some difficulty in writing this
paper as clearly understood prose. The comments of Mr. Sompol Chatusripitak of Caltrans were
very helpful.

The great value of the work of the authors of Hsu, et a. (1991) has aready been acknowledged.

31

REFERENCES

Hitchcock, A. 1991. “Intelligent Vehicle/Highway System Safety: Problems of Requirement
Specification and Hazard Analysis,” Transportation Research Board Annual Mesting,
Washington, D.C.

Hitchcock, A. 1992(a). “ Methods of Analysis of IVHS Safety,” PATH Research Report
UCB-ITS-PRR-92-14, Ingtitute of Transportation Studies, University of California, Berkeley,
CA.

Hitchcock, A. 1992(b). “Fault Tree Analysis of an Automated Freeway with Vehicle-Borne
Intelligence,” PATH Research Report UCB-ITS-PRR-92-15, Ingtitute of Transportation
Studies, University of California, Berkeley, CA.

Hsu, A., Eskafi, F., Sachs, S., and Varaiya, P. 1991. “The Design of Platoon Maneuver
Protocols for IVHS, " PATH Research Report UCB-ITS-PRR-91-6, Institute of
Transportation Studies, University of California, Berkeley, CA.

Shladover, S.E. 1979. *“ Operation of Automated Guideway Transit Vehiclesin Dynamically
Reconfigured Platoons,” Urban Mass Transportation Administration Report
UMTA-MA-06-0085-79-1, 2 & 3, Springfield, VA.

Varaya, P., and Shladover, SE. 1991. “Sketch of an IVHS Systems Architecture,” PATH
Research Report UCB-ITS-PRR-91-3, Berkeley, CA.

32

APPENDIXES
A.1 INTRODUCTION

The appendixes contain formal statements of the form and effect of each module. The form
selected is loosely based on the statements required in a number of formal computer languages.
Thereis, however, no computer language known which can accept these statements. Since many
of the terms used are not axiomatized, a great deal more would be needed before these formal
statements could be so used. However, this form has been found to be adequate for manual
verification of the statements made in the course of a fault tree analysis, and this is the
application intended.

The general section of these appendixes contains the modules which refer to more than one
vehicle or platoon. The others are grouped into sections. Each section refers to the supervisor
itself (Figure A. 1) or to one of its six elements. However, the figures for the element
Busycheck are broken down into the five manoeuvres (Figures A.2 - A.6). At the end, the
“System” section describes the operation of the platoon-level roadside controller.

Thefollowing abbreviations are used for the system modes:

N — Normal NE — No Entry SA — Slow-Ahead
CA — Closed-Ahead S — stop C — Crashstop
R — Resume

A.2 HOW TO USE THE MODULE DEFINITIONS

If it is wished to determine exactly how the system, or some part of it, works, it is necessary
to consult the written module definitions. The figures provided here do act as a guide to the flow
of control through the modules. However, they are not afull flow-chart. Whereamoduleis at
a branch, for example, the figures do show two successors. They do not say what the branching
criterion is. That is done in the written module definitions. Similarly, a branching criterion may
require external input. The figure may show that there is a predecessor which provides the
relevant data — but the message itself isonly identified in the text. Equally the words within a
box in afigure are necessarily abbreviated, and often omit relevant information.

In general, as each of the elements in the main routine (called supervisor) is entered, the first
action isto consult flags. The flags indicate whether an operation isin progress, and if so, the
point which it has reached. Thus, for example, if Busycheck is entered, the system first checks
the busy flag. If the flag is set, @ manoeuvre is in progress. Alternatively, the flag may just have
been set by Actcalled. In either event, the system first determines the role the vehicle is playing.
Flags with names like split(2) or emerch(3) indicate the vehicle' s role. In fact a vehicle with
split(2) set is the leader of the second platoon in a split manoeuvre. Emerch(3) indicates the
leader of the trailing platoon in the lane which is to be entered in an emergency change. Within
this role, there may be stages. Thus with split&) set, and the stage flag = 3, the newleader is

A-l

dropping back to platoon spacing. The action is to consult the reading of the forward sensor, and
determineif the full separation isyet achieved.

So much is perhaps reasonably clear from the diagrams. But for full understanding, the text must
be used. An example may be useful. Suppose that a platoon is alone on the road except for a
vehicle ahead in the same lane which has fault #5. The vehicle thus cannot receive a message
from the leader of our platoon. A gate is reached. When the element Actcalled is reached, the
forward probe is started. To see how consult Figure A.IO. In the circumstances described
Actcalled will successively call the modules Linkmess, Mersplit and Startprobe. By looking at
each specification it is apparent that Startprobe will set the stage flag in Forprobe = 1.

Now examine Figure A.7. It is perhaps unnecessary to examine the specifications of the modules
Forprobe, Insight, Recackprobel, Probeagain, and Recackprobe2. On successive cdls to
Forprobe, as the specifications will confirm when examined, the flag advances from 1 to 8,
Probe-l is sent (flag = 1) and later Probe-2 (flag = 5) is sent. Since the vehicle addressed
does not receive the message there is no reply. At flag = 8, Recackprobe2a is caled. No
message has been received. However thereisonly one vehiclein sight. Sotheflagis set to
16, and the message Fault 1 veh is sent to the system. Now consult the system section. The
system will consult its list of faulty vehicles. It will discover that there is indeed a vehicle with
fault 4 or 5 in the area from which the messageissent. So it sends No-fault-I. Whatever the
relative cycles of system and the vehicle controller, there is sufficient time for this message to
be picked up when the flag is 16, 17 or 18. Nofault then resets the flag in Forprob. No fault
iswrongly ascribed to our platoon leader.

A-2

A. 3 GENERAL

These modules are general They are called from several locations, and have no specialised
SUCCESSOr'S:

Name: Cacall Fig: 8
Admitted in: N NE SA
Input: Locations

Requires. -

If branch: Yes Condition: In range stated? Pos?

Effect: 1. If within range stated, maxspeed to reduced speed; update state vector; if
pos= 1, full platoon braking;
2. Endif; endif; return;

Name: Callstop Fig: 6, Gen

Specification in: Emerch (6)

Name: Crashstopbehind Fig: -

Admitted in: N NE SA CA

Input: -

Requires: Several precursors

If branch: No Condition: -

Effect: Message to system - systems sets crashstop mode from pos of Vehicle calling,

back twice interplatoon spacing; sets CA mode behind that and SA modein
parallel lanes; inform system supervisors;

Name: Crashstopcall Fig: 8
Admitted in: N NE SA CA
Input: Locations, and perhaps name of platoon

Requires. -

If branch: Yes Condition: Within platoon spacing of
loc named? In range stated?
Pos?

Effect: 1. If in named platoon, or within platoon spacing behind loc stated,

2. Maxspeed to zero; full braking;

3. Endif; If within range stated, maxspeed to zero; if pos = 1, full platoon
braking;

4. Endif; endif; return;

N a m e : Cutspeed Fig: 8
Admitted in: N NE SA CA
Input: Locations, speed

Requires: -

If branch: Yes Condition: In range stated? Pos?

Effect: 1. If within range stated, maxspeed to stated speed; store original maxspeed,;
2. Endif; return;

Name: Maystop Fig: 9

Admitted in: N NE SA CA
Input: Locations

Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, set flag in Newfalt;
2. Endif; return;
Name: Necall Fig: 8

Admitted in: N NE SA
Input: Locations

Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, update state vector;
2. Endif; endif; return;
Name: Norcall Fig: 8

Admitted in: NE SA
Input: Locations

Requires: -

If branch: Yes Condition: In range stated? Pos?

Effect: 1. If within range stated, maxspeed to stored value; update state vector;
2. Endif; return;

Name: Scall Fig: 6, Gen

Specification in: Emerch (6)

Name: Sacall2 Fig: 8
Admitted in: N NE
Input: Locations

Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to reduced speed; store original

maxspeed; update state vector; if pos = 1, full platoon braking;
2. Endif; endif; return;

A-4

Name: S topcall Fig: 8
Admitted in: N NE SA‘CA
Input: Locations

Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to zero; if pos = 1, full platoon braking;

2. Endif; endif; return;

A-5

Messrec

Buschek Forprob
If busy set. — !¢ ~ot tusy aro == [f mess rec’'d I—
do 1f leader. senn deciorer L call
actior Faruaro crote action
. See
igure
A. 8

Contdat

l{reck controi
data messages

Actcalled

F— Fead pcs:iticn.

time, marcers:
start action

Neuwfasult

Fault flag”®

Tekeover

——{ Fltc-2omtro, on

Set
state vector

Takeback

ieric e
nas
evitted

£enm

Figure
a3

Figure A. 1. Supervisor.

A-6

A.4 SUPERVISOR (Figure A.l)

Name: Actcalled Fig: 1, 10
Admitted in: N NE SA CA

I nput: Messages from link control

Requires: Newfalt or Takeover

If branch: Yes Condition: Fault present? Message from
link? Platoon too big, small?
Time?

Effect: 1. If afault flag is set, then if emerch(l) is set, or forspl(x), x =1-5is s, ;

2. Else send to system fault_#x_present With vector; if ownsize > 1, then if
fault #4 or #5 is present,

3. Call Faultdors;

4. Elseif pos = 1, call Forspll;

5. Else call Forspld ;

6. Endif; endif; else call Emerchcall;

7. Endif; endif; else call linkmess;

8. Endif; Go to contdat;

Name: Buschek Fig:1,2,3,4,5,6

Admitted in: All

Input: -

Requires. Contdat (in iterating cycle)

If branch: Yes Condition: Busy? Internal flags?
Effect: 1. If busy set, examine flags in order shown until one found set; then, if

need be, examine flag2, and call routine shown in list;
2. Endif; goto Forprob;

Flag | Flag2 Routine to call Fig

Chng(1) 1,2,3 Repwaitl 4
4 Voidch 4
5 Recregdecel 4
6 Pass? 4
7 Pass3 4
8 Pass 1 4
9 Sendconchll 4
10 Sendconchl2 4
1 Sendconchl3 4
12 Sendcondropt 4

Chng(2) 1,2,3 Repwait2 4
4 Compposns 4
5 Reccondropt 4
6 Sendcondecel 4

A-7

Name: Buschek (continued)
Flag 1
Chng(2)

Chng(3)
Emerch(1)

Emerch(2,3,4,5)

Forspl(1)
Forspl(2)

Forspl(3)
Forspl(4)

Forspl(5)
Forspl (6)
Merge(1)

Merge(2)
Merge3
Split(1)
Split(2)

Split(3)

Flag 2

1,2,3,4,5

Ol DN WDN — co ~No

N — DN —

N —

WN—

A-8

Routine to call

Recconchl2
Recconchl 1
Recconchl3
Repwate
Voidemerch
Compposn
Recadjahead
Passemerch
Neset3
Repwatel
Recposn
Inposn
Recconemer
Qfaltl
Newlead
Sepmeasfd
Qslowmode
Testactflag
Splitagain
Recfsplitover
Recconfspl2
Recconfspl3
Recconfspl4
RecconfsplS
Qmess
Recackreqm
Recunmerge
Norepm3
Recconmer
(No action)
Rconspl
Recackreqspl
Newlead
Sepmeas-s
Recsplitover

ooooooooool\al\al\aNmmmmmmmmmmmmmmmmmcnowcnmowcn-h-hb

Name: Contdat Fig: 1,11
Admitted in: N NE SA CA

Input: -

Requires: Actcalled

If branch: Yes Condition: Flags 1, 2

Effect: 1. Reset control data flag (1), ack _cont flag (2) and message counters,

2. For each message recorded,
a If it isa special message then if it refers to this vehicle (see below),
increment counter;
b. else reset message flag;
c. endif; endif; if it isacontrol datamessage, st flag 1,
d. endif; if it is an ack_cont message, set flag 2;
e. endif;
3. Call Controlmess;
4. Endif; go to Buschek;

Note. 1. Atregulationlevel, action of in-platoon reception/transmission isto:
a. examine nature of message received; set flags and counters (using same file
as messrec) indicating which messages have been received.
b. If it is a control data message, send data to controllers.
c. If it an ack_cont_dat message do no more
d. Otherwise, unless pos = 1 for a message from behind, or pos = last for a
message from ahead, pass message on.

Note. 2. “Special” messages are:
Message Pos

Going forward:

Request-merge l
Request-split 1
For-split-b N_f 1, N

Going backward:
Ack_request_merge |last
Request-mer_3 set last
Ack_request_split N (N-1)
Invite-split-N (N-D)if N>2,N
Req spl ch In N (N-1), N
Forspl- b N_r N+, last

A-9

Name: Forprob

Admitted in:N NE SA CA

Input: -
Requires. Buschek
If branch: Yes

2. Endif; go to Messrec;

Flag

1
2,3,4
5
6,7
8
9,10,11
12
13,14,15
16,17,18
19
20
21
22

Name: Messrec

Admitted in: N NE SA CA
Input: Message list (see below)

Requires. Forprob
If branch: Yes

Fig: 1, 7

~ Condition: Flag?
Effect: 1. If flag set, call routine according to list below;

Routine

Insight
Recackprobe 1
Probeagain
Recackprobe?
Recackprobe2a
Recackprobenov 1
Novehnorep
Recackprobenov2
Reclveh

Setfault# 1
Sendackprobel
Sendackprobe2
Sendackprobenov

Fig: 1,8

Condition:

A-10

Any messages received from
other platoons or system?

Name: Messrec (continued)

Effect: 1. If busy,

2. Else examine existing flags; for each:
a. If more than 5 cycles old, reset flag; decrement counter;
b. endif;

3. Endif; if any messages, then for each:
a. If emergency message from system, delete message; call appropriate
routine; endif;
b. If unaddressed initiating message (see below), check pos; if
appropriate to this vehicle, call appropriate routine (see below);
c. Delete message; decrement counter;
d. Endif; endif; examine address, and message type; if to this platoon,
and pos is appropriate, check forspl(x) in Buschek;
e. If forspl(x) is set, store message;
f. Else set message flag with cycle number;
g. Endif; endif;

4. Endif; goto Newfault;

Notes. The action of areceiver is to store each message, as received, and increment a
message counter. The same list and counter is used by the control data receivers,
whose messages are also acted on here.

Emergency messages from system
These are obeyed by all vehicles:

Cstopcal
S topcall
Cacal
Sacal
Necal
Cutspeed
Norcal

A-11

Name: Messrec (continued)
Unaddressed initiating messages

These are noted only by vehicles in appropriate pos.

Message Pos Routine Called
Request-merge 1 Recregmer
Request-merge Last Passon
Ack_request_merge Last Recackregmerbeh
Reguest-mer_3 _set Last Recmer3set
Ack_request_split N (N-1) Recackrgsbeh
Request-split 1 Recrgsplit
Request_split_chnge In N N Recreqsplchl
Request_split_chnge In N N- 1 Recregssplchlbeh
Invite-split-N N Recinvsplit
Invite-split-N N-I Recackrqgsbeh
Forspl_beh N f I, N>1) Leadforsplit2
Forspl_beh N f N Recbehinda
Forspl_beh N r N+1 Recaheadb
Forspl_beh N r Last(> N+ 1) Lastbusy
Request-chng-In 1 Recreqchin
Request-emerch | Recregemerch
Fault-l1grobe last Recfault Iprobe
Probe-| last Recprobel
Probe-2 last Recprobe2
Probe-no-vehicle last Recprobenov
cant-go free agent, In# = 0 Reccantgo

Name: Newfault Fig: 1,9

Admitted in: N NE SA CA

Input: -

Requires. Messrec

If branch: Yes Condition: Fault flag set? Speed? Stop

ahead?
Effect: 1. If any fault flag set call Qtwofaults;

2. Endif; if maystop flag is set, ;
3. Elseif speed < < target, call Slowspeed;
4. Endif; endif; go to Actcalled;

A-12

A.5 BUSYCHECK
A.5.1 MERGE (Figure A.2)

Name: Busychek Fig: 1,2,3,4,5,6
Specification in: Sup (1)

Name: Callmerge Fig: 2, 10

Admitted in: N NE SA

Input: -

Requires. Mersplit (10)

If branch: No Condition: -

Effect: Send Req_merge; set merge(l)-flag = 1in Busychek; reset flag in noreqm1 ;
set busy; return;

Name: Contactm Fig: 2
Admitted in: N NE SA
Input: -
Requires. Sepmeasure and close spacing
If branch: Yes Condition: Flag set?
Effect: 1. Send confirm-merge; set flag = 3;
2. If flag set set stime in norepm3 = time + (increment);
3. Else set stime in norepm3 = time;
4. Endif; return;

Name: Norepm 1 Fig: 2

Admitted in: N NE SA

Input: -

Requires. Recnackregm (no messages)

If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Elseif (time- stime) excessive, reset busy; call Toolong;
3. Else no action; endif; endif;

4, return;
Name: Norepm?2 Fig: 2
Admitted in: N NE SA
Input: -
Requires. Recconmer
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Elseif (time- stime) excessive, reset busy; call Toolong;
3. Else no action; endif; endif;
4, return,

A-13

Calimerge Recregmer
crem ’ rrcm Fv‘om
Figure Send Ren mer: Ren mer ~e-'d Tioare Figqure
R0 Set mergel]) a A
et flag * | Fag -
B
1
i -
\-----‘ busg
: Not
boomceny BUSQ
)
:
Sendnackreqgmer . Sendackreamer Recackreamerbeh Recmerdset
:
H
Sern , Senr Ak _ren mer |---m=¥ Fi_rn ~er rec’d Marl set rec'n
: Set busy Poe - last Fos = last
nack _ren_mer H Cat marqgel’! Sat merqe(3) Set merge(3J)
*
7 H : : 0
. 1] 1} 1 1]
[! 1 '
Flag = 1 byleccevcccacfecccennannny H H
L-----------‘ : t-v-----------—------*
))]
» t 1
4 : i
1
Recackreqm Buschek ! Buschek
Recunmerge ' Feam
Rk _rec_m rec'd- Marge(l) n e========\T iqure Marge(Jd) 1n
Inc targspeed: Unmerge rec'd | Flag oroaress ' A progress:
Set flag = 2 Set solit(2) = 2 ' No action
- .
H T
L]
1 1}
1} 1
[])
1] t
: r----------l
1 H
Flag 1 .
s 1 ‘ '
1 ' .
H |
Recnackregm Sepmeasurem Norepm3 ! Buschek !
))
) 1
Nek _rec_m Read proove! No reply: tesl Merge(2) 1in 1
rec'd. measure gap no action progress H
Reset busy: H
|
1]
L})
. : :
L1 romemeeme-- ----------.‘
lemcwomsanai N
,
,
|
.
1
Norepml Stillge Contactm R;cconmer H Newvector
{(Peg = 11} H
No reply: Gapo nect Sap closea --1- Eese! busy
ro action ¢closeo Semra con_mar Update cata- lero flags
Set flag = 3 Reset busy
Too
‘ong
delay
means
fault
Toolong Norepm?
Megssage to No reoiy’
syster - flags ~n action
1n Buschek

Figure A.2. Merge.

Name: Norepm3 : Fig: 1,2
Admitted in: N NE SA

Input: -
Requires. Buschek merge(l) Flag = 3
If branch: Yes Condition: (Time - stime excessive)?
Effect: 1. If (time - stime) not excessive, no action;
2. Else set split(2); reset merge(l);
3. endif; return;
Name: Recackregm Fig: 1,2

Admitted in: N NE SA

Input: Message flags
Requires: Buschek - merge(l) flag =1

If branch: Yes Condition: Ack_request_merge rec’ d?

Effect: 1. If ack_request_merge received, increment target speed; Set
merge(1)-flag=2; reset message flag; reset flags in Noreqm1, Contactm;
return;

2. Else call Recnackregm; return; endif;

Name: Recackregmerbeh Fig: 2, 8
Admitted in: N NE SA

Input: Message Ack_request_merge

Requires. Messrec pos = last

If branch: No Condition: -
Effect: Set merge(3): set busy; return;

Name: Reccon_mer Fig:

Admitted in: N NE SA

Input: -

Requires:Buschek - merge(2)

If branch: Yes Condition: Confirm-merge received?

Effect: 1. If confirm-merge received, update ownsize and transmit new control data,
pltn#, etc; reset busy; reset message flag; reset flag in norepm?2; reset
merge(2);

2. Else call norepm2;
3. Endif; return;

A-15

Name: Recnackregm Fig: 2
Admitted in: N NE SA
Input: Message flags
Requires: Recackregm
If branch: Yes Condition: Nack_request_merge rec’ d?
Effect: 1. If nack_request_merge received, reset busy; reset message flag; reset flag in
Norepm 1; reset merge(1);
2. Else call Norepml; endif;
3. return;

Name: Recreqmer3set Fig: 2, 8
Admitted in: N SA

Input: Message Request-merge-3

Requires. Messrec

If branch: No Condition: -
Effect: Set merge(3); set busy; return;

Name: Recreq_mer Fig: 2, 8
Admitted in: N NE SA
Input: Message request-merge
Requires: Messrec
If branch: Yes Condition: Same lane? Busy?
Effect: 1. If in same lane, then
2. If not busy and no fault set, call Sendackregmer;
3. Else call Sendnackregmer;
4. Endif; endif;return;

Name: Recunmerge Fig: 2

Admitted in: N NE SA

Input: -

Requires: Buschek, merge(l), flag = 2

If branch: Yes Condition: Unmerge rec’d? Delmerge
rec'd?

Effect: 1. If unmerge received, reset message flag; set split(2);

2. Else if delmerge received, reset message flag; set flag in contactm;
3. Else call sepmeasurem;
4. Endif; endif; return;

A-16

Name: Sendackregmer . Fig: 2, 8
Admitted in: N NE SA

Input: -
Requires. Recregmer and not busy
If branch: No Condition: -

Effect: 1. Send ack_request_merge;
2. Set busy; set merge(2); reset flag in norepmz;
3. return;

Name: Sepmeasure Fig: 1,2
Admitted in: N NE SA
Input: -
Requires: Recunmerge
If branch: Yes Condition: Separation <1.5*(inplat
sepn)?
Effect: 1. Reads separation from veh ahead on probe.
2. If thisless than (normal in-platoon separation)*1.5 call Stillgo;
3. Else call Contactm;
4. Endif; return;

Name: Sendnackregmer Fig: 2, 8
Admitted in: N NE SA

Input: -

Requires. Recregmer and busy

If branch: No Condition: -
Effect: Send nack_request_merge; return;

Name: Stillgo Fig: 2
Admitted in: N NE SA
Input: -
Requires. Sepmeasure
If branch: Yes Condition: Flag set?
Effect: 1. If flag not set, set flag; set stime = time;
2. Elseif (time - stime) not excessive, no action
3. Else call Toolong; endif; endif;
4, return;

A-17

Name: Toolong Fig: 2, 3
Admitted in: N NE SA CA

Input: -

Requires. Several precursors

If branch: No Condition: -

Effect: Send message too-long to system (includes state vector, and flags in Buschek);

reset busy; reset merge and split flags in Buschek; return;

Note. System will advise controllers - this can be a system fault, but presents no immediate
danger.

A-18

A.5.2 SPLIT (Figure A.3)

Name: Busychek Fig: 1,2,3,4,5,6
Specification in: Sup (1)

Name: Callsplit Fig: 3, 10
Admitted in: N NE SA CA
I nput: -
Requires: Mersplit (5) or Linkmess (5)
If branch: Yes Condition: Pos = 1?
Effect: 1. Sets busy;
2. If pos =1, cal invitesplit;
3. Else cal reqsplit;
4. Endif; return;

Name: Invitesplit Fig: 3,10

Admitted in: N NE SA CA

Input: -

Requires: Callsplit, pos=1

If branch: No Condition: -

Effect: Send invite-split; Set split (1); reset flag in norepsl; update state vector;
return;

Name: Newlead Fig: 3

Admitted in: N NE SA CA

Input: -

Requires: Buschek, split (2) set, flag = 2.

If branch: No Condition: -

Effect: Decrement target speed. set pos = 1; update state vector; Set flag = 3; Reset
flagsin spliton and noreps2; return;

Name: Noreps 1 Fig: 3

Admitted in: N NE SA CA

Input: -

Requires. Recconsplit (N0 messages)

If branch: Yes Condition: Flag? long delay?

Effect: 1. If flag not set, set flag; stime = time;
2. Elseif (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;
4. return,

A-19

eereretsmemrmmerm At E— e Rt AeE e s eetamemma .. -—————)

)
1}
! 1
: E
) [}
]]
: Collenl Recakrqgsbeh Recinv_spl .
rom allsplit rom
Figure AL rg.sp 1~v_sp I~v_spl rec ' d: L'1gur‘e
A. Set busy rec'd ravi ven. set splitl(2). AT B
Sol1ti3Y 4 busy busu: “lag = 2
)
E
1
leccamcnee
Susy nrot set
pos>|
Invitesplit Reqsplit Sendackreas Sendnackreas Recrasplit
Send inv_spl Set «plit(y seemy fev req er Senn -~ Reg_sciit
Senr ren_ep’ it H L et ruey y ar. ~en aplit Musy received
Set soltt (1) Set fiagq * ! ! Tar apiitl) : set
Y H : ,
H 1 H H
S SO emeeaes Ve | .’ :
k L]] : : :
H H H H H :
: : I '
: ; E E
Buschek E Recreasplchl ! N Recregsplichlbeh
Tram ' ' Temm
Solit(l) tn Fiaure Jet ey, Traume Rq_so.ch] rec’'d
proaqress ! set %aix:i?1\) /8 fnr veh hehinrd.
Flag = | , Split{3) § busy
1
: H :
* 1] '
1]] *
H , H
: ‘----------cn----w.----------------*
) H
Flag Flag !
2) =] '
!
Reconspl Recackreasp! Buschek Sepmeas-s Buschek
Rec con_gnlltt Ak rea_s rec'd: — Sglxi(?) in Read probe: = Split{d) in
eset busy, r rogress sol1t progress
Send split_cver Set flag "2 complete?
Flaa
Noreps! Recnackreaspl Neulead Solitdone Recsplitover
No reply: Ngk_ra_s Dec tarasoeed- Fuitly sep'd Spl.over rec'd-
no action rec'd. Rese: Upaoate vecior Reset busy:
busy “lag = 3 Senrd con_spiit Reset busy
Too
leng
delay
means
Fault
Toolong Noreps?2 Spliton Noreps3
Message 1o No reply: St1ll toe No reply:’
system - flags no action close no action

in Buschek

Figure A.3. Split and Split-change-lane.

A-20

Name: Noreps2 V Fig: 3
Admitted in: N NE SA C
Input: -
Requires: Recnackregspl (no messages)
If branch: Yes Condition: Flag?long delay?
Effect: 1. If flag not set, set flag; stime = time;
2. Elseif (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;

4. return,
Name: Noreps3 Fig: 3
Admitted in: N NE SA CA
Input: -
Requires. Recsplitover (no messages)
If branch: Yes Condition: Flag? long delay?

Effect: 1. If flag not set, set flag; stime = time;
2. Elseif (time - stime) excessive, call Toolong
3. Else no action; endif; endif;
4. return;

Name: Recackregsplit Fig: 3
Admitted in: N NE SA CA
Input: -
Requires. Buschek, split(2) set, flag = 1.
If branch: Yes Condition: Ack_req_split received?
Effect: 1. If ack_request_split received, reset message flag; set flag = 2; reset flag
in noreps2;
2. Else call Recnackregsplit;
3. Endif; return;

Name: Recakrgsbeh Fig: 3, 8

Admitted in: N NE SA CA

Input: Message Ack_request_split or invite-split to vehicle behind

Requires: Messrec

If branch: No Condition: -

Effect: Reset message flag; set busy; set split(3); reset flag in noreps3; return;

A-21

Name: Reconsplit . Fig: 3
Admitted in: N NE SA CA
Input: -
Requires. Buschek, split(1) set
If branch: Yes Condition: confirm-split received?
Effect: 1. If confirm-split received, reset message flag; reset busy; send split-over;
reset flag in norepd; reset split(l);
2. Else cal norepd ;
3. Endif; return;

Name: Reqsplit Fig: 3, 10

Admitted in: N NE SA CA

Input: -

Requires: Calsplit, pos> 1

If branch: No Condition: -

Effect: Send request-split; set split(2); set flag =1; reset flag in noreps2; return;

Name: Recinv_spl Fig: 3, 8
Admitted in: N NE SA CA

Input: Message invite-split

Requires: Messrec

If branch: No Condition: -
Effect: Reset message flag; set busy; set split(2) - flag = 2; return;

Name: Recnackregs Fig: 3

Admitted in: N NE SA CA

Input: -

Requires: Recackregs, ack not received

If branch: Yes Condition: Nack_request_split received?
Effect: 1. If nack_request_split received, reset busy; reset message flag; reset split(2);

reset flag in noreps2;
2. Else call noreps2;
3. endif; return;

Name: Recregsplit Fig: 3, 8
Admitted in: N NE SA CA
Input: Message request-split
Requires;. Messrec and pos = 1,
If branch: Yes Condition: Same lane? Busy?
Effect: 1. If same lane, then
2. If busy or fault set, call Sendnackregs;
3. Else call Sendackregs;
4. Endif; endif; return;

A-22

N a m e : Recreqsplchl . Fig: 3, 8

Admitted in: N SA

Input: Message Req_spl_change_lane

Requires. Messrec

If branch: No Condition: -

Effect: Set split(2); set split(2)-flag = 2; reset flag in noreps2; set busy; return;

Name: Recreqsplchlbeh Fig: 3, 8
Admitted in: N SA

Input: Message request-split-change-lane rec’d for vehicle behind
Requires. Messrec

If branch: No Condition: -
Effect: Set split(3); set busy; reset flag in noreps3; return;

Name: Recsplitover Fig: 3

Admitted in: N NE SA CA

Input: -

Requires: Buschek, split(3).

If branch: Yes Condition: split-over received?
Effect: 1. If split-over received, reset message flag; reset busy; reset flag on

noreps3; reset split(3);
2. Else call norepss3;
3. endif; return;

Name: Sendackregs Fig: 3, 8

Admitted in: N NE SA CA

Input: -

Requires. Recregsplit

If branch: No Condition: -

Effect: Send ack_request_split; set busy; set split(l); reset flag in norepd; update
state vector; return

Name: epmeasures Fig: 3

Admitted in: N NE SA CA

I nput:

Requires. Buschek, split(2)-flag = 3.

If branch: No Condition: -

Effect: Read from probe separation from vehicle ahead; pass thisin calling Splitdone;
return;

A-23

Name: Sendnackreqgs : Fig: 3,8
Admitted in: N NE SA CA

Input: -

Requires: Recregsplit and busy set

If branch: No Condition: -
Effect: Send nack_request_split; return

Name: Spliton Fig: 3
Admitted in: N NE SA CA
Input: -
Requires. Splitdone (no messages)
If branch: Yes Condition: Flag?long delay?
Effect: 1. If flag not set, set flag; stime = time;
2. Elseif (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;
4. return;

Name: Splitdone Fig: 3

Admitted in: N NE SA CA

Input: Distance from veh ahead (= d)

Requires. Sepmeasures,

If branch: Yes Condition: d< platoon spacing?

Effect: 1. If d < platoon spacing, call spliton;
2. Else send confirm-split; reset busy; reset flag in Spliton; reset split(2);
3. endif; return;

Name: Toolong Fig: 2,3
Specification in: Merge (2).

A-24

AS.3 CHANGELANE (Figure A.4)

Name: Busychek Fig: 1,2,3,4,5,6
Specification in: Sup (1)

Name: Callchangelane Fig: 4, 10
Admitted in: N NE SA CA

Input: -

Requires: Linkmess (10)

If branch: No Condition: -
Effect: Set busy; set chng(1); set flag = 1; call Reqchngln; return;

Name: Chltomer2 Fig: 4
Admitted in: N SA

Input: -

Requires: Sendconchl2

If branch: No Condition: -

Effect: Reset chng(1); set merge(2); return;

Name: Compposns Fig: 4

Admitted in: N SA

Input: -

Requires: Buschek, chng(2) and flag = 4

If branch: Yes Condition: Results of calculation
Effect: 1. From pos, speed of entering car, own speed, ownsize, pos and data sent,

determine change-lane strategy:

2. If veh isto join behind, call Sendreqdecel; flag = 5;
3. Elseif in centre, call Sendregsplchll; flag = 5;

4. Else ahead, call Dropback; flag = 6;

5. Endif; endif; return;

Name: Dropback Fig: 4

Admitted in: N SA

Input: -

Requires: Compposns

If branch: No Condition:

Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive

at gate at head of platoon;
2. Records targets, stores them; flag = 6; return;

A-25

Callchng.1n Sendnackreach Recreachln
Fr‘:‘)m . Rugu . FV‘O"\
Figure Set tusu. Sarqg Reqgest crng in Figure
1¢ FLUCIRRN Nacu ren chrg et racetven A 8
Flag = 1
3usy not set
Reagchange_ln Buschek Sendackreqch
Send ~e==s Thngll) 1r Ack rep_c"i‘Set
req_chng_in. progress busy ¢hnrgld) or
lJoc & maxspeed: chng(2), flag=!
Flag = Flag Flag Flag Flag
1.2.3 = 5 = & = & = 11
Repusitl Recreadecel Pass? Sendconchll Sendconvoid
Flag = Renner rec’'g: Tass zate. Sern fan_ch 1n:
Flag 1 ‘lag = 17 rimte ve-ran carFamm an e Aadvise system
Else match spag Trem Flag = 9 Test cac aneaa if close vehs
Flaa
Recnackreqch Recconsplcht Pass3 Chltomer] Suscallld
Neck rec'd Con_spl rec’'d Fass gate: Reset cnrgll) Gaoctog vig
I Sen

T.b.n to rest

Uodate vector

Set mergel(l)

chnge _messed_up

Reset busy Flag = 6 Thenflag=10
hin
Recackreach Reccondecel Syscalll
Ack rec'd- Con-dc 1rec'd Message no_tc 1
T.b_ntorest ~ to system
Flag - 4. 5 lag = 7 multiple fFaults
J L
Flag T lag
= 4 = &
Yoidch Recforsplcalll Pass!

Rt gate send
ch_to.void:

For sol_called:

Pass gate:
Undate .ectc-

For_spl_called:

reset busy

- tel] system.
Reset busy

Flag = 8 reset busy Then flag=11 |
No
1-p
Recforsplcalll Norepchl! Suscall?
2 gates passed No_tp_C

to system.
Set Fault ¥

Sendconch1?

Seng

cenfiem ¢~ N

Chitomer?

Reset chng

(1
Set mergel(?2)

)

Figure A.4. Change Lane (initiator).

(t-p = turning point)

A-26

Flag
=17

Sendcondropt

At gate send
con_droot
Flag = b

I
|

Recforsplcalll
For _spl_called:

reset busy

Uncnf)rm_chnglr\
rec'd-
Reset busy

con_cnrl rec'd

Set merge(])

il N
« gates passeg:

tel 1 system
reset busy

Zate cassed-
Reset busy.
tell system

Figure A.4a. Change Lane (recipient).
(t-p = turning point)

A-27

Callchng_1n Sendnackregch Recrach
From Busg From
Figure Set busy. Send Reauest _crnq_ 1~ Figure
R 12 crmgtl), Nack ren chmg set receiven AT @
“lag * |
2usy not set
[erecceectemcccacmmeesssssesssesemcsecsmeeremmmec-messesm=ma)
[} 1}
[} 1}
1 :
:
Reachange_1n Buschek Buschek : Sendackreqch
. Zmam '
Y 4
Send Crrgtl) - Suaspec ThralZl e ee-=dowcece Rcl reqg_cn: Set
rea_chrg_1n, croqress ! nroaress busy chmg(3) or
pos & mavspeed chng(2), Flag=]
Flag = Flag * Flag
1.2.3 =4 = &
Repuait? Compposns Reccondropt Reccorchll Rectbn2
Flag = Corcare Lom arocpt lomermi oras g Thany _out _~o
Fiag + ! positions: _~ec g rec'd
fi+ strategy “lag = 7 reset busy Reset busy
|
Rectbnl Sendreadec Reccomsplit Recunconch}3 NorepchS
Thanw _but_nro - Sern Serg corsnlcr renfiem cmngln 3 gates passed’
rec'd: req_ aece]: Serg Scittover ~ec'd. tell system.
Reset husy “lag = & Flag = 7 Reset tusy ~eset busy
Flaa Flag
= -8
Syscallld Sendreasplchl Fersplit] Receconchl? Sendcondece
Gao tco big: = Req _spi rrm_.n: Frr ey ral.en Thm o) rec g Necel Pt qate
Send Cherge c.rs)ze sena send merliset con_decel -
Chrge messed_uo Flag = for spi_cal.en Set mergell) Flag = 8
| Norepchd Oropback Recforsplcallld Recunconch1?2 Forspl112
* ate passed s Ser paramg ‘- Ser &pi oraijen ArAfirm o rhmgin Frr spl cailed
“eset busy- Iroc rac- rac o - send
tell system Flag * R Seset busy Seset busy for_spl.called
Flaa
=
Recunconchll Recconchll Norepch?2 Norepch3 Recforsplcalld

For_sol_calied

Reset busy

Name: Forsplitl : Fig: 4
Admitted in: N NE SA CA

Input: -
Requires: Recconsplit
If branch: Yes Condition: Forced split called? sect in
NE?
Effect: 1. If forced split called (ie forspl(1) in buschek set), send forced-split-called;
r eset chng(2);
2. Elseif sectionisnow in NE or CA, send-forced-split- called; reset
chng(2); reset busy;
3. Endif; call Recforsplcall3; return;
Name: Forsplit2 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Sendcondecel
If branch: Yes Condition: Forced split called? sect in
NE?
Effect: 1. If forced split called (ie forspi(1) in buschek set), send forced-split-called;
reset chng(2);
2. Elseif sectionisnow in NE or CA, send-forced-split- called; reset
chng(2); reset busy;
3. Endif; call Recforsplcall4; return;
Name: Norepch 1 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Recforsplcall2
If branch: Yes Condition: Gate passed? Counter >1?
Effect: 1. If gate signal received, then if signal indicates section of receiver isin NE,

reset busy;

2. Else counter + = 1; if counter > 1, then reset busy; advise system - no
confirmation from platoon. . . ;

3. Endif; endif; endif; return;

A-28

Name: Norepch2 \ Fig: 4
Admitted in: N SA
Input: -
Requires. Recforsplcall3
If branch: Yes Condition: Gate present? Counter >1?
Flag?
Effect: 1. If gate present, then
2. If flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 1, reset busy; reset chng(2); advise system,
4. Else if flag set, reset flag;
5. Endif; endif; endif; return;

A-29

Name: Norepch3 . Fig: 4
Admitted in: N SA
Input: -
Requires. Recunconchl2
If branch: Yes Condition: Gate present? Counter > O?
Flag?
Effect: 1. If gate present, then
2. If ‘flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 1, reset busy; reset chng(2); advise system;
4. Elseif flag set, reset flag;
5. Endif; endif; endif; return;

Name: Norepch4 Fig: 4

Admitted in: N SA

Input: -

Requires. Recunconchll

If branch: Yes Condition: Gate present?

Effect: 1. If gate present, ;

2. Else reset busy; reset chng(2); advise system;
3. Endif; return;

Name: Norepch5 Fig: 4

Admitted in: N SA

Input: -

Requires. Recunconchl3

If branch: Yes Condition: Gate present? Counter > 2?

Flag?
Effect: 1. If gate present, then
2. If flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 2, reset busy; reset chng(2); advise system;
4. Else if flag set, reset flag;
5. Endif; endif; endif; return;

A-30

Name: Passl Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Buschek, chng(1) and flag = 8
If branch: Yes Condition: ~ Gate detected? Turning
point? Flag 1, Flag 2 set?
Effect: 1. If gate detected, then
2. If flag 1 set, then
3. If t-p detected, turn to pass gate; update state vector; set flag 2;
4. Endif; else set flag 1;
5. Endif; elseif flag 2 set; flag (buschek) = 11;
6. Elseif flag 1 set, call Syscall2; reset busy;
7. Endif; endif; endif; return;

Name: Pass2 Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Buschek, chng(1) and flag = 6

If branch: Yes Condition: Gate detected? Turning

point? Flag 1, Flag 2 set?

Effect: 1. If gate detected, then

2. If flag 1 set, then

3. If t-p detected, turn to pass gate; update state vector; set flag 2;

4. Endif; else set flag 1;

5. Endif; elseif flag 2 set; flag (buschek) = 9;

6. Else if flag 1 set, call Syscalll; reset busy;

7. Endif; endif; endif; return;

Name: Pass3 Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Buschek, chng(1l) and flag =7

If branch: Yes Condition: Gate detected? Turning

point? Flag 1, Flag 2 set?

Effect: 1. If gate detected, then

2. If flag 1 set, then

3. If t-p detected, turn to pass gate; update state vector; set flag 2;

4. Endif; else set flag 1,

5. Endif; elseif flag 2 set; flag (buschek) = 10;

6. Elseif flag 1 set, call Syscalll; reset busy;

7. Endif; endif; endif; return;

A-31

Name: Recackregchl Fig: 4
Admitted in: N NE SA CA

Input: -
Requires: Recnackreqchl
If branch: Yes Condition: Ack_req_chng_In received?
Effect: 1. Send thanx_but_no to all irrelevant replies;
2. If relevant reply received from adjacent lane, store stated speed; set
flag =4; reset counter in norepchl;
- 3. Else if reply only from next lane, store stated speed;
4. Endif; endif; reset all message flags; return;
Name: Reccondecel Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Recconsplchl
If branch: Yes Condition: Confirm-decel received?

Effect: 1. If confirm-decd received,
2. Reset message flag; if in position,
3. Flag = 7; reset both flags in Pass3;
4, Else set fault #11;
5. Endif; else call Recforsplcall ;
6. Endif; return;

Name: Recconchll Fig: 4

Admitted in: N SA

Input: -

Requires. Buschek, chng(2) and flag = 7

If branch: Yes Condition: Confirm-change-In received?

Effect: 1 1. If confirm-change-lane received, reset chng(2); set merge(l); if gap ahead
istoo big call Syscall3;
2. Endif; else call Recunconchll;
3. Endif; return;

Name: Recconchl2 Fig: 4

Admitted in: N SA

Input: -

Requires. Buschek, chng(2) and flag =7

If branch: Yes Condition: Confirm-change-In received?
Effect: 1. If confirm-change-lane received, send mer3set; reset chng(2); set merge(2);

2. Else call Recunconchl 2;
3. Endif; return;

A-32

Name: Recconchl3 . Fig: 4
Admitted in: N SA
Input: -
Requires: Buschek and chng(3)
If branch: Yes Condition: Confirm-change-lane
received?
Effect: 1. If confirm-change-lane received, reset busy; reset chng(3); reset message
- marker:
2. Else call Rectbn2;
3. Endif; return;

Name: Reccondropt Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Buschek, Chng(2), flag =5
If branch: Yes Condition: Confirm-dropt received?
Effect: 1. If confirm-dropt recelved, then if in position,
2. set flag = 7; reset counter in Norepch3; reset message flag;
3. Else send forsplit-called;
4. Endif; else adjust speed to meet target; call Recconsplit;
5. Endif; return;

Name: Recconsplit Fig: 4

Admitted in: N NE SA CA

Input: -

Requires. Reccondropt

If branch: Yes Condition: Confirm-split received?

Effect: 1. If confirm-split received,
2. If near gate, reset message flag; send split-over;
3. If in position, send confirm-split-change-lane; reset counter in Norepch3; flag=7;
4. Else send for-split-called;
5. Endif; else continue to achieve position; call Forsplitl;
6. Endif; else call Forsplitl;
7. Endif; return;

A-33

Name: Recconsplitchl . Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Recreqdecel
If branch: Yes Condition: Confirm-split-chng-In
received?
Effect: 1. If confirm_split_change lane received,
2. Reset message flag; if in position,
3. Flag = 6; reset both flags in pass2;
4, Else set fault #11;
5. Endif; else call Reccondecd!;
6. Endif; return;

Name: Rectbn 1 Fig: 4

Admitted in: N SA

Input: -

Requires: Repwait2

If branch: Yes Condition: Thanx_but_no received:

Effect: 1. If thanx-but-no received, reset busy; reset message marker; reset chng(2);
2. Endif; return;

Name: Rectbn2 Fig: 4

Admitted in: N SA

Input: -

Requires. Recconchl3

If branch: Yes Condition: Thanx_but_no received:

Effect: 1. If thanx-but-no received, reset busy; reset message marker; reset chng(3);
2. Else call Recunconchl3;
3. Endif; return;

Name: Repwait 1 Fig: 4
Admitted in: N NE SA CA

Input: -

Requires. Buschek, chnge(1), flag =1, 2, or 3.

If branch: No Condition: -

Effect: Call Recnackch; flag + = 1, return;

Name: Repwait2 Fig: 4
Admitted in: N SA

Input: -

Requires: Buschek, chnge(2), flag =1, 2, or 3.

If branch: No Condition: -

Effect: Call Rectbnl; flag + = 1; return;

A-34

Name: Recforsplcalll \ Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Voidch, Sendcondropt
If branch: Yes Condition: Forced-split-called received?
Effect: 1. If forced_split_called received, reset busy; reset message flag;
2. endif;, return;

Name: Recforsplcall2 Fig: 4

Admitted in: N NE SA CA

Input: -

Requires. Reccondecel

If branch: Yes Condition: Forced_split_called received?

Effect: 1. If forced_split_called received, reset message flag; reset busy;
2. Else call Norepchl;
3. endif; return

Name: Recforsplcall3 Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Forsplit 1

If branch: Yes Condition: Forced-split-called received?

Effect: 1. If forced_split_called received, reset busy; reset message flag;
2. Endif; call norepch2; return;

Name: Recforsplcall4 Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Forsplit2

If branch: Yes Condition: Forced_split_called received?

Effect: 1. If forced-split-called received, reset busy; reset message flag;
2. endif; return;

A-35

Name: Recnackreqchl - Fig: 4
Admitted in: N NE SA CA

Input: -

Requires. Repwait

If branch: Yes Condition: Flag = 37 Nack_rq_chng_In

received?

Effect: 1. If flag = 3, then
2. If veh in adjacent lane has sent nack_request_chng_In, send thanx-but-no to
all those who have replied, except the nack_er; reset busy;
3. Elseif no replies from adjacent lane, and veh in lane two away has sent
nack_request_change-lane send thanx-but-no to all others; reset busy; reset
al message flags;
4. Else call Recregackchl;
5. Endif; endif; endif; return;

Name: Reqchngln Fig: 4, 10

Admitted in: N NE SA CA

Input: -

Requires: Callchangelane

If branch: No Condition: -

Effect: Send req_chng_lane, including loc and maxspeed; return;

A-36

Name: Recreqchngin . Fig: 4, 8
Admitted in: NNE SA CA SC

Input: Loc and maxspeed of sender.

Requires: Messrec

If branch: Yes Condition: ~ Within 2 lanes on side of
change? Busy?in N or SA?
Effect: 1. If in adjacent or next lane on side of change, and within platoon spacing of
"loc, then
2. 1f “busy” not set, and mode is N or SA, and no fault set, cal
Sendackregchln with data received;

3. Else call Sendnackregchlin;
4. Endif; endif; return;

Name: Recreqdece; Fig: 4

Admitted in: N NE SA CA

Input: -

Requires. Buschek, chng(1), flag = 5.

If branch: Yes Condition: Request-decel received?

Effect: 1. If request-decel received, flag = 11; store target time of arrival at gate;
reset message flag;

2. Else call Recconspl; set speed to stated speed of requester;
3. Endif; return;

Name: Recunconchill Fig: 4

Admitted in: N SA

Input: -

Requires: Recconchl2

If branch: Yes Condition: Unconfirm_change_In

received?

Effect: 1. If unconfirm change-lane received, reset chng(2); reset busy; reset message flag;
2. Else call Norepch4;
3. Endif; return;

Name: Recunconchl2 Fig: 4

Admitted in: N SA

Input: -

Requires: Recconchl2

If branch: Yes Condition: Unconfirm_change_In

received?

Effect: 1. If unconfirm change-lane received, reset chng(2); reset busy; reset message flag;
2. Else call Norepch3;
3. Endif; return;

A-37

N am e: Recunconchi3 . Fig: 4

Admitted in: N SA

Input: -

Requires: Tectbn2

If branch: Yes Condition: Unconfirm_chng_In received?

Effect: 1.If unconfirm_change_lane received, reset busy; reset message flag; reset chng(3);
2. Else call norepchb;
3. Endif; return;

Name: Sendackreqgchin Fig: 4, 8
Admitted in: N SA
Input: loc and maxspeed of requester
Requires: Recregchngln, not busy and right mode
If branch: Yes Condition: Lane adjacent? next to this?
Effect: 1. Set new speed - minimum of own and requester’ s maxspeed;
2. Send Ack_request_change_lane With lane and new speed; set busy; store
data sent and received;
3. If in adjacent lane, set chng(2); set flag = 1,
4. Else set chng(3); reset counter and flag in Norepch5;
5. Endif; return;

Name: Sendconchin 1 Fig: 4

Admitted in: N SA

Input: -

Requires: Buschek, chng(1) and flag =9

If branch: Yes Condition: Gap too big?

Effect: 1. Send confirm-change-lane to all participating agents,
2. If gap ahead too big; call Syscall3;
3. Endif; call Chltomerl; return;

Name: Sendconchin2 Fig: 4
Admitted in: N NE SA CA

Input: -

Requires: Buschek, chng(1) and flag = 10

If branch: No Condition: -

Effect: Send confirm-change-lane to all participating agents; call chitomerl; return;

A-38

Name: Sendcondecel . Fig: 4
Admitted in: N NE SA CA
Input: -
Requires. Buschek, chng(2), flag =6
If branch: Yes Condition: Gate near?
Effect: 1. Adjust speed to reach gate at target time;

2. If gate near, then if in position,

3. Send confirm-decdl; flag = 8;

4. Else send forsplit-called;

5. Endif; else call forsplit2;

6. Endif; return;

Name: Sendcondropt Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Buschek, chng(1) and flag = 12
If branch: Yes Condition: Gate reached?
Effect: 1. Adapt speed to reach gate at target time;
2. If gate reached,
3. If in position, flag = 6; send confirm-dropt; reset flags in pass2;
4. Else send forsplit-called;
5. Endif; else call Recforsplcalll ;
6. Endif; return;

Name: Sendconvoid Fig: 4
Admitted in: N SA
Input: Reading from probe
Requires: Buschek, chng(1) and flag = 11
If branch: Yes Condition: Vehsin platoon spacing?
Effect: 1. Send confirm-change-lane to any participating agent;
2. If vehicles ahead in platoon spacing detected, advise system;
3. Endif; reset busy; reset chng(1); return;

Name: Sendnackregchlin Fig: 4, 8
Admitted in: NNE SACASCQ

Input: -

Requires. Recregchln and (busy or wrong mode)

If branch: No Condition: -

Effect: Send nack_request_change_lane; return;
Name: Sendreqdecel Fig: 4

Admitted in: N SA
Input: -

A-39

Requires: Compposns

If branch: No Condition: -

Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive
at gate at back of platoon;
2. Records targets, stores them; sends request-decel with this data;
3. Resets counter, flag in norepch2; flag = 5;

4. return;

Name: Sendreqsplchl Fig: 3, 4

Admitted in: N SA

Input: -

Requires. Compposns

If branch: No Condition: -

Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive
at gate behind vehicle (N-1) of platoon;
2. Records targets, stores them; sends request-split-change-lane to vehicle N;
3. Resets counter, flag in norepch2; flag = 5;
4. return;

Name: S yscalll Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Pass2, pass3, and no t-p

If branch: No Condition: -

Effect: Send unconfirm_change_lane; Send to system no_tp_1; return;

Name: Syscall2 Fig: 4
Admitted in: N NE SA CA

Input: -

Requires. Passl , and no t-p

If branch: No Condition: -

Effect: Send unconfirm-change-lane; send to system no_tp_2; set fault #6; return;

A-40

Name: Syscall3 \ Fig: 4
Admitted in: N SA

Input: -

Requires. Sendconchll or Recconchll and big gap

If branch: No Condition: -

Effect: Send change-messed-up (with ID’s of participants); return;

Name: Voidchange Fig: 4

Admitted in: N NE SA CA

Input: -

Requires: Buschek, chng(l), flag = 4

If branch: Yes Condition: Gate near?

Effect: 1. If gate near (as determined by loc and its broadcast of its loc), send

change-to-void; flag = 8; reset both flags in Pass;
2. Else call Recforsplcalll;
3. Endif; return;

A-41

AS.4 FORCED-SPLIT (Figure A.5)

Name: Buslead 1 Fig: 5, 10, 11
Admitted in: N NE SA CA

Input: -

Requires. Fd set, (pos = 1) and busy

If branch: Yes Condition: multiple

Effect: 1. Action according to flag set in buschek:
Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepfordl; break;
Split(1): reset split(l); set forsplit(1); set time in Norepford; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepford; break;
Chng(3): store data; set active flag; set forsplit(1); set timein Norepford;
break;
Emerch(x), x = 2,3,4,5 set forsplit(1); set time in Norepford; advise system;
break;
Forspl(x), x =1,6: Call stop mode; advise system;

2. endifs; return;

Name: Buslead2 Fig: 5, 8

Admitted in: N NE SA CA

Input: -

Requires: Leagforsplitl and busy

If branch: Yes Condition: multiple

Effect: 1. Action according to flag set in buschek;
Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepforsl; break;
Split(l): reset split(l); set forsplit(1); set time in Norepfordl; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepfordl; break;
Chng(3): store data; set active flag; set forsplit(1); set timein Norepfordl;
break;
Emerch(x), x = 2,3,4,5 set forsplit(1); set time in Norepfordl; advise system;
break;
Forspl(x), X =1,6: Call stop mode; advise system;

2. endifs; return;

A-42

From From From
Figure Figure Figure
R. B R § [}
Recbehinda Recaheadb Forsplal Sendaheada Sendbehindbl
Venh N rec's Vveh N rec ' g aglt. cme N»! Van N senrds Veh N serds
fspl b N f Fenl b (N-])- Set busy fapl. b (N)F Fsol b, IN-1)r
Setbusy Set foarsplil) Set Freap (D) FAararn baci
Busy ara Other
lag: N=d cases
Leadforsplitl Sendunmerge? Sendareadb Felset Fs2set

Leader rec’s

3reav of f

ven N senrds
fsol b_(N-1)F

1f nnt nusy-
Set busy:

Set busyi

fspl_ o _l_f current
Sett forsol(]) actior feroard Set forspill) set forspl{2)
If K3 Busy and
busy busy last
Buslead? Lastbusy Sendbehindb Buslesad! Sendunmergel

Store actions

Last ven rec's
fspi b N_r

vern N sends
fsol_b_(N-1)r

Store actions
Send messages
F.ot(x} x=1,4,5

Set forspil(2)
reak off
current action

Send messa?es
F.tix) x=1,4,5 Rct 1f busy back
o
Leadforsplit?2 Forepll Felset
Sauit. cas he! Set rsy:

Lesder rec's
fFspl b _NF (N>])
Setforspll])

Set cusy
Set fcrspifl)

set ferspli3)

Te

13 !
busy ey,

Buslead3 Busleadd Sendbehindl
Store actions Store act 1ons ver | sends
Send messages Send messages fspl._b_lr

F.otix) x=1.4.5 bacx

F.otix) w=1,4.9

Figure AS. Forced Split (initiation).

Buschek Buschelk Buschel Buschek
From
Figure jom===—=o Fforspl(2) 1~ Fersoi(3) 1n =t Forspif(d) 1in Forspl(S) in
R. 1 orogress progress progress progress
Flag Flag Flag
3 | = | » 1
Buschek Newlead Recfsplitover! Recconfspl? Recconfspld
Forspl(1) im Undate vector Forspl _over Set Set
progress F-1 flag = 3, rec'd merge(1)-2 spli1(2)-3
Else rlag = 2 Reset busy Send fsplover Send fsplover
Fiag
s 2
Qralt! Sepmeasfs! Norepforsl Norepforsd NorepforsS
1f faule 1 Read prove- No reply Time up, Time up:
ang slow mode |f done call after wait Set merge(!)-2 setsolit(2)-3
crasnhstop Forsolitdone Reset busy s.ew fsplover send fsplover

PR

iaa

Recconfepll

Reset busy
Send fsplover

Forsplitdone

Send Con_forsp
Free - flag = 4

Splitagein?

Read ristory:
reset busy

Sepmessfs?

Read probe:
I gac closed

Secmess?sl

Read orobe.
Gso fully open

Else flag = § or set split(l} fFlag = ¢ flag* 2
s
Flag Fliag Flag
Ll* 3 = 2 = 2
7
Norepfarsl QOsloumode Mergeagsin Recconfspld RecconfsplS
1f time uo, If siow moae. Read h1s!o’u' Sett merqe(1)-3 Reget busy

reset busy
send fsplover

Lrasrsde

reent NS
A= gat ~argei)

Sena fspiover
Send cnn _mer

Sena fsplover
Sera con_spol

Flag
= 4
Testactflag Waitsep Wattfast Norepforsd Norepforsb
Ir no [f time up. Auatt reply - Set merqel(l)-3 Reset busy

preactivity.
reset busy

call
Forsolitdone

~Annp o, A

rasat T8y

send fenlover
SC”"0 con mer

serd fsolover
serg cor _spl

Splitegeinl

React history:
reset busy
or set soiitl(l)

Histfor

Sera history
Foruard

Recfsplitover?

Wait fFor
massage: t°
~Ane facet B)Yy

QOmess

Store any
meggage From
hehi1nA

Buschek

Forsplit(B)
1~ grogress

Figure A.5a. Forced Split (implementation).

A-44

Name: Buslead3 . Fig: 5, 8

Admitted in: N NE SA CA

Input: -

Requires: Leadforsplit2 and busy

If branch: Yes Condition: multiple

Effect: 1. Action according to flag set in buschek;
Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepford; break;
Split(l): reset split(l); set forsplit(1); set time in Norepford; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepford; break;
Chng(3): store data; set active flag; set forsplit(1); set timein Norepford;
break;
tI?r;;?(rch(x), X = 2,3,4,5 set forsplit(1); set time in Norepford; advise system;

reak,
Forspl(x), x = 1,6: Call stop mode; advise system;
2. endifs; return;

Name: Buslead4 Fig: 5, 10
Admitted in: N NE SA CA

Input: -

Requires. Forspll and busy

If branch: Yes Condition: multiple

Effect: 1. Action according to flag set in buschek;
Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepford; break;
Split(l): reset split(l); set forsplit(1); set time in Norepford; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepford; break;
Chng(3): store data; set active flag; set forsplit(1); set time in Norepfordl;
break;
Emerch(x), X = 2,3,4,5 set forsplit(1); set time in Norepforsl; advise system;
break;
Forspl(x), X =1,6: Cal stop mode; advise system;
2. endifs; return;

Name: Busychek Fig: 1,2,3,4,5,6
Specification in: Sup (1)

A-45

Name: Forspla ~ Fig: 5, 10

Admitted in: N NE SA CA

Input: -

Requires. Actcalled

If branch: No Condition: -

Effect: Set busy; set forspl(2); set flag = 1; call Sendaheadb; call Sendbehindb; return;

Name: Forspll Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires. Actcalled
If branch: Yes Condition: Busy?
Effect: 1. If busy, call Buslead4;

2. Else set busy; set forspl(1); set time in Norepford;

3. Endif; call Sendbehindl; return;

Name: Fs 1 set Fig: 5, 10, 11
Admitted in: N NE SA CA

Input: -

Requires. Sendbehindaand pos= 1

If branch: Yes Condition: Busy?

Effect: 1. If busy, call Buslead] ;
2. Else set busy; set forspl(1); set time in Norepfordl;
3. Endif; return;

Name: Fs2set Fig: 5, 11
Admitted in: N NE SA CA

Input: -

Requires. Sendaheadbl and not busy, sendbehindbl

If branch: No Condition: -
Effect: Set busy; set forspl(2); set flag = 1; return;

Name: Fs3set Fig: 5,10, 11
Admitted in: N NE SA CA

Input: -

Requires: Sendaheada or (Sendbehinda and pos > 1)

If branch: No Condition: -

Effect: Set busy; set forspl(3); set time in norepfors2; return;

A-46

Name: Forsplitdone - Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Sepmeasfsl or Waitsep

If branch: Yes Condition: Free agent?

Effect: 1. Send confirm-for-split;
2. If free agent, set flag = 4;
3. Else set flag = 5; set stime in Waitfast; reset flags in Splitagain and mergeagain;
4. Endif; return;

Name: Histfor Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Recfsplitover2

If branch: Yes Condition: More messages stored?

Effect: 1. If more messages stored, send forward oldest; delete it from store;
2. Else reset busy; reset flag in recfsplitover2;
3. endif; return;

Name: Lastbusy Fig: 5, 8

Admitted in: N NE SA CA

Input: forspl b (pos-x)_r (x > 1) received

Requires. Messrec and pos = last

If branch: Yes Condition: Busy? and multiple.

Effect:1. If busy, act on flag in buschek:
Merge(3): send Unmerge; store data; set forspl(6); set time in Recfsplitover2;
reset flag in Recfsplitover2; break;
Split(3): store data; set forspl(6); set time in Recfsplitover2; reset flag in
Recfsplitover2; break;
Forspl(6): Inform system; call stop mode;

2. Endifs; endif; return;

Name: Leadforsplit 1 Fig: 5, 8
Admitted in: N NE SA CA
Input: Message Forsplit-behind. 1.f received by leader (pos = 1)
Requires: Messrec
If branch: Yes Condition: Busy?
Effect: 1. Setforspl(1); set time in Norepforsl ;

2. If busy call Buslead2;

3. Else set busy;

4. Endif; return;

A-47

Name: Leadforsplit2 ‘ Fig: 5, 8
Admitted in: N NE SA CA
Input: Forsplit_behind_(N>1)_f received by leader
Requires. Messrec
If branch: Yes Condition: Busy?
Effect: 1. Set forspl(1); set time in Norepforsl;

2. 1f busy call Buslead3;

3. Else set busy;

4. Endif; return;

Name: Mergeagain Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Splitagain

If branch: Yes Condition: Flag set? merge-hist received?

Effect: 1. If flag set, then if more stored history, read it;
2. If item received is confirm-merge,
3. Reset busy; reset forspl(2); reset flag; set target speed back to normal;
4. Endif; else set merge(2); reset flag; set target speed back to normal;
5. Endif; else if item recelved is merge-hist, set flag;
6. Endif; endif; return;

Name: Newlead Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Buschek, forspl(2), flag =1

If branch: Yes Condition: Fault#l set?

Effect: 1. Update state vector; reduce target speed;
2. If fault #1 set, flag = 3; time to waitsep;
3. Else flag = 2;
4. Endif; return;

Name: Norepfors 1 Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Recconspll

If branch: Yes Condition: (time- stime) excessive?

Effect: 1. If (time - stime) excessive, reset busy, reset forspl(1); send for-split-over;
2. Endif; return;

Name: Norepfors2 Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Recsplitoverl

A-48

If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset busy, reset forspl(3);
2. Endif; return;

Name: Norepfors3 Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Recsplitover2

If branch: Yes Condition: (time- stime) excessive?
Effect: 1. If (time- stime) excessive, reset forspl(4); set merge(l); set flag = 2; send

forgp-over; reset flag in Stillgo;
2. Else call sepmeasfs2;
3. Endif; return;

Name: Norepforsd Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Recsplitover3

If branch: Yes Condition: (time- stime) excessive?

Effect: 1. If (time - stime) excessive, reset forspl(4); set merge(l); set flag = 3; send
confirm-merge; send forsp-over; set time in Norepm3; set target speed back
to normal;

2. Endif; return;

Name: Norepfors3 Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Recsplitover2

If branch: Yes Condition: (time- stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(5); set split(2); set flag = 3; send

fsplitover; reset flag in Spliton;
2. Else call sepmeasfs3;
3. Endif; return;

A-49

Name: Norepfors6 , Fig: 5
Admitted in: N NE SA CA

Input: -
Requires: Recsplitover5
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(5); reset busy; send confirm-split;
send forsp_over; set target speed back to normal;
" 2. Endif; return;
Name: Qfalt 1 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires. Buschek and forspl(1) set
If branch: Yes Condition: Mode SA or CA?

Effect: 1. If modeis SA or CA, send Crashstopbehind,;
2. Else call Recconfspll ;
3. Endif; return;

Name: Qmess Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Buschek and forspl(6)

If branch: Yes Condition: Message received?

Effect: 1. If message received, store it and add it as data to call to Recfsplitover2;

2. Else add Null mark to call;
3. Endif; call Recfsplitover2; return;

Name: Qslowmode Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Buschek and forspl(2), flag = 3 (therefore fault #1)

If branch: Yes Condition: Mode SA or CA?

Effect: 1. If mode = CA or SA, send Crashstopbehind;
2. Else call Waitsep;
3. Endif; return;

A-50

Name: Recaheadb ‘ Fig: 5, 8
Admitted in: N NE SA CA
Input: Message Forsplit_behind_(pos-1)-r received
Requires: Messrec
If branch: Yes Condition: Busy?
Effect: 1. Set forspl(2); set flag = 1;

2. If busy, call Sendunmerge2;

3. Else set busy;

4. Endif; reset message flag; return;

Name: Recbehinda Fig: 5, 8

Admitted in: N NE SA CA

Input: Veh (pos> 1) receives fspl_b _(pos) f

Requires. Messrec

If branch: No Condition: -

Effect: Set busy; set forspl(3); set time in norepfors2; reset message flag; return;

Name: Recconfdl| Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Qfaltl

If branch: Yes Condition: Confirm-forsplit received?
Effect: 1. If confirm-forsplit received, reset busy; reset message flag; reset forspl(1);

send for-split-over;
2. Else call norepford;
3. Endif; return;

Name: Recconfspl2 Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Buschek and forspl(4)

If branch: Yes Condition: Confirm-for-split received?
Effect: 1. If confirm-forced-split received, reset forspl(4); set merge(l); set flag = 2;

send fsplitover; reset flag in Stillgo; reset message flag;
2. Else call Norepfors3;
3. Endif; return;

A-51

Name: Recconfspl3 . Fig: 5
Admitted in: N NE SA CA

Input: -
Requires: Buschek and forspl(4), flags = 2
If branch: Yes Condition: Confirm-for--split received?
Effect: 1. If confirm-for-split received, reset forspl(4); set merge(l) ; set flag = 3;
send confirm-merge; send forsp-over; set time in Norepm3; set target speed
" back to normadl;
2. Else call Norepfors4;
3. Endif; return;
Name: Recconfspl4 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Buschek and forspl(5)
If branch: Yes Condition: Confirm for-split received?
Effect: 1. If confirm-forced-split received, reset forspl(5); set split(2); set flag = 3;
send fsplitover; reset flag in Spliton; reset message flag;
2. Else call Norepforss;
3. Endif; return:;
Name: Recconfspl5 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Buschek and forspl(5), flag = 2
If branch: Yes Condition: Confirm-for-split received?
Effect: 1. If confirm-for-split received, reset forspl(5); reset busy; send
confirm-split; send forsp-over; set target speed back to normal;
2. Else call Norepforsg;
3. Endif; return:;
Name: Recfsplitoverl Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Buschek, forspl(3)
If branch: Yes Condition: For-split-over received?

Effect: 1. If for-splitover received, reset busy, reset forspl(3); reset message flag;
2. Else call norepfors2;
3. Endif; return;

A-52

N am e: Recfsplitover2 , Fig: 5
Admitted in: N NE SA CA

Input: Message received by Qmess or null

Requires: Qmess

If branch: Yes Condition:

Effect: 1. If flag set, call Histfor;
2. Else if for-split-over received, set flag;
3. Elseif (time - stime) excessive, set flag;
4. Endif; endif; return;

Name: Sendaheada Fig: 5, 10, 11

Admitted in: N NE SA CA
Input: -
Requires: Faultdor5 or Recackcont

For-split-over received?
Time elapsed? Flag set?

If branch: Yes Condition: Pos =17

Effect: 1. Send backward message forsplit_behind_(pos) r;
2. If pos = 1, cal Fdlset;

3. Else call Fs3set; send forward message forsplit_behind_ (pos)_f;

4. Endif; return;

Name: Sendaheadb Fig: 5, 10
Admitted in: N NE SA CA

Input: -

Requires: Forspla

If branch: No Condition: -
Effect: Send forward message forsplit_behind_(pos-1) f; return;
Name: Sendbehindb Fig: 5, 10
Admitted in: N NE SA CA

Input: -

Requires: Forspla

If branch: No Condition: -

Effect: Send back message forsplit-behind-@os-1)-r; return;

A-53

Name: Sendbehindbl . Fig: 5, 11
Admitted in: N NE SA CA
Input: -
Requires. Nocontmess (11)
If branch: Yes Condition: Pos = last?
Effect: 1. Send forward message forsplit_behind_(pos-1)_f;
2. If pos = lagt, then if busy call Sendunmergel;
3. Else call Fs2set;
4. Endif; call fs2set; send back message forsplit_behind_ (pos-1)_b;
5. Endif; return;

Name: Sendbehindl Fig: 5, 10
Admitted in: N NE SA CA

Input: -

Requires: Forspll (and so pos = 1)

If branch: No Condition: -

Effect: Send fspl-b.1 r back; return;

Name: Sepmeasfsl Fig: 5
Admitted in: N NE SA CA
Input: Reading, d, of forward probe
Requires. Buschek and forfpl(2), flag = 2
If branch: Yes Condition: d = platoon spacing?
Effect: 1. If d > = platoon spacing call Forsplitdone;
2. Endif; return;

Name: Sepmesasfs2 Fig: 5

Admitted in: N NE SA

Input: Distance d from preceding vehicle - probe reading

Requires. Norepfors3

If branch: Yes Condition: d <1.5*(in-platoon spacing)?

Effect: 1. If d <1.5*(in-platoon spacing); set flag = 2; set time in Norepfors4 equal
to that in Norepfors3;
2. Endif; return;

Name: Sepmeasfs3 Fig: 5

Admitted in: N NE SA

Input: Distance d from preceding vehicle - probe reading

Requires. NorepforsS

If branch: Yes Condition: d> = platoon spacing?

Effect: 1. If d> = platoon spacing; set flag = 2; set time in Norepfors6 equal to
that in NorepforsS;
2. Endif; return;

Name: Splitagainl : Fig: 5
Admitted in: N NE SA CA

Input: -
Requires: Testactflag and activity flag set (therefore free agent) o
If branch: Yes Condition: Act flag set? Split-hist

received?
Effect: 1. If more stored history, read item;
2. If flag set, then if item is split-hit, reset flag;
3. Endif; else if item is confirm-split; reset busy; reset forspl(2); set target speed
back to normal;
4. Endif; endif; else if flag set, ;

5. Else set split(l); reset flag; reset forspl(2); set target speed back to normal;
6. Endif; endif; return;

Name: Splitagain Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Buschek, forspl(2) flag =5

If branch: Yes Condition: Flag set? Split-hist received?

Effect: 1. If more stored history, read item;
2. If flag set; then if item is confirm-split, reset busy; reset forspl(2); set target
speed back to normal;
3. Endif; else if item is split-hist, set flag;
4. Endif; endif; else if flag set, set split(l); reset flag; reset forspl(2); set target
speed back to normal;
5. Endif; endif; return;

Name: Sendunmergel Fig: 5,11

Admitted in: N NE SA CA

Input: -

Requires. Sendaheadbl and busy (implies pos = last)

If branch: Yes Condition: Multiple

Effect: 1. Set forspl(2); set flag = 1,
2. Action according to flag in buschek:
Merge(3): reset merge(3); send unmerge; break;
Split(3): store data; set active flag; break;
Forspl(6): inform system; call stop mode;
3. Endifs; return;

Name: Sendunmerge2 Fig: 5
Admitted in: N NE SA CA

Input: -

Requires. Recaheadb and busy (implies pos = last)

A-55

If branch: Yes Condition: Multiple
Effect: 1. Action according to flag in buschek:
Merge(3): reset merge(3); send Unmerge; break;
Split(3): store data; set active flag; break;
Forspl(6): inform system; call stop mode;
2. Endifs; return;

Name: Testactflag Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Buschek and forspl(2), flag = 4 (therefore free agent)

If branch: Yes Condition: Active flag set?

Effect: 1. If active flag set, call splitagain1 ;
2. Else reset busy; reset forsplit(2); target speed back to normal;
3. Endif; return;

Name: Waitfast Fig: 5

Admitted in: N NE SA CA

Input: -

Requires: Mergeagain

If branch: Yes Condition: (time- stime) excessive?

Effect: (Note: Wait interval isfor message to pass down platoon and back - measured
in millisec.
1. If (time- stime excessive) reset busy; reset forspl(2); target speed back to
normal;

2. Endif; return;

Name: Waitsep Fig: 5

Admitted in: N NE SA CA

Input: -

Requires. Qslowmode

If branch: Yes Condition: (time - stime) excessive?

Effect: 1. If (time - stime) excessive, call Forsplitdone;
2. Endif; return

A-56

AS5 EMER-CHANGE (Figure A.6)

Name: Busychek Fig: 1,2,3,4,5,6
Specification in: Sup (1)

Name: Callstop Fig: 6
Admitted in: NE CA
Input: -
Requires. Passemch
If branch: Yes Condition: Flag? gate near? SA speed?
Effect: 1. If flag set, then if gate near ;
2. Else if maxspeed is SA speed, call Stop mode; reset any lanes put into SA;
3. Else call Sacall for each lane affected;
4. Endif; send unconfirm_emer_change; message emerch_fail to system; reset busy;
5. Else if gate near set flag;
6. Endif; endif; return;

Name: Compposn Fig: 6

Admitted in: NE CA

Input: -

Requires: Buschek, emerch(1l) and flag =7

If branch: Yes Condition: result of calculation

Effect: From known speed and positions of other vehicles predict time at aloc some

way ahead at which al partners should be in position; send this target to
partners via messages emerch_target; reset flag0 in Qallrec; if position sent is
before next gate set flagl in Qallrec = 0; else set flagl = 1; endif; reset flag
In neset3; Flag = 8; return;

Name: Emerchcall Fig: 6, 10

Admitted in: N NE SA CA

Input: -

Requires. Actcalled

If branch:? Yes Condition: Fault #6 or #7?

Effect: 1. Set busy; set emerch(l); set flag = 1; call Nesetl;
2. If fault #6 or fault #7 is present, reroute reception and transmission channels so
that side transmission becomes system transmission and side reception system
reception, set flag in Sendregemerch;
3. Elsereset flag in Sendregemerch;
4. Endif; return;

A-57

Name: Forsplitcall Fig: 6
Admitted in: N NE SA CA

Input: -
Requires: Inposn
If branch: Yes Condition: For-split called?
Effect: 1. If for-split called (ie forspl(1) in buschek set), send for-split-called to
changer; reset emerch(x);
- 2. Else call recforsplcal3;
3. Endif; return;
Name: Inposn Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Buschek, emerch(x) (2 <=x ¢ =5)andflag=7
If branch: Yes Condition: In target position? Gate?

Effect: 1. Call forsplitcalll;
2. If loc = target position, then
3. If gate near, send message (message depends on X, see below); flag = 8; reset flag
in Norepem3;
4. Endif; endif; return;

Vaue of x Message
2 adj_ahead_ok
3 adj_behind ok
4 next ahead-ok
5 next_behind_ok
Name: Neset 1 Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires. Emerchcall
If branch:? Yes Condition: Mode = CA? Fault = #6, #7?

Effect: 1. If fault #6 or #7 set, then if mode = CA, ;

2. Else mode = NE from previous gate to one two ahead; maxspeed unchanged;
3. Endif; endif; call Sendregemerch; return;

A-58

Emerchcall Sendnackraemch Recreqemerch
From . From
Figure Set busy \ Send Reauest from Figure
A 10 Set emerchi(l) ! nack _rea_emerch ad)acent lane R. 8
Set flag = ! : or next to left
3
1
H
leceenann-a 1
Not
1 busy
Sendreqemerch Neset! Buschek c Sendackraemch
rom
Locend — le fault, tmeren(l] 1n |==—————=Figure Set busyi
maxspeed in Set No-Entry progress AT 1 eme;ch(2;3i4~5)
message Mode lag
Flag = Flac Fiaa £laa Fla
1,2.3.4.5 = €. .8 - 298
Repuate Vosdemerch Recadiahead Passemch Nesetd
Flag = A tgate seng Rgi-ahead veh Pass gate TF Fault,
emerch to_void in pesition update vectcr lane to NE mode
flag + | Flag = 9 Ser flag Flag = 10 Reset old one-
L \"c
+ t -0
Rscnsckrgemch Recforspltceall Recadibehind Callstop Sendconemerch
t.b.nto Reset busy: Adi-behing veh Send Send con_emerch
others: Advise system 1N position: uncon _emer _ch- Reset busy:
reset busy Set flag Reset busy-
o’
Flas -
g
Recackrgemch Comppocn Recnextahesd
T_b.nto any Send target Nevt-ahead ven
others: to others 1M positiiom
Flag = 6. 7 Flag= & Jet flag
| I
Sacall Qelirec Recrextbehind

1f no shieid
vehs, cell SR

4 flags ser.
gate near.

Nert-perima ven
1N position

mode flag = © Sett flag
Neset?2

[f gate oassed
andfault .
set NE mode

|
‘RecforspltcaIZ
1

Qeget busy:
Rovise sysiem

A-59

Figure A.6. Emergency Change (initiator).

Emerchcall Sendnackraemch Recreqemerch
From From
Figure Set busu Sendg Spguest from Figure
A0 Set emerc~({]) ~ACK _ren emerch adincens are R 8
Set flag = | or rext to left
Sendregemerch Neset! Sendackrgemch
.oc and TE Faut Tiare "o - Set busui
mavspeed in Sat No-trrry Z emerch(2.2.4.5)
message Yooe . 5 Flag = |
Flag = Flaa flag Flag
1.2.3.4 = A = 7 =8
Repuate! Recposn Inposn Recconemer
Flag = Targe K and at gate: Con_emerch
. received send message rec'd
Flag - Flag = flag = B Reset busy
Rectbnt Norepem! Forsplitcall Recunconfirm2
TRany but mn fnrery Yergen soiit: Unganfirm

recetves
“esel CusSy

~n a‘t;on

Seng ressage
reset emercrix)

received:
reset busy

Norepem?2

o orer.y

Am A e

Recunconfirm

reamfye.
rara . an

s eeat e,

Recforspcealld

“orepitt caliea
rpreiven
Speor ey

Nerepem3

No reply
~n aztior

Figure A. 6a. Emergency Change (participant).

A-60

Name: Neset2 Fig: 6
Admitted in: NE CA
Input: -
Requires: Recforsplitcal 2
If branch: Yes Condition: Faults? Flag?
Effect: 1. If fault #6 or #7, then if flag set, then if gate near, ;
2. Else set NE (and if necessary SA in parallel lanes) for two gates ahead; restore
previous mode for section behind gate just passed;
3. Endif; else if gate near, set flag;
4. Endif; endif; endif; call Qallrec; return;

Name: Neset3 Fig: 6

Admitted in: N SA

Input: -

Requires: Buschek. emerch(1) and flag = 10

If branch: Yes Condition: Faults?

Effect: 1. If fault #6 or #7, set new lane to NE mode, no change in maxspeed; reset

lane to left to original mode and original speed; reset any lane set to SA to
previous value;
2. Endif; call Sendconemerch; return;

Name: Norepm 1 Fig: 6

Admitted in: N NE SA CA

Input: -

Requires: Recposn

If branch: Yes Condition: Flag? time excessive;

Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;
2. Endif; else set flag; set stime = time;
3. Endif; return;

Name: Norepm?2 Fig: 6

Admitted in: N NE SA CA

Input: -

Requires. Recunconfirm

If branch: Yes Condition: Flag? time excessive;

Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;
2. Endif; else set flag; set stime = time;
3. Endif; return;

A-61

Name: Norepm3 ‘ Fig: 6
Admitted in: N NE SA CA

Input: -
Requires: Recunconfirm?2
If branch: Yes Condition: Flag? time excessive;

Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;
2. Endif; else set flag; set stime = time;
3. Endif; return;

Name: Passemerch Fig: 6

Admitted in: NE CA

Input: -

Requires. Buschek, emerch(l) flag =9

If branch: Yes Condition: Turning point here?

Effect: 1. If turning point here change lane; update vector from gate data; set
flag= 10;

2. 1f new In# = 0, send fault-out to system;
3. Endif; else call Callstop;
4. Endif; return;

Name: Qallrec Fig: 6
Admitted in: NE CA
Input: -
Requires. Neset2
If branch: Yes Condition: 4 flags? flag0? flagl? gate
near?
Effect: 1. If flag0 is set, then if flagl = O, then
2. If gate is near, then if al 4 flags are s,
3. Send emerch_at_gate x; set counter in Passemch; Flag = 9;
4. Endif; else send unconfirm_emerch; reset busy; reset emerch(1);
5. Endif; elseif gateis near ;
6. Else set flagl = O; reset flag0;
7. Endif; else if gate is near set flag0;
8. Endif; endif; return;

Name: Recadjahead Fig: 6

Admitted in: NE CA

Input: -

Requires. Buschek, emerch(1) and flag = 8

If branch: Yes Condition: Adj_ahead_ok received?

Effect: 1. If adj_ahead_ok recelved, reset message flag; set flag in Qallrec;
2. Endif; call recadjbehind; return;

A-62

Name: Recadjbehind . Fig: 6
Admitted in: NE CA
Input: -
Requires. Recadjahead
If branch: Yes Condition: Adj_behind_ok received?
Effect: 1. If adj_behind_ok received, reset message flag; set flag in Qallrec;
2. Endif; call recnextahead; return;

Name: Recackrgemerch Fig: 6

Admitted in: NE CA

Input: -

Requires: Recnackrgemch

If branch: Yes Condition: Replies received each position?
Effect: 1. If no ack_req_emerch messages received, set flag = 6; if speed of vehicle

islow, call Sacall for adj and next;
2. Endif; else for each position (adj or next, ahead or behind):
a. If no relevant acks, set flag in Qallrec; if thisis a behind position and
speed of vehicleislow, cal Sacall;
b. Endif; endif; send thanx_but_no to all irrelevant respondents;
3. Set flag = 7; endif; return;

Name: Recconemer Fig: 6

Admitted in: N NE SA CA

Input: -

Requires: Buschek emerch(x) Q<=x<=5)and flag=8

If branch: Yes Condition: Con-emerch received?

Effect: 1. If con-emerch received, then reset emerch(x); reset busy; revert to normal speed;
2. Else call Recunconfirm?2;
3. Endif; return;

Name: Recposn Fig: 6
Admitted in: N NE SA CA
Input: Speed, posn, In# of caller
Requires: Buschek, emerch(x), (2 <=x<=5)andflag =6
If branch: Yes Condition: emerch-target received?
Effect: 1. If emerch-target received, store target and caller’s details; reset flag in
Norepem2; flag = 7;
2. Else call Norepm 1;
3. Endif; return;

A-63

Name: Rectnb 1 . Fig: 6
Admitted in: N NE SA CA
Input: -
Requires. Repwatdl |, flag =5
If branch: Yes Condition: Thanx_but_no received?
Effect: 1. If thanx_but_no received, reset emerch(x), reset busy;
2. Endif; return;

Name: Repwate Fig: 6

Admitted in: NE CA

Input: -

Requires. Buschek, emerch(1) and flag =1,2,3,4,0r 5.

If branch: Yes Condition: Fag =5?

Effect: 1. If flag = 5, call recnackrgemch;
2. Endif; flag = flag + 1, return;

Name: Repwatel Fig: 6

Admitted in: N SA

Input: -

Requires: Buschek, emerch(x) (2 <=x<=5)andflag=y (1 <=y <=5)
If branch: Yes Condition: Flag = 5?

Effect: 1. If flag = 5, call Rectbnl; reset flag in Norepem 1;
2. Endif; flag + = 1, return;

Name: Recforsplitcall Fig: 6

Admitted in: NE CA

Input: -

Requires: Voidemerch

If branch: Yes Condition: For-split called?

Effect: 1. If for-split-called is received, reset message flag; send for-split-called to

other partnersin emerch; reset emerch(1); advise system; reset busy;
2. Endif; return;

Name: Recforsplitcal2 Fig: 6

Admitted in: NE CA

Input: -

Requires: Recnextbehind

If branch: Yes Condition: For-split called?

Effect: 1. If for_split_called is received, reset message flag; send for-split-called to

other partners’in emerch; reset emerch(1); reset busy; advise system;
2. Endif; call neset2; return;

A-64

Name: Recforsplitcal3 . Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Forsplitcall
If branch: Yes Condition: For-split called?
Effect: 1. If for_split_called is received, reset message flag;

reset busy; reset emerch(x);

2. Endif; call recunconfirm; return;

Name: Recnextahead Fig: 6

Admitted in: NE CA

Input: -

Requires: Recadjbehind

If branch: Yes Condition: Next-ahead-ok received?

Effect: 1. If next-ahead-ok received, reset message flag; set flag in Qallrec;
2. Endif; call recnextbehind; return;

Name: Recnextbehind Fig: 6

Admitted in: NE CA

Input: -

Requires. Recnextahead

If branch: Yes Condition: Next-behind-ok received?

Effect: 1. If next-behind-ok received, reset message flag; set flag in Qallrec;
2. Endif; call recforsplitcal2; return;

Name: Recnackregemch Fig: 5
Admitted in: NE CA
Input: -
Requires. Repwate, flag = 5
If branch: Yes Condition: Relevant nack_rq_emerch
received?
Effect: 1. If arelevant nack_req_emerch received, (relevant means that there is not
another platoon behind the vehicle but ahead of the nacker), then
2. If it isanack because it system mode makes it impossible to reach this
speed, reset own target speed;
3. Endif; send thanx_but_no to all others who have sent messages; reset busy;
reset emerch(1); reset all message flags;
4. Else call Recackregemch;
5. Endif; return;

A-65

Name: Recregemerchange Fig: 6, 8

Admitted in: N NE SA CA

Input: Loc, In# and flag from sender

Requires. Messrec and request-emerchange received

If branch:? Yes Condition: - Busy? NE or CA?

Effect: |. Reset message flag;
2. If less than platoon spacing ahead of loc of sender or if less than two
spacings behind in lane to immediate right or next, then
3. If busy or if fault set or if mode = CA or NE or if mode = SA and stated
speed of sender too high, call Sendnackrgemerch;
4. Else call Sendackrgemerch; if fault #6 or #7 is set,
5. Reroute transmission to system transmission and so for reception; set flag;
6. Endif; endif; endif; return;

Name: Recunconfirm Fig: 6

Admitted in: N NE SA CA

Input: -

Requires. Recforsplcal3

If branch: Yes Condition: Unconfirm_emerch received?

Effect: 1. If unconfirm-emerch received, reset busy; reset emerch(x);
2. Else call Norepem2;
3. Endif; return;

Name: Recuncontirm2 Fig: 6

Admitted in: N NE SA CA

Input: -

Requires: Reccomemer

If branch: Yes Condition: Unconfirm_emerch received?

Effect: 1. If unconfirm-emerch received, reset busy; reset emerch(x);
2. Else call Norepem3;
3. Endif; return;

Name: Sacall Fig: 6, Gen

Admitted in: NE CA

Input: Lane affected and loc

Requires: Recackrgemch

If branch: No Condition: -

Effect: From gate behind stated position to two ahead, lane stated to SA mode; return;

A-66

Name: Sendackrgemerch - Fig: 6, 8

Admitted in: N SA

Input: -

Requires. Recregemerch

If branch:? No Condition: -

Effect: 1. Set busy;
set emerch(2) (forward and in adjacent lane),

“emerch(3) (rearward and in adjacent lane),

emerch(4) (forward in next lane), or
emerch(5)(rearward in next lane);

2. Set flag = 1;
3. SendAck_request_emerchange With loc and In# after x-lchrons for emerch(x);
return;

Name: Sendconemerch Fig: 6

Admitted in: NE CA

Input: -

Requires: Neset3

If branch: No Condition: -

Effect: Send confirm-emerch; reset busy; reset emerch(1); reset any lanes put into SA;
return;

Name: Sendnackrgemerch Fig: 6, 8

Admitted in: N NE SA CA

Input: -

Requires. Recregemerch

If branch: No Condition: -

Effect: Send nack_request_emer_chng With loc, lane# and maxspeed; return;

Name: Sendregemerch Fig: 5, 10
Admitted in: NE CA

Input: -

Requires: Nesetl

If branch:? No Condition: -

Effect: Send Request-emerchange with lane, loc and maxspeed; return;

Name: Voidemerch Fig: 6

Admitted in: NE CA

Input: -

Requires. Buschek, emerch(6), flag = 6

If branch: Yes Condition: Gate near?

Effect: 1. If gate near, send emerch_to_void naming gate; flag = 9; reset flag in Callstop;
2. Else call Recforsplitcalll;
3. Endif; return;

A-67

A.6 PLATOON-LEADER’S PROBE (Figure A.7)

Name: Forprob Fig 1, 7
Specification in: SUP

Name: Insight Fig: 7
Admitted in: N NE SA CA
I nput: Distances of vehicles seen in probe (or null)
Requires: Forprob and flag = 1
If branch: Yes Condition: Vehicles visible?
Effect: 1. If any vehicle can be seen, select one most likely to be in same lane;
2. Send probe-l, including state vector and range of vehicle perceived (using
corrected loc stored in Startprobe); set flag = 2;
3. Else send probe-nov, giving state vector; set flag = 9;
4. Endif; return;

Name: Nofault Fig: 7
Admitted in: N NE SA CA
Input: Message No-fault-l from system
Requires: Forprab, flag = 16, 17, 18
If branch: Yes Condition: Message No-fault-I rec’d?
Effect: 1. If message No-fault-l received, reset message flag; reset flag;
2. Else flag += 1,
3. Endif; return;

Name: Novehnorep Fig: 7
Admitted in: N NE SA CA

Input: -

Requires. Forprob, flag = 12

If branch: No Condition: -
Effect: Reset flag in forprob; return;

Name: Probeagain Fig: 7
Admitted in: N NE SA CA

Input: -

Requires: Forprob, flag = 5

If branch: No Condition: -
Effect: Send probe-;!, giving state vector; flag = 6; return;

A-68

Startprob Forprob Recprobel Recprobe? Recprobenov
R: gate. - Croce - Fropei rec'd Probel rec o Probe _rov rec'd
cos * }: prcaress nss * last ccs = Aast ces = last
Flag = | “lag = 70 Flag = 2} Flag = <2
z T n
F flag * F F F
[SR 158 s 188
Insight Recackprobenovl Sendackprobel Sendackprobe? Sendsckprobenaov
e i
1¢ sne venizla. dalia mepiy. At Nno spee nuac (rr sper ' 1f 1n range.
Flag = ¢ Fiag = ety . Teriu repi
Eise flag = & else flag =7 | ~eset Flag Seset Flag Reset ~lag

lFlag = 1:1a9
2,304 =
Recackprobel

Valid repia
means b
else flag += |

Novehnrorep

£ r- =
[[,
Probeagain Recacwprobenove
Send preope.’ valio coc .
~ rlag *
Flag = B else flag == !
Flag - “
6.7 t
Recackprobe?d Nofault

Vaiig repiy
means OF

Yo faui

~ece..eq
else flag += | nears 0
Flac “lag
= B = %
Recackprobela
Yaiid reoly Setfault#l

means 0¥
elseflag*1 6

Figure A.7. Forward Probe.

A-69

Name: Recackprobenov 1 Fig: 7
Admitted in: N NE SA CA

Input: Location of sender

Requires: Forprob and flag = 9, 10, 11

If branch: Yes Condition: Ack_probe_nov recelved?
Effect: 1. If ack_probe_nov received, work out distance and likely angle from stated
location;

2. If reply valid, flag = 15;
3. Endif; endif; reset message flag; flag + = 1, return;

Name: Recackprobenov2 Fig: 7
Admitted in: N NE SA CA

Input: Location of sender

Requires. Forprob and flag = 13, 14, 15

If branch: Yes Condition: Ack_probe_nov received?
Effect: 1. If ack_probe_nov received, work out distance and likely angle from stated
location;

2. If reply valid, flag = 20;
3. Endif; endif; reset message flag; flag - = 1, return;

Name: Recackprobel Fig: 7

Admitted in: N NE SA CA

Input: Location of sender

Requires: Forprob, and flag = 2,3,4

If branch: Yes Condition: Ack_probe_1 received?

Effect: 1. If ack_probe_1 received, work out distance and likely angle from stated location;
2. If reply valid, reset flag;
3. Endif; endif; reset message flag; flag + = 1; return;

Name: Recackprobe? Fig: 7

Admitted in: N NE SA CA

Input: Location of sender

Requires: Forprob, and flag = 6,7

If branch: Yes Condition: Ack probe_2 received?

Effect: 1. If ackgrobe 2 received, work out distance and likely angle from stated location;
2. 1f reply valid (ie within 30 m or s0), set flag = - 1;
3. Endif; endif; reset message flag; flag + = 1; return;

A-70

Name: Recackprobe2a Fig: 7

Admitted in: N NE SA CA

Input: Location of sender

Requires. Forprob, and flag = 8

If branch: Yes Condition: Ack_probe_2 received?

Effect: 1. If ack_probe 2 received, work out distance and likely angle from stated location;
2. If reply valid (ie within 30 m or s0), reset message flag; reset flag;
3. Elseif only one vehicle visible, send Faultl _1_veh to system; reset message flag;

flag = 16;
4. Else flag = 19;
5. Endif; endif; else if only one vehicle visible, send Faultl_1 veh to system;
flag= 16;
6. Else flag = 19;
7. Endif; endif; return;
Name: Recprobe 1 Fig: 7, 8
Admitted in: N NE SA CA
Input: -
Requires: Messrec
If branch: Yes Condition: Probe-l received?

Effect: 1. If probe-| received,
2. Set flag in Forprob = 20;
3. Else reset message flag;
4. Endif; return;

Name: Recprobe2 Fig: 7, 8

Admitted in: N NE SA CA

Input: -

Requires: Messrec

If branch: Yes Condition: Probe-2 received?

Effect: 1. If probe-2 received
2. Set flag in Forprob = 2 1;
3. Else reset message flag;
4. Endif; return;

Name: Recprobenov Fig: 7, 8

Admitted in: N NE SA CA

Input: -

Requires: Messrec

If branch: Yes Condition: Probe-nov received?

Effect: 1. If probe-nov received,
2. Set flag in Forprob = 22;
3. Else reset message flag;
4. Endif; return;

A-71

Name: Sendackprobenov Fig: 7
Admitted in: N NE SA CA
Input: Loc of sender, stated range
Requires: Forprab, flag = 22
If branch: Yes Condition: Within 1.5*platoon spacing
of sender?
Effect: 1. If within range (1.5 times platoon spacing, say) of sender,
2. Send Ack_probe_nov;
3. Endif; reset flag; reset message flag; return;

Name: Sendackprobe 1 Fig: 7
Admitted in: N NE SA CA
Input: Loc of sender, stated range
Requires. Forprob, flag = 20
If branch: Yes Condition: At location specified
Effect: 1. If tolerably near (10 metres say) to specified range from sender,
2. Send Ack_probe_1;
3. Endif; reset flag; reset message flag; return;

Name: Sendackprobe? Fig: 7

Admitted in: N NE SA CA

Input: Loc of sender, stated range

Requires: Forprob, flag = 21

If branch: Yes Condition: At location specified

Effect: 1.If approximately (25 metres say) at specified range from sender,
2. Send Ack_probe_2;

3. Endif; reset flag; reset message flag; return;

Name: Setfaultl Fig: 7
Admitted in: N NE SA CA

Input: -

Requires. Forprob, flag = 19

If branch: No Condition: -

Effect: Set fault #1; reset flag; return;

Name: Startprobe Fig: 7, 10
Admitted in: N NE SA CA
Input: Loc of gate (gate is near)
Requires. Mersplit (10)
If branch: Yes Condition: Pos? Busy? Fault #1 or #3 set?
Effect: 1. If busy ;
2. Elseif fault #1 or #3 set ;
3. Elseif pos = 1, then store any correction to loc as revealed by gate reading; set
flag in Forprob = 1,
4. Endif; endif; endif; return;

A-72

A.7 RECEIPT OF MESSAGES (Figure A.8)

Name: Buslead2 Fig: 5, 8
Specification in: Forced-Split (5)

Name: Buslead3 Fig: 5
Specification in: For-split (5)

Name: Cacall Fig: 8
Specification in: Gen

Name: Crashstopcall Fig: 8
Specification in: Gen

Name: Cutspeed Fig: 8
Specification in: Gen

Name: Lastbusy Fig: 5, 8
Specification in: For-split (5)

Name: Leadforsplit 1 Fig: 5
Specification in: Forced-split (5)

Name: Leadforsplit2 Fig: 5, 8
Specification in: Forced-split (5)

Name: Messrec Fig: 1,8
Specification in: SUP

Name: Necall Fig: 8
Specification in: Gen

Name: Norcall Fig: 8
Specification in: Gen

Name: Passon Fig: 8
Admitted in: N NE SA CA
Input: Message Request-merge rec’'d, pos = last > 1
Requires: Messrec
If branch: Yes Condition: Same lane as requester?
Effect: 1.If in same lane as requester, pass message up platoon;
2. Endif; return;

A-73

reemmveaverare s rma ey

r

e e Y T R L T B L Lo

Messrec

“rom

"Teamine

meeeAQR,S

Cmcmmman o .——

ewcoveacave

lecacanancsccnans

Emer'y messages-

Fiqure
o] 1

Request _merge

Request _merge

r
.
1
’
1]
H
+
[3
H
13
1]
+
4
H
Set speeds. H Recregmer
uodate vector H Fers Pos = last
:
1]
,
L}
¥
H
H
Messages are: '
H Not -
Crashstopesll Stoocall ' DSy Susy
Cacall Sacalll H
Necall Cutspeed | Passon
Normcall “aystoo ' Sendackreamer
Setfauit H Sergnacireamer “ace mossace
H Set merge(2) nan
H
*
+
H
’
-----------T--------o-----& -------- coyocvene
1]
t
Aek _rea.split N
lAvite_split N Rea_split c~ng_ln_N
Pos » N-1
v
Recskrasbeh Recreasplchl Recreasplchlbeh
Recrasplit
Rk_rq‘sp rec ' d Tetr rmoey Ere maet ven
revt ver. Ser oepiye M) Set pusy
Sel1tid} § busu ’ flag - Set split(3)
T) t
+ ' +
t H :
coseesecsen {-..--.-.-*-.--o--.nonnfco.---------l
t : : *
H : ' .
L 1} t *
: H
Sendeackreas ! !
Busy |Net , :
Set busu Sendnackreas : Lewao Recirmvsplit
. [oIRLTN)
Set spiit(i) :
H
4
:
:
'
cemceccrsamcserasaterteunsansaneranncaanaanannaannnad fme-cscmmcmemcanaa wceemea
. t
1] 1
:
Recreachln Sendackreach H
Req_change_lane . Sey ¢4 Not
From o an:acent met cmmal) -eed Sendnackreqch (-=--
pos * 1 hld ~e ALY
~a¢* Are gt

Figure A. 8. Messages.
(Messages responded to are in ovals.)

A-74

Rck_request_merge

pos * last

Recackregmerbeh

Set merge(3}

Femeemmemsacemeemeeemammmm e m o —m——————

M mmmmvaee .

Request_mer_3J_set

last

Recmerdset

Set meargeld)

Invite_split_N

Ong = N

Messrec
Ernm
Zeamire “igure
Edaet
messages V
preveessccan e - e-escsscacrcs-o== * ------------------------- IR R L AR L R R L R Kt dald ye---ete-ssscscesscmcone]

Forspl_beh_N_r

pos = N}

Forspl_beh N_r

pos = last

(ONa 1)

3
3
]

Fault_1_probe

Pos = last

Recfaultlprobe
Send

Loc_1s _here

Cantgo

ind = C

Reccantgo
Torten

te

1o~

s

Forspl_beh N_f
1 NI

pas *

Recprobel
Tlac in

[N e

[

Probe_2

1

Recprobe?

Flag 1nm

Figure A.8a. Messages (continued).
(Messages responded to are in ovals.)

A-75

Forspl_beh_N_f

1 =N

pos *

Lastbusy Leadforsplitl
Recaheadb Lesdforsplit?
e ey Set busy
Set forsocl(2) Ser farsplil)
stare atA Set ferspolil)
T 7
i :
' '
Busy and ! i
last H '
1}
! -
Sendunmerge? : Buslead3 Buslead?
1
SBrear ~tf |eeemcecad Figire Meccmccceccnacccscnaas e ¥ Tircp AAatA Stare +ata-
cursant ar t1an . sar forsn sl set farsplia)
¢ - L AL = vy = 1. 4,8
)
J : T
, : j
]] +
13 t)
+ 1)
. : :
P L T T Y [lecacnsenaw evalocecmrvenncoesraneeaen - 4
: femeeecncenccncrsemcoo]
1)) 1
1]]
, H
: :
Recreqgemerch Serdackemerch . 1
Not N ri8s . See
Request _emer _chsnge Frnm ag acen Ser amer b feeed Sendnackemerch [---¥-=---- Fiqure
ol ns 4]
~estl .Are . o A.h
cecremmmccepe—cmcsmcaccasceccccencommanammann (emcemccecescnconecannen)
i levcossvneccacan feecweccsss mmemm.- ceerne~-- {

Probe_no_vehicle

Pns = Jast

Recprobenov
Flaa in
Farpron = 7

Name: Recaheadb
Specification in: For-split* (5)

Name: Recackregmerbeh
Specification in: Merge(2)

Name: Recakrgsbeh
Specification in: Split (3)

Name: Recbehinda
Specification in: For-split (5)

Name: Reccantgo
Specification in: Joinquit (12)

Name: Recfaultlprobe
Specification in: Faults (9)

Name: Recinv_spl
Specification in: Split (3)

Name: Recprobel
Specification in: Forgrob (7)

Name: Recprobe2
Specification in: Forprob (7)

Name: Recprobenov
Specification in: Forgrob (7)

Name: Recregsplit
Specification in: Split (3)

Name: Recreqgmer3set
Specification in: Merge (2)

Name: Recreqchngin
Specification in: Change-lane (4)

Name: Recregemerchange
Specification in: Emer-change (6)

A-T76

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

61

16

12

8

Name: Recreq_mer ”
Specification in: Merge (2)

Name: Recreqsplchl
Specification in: Split (3)

Name: Recregsplchlbeh
Specification in: Split (3)

Name: Sacall2
Specification in: Gen

Name: Sendackreqchin
Specification in: Change-lane (4)

Name: Sendackrgemerch
Specification in: Emer-change (6)

Name: Sendackregmer
Specification in: Merge (2)

Name: Sendackreqs
Specification in: Split (3)

Name: Sendonf
Specification in: For-split (5)

Name: Sendnackreqgchlin
Specification in: Change-lane (4)

Name: Sendnackregmer
Specification in: Merge (2)

Name: Sendnackregs
Specification in: Split (3)

Name: Sendnackrgemerch
Specification in: Emer-change (6)

Name: S topcall
Specification in: Gen

A-T7

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Fig:

Name: (Intfalt) Fig: 9
Admitted in: N NE SA CA
Input: MON routines
Requires. Fault detected by internal monitor
If branch: Yes Condition: Fault #1? #11?
Effect: 1. Sets fault flag #1 - #11 as appropriate;
2. If fault #1, reset counter in Qtwofaults;
3. Endif; elseif fault 11, and speed < ¢ target, and Maystop flag reset, set Mystp
flag;
4. Endif;

Note Thisroutine is strictly part of MON

A-78

A.8 NEW FAULTS (Figure A.9)

Name: Newfault Fig: 1,9
Specification in: Sup

Name: Nex ttum Fig: 9
Admitted in: N NE SA CA

Input: -

Requires. Reclocishere, no message received

If branch: No Condition: -
Effect: Decrement counter in Qtwofaults; return;

Name: Qtwofaults Fig: 9
Admitted in: N NE SA CA
Input: Fault flags
Requires. Newfalt, and some faults present
If branch: Yes Condition: Proscribed or 3+ faults?
Effect: 1. If more than two faults (etc) present, call Sendstopit;
2. Endif; if one of pairs of faults, modes and flags listed below present, call
Sendstopit;
3. Endif; if fault #1 is present, then if counter is set,
4. Call Reclocishere;
5. Else call Sendfaultlprobe;
6. Endif; return;

Note
The following pairs of faults, etc. can induce a hazard, and therefore should induce Stopit.
#1 with #2,#3, or #10
#6 with #8
#7 with #9
#10 and CA mode

Maystop flagand #1 or #3

Name: Recfaultlprobe ‘ Fig: 8, 9
Admitted in: N NE SA CA
Input: Message fault-lgrobe received, with loc
Requires. Messrec
If branch: Yes Condition: Same lane? In range? Pos?
Effect: 1. If pos = lagt, then
2. If In# and loc indicate that vehicle is in same lane as sender and not more than
two platoon spacings ahead, send loc is-here (includes loc);
3. Endif; endif; return;

A-79

MCN

Fault #7
detected

(Intfault)
MON sets

fauit flag

Newfalt

Check fault
flaas

Frem

I

Fiaure
-

|

l

Sustenm Recsetfault Sendstopit Qtwofaults Slouspeed
Tae
set et fa,lt Tan ramy Ha o many Lo sceeq -
Fault #7 ‘laa fagite many RS gen ~ecsage ‘2
Shap memne Suster
Fauit
4]
f ~
Cer Crr
rese:? set
Recmaystop Sendfaultlprobe Reclocishere Sendlstop
Frrm
Frgur Mau o ston Carn moceagn te=M Janiclp anead 3reacdagn
[< I fern | ~ap e’
amt Flag Rer e~ er ' Arenn
:
H
H
R !
! J
;
1} [}
1} L}
13 [}
.]
i 1 Mo Yeg
.
,
Recfaultiprobe , Nextturn Setspeed
)
:
| “arg - Terraman: Tata *~ inmrg)
trurter zortrs]
suster

Figure A.9. Fault Flags.

A-80

Name: Reclocishere V Fig: 9
Admitted in: N NE SA CA
Input: -
Requires. Qtwofaults, fault #1 and counter set
If branch: Yes Condition: Loc is here received?
Effect: 1. If loc is here received, call Setspeed, passing loc of sender;
2. Else call nextturn;
3. Endif; return;

Name: Recmaystop Fig: 9
Admitted in: N NE SA CA

Input: -

Requires. Message Maystop from system

If branch: No Condition: -

Effect: Setsrelevant flag in Newfalt; return;
Note Maystop is sent when there is evidence of congestion.

Name: Recsetfault Fig: 9
Admitted in: N NE SA CA
Input: Message Setfault from system
Requires. Fault detected by system
If branch: Yes Condition: Fault #1, #11?
Effect: 1. Setsfault flag #1 - #1 1 as appropriate;
2. If fault #1, reset counter in Qtwofaults;
3. Endif; else if fault #11, and speed < < target, and Maystop flag not set, set
Maystop flag;
4. Endif; return;

Name: Setspeed Fig: 9
Admitted in: N NE SA CFA

Input: Loc and speed of sender of loc ishere

Requires. Reclocishere

If branch: No Condition: -

Effect: Set maxspeed to maintain 1.5*(normal platoon spacing), using normal
longitudinal control algorithm;

Name: Sendfaultlprobe Fig: 9

Admitted in: N NE SA CA

Input: -

Requires. Qtwofaults, fault #1 present, counter reset

If branch: No Condition: -

Effect: Send fault-lgrobe with loc and In#; set counter in Qtwofaults = 4; return;

A-81

Name: Sendistop . Fig: 9

Admitted in: N NE SA CA

Input: -

Requires. Slowspeed and speed =0, pos=1

If branch: No Condition: -

Effect: Vehicle has stopped behind vehicle ahead. No maystop sent Breakdown ahead?
1. If no contact, send message |-stop to system, with loc of vehicle ahead;
2. Else send collision;
3. Endif; return;

Name: Slowspeed Fig: 9
Admitted in: N NE SA CA

Input: Speed reading, distance to next vehicle

Requires. Newfalt

If branch: Yes Condition: Pos?

Effect: 1. If pos = 1, send message slow-speed to system; (thisincludes speed and
distance to veh ahead) [System may respond with Maystop, a degraded mode
or a setfault]

2. If speed = 0; call SendIstop;
3. Endif; endif; return;

Name: Sendstopit Fig: 9

Admitted in: N NE SA CA

Input: -

Requires. Qtwofaults

If branch: Yes Condition: Fault #8?

Effect: 1. Vehicle has a dangerous combination of two faults or 3 or more. Maxspeed
= 0,

2. If fault #8, send message |-stop to gate, indicating loc and In# and
fault-in-me; (System will send Stopcall, inducing Stop mode)

3. Else send |-stop (same message) to system;

4. Endif; return;

A-82

A.9 NEW ACTIONS (Figure A.IO)

Name: Actcalled
Specification in: SUP (1)

Name: Buslead 1
Specification in: Forsplit (5)

Name: Buslead4
Specification in: Forsplit (5)

Name: Callchangelane
Specification in: Change-lane (4)

Name: Calmerge
Specification in: Merge (2)

Name: Callsplit
Specification in: Split (3)

Name: Emerchcall
Specification in: Emer_change (6)

Name: Fault4or5s
Admitted in: N NE SA CA
Input: -

Requires. Faultset, fault #4 or fault #5 present

If branch: Yes

Effect: 1. If pos = last call Forspla;
2. Else call Sendaheada;
3. Endif; return;

Name: Forspla
Specification in: Forsplit (5)

Name: Forspll
Specification in: Forsplit (5)

Name: Fs 1 sat
Specification in: Forsplit (5)

Name: Fs3set
Specification in: Forsplit (5)

A-83

Fig: 1, 10, 12

Fig: 5, 10, 11

Fig: 5, 10

Fig: 4, 10

Fig: 2, 10

Fig: 3, 10

Fig: 6, 10

Fig: 10

Condition: Pos?

Fig: 5, 10

Fig: 5, 10

Fig: 5, 10, 11

Fig: 5, 10, 11

Actcalled

Linkmess

Respcmd to

Mersplit

Platoon size K
calls for merge

Figure A.10. Action Calls.

A-84

FI"OM
F1aufes Read posgitian,
i time. mar,ere: meseages from
ai start aztian Linv cantrol or spiit
Forspll Forspla FaultdorS Startprobe
Pos = To
Fault, pos N=! Fault. pos nol Lrss nf ~ear Figure Rt gate.
Set busy Set busy iast communyicat 1nn’ A7 pos = !
Set forspol(l) Set forsni(?l) flag -
vy [r———————————
Pos <
last
Sendbehindl Sendaheadb Sendaheads Emerchcall Callmerge
Veh | senas Vernicle N sends Vehirle N gendsg Set busy Send Req_mer:
fspl_b.1r Fspl b (N-1)F Fapl b INI® Set emerchil) Set mergeil)
baclk forward forvard Set flag = | Set flag = |
Busleadd Sendbehindb Sendbehinds Neset!
Store actions Vericle N sends Verizla N canng FofaL i AR, ad
send messages fer) b IN-1)e Fepl n ‘N - et Ne-antry
Fotle) wel. 4.9 bact cazy mare
—1]
-
Takeback Fesleet Sendreaemerch
Callsplst
Vehicle LEomet musy. lLoc and — *
ras set busyi set mavspeed 1N Set busy
exitted fargplil) messaqe
O —
:r
P! -~ e
- Fsiset Buslead! Invitesplst
To
Figure Set busy Store actions f—1 Serd 1nv_split
R 12 send messages
Set forspl(3) Foeix) =1 d, Set solitil)
; Reqchmg_1n - Callchng_1n Regsplit
[o] [o
Figure Sena _Set pusy Figure i Set split(2)
A4 rea_chng_ln. Sev crmgl]) R. Sera rea_spi1
loc & mavspeed Set flag = | Set flag = |

Name: Invitesplit . Fig: 3, 10
Specification in: Split (3)

Name: Linkmess Fig: 10
Admitted in: N NE SA CA
Input: Messages from Link Control
Requires: Faultset
If branch: ‘Yes Condition: Any relevant messages?
Free agent? Busy?
Effect: 1. If busy, ;
2. Elseif Ln# = 0, then if message indicates enter; call Callchng_ln;
3. Else call Takeback;
4. Endif; endif; if In# = 1 and message indicates exit at next gate and
ownsize = 1, call Callchng_In;
5. Else if message indicates exit at passed gate send passed-exit;
6. Endif; endif; if (time-stime) <0, stime = time;
7. Endif; if (time - stime) > 15 sec (say), then
8. If ownsize = 1, then if message indicates change of n lanes to some loc =loc0
and loc >loc0 - n*X,
9. Call Callchng_In;
10. Endif; else if pos = 1 or pos = ownsize, then if message indicates change of n
lanes to someloc = locO0 and loc >1loc0 - N*X - Y,
11. Cdll Callsplit;
12. Endif; else if message indicates change of n lanes to some loc = loc0 and
loc > locO - N*X -2*Y,
13. Call Callsplit;
14. Endif; endif; else call Mersplit;
15. Endif; endif; return;

Note Recording and processing of link messages is beyond scope of this specification. X is

distance taken to change lanes. It is set by Link Control on entry (will be afunction of flow):
Y isdistance to split - set in same way.

A-85

Name: Mersplit ‘ Fig: 10
Admitted in: N NE SA CA
Input: -
Requires: Linkmess and not busy
If branch: Yes Condition: Pos =1? Ownsize? Flag?
Time?
Effect: , 1. If pos = 1, thenif flag set, then if (time - stime) excessive (30 sec?),
2. Set stime = time; if ownsize ¢ = MO and forward probe indicates vehicle
in range,
3. Reset flag; Call Callmerge;

4. Endif; If ownsize > = SO, reset flag; call Invite-split for vehicle with pos
= ownsize/2;

5. Endif; endif; else set flag; set stime = time; call Startprobe;
6. Endif; endif; return;

Note MO - Maximum size at which platoon will seek merge - and SO - Minimum size at
which platoon will split - are constants set by Link Control.

Name: Neset 1 Fig: 5,10
Specification in: Emerch_change (6)

Name: Regsplit Fig: 3, 10
Specification in: Split (3)

Name: Reqgchngln Fig: 4, 10
Specification in: Change-lane (4)

Name: Sendaheada Fig: 5,10, 11
Specification in: Forsplit (5)

Name: Sendbehindb Fig: 5,10
Specification in: Forsplit (5)

Name: Sendbehindl Fig: 5,10
Specification in: Forsplit (5)

Name: Sendregemerch Fig: 5,10
Specification in: Emer_change (6)

Name: Startprobe Fig: 7,10
Specification in: Forprob (7)

Name: Takeback Fig: 10,12
Specification in: Join and Quit (12)

A-86

A.10 CONTROL DATA (Figure A.ll)

N a m e : Busleadl Fig: 5, 10, 11
Specification in: Forsplit (5)

Name: Controlmess Fig: 11

Admitted in: N NE SA CA

Input: Flags 1 (control data) and 2 (ack_cont) from Contdat

Requires; Contdat

If branch: Yes Condition: Flags

Effect: 1. If flag 1 is set, reset flag 1; set counter in Nocontmess to M; call Newvector;
2. Else call Nocontmess;
3. Call Recackcont (passing flags 1 and 2 asinput);
4, Return,

Name: Contdat Fig: 1, 11
Specification in: SUP (1)

Name: Fs 1 set Fig: 5, 10, 11
Specification in: Forsplit (5)

Name: Fs2set Fig: 5, 11
Specification in: Forsplit (5)

Name: Fs3set Fig: 5, 10, 11
Specification in: Forsplit (5)

Name: Newvector Fig: 11
Admitted in: N NE SA CA
Input: Control message
Requires. Controlmess
If branch: Yes Condition: Change of leader?
Effect: 1. If message gives leader or ownsize different from state vector, then if busy,
2. 1f merge(l) or merge(3) is set, reset it; reset busy; update state vector;
3. Elseif split(2) is set;
4. Elseif flag A isset, ; decrement A-counter; if A-counter = 0, then
5. Reset flag A; set A counter to M; Message odd-change to system; reset busy;
update state vector;
6. Endif; else set flag A; set A-counter to M;
7. Endif; endif; endif; endif; else if flag B is set, decrement B-counter; if B-counter
= 0, then
8. Reset flag B; set B-counter to M; update state vector;
9. Endif; else set flag B; set B-counter to M;
10. Endif; else reset flag A; set A counter to M; reset flag B; set B-counter to M;
11. Endif; return;

A-87

Contdat Controlmess Newvector s
ee
Examine b—+ Megsage rec ' d |f rneu leader Figure
control data ang passed on? check busy. R 2
and messages Set counters merqel{l). etc:
Recackcont Necontmess .
From
Figure “essage Be temporary Figure
A1 ackrmowleacgea? ieager - A.
set flags
*Sendaheada Fslset Sendbehindb!
To Other
Figure Veh N senas Set busy: Veh N Sengs =
AR S forsol B_(N}_f cases Fsol b_(N-1)Ff
Foruarg Set forspl(2) back
»
:
Risy and
N ! N=! JEX
Feiset Busleadl , Felset Sendunmergel
€
Set busy Store actiors [f not busy. Set forspl(2)-

Set forspol(3)

Senag ressages

Forle) vet d.§

busy

set busy' set
Forspl ()

Figure A.11. Control Data.

A-88

Breax off
curremt action

Name: Nocontmess Fig: 11
Admitted in: N NE SA CA

Input: -
Requires. Contmess
If branch: Yes Condition: Flags?Counter?
Effect: 1. If Newlead flag is set; send control data as |eader; decrement counter; if
counter = 0, then
2. Reset newlead flag; set counter = M; call Sendbehindbl;
3. Endif; else decrement counter; if counter = O, then
4. Send control data as leader; set newlead flag; set counter = M;
5. Endif; endif; return;
Name: Recackcont Fig: 11
Admitted in: N NE SA CA
Input: Flags
Requires. Controlmess
If branch: Yes Condition: Flag? Counter?

Effect: 1. If flag 2 passed is set, reset flag X; set counter to 2;
2. Elseif flag 1 is set, decrement counter X; if counter = O, then
3. Reset flag X; set counter = 2; call Sendaheada;
4. Endif; endif; return;

Name: Sendaheada Fig: 5, 10, 11
Specification in: Forsplit (5)

Name: Sendbehindb 1 Fig: 5, 11
Specification in: Forsplit (5)

Name: Sendunmergel Fig: 5, 11
Specification in: Forsplit (5)

A-89

A.11 JOINING AND LEAVING (Figure A.12)

Name: Actcalled Fig: 1, 10, 12
Specification in: SUP (1)

Name: Askin Fig: 12
Admitted in: Entry lane

Input: Driver request

Requires: None!

If branch: Yes Condition: Destination specified?
Effect: 1. If destination specified, send request-enter to system;
2. While true,

a. examine message flags; if any set,
b. if itisAre_you_fitted, reset flag; break;
C. endif; else reset flag;
d. endif;
3. Endwhile; Go to Monsys;
4. Else display to driver “ No destination stated”;
5. Endif; stop;

Name: Manualok Fig: 1, 12
Admitted in: Exit lane
Input: -
Requires: Takeback
If branch: Yes Condition: Message Manual-OK
received?
Effect: 1. If message manual-ok received,
2. Message to driver - “have a good day!“; autocontrol off; stop;
3. Else call Toofar;
4. Endif; return;

Name: Monsys Fig: 12

Admitted in: Entry lane

Input: Are_you_fitted rec’d

Requires. Askin

If branch: Yes Condition: Controls fit?

Effect: 1. If MON indicates controls fit, send Im_OK; go to Waitentry;
2. Else send Im_off; go to Nogol;
3. Endif;

A-90

Dr1ver
enters
destination

[
Il
*
v
]
+
'
v
]

Reccantgo Takeback Oriver
Triver ¥ajtentry indicates
renuests EEERE Vernacle --#%\ readiness o
e~try Aart repiu hnsg d~1ve
Pert mone cyltteo manually
T
: :
’)
4 TS ——
:
1}
1
4
Rskin Takeover Manualok
Meccane sent Etrrmrrrnt ~r laceaas Maccngr rar A
REX Marial

Ausit ansuer

sta'e vector

contrnl cr

Mansys
MON ingicates

status

ARctcalled

Rean prsitiar.
time. rariers:
start acticr

Nogo?
Lisarre ~ t n-
hurmey
.~possitle

Toofar
Frm ~f Jane

Stop

Nogol

[Ua!
(4

Unfitt O enter

Figure A.12. Joining and Leaving.

A-91

Name: Nogol Fig: 12
Admitted in: Entry lane

Input: -

Requires: Monsys - controls unfit

If branch: No Condition: -

Effect: Display to driver “Self monitor indicates fault(S) #x, get vehicle repaired”; stop;

Name: Nogo2 Fig: 12
Admitted in: Entry lane

Input: Text with message no-entry

Requires. Waitentry - no-entry received

If branch: No Condition: -
Effect: Display to driver “Entry refused - (message text}; stop;

Note Reason may be in vehicle - license outdated, carrying
external load, etc or within system - downstream section
closed, destination in other direction, etc.

Name: Reccantgo Fig: 8, 12
Admitted in: Entry lane

Input: Message cant_go received, with gate ID

Requires. Messrec or Walitentry

If branch: No Condition: -

Effect: Alter link data to indicate exit at this gate; set flag in takeback; send I-quit; return;

Name: Takeback Fig: 10, 13
Admitted in: N NE SA CA

Input: -

Requires. Linkmess (10) or Reccantgo (13)

If branch: Yes Condition: Flag

Effect: 1. If flag set, display to Driver: “Sorry - entry barred”;

2. Endif; Display to driver “Please take control”; call Manualok; (driver can send
Im_ready}

3. Return:

Name: Takeover Fig: 1,12
Admitted in: Entrylane

Input: Message You-are-in received

Requires. Waitentry

If branch: No Condition: -

Effect: 1. Set link dataincluded in message; set state vector (from message); reset
flag in Takeback;
2. Goto Actcalled;

A-92

Name: Toofar

Admitted in: Exit lane

Input: -

Requires: Manualok

If branch: Yes

Effect: 1. If any message received,
2. On message,

Manual-ok:
Inch-on :
End-of-lane:
{ default):

3. Endif; return;

Name: Waitentry
Admitted in: Entry lane
Input: -

Requires. Monsys

If branch: Yes

Effect: 1. Whiletrue,

break;

Fig: 12

Condition: Messages received?

maxsfneed very low; reset flag; bresk;
stop; reset flag; break;
reset flag;

Fig: 12

Condition: Message received

a. examine message flags; if any set,

b. on flag,
Y ou-are-in:

(default):
C. endif;
2. Endwhile;

go to Takeover;
No-entry (with text):

reset flag; go to Nogoz;
Cantgo: reset flag; go to Reccantgo;

reset flag;

A-93

A.12 SYSTEM

Note: This description does not explain how the platoon-level roadside system works. [t will

in fact cycle steadily, and respond to many messages from and to many vehicles. Here we
consider the interaction with each vehicle separately.

The interaction takes the form of receipt of a message and a response, which may or may not
require consultation of stored data.

All the following messages are received and retransmitted with the marker indicating fault #6
or #7 in the vehicle making the lane-change. Each is simply retransmitted.

Message: Request-emer-change (Sendregemerch, fig 6)
Respond with: Request_emer_change;

Message: Ack_request_emer_change (Sendackrgemch, fig 6)
Respond with: Ack_request_emer_change;

Message: Nack _request_emer_change (Sendnackrlemch, fig 6)
Respond with: Nack_request_emer_change;

Message: Confirm_emer_change (Sendconemerch, fig 6)
Respond with: Confirm-emer-change;

Message: Thanx_but_no (Recackrgemch, recnackrgemch, fig 6)
Respond with: Thanx_but_no;

Message: Unconfirm_emer_change (Callstop, fig 6)
Respond with: Unconfirm_emer_change;

Message: Emerch_to_void (Voidemerch, fig 6)
Respond with: Emerch_to_void; set turning-point;

Message: Emer_change _at_gate X (Qallrec, fig 6)
Respond with: Emer_change_at_gate_X; Set turning-point;

Message: Adj_ahead_ok etc (Inposn, fig 6)
Respond with: Adj_ahead_ok;

A-94

The following messages cause the reactions stated in the descriptions referred to:

Messages:

Nesetl (Nesetl, fig 6) No-entry mode, if fault #6 or #7 for next two sections

Neset2 (Neset2, fig 6) No entry mode extended as gate passed

Neset3 (Neset3, fig 6) No-entry mode transformed following lane-change, and SA mode also
removed.

Message: SAcall (Sacall, fig 6)
Not restricted to a particular fault. Calls SA mode to enable a safe emer-change.

Message: Fault-xgresent (Actcalled, fig 10)
Respond with: Add vehicle to list of faulty vehicles; if avehicle remains on thislist too long,
advise system operators.

Message: Fault-out (Passemch, fig 6)
Respond with: Remove vehicle from list; if system operators advised of its presence, advise
again;

Message: Fault 1 lveh (Forprob, fig 7).
Respond with: If another vehicle with fault #4 or #5 is present send No-fault-I; else no
action;

Gate messages.
The following messages do not provoke a transmitted message but what is said below:

Messages:

Confirm_split_change_lane (in transmitted form)(Recconsplit, fig 4)
Confirm-dropt (Sendcondropt, fig 4)

Confirm-decel (Sendcondecel, fig4)

Change-to-void (Voidch, fig 4)

Emerch_to_void (\VVoidemerch, fig 6)

Emerch_at_gate x (Qallrec, fig 6)

Respond with:
1. While 8 secs pass,
2. While giving-side VPD has not yet been occupied or is occupied,
3. If receiving side VPD is not occupied, activate turning point;
4. Else deactivate turning-point;
5. Endif; endwhile; deactivate turning point;
6. Endwhile;

Note. In the case of an exit gate, the receiving-side VPD extends downstream.

A-95

Entry and Exit Messages.

Message: Request-entry. (Askin, fig 12)
Respond with: Are_you_fitted to vehicle. Record existence, destination.

Message: Im_OK (MONsys, fig 12)

Respond with: 1. If licence valid and destination achievable, send Urin.
2. Else send No-entry, with reason as text; delete record of vehicle;
3. Endif;

Message: Im_off (MONsys, fig 12)
Respond with: -. Delete record of vehicle.

Message: [Vehicle has passed last on-gate]
Respond with: [Localized message] Cant-go

Message: |-quit (Reccantgo, fig 12)
Respond with: -. Deleterecord of vehicle

Message: [Vehicleamost at end of TL after last on-gate](Toofar, fig 12)
Respond with: [Localized message] Inch-on

Message: [Vehicle at end of TL] (Toofar, fig 12)
Respond with: [Localised message] End-of-lane

Message: Im_ready (Takeback, fig 12)
Respond with: 1. While brakes are being applied,;
2. Endwhile; send Manuaok; delete vehicle from record;

Mode Changes.

All these messages are followed by advice to system operators, who alone can reverse their
effects.

Messages: Crashstopbehind (Qfalt 1, fig5), also unnamed messages indicating fence breach,
or intrusion of platoon crush on to detector at gate.

Respond with: Crashstopcall (see Gen) for vehiclesin platoon calling, plustwo following
sections; Cacall for following (N) sections; SAcall2 for parallel sections on lanes adjacent to
CA section; advise system supervisors;

Messages: Callstop (Callstop, fig 6), I-stop (Sendistop, fig. 9)

Collision (Sendlstop, fig.9), Stopit (Sendstopit, fig.9)

Respond with: Stopcall (see Gen) for two sections behind caller;

A-96

Cacall for following (N) sections; SAcall2 for parallel sections on lanes adjacent to CA
sections; advise system supervisors,

Message: Slowspeed (Slowspeed, fig. 9),

Respond with: 1. If other reportsin same area send May-stop to affected lanes,
advise supervisors,
2. Else store info;
3. Endif;

Message: Unnamed message indicating slow-moving or stationary vehicle on exit lane,
downstream of primary detector VPD.
Respond with: Sacall2 for exit lane

Suspect vehicles list.

Messages:

Norepchll (Norepchll | fig 4)

Norepchi2 (Norepchl2, fig 4)

Norepchl3 (Norepchl3, fig 4)

Norepchl4 (Norepchl4, fig 4)

Norepchl5 (Norepchl5, fig 4)

No_tp_1 (Syscdlll, fig 4)

No_tp_2(Syscall2, fig 4)

Change-messed-up (Syscall3, fig 4)

Too-long (Toolong, figs 2,3)

Respond with: 1. If there is arecently reported faulty vehicle in the same area, ;
2. Else if one of the vehicles concerned has been involved in such
incidents before,

3. Advise supervisors, Send Setfalt#l;

4. Elseif gate (not for Too-long) has been involved before,
5. Close gate; advise supervisors,

6. Else add vehicles involved to suspect vehicleslist;

7. Endif; endif; endif; return,

A-97

A.13 LIST OF MESSAGES

The list of messages below gives the references to figures (6 = Figure A.6, etc), in which
messages are referred to.

up = message transmitted forward in platoon

Down = message transmitted rearward in platoon

out = message transmitted between platoons

Ex = message transmitted to system

In = message transmitted by system

= message is not addressed to particular vehicle

Message Figure Link
Acknowledge-control-data 11 Up
Ack_request_change lane 4 out
Ack_request_emerch 6 out
Ack_request_merge 2 Out,Down
Ack_request_split 3 Down
Adj_ahead OK 6 out
Adj_beh OK 6 out
Cacall 8 In
Callstop 5,6 EX
Cant_go 12 In
Change-mixed-up 4 Ex
Change-to-void 4 Out,Ex
Coallision 9 out
Confirm-change-lane 4 out
Confirm-decelerate 4 Out,Ex
Confirm-dropt 4 Out,Ex
Confirm-emerch 6 Out,Ex
Confirm-merge 2 Out,Up
Confirm-split 3 out
Confirm_split_change lane 4 Out,Ex
Controldata 11 Down
Crashstop Many Ex,In
Crashstopcall 8 In
Cutspeed 8 In
Emerch_at_gate x 6 Out.Ex
Emerch_target 6 Ex
Emerch_to_void 6 Out,Ex
Fault-lgrobe 9 out*
Fault-xgresent 9 Ex
Forced-split-called 4,5 out

A-98

Message

Forsplit_b (N)_f
Forsplit b_(N)_r
Forsplit_over
Gatepassed

Im_off

Im_OK

Im_ready

Inch-on

Invite-split

[-quit

[-stop

Maystop

Merge 3 set
Nack_request_change lane
Nack_request_emerch
Nack_request_merge
Nack_request_split
Necall

Neset 1

Neset2

Neset3
Next-ahead-OK
Next_beh_OK
No-fault- 1

Norcall

Norepchl 1
Norepchl2
Norepchl3
Norepchl4
Norepchl5

No_tp_1

No_tp_2

Probe- 1

Probe-2

Probe-nov
Request-change-lane
Request-decelerate
Request-emerch
Request-entry
Request-merge
Request-split
Request-split-change-lane

wwNnNRBor,rrwuNNbE DR DEPDEEDRPPOVNOOODOOOMWNO AN ®O©RGW

D

A-99

Out,Ex
Out,Ex
Out,Ex
Out,Ex
Out,Ex
Out,Ex
Out,Ex
out*
out*
out*
out*
out
out*

Out*,Up
Up
Down

Message

Sacall

Sacall2

Slowspeed
Split-over

Stopcall

Stopit
Thanx_but_no
Toofar

Toolong
Unconfirm-change-lane
Unconfirm_emerch
Unmerge

7000\7400\specif

Figure

O© 00 W WO

496
12

2,3,4

2,5

A-100

