
UC Berkeley
Research Reports

Title
A Specification Of An Automated Freeway With Vehicle-borne Intelligence

Permalink
https://escholarship.org/uc/item/67b3b8zv

Author
Hitchcock, Anthony

Publication Date
1992

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67b3b8zv
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFOR?!IA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

A Specification of an Automated Freeway with
Vehicle-Borne Intelligence

Anthony Hitchcock

UCB-ITS-PRR-92-18

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of
Transportation; and the United States Department of Transportation,
Federal Highway Administration and National Highway Traffic Safety
Administration.

The contents of this report reflect the views of the author who is
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

DECEMBER 1992

ISSN 1055-1425

1.
2.
3.
4.

5.
6.
7.
8.

9.

CONTENTS

List of Figures
Glossary of Terms
Introduction
Some Definitions
Hazards
System Architecture
4.1 Architecture, Level 5: Law
4.2 Architecture, Level 4: Network
4.3 Architecture, Level 3: Link
4.4 Architecture, Level 2: Platoon
4.5 Architecture, Level 1: Regulation
4.6 Architecture, Level 0: Physical
Physical Layout
System Modes
Faulty Vehicles
Operation of the System
8.1 Manoeuvres

8.1.1 Merge
8.1.2 Split
8.1.3 Change-Lane
8.1.4 Emergency-Change
8.1.5 Forced-Split

8.2 Probes
8.2.1 Platoon-Leader Probe
8.2.2 In-Platoon Probe

8.3 Entry and Exit
8.4 Operation of the Vehicle-Borne Controller
8.5 Operation of the Roadside Controller
Work of Hsu, et al. (1991)
Acknowledgements
References

. . .
111

iv
1
2
3
4
4
6
6
6
8

10
10
11
13
14
15
15
17
19
21
23
24
24
26
28
28
30
30
31
32

List of Figures

Figure 1. IVHS Control Architecture (after Varaiya and Shladover).
Figure 2. Merge (after HSU, et al., 1991).
Figure 3. Split (after Hsu, et al., 1991).
Figure 4. Change-Lane.
Figure 5. Emergency Change-Lane.
Figure 6. Platoon Leader Probe.
Figure 7. In-Platoon Probe.
Figure A. 1. Supervisor.
Figure A.2. Merge.
Figure A.3. Split and Split-change-lane.
Figure A.4. Change Lane (initiator).
Figure A.4a. Change Lane (recipient).
Figure AS. Forced Split (initiation).
Figure A.5a. Forced Split (implementation).
Figure A.6. Emergency Change (initiator).
Figure A. 6a. Emergency Change (participant).
Figure A.7. Forward Probe.
Figure A.8. Messages.
Figure A. 8a. Messages (continued).
Figure A.9. Fault Flags.
Figure A. 10. Action Calls.
Figure A. 11. Control Data.
Figure A.12. Joining and Leaving.

5
16
18
20
22
25
27

A-6
A-14
A-20
A-26
A-27
A-43
A-44
A-59
A-60
A-69
A-74
A-75
A-80
A-84
A-88
A-91

. . .
111

GLOSSARY OF TERMS

In this paper, a number of specially-defined terms of art are used, which include abbreviations.
The following table refers to the definitions of the terms and spells out the abbreviations.

Teti Section

AL = automated lane
AL license
AR = asynchronous record
b.e.m. = block entry marker
block
C mode = Crashstop
CA mode = Closed-Ahead
dormitory
fence
follower
free agent
full platoon braking
gate
lot = location = odometer reading and lane #

1
4.1
4.4
4.5
4.5
6
6
4.1
5
2
2
2
5
4.5

manual spacing 2

MON = self-monitor 4.5
N mode = Normal 6
NE mode = No-Entry 6
platoon leader 2
platoon spacing 2
R mode = Resume 6
S mode = Stop 6
SA mode = Slow-Ahead 6
TL = Transition lane 4.6
turning-point 4.6
VPD = Vehicle Presence Detector 4.6
v s v = Vehicle-borne State Vector 4.4

iv

A,Specification of an Automated Freeway
with Vehicle-Borne Intelligence

1. INTRODUCTION

This paper is complete in itself. However, along with another paper (Hitchcock, 1992b) it can
also be regarded as an appendix to “Methods for Analysis of IVHS Safety: Final Report of
PATH MOU 19” (Hitchcock, 1992a). Readers not familiar with the area are strongly advised
to read the other report first. An even shorter account of the background can be found in
Hitchcock 1991.

Further, the work here extends the work of Hsu, et al. (1991). The work plan of the whole
study included two worked examples of automated freeways. The overall objective was to
demonstrate and refine the techniques of specification and safety analysis. The two examples
should therefore be very different. The first was a single-AL system (AL = automated lane).
Intelligence was concentrated in the infrastructure. It was therefore natural to look at a multi-
AL system with mainly vehicle-borne intelligence.

Hsu and her colleagues had quite different concerns. Their purpose was to investigate a method
of proving conformity of a conceptual design to its specification. This method used the logical
technique enshrined in a computer program called COSPAN. The example they used to make
their tests concrete was a partial design of an automated freeway. The freeway had many lanes.
Intelligence was entirely vehicle-borne in the lower levels of the architectural hierarchy (see
Section 4). This work was also part of the PATH program. It seemed sensible to build on
Hsu’s design in the present work. This was particularly the case since Hsu and her colleagues
were able to show that their design did meet their partial specification. Accordingly, the
permission of the authors was sought. The design proposed by Hsu, et al. (1991) is close to
being a subsystem of the design set out here. However, Hsu’s design is incomplete for the
present purpose. We have extended it very considerably. Some changes have also been made
to what Hsu, et al. (1991) proposed.

The specification for an automated freeway is set out in a fully formal manner in this paper.
Subsequently, a series of safety analyses was carried out on the specification. These are
reported elsewhere (Hitchcock, 1992b). The objective of the programme of work, of which this
is part, is to derive a technique of safety analysis for such systems. The system reported here
is the second example on which a trial analysis has been demonstrated. The analysis depends
on the precise nature of the system specified. It is therefore necessary that the specification be
recorded without possibility of ambiguity. Great detail is thus required. Also, the method of
analysis recommended by Hitchcock (1992a) does require formal documentation. This paper
is consequently intended as an exemplar of such documentation. This applies especially to the

1

appendixes. In the appendixes a formalized language has been used, which is analogous to some
computer languages.

This report specifies the second example. To demonstrate the method of safety analysis a
procedure called fault tree analysis was then applied. The fault tree for the present example is
discussed in Hitchcock, 1992b.

The freeway specified here operates with vehicles in platoons. This is the basis on which other
work in PATH has been carried out. There was no good reason to do other here. The safety
argument in favour of platoons is reviewed in Hitchcock, 1992a.

The method of demonstrating safety used in the larger programme starts by defining certain
hazards. A safety criterion is selected. The criterion used here is that two or more
simultaneous faults must occur independently before the hazards can arise. The process is
described in Hitchcock, 1991. Hazards are detailed later (see Section 3).

In what follows, we describe the whole design. Later, a short section (see Section 9)
distinguishes the part that is due to Hsu and her colleagues from what is new.

2. SOME DEFINITIONS

Each vehicle will have a maximum deceleration when brakes are applied, which will vary
between vehicles. Under some circumstances it will be necessary to decelerate as quickly as
possible, short of generating within-platoon collisions. The appropriate deceleration is called
fill platoon braking. It is clearly a function of the road surface condition, and is therefore set
by each block as vehicles enter.

Platoon spacing is that spacing within which a vehicle decelerating at full platoon braking can
avoid colliding with one ahead when the latter is decelerating at some standard greater rate (one
might choose 0.8 g - a practical maximum). The following platoon is supposed to be warned
within some standard interval.

Manual spacing is the spacing at which drivers normally drive without being alarmed. It is a
function of vehicle speed and road surface condition. A parameter to describe the latter is
passed by the block controllers on entry.

On ALs, vehicles move in platoons. The first is the platoon leader; others are followers. A
one-vehicle platoon is called afree agent.

3. H A Z A R D S

A hazard is defined as a situation in which if one further fault occurs, a high speed collision may
ensue. The safety criterion as explained in Hitchcock, 1992a is that a hazard will not arise
without two simultaneous faults of system components. What we have to guard against are
crashes arising from the way the system is designed. Not all accidents are of this kind. If, in
particular, a driver causes his/her vehicle to collide with an automated one in a place where the
presence of both is permitted, this is not a hazard.

High-speed collisions may occur:

a. when all platoons involved are under control, automated or manual (a free agent is a
one-member platoon). In this case vehicles were too close to each other before a final
control failure.

b. when one platoon is not under control. This will happen if automatic control is switched
off before the driver is ready, or not switched on when the driver lets go.

In case a above, we are only concerned when the rear platoon is under automatic control. In
this case (remembering that a free agent is a one-member platoon), a further failure will cause
a catastrophe if:

Hazard 1. A platoon is separated from one ahead of it, or from a stationary object in its path,
by less than platoon spacing; or

Hazard 2. A vehicle, not under system control, is at an unmeasured or unknown distance in
front of a platoon.

Case b above refers to the case where neither driver nor system is in fact controlling the vehicle,
or where a driver is placed in a situation where he/she cannot control it.

Hazard 3. A vehicle is released to manual control before the driver has given a positive
indication that he/she accepts it.

Hazard 4. A vehicle is released to manual control at less than manual spacing from the vehicle
ahead of it; or at such a relative speed that manual spacing will be realized in less than 2
seconds; or while the brakes are being applied.

Danger may arise if a driver tries to surrender control before the system accepts it. This is an
aberration of a manual driver, but, by definition, it does not give rise to hazards.

3

4. SYSTEM ARCHITECTURE

An AVCS system architecture of a system similar to this one has been described by Varaiya and
Shladover (1991). This architecture is more general than the authors claim, and we shall use
Varaiya and Shladover’s language to describe the architecture of the present system. The
architecture is illustrated in Figure 1. It is hierarchical. Also, it is composed of modules.
Modules may be hardware or software. The modules communicate with others at the same level
in the hierarchy, and also with modules one level up and one level down. Their interfaces are
fully specified. The significance of this is that if an improved module design is subsequently
produced it can be slotted into the system without redesigning of the whole. In particular, it
becomes possible to replace a single non-safety critical module with impunity. A total
reappraisal of safety is not required.

The lower levels of the hierarchy are responsible for control of vehicle movement. They are
safety-critical, as Figure 1 indicates. The highest level (this is an addition to the Varaiya and
Shladover description) is law.

4.1 Architecture, Level 5: Law

The relevant law will control operations of automated freeways in many cities. Many of the
problems which will arise are not covered by the present law. Here we shall state only the law,
common to all city systems, which is required for operation. There are also a variety of wider
areas where legal or quasi-legal regulation will be required. These include the mechanism for
setting standards and ensuring or certifying conformity with them. We assume that the law will
say:

a. Every vehicle trying to enter the AL will bear a remotely readable record which certifies
that it is equipped with equipment of appropriate design. There will be a validation bit
which indicates that the equipment has not been diagnosed as faulty, either by the vehicle
itself or by the system. This bit, together with some data about the vehicle, will be
called the AL, license. Only vehicles with a valid AL license may enter or remain on the
ALs. Only a suitably qualified person may revalidate an invalid AL license. If a license
becomes invalid while on the Als (i.e., if the vehicle develops a fault) the vehicle should
quit the ALs at once.

b. It will be an offence to fail to resume manual control on exit from the ALs. If a request
to do so is disobeyed, the vehicle may be re-admitted to the system and carried to some
point where it is safe to leave it. (Periodically there will be areas where such vehicles
can be parked. We call them dormitories.)

4

C. It will be an offence to enter the system carrying an external or ill-secured load, or with
a trailer not itself equipped with communication devices.

d. “Hacking, ” that is, emitting signals designed to influence the system to do something
which it would not normally do, is illegal. This applies particularly to manually-
controlled vehicles which declare themselves to have valid licenses.

4.2 Architecture, Level 4: Network

This controls more complex aspects of routing in the light of overall flows on the network. It
also sets the parameters which correct the values of platoon spacing, etc., in the light of
prevailing weather conditions. Physically, the network controller is infrastructure based. It will
be connected to the link-level controllers, probably by hard-wiring.

4.3 Architecture, Level 3: Link

Link level prescribes the route to be followed by a vehicle through the system. The desired
route is stored in the vehicle. The choice is informed both by the data from the network level
and the destination stated by the vehicle on entry. When the time comes to change lanes, the
lower levels read the internal record, and determine if local conditions permit the manoeuvre.
If they do not, the change is made later. Under some conditions (e.g., lane closures) route may
be updated after entry. The efficiency of the link level algorithms clearly affects the capacity
of the ALs. Efficiency here is thus of economic importance.

Link level controllers are infrastructure-based. There will be one for every 5-20 miles of
freeway. They can communicate directly (presumably at high or optical frequencies) with
platoon-level controllers on vehicles in their area, and also with the platoon-level infrastructure-
based controllers. This latter link is probably accomplished by hard-wiring. The platoon-level
controllers at the roadside are effective only in fault conditions. Data are exchanged about lane
closures, emergency operations, and the like. It is at this level, for example, that human
supervisors or the Highway Patrol will intervene if it is necessary to manoeuvre an emergency
vehicle on to the ALs.

Link level does need to know which vehicles are in its area and where they are going.
However, this is not a safety-critical function.

4.4 Architecture, Level 2: Platoon

Platoon level is responsible for the manoeuvres which lead to entry, exit, changes of lane, and
the formation and dissipation of platoons. Most of it is vehicle-borne. There is a platoon-level

6

controller on each vehicle which oversees the actions of lower-level controllers of vehicle motion
in such a way as to execute platoon manoeuvres safely and successfully at the right time and
place. We will describe its operation later (see Section 8.3).

There is also a vehicle state vector (VSV). The VSV is a software record containing the AL
license, the route and a number of variables describing the current position of the vehicle and
what it is doing. The VSV is held in an asynchronous record (AR). An AR is a computer
storage device which can be written to and read from by several different computers which are
not in sync. The VSV, in fact, can be accessed by all the controllers on the vehicle. It can also
be accessed, via the communication devices, by other vehicles and the various roadside
controllers. Among other fields, it contains a “busy” flag. This is set during any manoeuvre,
and will usually preclude any other manoeuvre.

The fields in the VSV are these below:

ID# vehicle identity

ln# lane number

optsize platoon optimum size

pltn# platoon number

Pas position in platoon

busy busy marker (see above)

sectlen section length

fault identity of any fault (see below)

mode operating mode (see below) of current lane

xspeed optimum speed in lane to right

hwy# highway identity

sectif section number

optspeed platoon optimum speed

ownsize size of own platoon

lot odometer reading (see Section 4.5)

validation valid AL license

speed actual speed of vehicle

maxspd maximum speed on freeway

safsp minimum platoon separation at maxspeed

7

The state variables maxspd and safsp are set by the system on entry and are system-wide
constants. They may vary from time to time, with the weather. There is a formula contained
inside every vehicle which enables the safe interplatoon spacing to be calculated from these
variables at any speed. Optsize is two numbers specifying a range of sizes within which
platoons will neither merge or split. Like optspeed, it is set on entry by link and updated on
each lane change.

At the roadside, there is a platoon-level controller associated with each block of freeway. A
block is a length of some l-5 miles of freeway. It may be convenient to have one entrance and
one exit point per block: the point is of no great importance. There is a platoon-level controller
at each point where a lane-change can occur. These controllers are hard-wired to the other
platoon-level controllers in the same block. They can also communicate with vehicles in their
immediate neighbourhood. Their function is more fully discussed later (see Section 8.5).

4.5 Architecture, Level 1: Regulation

The regulatory layer controls the movements of individual vehicles in response to signals from
the platoon level and sensor readings from the physical level. It is entirely vehicle-borne. There
are many components:

a. Longitudinal Control System. This will maintain a vehicle in platoon. If the vehicle is
a platoon leader or a free agent, the control system will maintain the vehicle at platoon
spacing from the next vehicle ahead in the same lane. Alternatively, the system may be
falling back from the vehicle ahead or joining up to it when some special manoeuvre is
being carried out.

b. L&em1 Control System. This will maintain a vehicle on track in lane. It will also
change lane at appropriate locations when requested to do so.

C. Odometer. As will be seen, at the entry to every block there is a block entry marker
(b.e.m.). The odometer measures the distance of the vehicle from the b.e.m. and
records this number in the VSV. The lane # is also recorded there. We call this data
Zoc, the vehicle’s location. On entry, a lot is input by the system.

d. Forward Sensor. This instrument measures the distance of the vehicle from the one
ahead. It also measures relative velocity directly. The readings are stored in an AR.
It will operate at close range, in platoon. At longer ranges, it can keep track of which
of several vehicles ahead is in the same lane. It will always detect vehicles up to a range
exceeding the maximum value of platoon spacing.

e. Communication Devices. The description will imply that there are eight independent
devices here. If any pair of the functions is lost, a hazard arises. It is possible to
combine the functions in various ways. This will reduce the number of separate pieces
of equipment. However, each function must then be carried out by more than one
device. It is simpler, in specification, to speak of independent devices for independent
functions. The devices are:

0 Forward transmitter and receiver. In platoon, the devices can distinguish signals
from the vehicle ahead from all others. Otherwise, their range is at least equal
to sensor range. However, at a distance, there may be several vehicles with
which communication is possible.

0 Rearward transmitter and receiver. These have the same specification as the
forward ones, except that they react to vehicles behind.

0 Lateral transmitter and receiver. These communicate with vehicles in lanes on
either side. Their range is such that they can reach vehicles adjacent to those in
contact with those reached by the forward and rearward communicators.

0 System transmitter and receiver. These communicate with the platoon-level
roadside controllers.

Message stores and flags. There are ARs for storing messages and flags
indicating their presence. When a message is received, a flag is set in an AR.
The message itself is stored in another AR. If the message is received from
another vehicle in the same platoon, it is also passed to the appropriate
transmitter. Thus a message is passed along the length of the platoon by the
regulatory level controllers. There are two exceptions to this. A message clearly
cannot be passed on by the first and last vehicles of a platoon. Also, there is a
message type called “acknowledge-control” (see Section 8.2.2) which is not
passed on. A message containing control data is also passed to the longitudinal
controller.

f. Self-monitor. This will be called MON. MON checks the behaviour of the other
vehicle-borne controllers and devices. If any fail, an appropriate fault marker is set in
the VSV. The transmitters and receivers are “looping” at all times. Thus faults here are
detected at once without special action at platoon level. As a vehicle passes the places
where change of lane can occur, it receives a message which, among other things gives
the current lot. This enables a check to be made on the odometer. The forward sensor

is checked at these points also. Here a special platoon-level-controller routine is
provided.

4.6 Architecture, Level 0: Physical

The physical level, as the name indicates, is the one at which physical controls operate. An
example is the way in which movements of the steering axle affect the vehicle heading. Another
is the way reflections from other vehicles are interpreted by the forward sensor. In this paper
these operations will be taken for granted.

5. PHYSICAL LAYOUT

Along the center of every AL there is a lateral reference. This is read by the vehicles’ lateral
control systems and serves to keep vehicles on track.

As explained in Hitchcock, 1991, the hazards constrain the physical layout. In an automated
lane, flows of 6000 vehicles/hour or more are envisaged. Maximum flow on a manual lane is
around 2000 vehicles/hour. At such high densities, we must clearly admit the possibility that
one vehicle will lose speed and be rear-ended. Operation in platoons is chosen for the design
because, then, if there is a such a rear-end collision it occurs at low relative speed. We call this
a follower’s collision. Follower’s collisions were first discussed by Shladover (1979). In
platoon, a follower’s collision may be followed by a platoon crush, in which several vehicles
successively rear-end one another at low relative speed. The resulting mass of vehicles will
contain uninjured people, but will be moving at 50 mph or so. All will be well, provided there
are no further collisions with platoons or the infrastructure. The following platoons in the same
lane are separated by platoon spacing and so can brake to rest without collision. If, however,
the platoon crush strays into an adjacent lane, it is very likely to hit some fixed bit of
infrastructure, provided it is not hit by another platoon first. To prevent these high-relative-
speed collisions, we must design the system with barriers, called fences, between the ALs.
There are also fences between the leftmost AL and any other lanes that may be on the freeway.
In order to permit change of lane there are gaps in the fences. These are called gates.

It violates the safety criterion to permit a manually-controlled vehicle on the ALs. The driver
cannot be compelled to keep platoon spacing from the vehicle ahead. Therefore vehicles must
be admitted to the system under automatic control. They enter through a gate from the transition
lane (7Z). The TL has both manually and automatically controlled vehicles on it. However the
TL exists only in the neighbourhood of the gates which permit entry and exit. We shall see later

10

that automatically controlled vehicles on the TL must assume manual control or be brought to
rest in a dormitory off the TL.

At the entry and exit gates there are system transmitters and receivers which, stimulated by a
message from the driver, switch manual control off and on. At the exit gate this message is
duplicated through the lateral and system communicators in case of failure of one channel on the
vehicle. At every gate, including the entrances, there are also communicators at both link and
platoon levels. The link level communicators receive destination messages and update the
routing.

The platoon level communicators at gates “overhear” messages between vehicles concerning lane
changing. On the lane to which the transfer is made, there is, by the gate, a vehicle presence
detector (VPD). On lane from which transfer is made there is an active turning point, which
is controlled by the platoon-level infrastructure controller. The turning point, when active, gives
some form of electromagnetic signal which defines a precise location. If the design admits two-
way gates there are VPDs and turning points on both sides. The turning point is probably a
succession of electromagnets of particular polarity, but the technology used for the turning points
is not important here. If a vehicle is arranging to pass through a gate, the controller inspects
the VPD. If the VPD reveals that passage will not create a sideswipe, the turning point is
activated. The vehicle control system detects the turning point, and commences passage through
the gate. If the turning point is not activated it will remain in its original lane.

6. SYSTEM MODES

In fault conditions, it may be necessary to close a lane. It may contain a stalled vehicle, or even
a crash. Less serious faults may require less fully degraded conditions. Operation can then
continue, in a less effective way, which still permits the freeway to be used. The whole length
of a lane between two off-gates (a section) must be in the same mode. There are some rules
determining the modes admissible in one section when a nearby section is in some degraded
modes. Apart from this different sections can be in different modes. We distinguish the
following system modes.

a. Normal (N). This is used at all times when no faults are present.

b. No-Entry (NE). Here speeds are the same as in normal mode, but the gate
controllers will not activate turning points to permit entry. NE mode is used
when the section contains a vehicle which cannot communicate laterally.

11

C. Slow-Aheud (SA). Here speeds are reduced, but there are no other restrictions.
This is used when an adjacent lane is Closed-Ahead (see below). In this case,
many vehicles are trying to enter this lane. It is also used in some other fault
conditions; for example, if a vehicle which cannot maintain full speed is trying
to enter the lane.

d. ’ Closed-Ahead (CA). This applies when there are sections of the lane ahead
which are closed. It also applies in some other fault conditions. Speed in a CA
section is reduced. Adjacent lanes are in SA mode. Gate controllers deny entry
to the lane. At each gate, link-level messages advise vehicles how far they can
travel in this lane and indicate a route change. If there is only one exit remaining
before the stopped section is reached, speed is further reduced. If need be,
vehicles stop and line up at the last gate.

e. Crushstop (CJ. In an emergency the system will send a message placing a section
or sections into this mode and identifying a lot. There is some stationary object
at this lot which blocks the lane. (For example, debris from an accident may
have passed a gate.) Except in one case, all vehicles in the section immediately
brake at full platoon braking and remain at rest. The exception is that vehicles
within platoon spacing of the identified lot apply maximum braking. This will
normally lead to in-platoon collisions. These are accepted as a lesser evil. Speed
is thus reduced to the greatest extent possible. Perhaps collision with the obstacle
is avoided altogether. At least the impact is ameliorated. Entry is barred.
Further action is determined by the system controllers. They are likely to start
by entering Stop mode (see below).

f. Stop (S). This may be initiated in the same way as C mode, except that there is
no maximum braking. Alternatively, it may be entered after C mode. In this
mode the system controllers can order some otherwise forbidden manoeuvres.
These manoeuvres will include instructing vehicles to back up on the AL, and to
exit through on-gates. The objectives will be to get emergency vehicles to an
accident or breakdown, to get unaffected vehicles on their way, and generally to
clear up the consequences of some untoward event. Details of all this remain to
be designed.

Resume (R). This is used to restart a section in S, SA or CA. Again, details
remain to be designed. The resumption is seen as ordered by the system
controllers advised by human observation.

12

Modes can be degraded by the system. Reversion to normal operation is seen as requiring direct
orders by a human. An exception is made for NE mode. When the faulty vehicle leaves the
section, the section reverts to N mode.

7. FAULTY VEHICLES

The fault element in the VSV is set as follows:

0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

This indicates no faults, and is the only value consistent with setting of the
validation marker in the AL license.

This indicates an unreliable forward sensor. The vehicle cannot tell how far it
is from the vehicle ahead of it, whether that vehicle is in the same platoon or
another.

This indicates loss of the ability to transmit messages or data to a vehicle ahead.

This indicates loss of the ability to receive messages or data from a vehicle ahead.

This indicates loss of the ability to transmit messages or data to a vehicle behind.

This indicates loss of the ability to receive messages from vehicles behind.

This indicates loss of ability to transmit to vehicles in adjacent lanes.

This indicates loss of ability to receive from vehicles in adjacent lanes.

This indicates loss of ability to transmit to the system.

This indicates loss of ability to receive from the system.

This indicates loss of ability to locate accurately.

Any other fault (e.g. inability to maintain speed, inability to remain on track).

If a vehicle develops two or more faults, a hazard can arise at once. The vehicle is immediately
brought to rest, and Stop mode is called. The design is such, however, that if one fault only
is present, the vehicle can proceed without hazard, provided no other fault interacts. The other

13

fault may be on anothervehicle. Therefore, the controller is such that if a fault flag is set the
vehicle will immediately start a series of manoeuvres to quit the ALs. It may be possible for
it to be driven normally on ordinary roads, so the driver need not be stranded. Further, a
message, identifying the faulty vehicle is sent to the system, which keeps a list of faulty
vehicles. They might decide to continue, to enter a degraded mode or to call for Stop mode.
On leaving, the faulty vehicle advises the system that it has left. If the vehicle does not exit in
a reasonable time the system controllers are advised, for in this position, human intervention is
called for. The same is true if the system detects two faulty vehicles which are in danger of
interaction.

8. OPERATION OF THE SYSTEM

We shall now describe how the system behaves as a whole, and then go on to describe how the
platoon-level controllers achieve this. In the appendixes, detailed specifications of the modules
making up the controllers are presented. System operations are divided into MumeUvreS and
probes. There are some minor other activities associated with entry and exit. The probes are
concerned to discover fault conditions by using equipment which is not otherwise engaged in
such a way that non-functioning can be detected. We will discuss the manoeuvres first.

There are five basic manoeuvres. Only three, however, apply in normal operation. These are,
in inverse order of priority:

a. Merge. A platoon of less than optimal size joins on to another.

b. Split. A platoon divides into two, separated by platoon spacing.

C. Change-lane. A free agent (only) transfers through a gate into an adjacent AL.
Entry and exit are basically change-lane manoeuvres. The process is slightly
different. Control has to pass from manual to automatic (or the reverse) at the
right time.

The other two manoeuvres are initiated when there is a faulty vehicle.

d. Emergency-Change. A faulty free agent moves from one lane to another on its
way out.

e. Forced-Split. A platoon divides in such a way that a faulty vehicle is either at
one end of the platoon or becomes a free agent. One of the probes provides

14

means by *which a non-faulty vehicle in a platoon can tell that one of its
neighbours has faulty communication equipment, and therefore cannot advise it
directly.

The three normal-operation manoeuvres are sufficient to enable a vehicle to do what is needed,
provided it does not become faulty. It first enters the system, declares a destination, and
receives a route. The route is updated every time it passes a gate. On its way through the
system it will join with other vehicles to form a platoon when and if this is appropriate. When
the vehicle’s route requires it to change lanes or exit, split manoeuvres enable it to become a
free agent. Change-lane makes the lane change or exit. Hsu and her colleagues (Hsu, et al.,
1991) showed rigorously that these three manoeuvres are sufficient to meet the requirement
specification if no faults arise. A similar proof that the addition of the two extra manoeuvre
protocols similarly conform to an appropriately revised requirement specification would require
further research.

We shall now describe the manoeuvres, the probes, and the way the vehicle-borne controller
works. However, full detail will not be given here. The usual procedure will be described.
An indication will also be given of what happens if the usual procedure is inappropriate. The
appendixes contain formal specifications of each module. First, we shall explain the purpose
of the “busy” flag. Platoon manoeuvres are controlled, in the main, by platoon leaders.
Usually, a leader will engage in only one manoeuvre at once. When the manoeuvre starts, the
“busy” flag is set, and a message “request-[manoeuvre]” is sent, initiating it. At the end of the
manoeuvre, the “busy” flag is reset. If the message initiating a manoeuvre is received by a
second vehicle, the latter’s controller will consult the “busy” flag. If it is already set, the
message “nack-request-[manoeuvre]” is sent. The “nack-request-[manouevre]” message
acknowledges receipt of the message, but indicates inability to join in. This usually means that
the would-be manoeuvrer must await completion of the existing activity. Then the request can
be sent again. There is an exception to this. If a forced-split manoeuvre is requested, the
existing manoeuvre, if there is one, will be suspended. This is because the forced-split request
indicates the presence of a faulty vehicle in the platoon. For this reason, it may not be possible
for the first manoeuvre to be completed normally.

8.1 Manoeuvres

8.1.1 Merpe

Figure 2 shows a flow diagram for the merge manoeuvre. The merge manoeuvre is initiated by
the leader of a platoon which is following another at a little over platoon spacing. Merge will
be initiated when the following conditions are met:

15

a. The leader is not otherwise busy. Its busy flag is not set.

b. The route does not call for any manoeuvre.

C. There is no fault flag newly set, nor is the “busy” flag set.

d. ’ There is a platoon ahead in the same lane.

e. The platoon is smaller than link control’s minimum.

The sequence of events needs little description. In Figure 2, A is the leader of the leading
platoon. B is the initiator, the leader of the following platoon. If A is busy, or a merged
platoon would exceed the optimum size, A sends the message “nack-request-merge.”
Otherwise, A sends ‘lack-request-merge. ” On receipt of this B increases speed until it is a
metre or so behind C, the final vehicle of A’s platoon. It then sends “confirm-merge” which
is passed up the platoon to A. A responds by updating its state vector. New control data are
passed the length of the new platoon. Merge is complete.

Figure 2 does not show what happens if no reply is received to “ack-request-merge.” In fact
a message which indicates a potential fault somewhere is sent to the system. If many such
messages are received, action will be taken to resolve the problem. Figure 2 does not indicate,
either, that C also sets its “busy” flag during the manoeuvre. This has no effect unless a forced-
split is called in A’s platoon during the manoeuvre. Full details are in the appendixes.

8.1.2 SDlit

Figure 3 shows the flow diagram for the split manoeuvre. Split is usually initiated by a member
of a platoon that, because its route demands it, wishes to become a free agent and change lanes.
It can also be initiated by the platoon leader if the size of the platoon exceeds the optimum.
This will not happen as a result of a normal merge, but it can happen if a vehicle joins a platoon
following a lane change.

Part of the change-lane protocol is a manoeuvre called split-change-lane. This makes a gap in
an existing platoon. When the gap reaches a gate a vehicle can change lane into the gap. Except
for the manner of its initiation, split-change-lane is identical with the split manoeuvre.

Three vehicles become busy during a split. In Figure 3, A is the original platoon leader. B is
the vehicle which will become leader of the new platoon. C, not shown in Figure 3, is the
vehicle immediately ahead of B. If A is immediately ahead of B., there is no C. There are two

17

variants. If A wishes to become a free agent, it sends “invite-split” to B, which is then the
second vehicle in the platoon. On receipt of “invite-split” or “ack-request-split” B sets new
control data, which are passed to vehicles behind it. B, and the following vehicles, decelerate
until B is platoon spacing behind C. It then sends “confirm-split.” Vehicles reset “busy.” The
split manoeuvre is complete.

Not shown in Figure 3 are the messages sent to the system if no reply is received to these
messages. Again, the “busy” flag for C is only effective if a forced-split occurs between A and
C while the split is in progress. The appendix gives details.

8.1.3 Change-Lane

Figure 4 is the flow-diagram for change-lane. Here, again, three vehicles may be involved. A
is the free agent wishing to change lanes. B is, if it exists, a platoon leader or free agent in the
lane into which the change is to be made. C is a platoon leader or free agent in the lane beyond
B. C becomes involved only if B does not exist. A starts the procedure with the message
“request-change-lane” giving its own lot, speed, and the direction of the intended lane-change.
Nearby platoon leaders in the two adjacent lanes on the appropriate side of A’s lane respond
with an ‘lack-request-change-lane. ” If they are busy they respond with a
“nack-request-change-lane. ” These messages include the lots of the senders. A now works
out with whom it has to cooperate. A message “thanx-but-no” is sent to all those who sent
“ack~request~change~lane,” but need not become part of the manoeuvre. These may be vehicles
in the lane two over (i.e., potential C’s) when there is a valid response from the closer lane
(i.e., a potential B). Alternatively they may be too far away from A.

If there is a B, B itself will work out the best strategy. There are three variants. First, B may
request A to decelerate (message “request-decelerate”). This message refers to a gate and a
time when its final member has just passed the gate. A decelerates appropriately, and as it
reaches the gate it sends “confirm-dropt.” The gate also receives this message and, provided
the receiving side is unoccupied, A will be able to change lane. A does so, and sends
“confirm-change-lane. ” This initiates a merge procedure, as already discussed. When the
merge is complete, change-lane is also complete.

Second, B may send “request-split-change-lane” to one of the members of its own platoon. The
split takes place as already discussed. The message “confirm-split” will be received by B in due
course. As B reaches the gate, it sends “confirm~split~change~lane” to A. This message
includes a gate and a time at which the change will be made. Meanwhile, A has been
maintaining speed, and should therefore reach the specified gate at or very near the stated time.
The gate reacts to the message also. A changes lane. A’s message “confirm-change lane”
starts a merge procedure, as already discussed.

19

Finally B may itself decelerate. Having done so, B sends “confirm-decelerate” as it reaches the
gate. Again, this message names a gate and a time, which will be just ahead of B. Again A’s
message “confirm-change-lane” starts a merge procedure as already discussed. Change-lane
is complete.

If there is a C, all that is required of it is that it hold its relative position to A. In particular it
will not change lane itself. Furthermore, it occupies the position where a vehicle in its lane
would have to be for a change-lane to interfere with the changer. A will send the message
“change-to-void” which names the gate through which A will change lane, as well as the time
of the change. The specified gate will activate the turning point, provided there is no obstacle
to doing so. A will pass through the gate, and will send “confirm-change-lane.” Both A and
C will reset “busy. ” Change-lane is complete.

If there is neither a B nor a C, A must still send “change-to-void” to activate the gate. A
changes lane and the manoeuvre is complete.

Not shown in Figure 4 are the actions taken if no reply is received after some time. Under these
conditions a message is sent to the system, and the manoeuvre is canceled. It may be restarted
later. If, when it has changed lane, A finds itself too far away from the platoon with which it
is trying to merge, a message is again sent to the system. The most likely reason for this is that
one vehicle has developed a fault in the odometer. Finally, if during the earlier stages of the
manoeuvre forced-split is called, change-lane is called off. If however, the change of lane is
already committed, the following merge continues. All these extra details are discussed in the
appendix.

8.1.4 Emergencv-Change

Figure 5 is the flow diagram for emergency change. Emergency-change is initiated by a faulty
vehicle which has become a free agent. Such a vehicle is now programmed to leave the ALs
as soon as possible. Because the vehicle is faulty, the usual change-lane procedure is
inappropriate. Change-lane requires several subsystems, any of which may be the site of the
fault. Change-lane involves close approach to other vehicles and formation into new platoons,
which is also inappropriate when a vehicle is faulty.

Emergency-change involves cooperation with four other platoon leaders. These are requested
to run a platoon spacing ahead, and a platoon spacing behind the faulty vehicle. Two of the four
are in the lane into which the change will be made. The other two are in the lane beyond. All
simply maintain themselves in this position while the change is made into a large gap. The four
shepherding vehicles adopt the speed, whatever it may be, of the faulty vehicle. When the

21

vehicle has changed lane it sends “confirm-emergency-change. ” Busy flags are reset. The
shepherds are free to engage in other manoeuvres.

There are a number of special features, activated in particular circumstances. The fault may be
in a lateral communicator (fault 6 or 7). If so, the lane in which it is running is in NE mode.
When the change is made, the clear lane reverts to N mode. The one which now contains the
faulty vehicle is put to NE. Another feature which comes into play when fault 6 or 7 is present
is that the system communicators come into play. Messages which cannot be transmitted or
received by the lateral communicators are relayed through the system communicators. As will
be seen, the gate controllers communicate with both the lateral and system communicators, so
that if a vehicle is faulty in either the lateral or the system communicators the non-faulty one of
the pair passes the message to activate the turning point.

If forced-split is called in either shepherding platoon, the manoeuvre is broken off. We now
have two faults in different vehicles interacting. The system controllers are advised. This is
an area where hazards can be readily generated and human supervision is therefore necessary.
Full details are given in the appendixes.

8.1.5 Forced-Split

The forced-split manoeuvre is initiated by a vehicle in a platoon which develops a fault. A
faulty vehicle has to quit the ALs. The first step is to become a free agent. Usually, the
reaction is to call for a split ahead so that the faulty vehicle becomes platoon leader. If,
however, the fault is in the rearward communicators, the initial split is behind the faulty vehicle.
If the faulty vehicle is platoon leader, the split is also behind it. We shall see later that even if
the fault prevents full communication with other vehicles in the platoon, the probes enable the
other vehicles to operate the forced-split.

Forced-split differs from split in these ways:

a. A confirm-forced-split message is sent when the manoeuvre is complete.
However, no reliance is placed on its being received. After a reasonable interval
of time, the manoeuvre is terminated.

b. The original platoon may send a message breaking off some other activity; if not,
this leader checks, when the forced-split is over, to see if another activity should
be resumed.

C. The last vehicle in the rear platoon will receive data indicating that it is a member
of a new platoon. It consults it own “busy” flag. If the flag is set, another

23

manoeuvre is in progress. A message is sent to the new platoon leader indicating
as much.

Because these differences do not show up well in a flow diagram, none is shown for this case.
Figure 3 applies here too.

Forced-split,differs from other manoeuvres in that it overrides the “busy” flag. A faulty vehicle
in a platoon is either an imminent danger causing a crash (probably a low speed one) or
interferes with the execution of the manoeuvre. Therefore the manoeuvre is preempted.

In the case of a split or merge manoeuvre, the manoeuvre continues in the unaffected platoon.
The leaders in a platoon which is engaged in a forced-split manoeuvre can receive messages. If
they do, however, the message is stored and is not responded to until the forced-split is
complete. Then the system recovers stored messages and either sends the
“confirm-[manoeuvre]” message or continues with a merge or split. If the forced-split occurred
in the first of the two platoons engaged in a merge or split, the original leader of this platoon
is now inaccessible. The last member, however, does have “busy” set, and has stored the
necessary data about the previous manoeuvre. This last member sends this forward to the new
leader. An exception arises when the faulty vehicle is itself the last member of the platoon.
Now a merge manoeuvre will be terminated. A message is passed to the following platoon to
fall back at the time the forced-split is initiated.

If forced-split is called in a cooperating platoon, a change-lane manoeuvre is terminated unless
the change of lane has already taken place, or the gate has been activated for the change. At
this stage in a change-lane manoeuvre, a merge is in progress or about to begin. It will continue
as other merges do.

Further detail about this manoeuvre is given in the appendix. Formal specifications of all
modules are included.

8 . 2 Probes

8.2.1 Platoon Leader Probe

Figure 6 gives a flow diagram for the platoon leader probe. The platoon leader probe is a check
on the continued function of the forward sensor. The probe is initiated whenever a platoon
leader reaches a gate, unless it is “busy.” If the forward sensor perceives at least one vehicle
ahead, a message is sent giving the lot of the sender and indicating the distance of the vehicle
perceived. A vehicle receiving this message may reply if it is the last vehicle in a platoon.
There may be many such vehicles. Each will reply if its own lot makes it likely that it is the

24

vehicle addressed. If the sender receives a reply from a vehicle whose lot makes it likely that
it is the one seen, all is well.

If, however, no reply is received by the first sender, another message is broadcast. This
message calls for a reply from any vehicle credibly being addressed. This is because, if the road
is strongly curved, it may be difficult to be precise about the relative position of lots on diverse
lanes. If, again, a reply is received and appears to be valid, all is well. Otherwise there are
two possibilities. Either the sender is seeing things which are not there, or the receiver, is
unable to communicate. If there is or seems to be more than one potential receiver, the first
alternative is valid. Fault #l is set by the probing vehicle and the system is advised. If there
is or seems to be just one potential receiver, a message is sent to the system. The system may
reply that indeed, there is a vehicle in this general area with such a fault. If so, no further
action is taken. Otherwise fault #l is set by the prober. The other possibility is that no vehicle
is perceived, in which case a message is broadcast to any potential receiver ahead saying so.
If a reply is received, one tries again. If again a reply is received, fault #l is set. The system
is informed.

8.2.2 In-Platoon Probe

Figure 7 is a flow diagram of the in-platoon probe. If a vehicle in a platoon develops a
communication fault, it will set a fault flag. From its side, the faulty vehicle will start a forced-
split. However, if the fault is in the forward or rearward communication system, the vehicle
with which communication has failed may not be aware of the need to forced-split. The in-
platoon probe deals with this. Every time a message with control data is sent with the leader’s
VSV data down the platoon, each vehicle responds ahead with an “acknowledge-control”
message. As explained in Section 4.5, this message, uniquely, is not passed on up the platoon.
It is recognized that a number of temporary conditions will interfere with the passage of one
message. Two consecutive failures to receive a control message are required before the vehicle
deduces that there is a failure ahead of it. It then sends a temporary leader’s message, giving
its own control data. The would-be leader may subsequently receive a message from another
temporary leader ahead of it. This can occur when the break in communication is not
immediately ahead of it. If a temporary leader receives a message from ahead, it adopts a
follower’s role again. If not, it will send a message in both directions, indicating that a forced-
split will be formed ahead of it.

Alternatively, there may be no acknowledgment. Once again, confirmation that the loss is
permanent is awaited. After that, a message is sent, both ways, indicating that a forced-split
will occur behind the vehicle sending the message.

26

8.3 Entry and Exit

Entry has two components. First the vehicle must signal the system that it wishes to join the
system, and give a destination. The system will reject the vehicle’s request for entry if it does
not signal that its AL license is valid. It will also reject the request if the destination is
inaccessible. This could happen if the driver is trying the wrong direction, or if there is some
breakdown ahead.

If a vehicle is accepted, the next stage is a change-lane. This differs in two ways from other
change-lane manoeuvres. The driver, before requesting entry, can match speed and position so
as to make entry simpler. Also, should entry prove to be impossible for any reason, the vehicle
will ultimately pass the last on-gate. It will now be treated as if it had just exited. The driver
will be invited to resume manual control.

Exit, too, starts with a change-lane, like any other, on to the TL. However, in this case, the
system sends a warning to be ready to resume manual control on exit. Immediately after exit
is confirmed by the VPD, the driver is offered the opportunity to resume manual control. If
manual control is not taken, the vehicle will be first slowed down as it passes a particular
communicator near the end of the TL. If it reaches the end of the TL, it will be brought to rest
in a dormitory.

8.4 Operation of the Vehicle-Borne Controller

The controller has many functions, and cannot remain with any operation for a significant
period. Instead it cycles, continually, through six functions. If any of these is active, the
controller will enter it. The controller will initiate some operation, if it is time to do so.
Otherwise, the controller will simply set a flag. When control returns on the next cycle, the
controller will pick up the operation where it left off. In the interval it has examined the need
for operation in the other five categories.

All this is set out in detail in the appendixes. Figure A. 1 shows a schematic, naming the
modules. A full description of the latter will be found in the appendix “Supervisor.” The six
elements operate as described below. We have given the elements mnemonic names.

a. Buschek. “Buschek” is “check busy. ” If the busy flag is reset, control passes on.
Otherwise the controller consults flags to discover which manoeuvre is in progress.
Another flag indicates the role played by this vehicle, while a third records the stage
reached.

28

b. Foqmb. “Forprob” is “Forward probe. ” This section progresses the platoon leader’s
probe. Again, flags are set, indicating that the probe is in progress. Another flag
advises how far the probe has progressed.

C. Messrec. “Messrec” is “Messages received ” This module is responsible for initiating
new actions in response to messages. Flags have been set in the message register by the
regulatory level communicator controllers indicating which messages have been received.
This level will also already have passed on many up or down platoon. Regulation level
will also have discarded messages which do not apply to this vehicle. Other messages
are of concern to particular elements, and their flags are noted there.

However, some messages are initiators. “Request merge” is an example. Another is
“Probe-l,” the first forward probe message from avehicle to the rear. “Messrec” notes
these. It examines each incoming message in turn, and transfers control to appropriate
elements.

d. Ne wfak “Newfalt” is “New fault.” Fault flags are inspected to see if any are set. The
fault-l probe is called from here. This probe is used by a vehicle which has lost forward
sensor capacity, and has no vehicle ahead of it in platoon. It calls forward giving its lot.
Vehicles ahead in the same lane give their own lots. These data are passed to the
longitudinal control system instead of the sensor readings. Here too, messages are sent
if a vehicle is for some reason moving very slowly.

e. Actcalled. “Actcalled” is “Calls for Action.” If faults are present, the appropriate
manoeuvre is called. If there are none, the module examines the routing to see if any
manoeuvre needs to be initiated. If the platoon is above or below the optimum range,
it may be appropriate to send a “request-merge” or “request~split.” At a gate, it may
be appropriate to initiate the platoon-leader’s probe.

f. Contdat. “Contdat” is “Control data.” The control data are passed along the platoon by
the regulation level which also makes them accessible to longitudinal control. However,
the in-platoon probe also needs these data, and the logic of this probe is carried out in
Contdat.

This completes the general description of the system. For further details the appendix should
be consulted.

29

8.5 Operation of the Roadside Controller

In fault-free operation, the only activities of the roadside controllers are to send signals causing
manual and automatic control to be switched, and to activate the turning points at gates. In fault
conditions, the system communicators also act as a backup to the normal ones. The gates
communicate both with the lateral and with the system communication subsystems. The system
is called on, whenever there may be a vehicle that cannot communicate over a distance. (The
description of the platoon leader’s probe in Section 8.2.1 contains an example.) Also, the system
maintains two lists of faults and potential faults. Whenever a fault flag is set, the roadside
controller is advised. When a faulty vehicle exits it is removed from the list. The system
controllers are advised if there is too long an interval before a faulty vehicle exits. These people
also receive a message if there are several faulty vehicles close together.

Further, there are a number of events which are reported to the system which indicate that
something is faulty somewhere, but do not enable a culprit to be identified. Excessive delays
or failures to respond in a merge process are examples. Another example is a vehicle changing
lane too close to or too far away from a partner in the change or emergency-change protocol.
Such events result in vehicles being put on a potential-fault list. If they appear several times,
a message is sent declaring them faulty.

9. WORK OF HSU, et al. (1991)

It has already been explained (see Section 1) that this specification is the completion of one due
to Hsu and her collaborators. These authors have agreed to their work being used in this way.
While their work is not a large part of what is described here, it did, of course, inspire the
whole. In particular Hsu and her colleagues did not specify a physical layout. They did not
describe the cyclic action of the vehicle-borne controller. Two of the manoeuvres (forced-split
and emergency-change) have been added. So have both the probes. The whole of the treatment
of non-reply to messages described here is new.

However, the small fraction of the pages do contain a vision of how a system might work that
permeates the whole of this report. This work does not address the same topics as HSU, et al.
Its conclusions are, it is believed, useful and are not trivial consequences of the previous work.
Nevertheless, this work has been greatly aided by being able to build on the earlier work.

30

ACKNOWLEDGEMENTS

The author wishes to acknowledge the technical support and encouragement of Dr. Steven E.
Shladover, Technical Director, PATH. The author experienced some difficulty in writing this
paper as clearly understood prose. The comments of Mr. Sompol Chatusripitak of Caltrans were
very helpful.

The great value of the work of the authors of HSU, et al. (1991) has already been acknowledged.

31

Hitchcock, A. 1991. “Intelligent Vehicle/Highway System Safety: Problems of Requirement
Specification and Hazard Analysis,” Transportation Research Board Annual Meeting,
Washington, D.C.

Hitchcock, A. 1992(a). “Methods of Analysis of IVHS Safety,” PATH Research Report
UCB-ITS-PRR-92-14, Institute of Transportation Studies, University of California, Berkeley,
CA.

Hitchcock, A. 1992(b). “Fault Tree Analysis of an Automated Freeway with Vehicle-Borne
Intelligence, ” PATH Research Report UCB-ITS-PRR-92-15, Institute of Transportation
Studies, University of California, Berkeley, CA.

Hsu, A., Eskafi, F., Sachs, S., and Varaiya, P. 1991. “The Design of Platoon Maneuver
Protocols for IVHS, ” PATH Research Report UCB-ITS-PRR-91-6, Institute of
Transportation Studies, University of California, Berkeley, CA.

Shladover, S.E. 1979. “Operation of Automated Guideway Transit Vehicles in Dynamically
Reconfigured Platoons,” Urban Mass Transportation Administration Report
UMTA-MA-06-0085-79-1, 2 & 3, Springfield, VA.

Varaiya, P., and Shladover, S.E. 1991. “Sketch of an IVHS Systems Architecture,” PATH
Research Report UCB-ITS-PRR-9 l-3, Berkeley, CA.

32

APPENDIXES

A.1 INTRODUCTION

The appendixes contain formal statements of the form and effect of each module. The form
selected is loosely based on the statements required in a number of formal computer languages.
There is, however, no computer language known which can accept these statements. Since many
of the terms used are not axiomatized, a great deal more would be needed before these formal
statements could be so used. However, this form has been found to be adequate for manual
verification of the statements made in the course of a fault tree analysis, and this is the
application intended.

The general section of these appendixes contains the modules which refer to more than one
vehicle or platoon. The others are grouped into sections. Each section refers to the supervisor
itself (Figure A. 1) or to one of its six elements. However, the figures for the element
Busycheck are broken down into the five manoeuvres (Figures A.2 - A.6). At the end, the
“System” section describes the operation of the platoon-level roadside controller.

The following abbreviations are used for the system modes:

N- Normal
CA - Closed-Ahead
R - Resume

NE - No Entry SA - Slow-Ahead
S - stop C - Crashstop

A.2 HOW TO USE THE MODULE DEFINITIONS

If it is wished to determine exactly how the system, or some part of it, works, it is necessary
to consult the written module definitions. The figures provided here do act as a guide to the flow
of control through the modules. However, they are not a full flow-chart. Where a module is at
a branch, for example, the figures do show two successors. They do not say what the branching
criterion is. That is done in the written module definitions. Similarly, a branching criterion may
require external input. The figure may show that there is a predecessor which provides the
relevant data - but the message itself is only identified in the text. Equally the words within a
box in a figure are necessarily abbreviated, and often omit relevant information.

In general, as each of the elements in the main routine (called supervisor) is entered, the first
action is to consult flags. The flags indicate whether an operation is in progress, and if so, the
point which it has reached. Thus, for example, if Busycheck is entered, the system first checks
the busy flag. If the flag is set, a manoeuvre is in progress. Alternatively, the flag may just have
been set by Actcalled. In either event, the system first determines the role the vehicle is playing.
Flags with names like split(2) or emerch(3) indicate the vehicle’s role. In fact a vehicle with
split(2) set is the leader of the second platoon in a split manoeuvre. Emerch(3) indicates the
leader of the trailing platoon in the lane which is to be entered in an emergency change. Within
this role, there may be stages. Thus with split&) set, and the stage flag = 3, the newleader is

A-l

dropping back to platoon spacing. The action is to consult the reading of the forward sensor, and
determine if the full separation is yet achieved.

So much is perhaps reasonably clear from the diagrams. But for full understanding, the text must
be used. An example may be useful. Suppose that a platoon is alone on the road except for a
vehicle ahead in the same lane which has fault #5. The vehicle thus cannot receive a message
from the leader of our platoon. A gate is reached. When the element Actcalled is reached, the
forward probe is started. To see how consult Figure A.lO. In the circumstances described
Actcalled will successively call the modules Linkmess, Mersplit and Startprobe. By looking at
each specification it is apparent that Startprobe will set the stage flag in Forprobe = 1.

Now examine Figure A.7. It is perhaps unnecessary to examine the specifications of the modules
Forprobe, Insight, Recackprobel, Probeagain, and Recackprobe2. On successive calls to
Forprobe, as the specifications will confirm when examined, the flag advances from 1 to 8,
Probe-l is sent (flag = 1) and later Probe-2 (flag = 5) is sent. Since the vehicle addressed
does not receive the message there is no reply. At flag = 8, Recackprobe2a is called. No
message has been received. However there is only one vehicle in sight. So the flag is set to
16, and the message Fault-l-veh is sent to the system. Now consult the system section. The
system will consult its list of faulty vehicles. It will discover that there is indeed a vehicle with
fault 4 or 5 in the area from which the message is sent. So it sends No-fault-l. Whatever the
relative cycles of system and the vehicle controller, there is sufficient time for this message to
be picked up when the flag is 16, 17 or 18. Nofault then resets the flag in Forprob. No fault
is wrongly ascribed to our platoon leader.

A-2

A.3 GENERAL

These modules are general They are called from several locations, and have no specialised
successors:

Name: Cacall Fig: 8
Admitted in: N NE SA
Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to reduced speed; update state vector; if

pas= 1, full platoon braking;
2. Endif; endif; return;

Name: Callstop
Specification in: Emerch (6)

Fig: 6, Gen

Name: Crashstopbehind Fig: -
Admitted in: N NE SA CA
Input: -
Requires: Several precursors
If branch: No Condition: -
Effect: Message to system - systems sets crashstop mode from pos of Vehicle calling,

back twice interplatoon spacing; sets CA mode behind that and SA mode in
parallel lanes; inform system supervisors;

Name: Crashstopcall Fig: 8
Admitted in: N NE SA CA
Input: Locations, and perhaps name of platoon
Requires: -
If branch: Yes Condition: Within platoon spacing of

lot named? In range stated?
Pos?

Effect: 1. If in named platoon, or within platoon spacing behind lot stated,
2. Maxspeed to zero; full braking;
3. Endif; If within range stated, maxspeed to zero; if pos = 1, full platoon
braking;
4. Endif; endif; return;

A-3

N a m e : Cutspeed Fig: 8
Admitted in: N NE SA CA
Input: Locations, speed
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to stated speed; store original maxspeed;

2. Endif; return;

Name: Maystop Fig: 9
Admitted in: N NE SA CA
Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, set flag in Newfalt;

2. Endif; return;

Name: Necall Fig: 8
Admitted in: N NE SA
Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, update state vector;

2. Endif; endif; return;

Name: Norcall Fig: 8
Admitted in: NE SA
Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to stored value; update state vector;

2. Endif; return;

Name: Stall
Specification in: Emerch (6)

Fig: 6, Gen

Name: Sacall Fig: 8
Admitted in: N NE
Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to reduced speed; store original

maxspeed; update state vector; if pos = 1, full platoon braking;
2. Endif; endif; return;

A-4

Name: S topcall
Admitted in: N NE SA‘CA

Fig: 8

Input: Locations
Requires: -
If branch: Yes Condition: In range stated? Pos?
Effect: 1. If within range stated, maxspeed to zero; if pos = 1, full platoon braking;

2. Endif; endif; return;

A-5

1

Figure A. 1. Supervisor.

A-6

A.4 SUPERVISOR (Figure A.l)

Name: Actcalled Fig: 1, 10
Admitted in: N NE SA CA
Input: Messages from link control
Requires: Newfalt or Takeover
If branch: Yes Condition: Fault present? Message from

link? Platoon too big, small?
Time?

Effect: 1. If a fault flag is set, then if emerch(1) is set, or forspl(x), x = 1 -5 is set, ;
2. Else send to system fault_#xgresent with vector; if ownsize > 1, then if
fault #4 or #5 is present,
3. Call Fault4orS;
4. Else if pos = 1, call Forspll;
5. Else call Forsplal ;
6. Endif; endif; else call Emerchcall;
7. Endif; endif; else call linkmess;
8. Endif; Go to contdat;

Name: Buschek
Admitted in: All
Input: -

Fig: 1,2,3,4,5,6

Requires: Contdat (in iterating cycle)
If branch: Yes Condition: Busy? Internal flags?
Effect: 1. If busy set, examine flags in order shown until one found set; then, if

need be, examine flag2, and call routine shown in list;
2. Endif; goto Forprob;

Flag I Flag2 Routine to call Fig

Cmiw

Chng(2)

1,2,3 Repwaitl
4 Voidch
5 Recreqdecel
6 Pass2
7 Pass3
8 Pass 1
9 Sendconchll

10 Sendconchl2
11 Sendconchl3
12 Sendcondropt

1,2,3 Repwait
4 Compposns
5 Reccondropt
6 Sendcondecel

4
4
4
4
4
4
4
4
4
4
4
4
4
4

A-7

Name: Buschek (continued)

Flag 1

Chng(2)

Chng(3)
Emeich(1)

Emerch(2,3,4,5)

Forspl(1)
Forspl(2)

Forspl(3)
Forspl(4)

ForspI(5)

Forspl(6)
Merge(1)

Merge@)
Merge3
Split(1)
Split(2)

Split(3)

Flag 2 Routine to call Fig

7
8

WA%5
6
7
8
9
10

1,2,3/V
6
7
8

1
2
3
4
5

1
2
1
2

1
2
3

1
2
3

Recconchl2 4
Recconchl 1 4
Recconchl3 4
Repwate 6
Voidemerch 6
Compposn 6
Recadjahead 6
Passemerch 6
Neset.3 6
Repwatel 6
Recposn 6
Inposn 6
Recconemer 6
Qfaltl 5
Newlead 5
Sepmeasfsl 5
Qslowmode 5
Testactflag 5
Splitagain 5
Recfsplitover 5
Recconfspl2 5
Recconfspl3 5
Recconfspl4 5
RecconfsplS 5
Qmess 5
Recackreqm 2
Recunmerge 2
Norepm3 2
Recconmer 2
(No action) 2
Rconspl 3
Recackrqspl 3
Newlead 3
Sepmeas-s 3
Recsplitover 3

A-8

Name: Contdat
Admitted in: N NE SA CA

Fig: 1, 11

Input: -
Requires: Actcalled
If branch: Yes Condition: Flags 1, 2
Effect: 1. Reset control data flag (1), ack-cant flag (2) and message counters;

2. For each message recorded,
a. If it is a special message then if it refers to this vehicle (see below),
increment counter;
b. else reset message flag;
c. endif; endif; if it is a control data message, set flag 1;
d. endif; if it is an ack-cant message, set flag 2;
e. endif;

3. Call Controlmess;
4. Endif; go to Buschek;

Note. 1. At regulation level, action of in-platoon reception/transmission is to:
a. examine nature of message received; set flags and counters (using same file
as messrec) indicating which messages have been received.
b. If it is a control data message, send data to controllers.
c. If it an ack-cant-dat message do no more
d. Otherwise, unless pos = 1 for a message from behind, or pos = last for a
message from ahead, pass message on.

Note. 2. “Special” messages are:

Message Pos

Going forward:
Request-merge
Request-split
For-split b N f- - -

1
1
1, N

Going backward:
Ack-request-merge
Request-mer 3 set
Ack-request~piit_N
Invite-split-N
Reqspl-ch-ln-N
Forspl b N r- - -

last
last
(N-1)
(N-l) if N>2, N
(N-l), N
N+l, last

A-9

Name: Forprob
Admitted in:N NE SA CA

Fig: 1, 7

Input: -
Requires: Buschek
If branch: Yes Condition: Flag?
Effect: 1. If flag set, call routine according to list below;

2. Endif; go to Messrec;

Flag Routine

1 Insight
V44 Recackprobe 1

5 Probeagain
697 Recackprobe2
8 Recackprobe2a

9,10,11 Recackprobenov 1
12 Novehnorep

13,14,15 Recackprobenov2
16,17,18 Reclveh

19 Setfaulti 1
20 Sendackprobel
21 Sendackprobe2
22 Sendackprobenov

Name: Messrec
Admitted in: N NE SA CA
Input: Message list (see below)
Requires: Forprob
If branch: Yes

Fig: 1,8

Condition: Any messages received from
other platoons or system?

A-10

Name: Messrec (continued)

Effect: 1. If busy,
2. Else examine existing flags; for each:

a. If more than 5 cycles old, reset flag; decrement counter;
b. endif;

3. Endif; if any messages, then for each:
a. If emergency message from system, delete message; call appropriate
routine; endif;
b. If unaddressed initiating message (see below), check pos; if
appropriate to this vehicle, call appropriate routine (see below);
c. Delete message; decrement counter;
d. Endif; endif; examine address, and message type; if to this platoon,
and pos is appropriate, check forspl(x) in Buschek;
e. If forspl(x) is set, store message;
f. Else set message flag with cycle number;
g. Endif; endif;

4. Endif; goto Newfault;

Notes. The action of a receiver is to store each message, as received, and increment a
message counter. The same list and counter is used by the control data receivers,
whose messages are also acted on here.

Emergency messages from system

These are obeyed by all vehicles:

Cstopcal
s topcall
Cacal
Sacal
NeCd
Cutspeed
Norcal

A-11

Name: Messrec (continued)

Unaddressed initiating messages

These are noted only by vehicles in appropriate pos:

Message Pos Routine Called

Request-merge 1 Recreqmer
Request-merge Last Passon
Ack-request-merge Last Recackreqmerbeh
Request-mer 3 set Last Recmer3set
Ack-requestjpiit-N (N-1) Recackrqsbeh
Request-split 1 Recrqsplit
Request-split-chnge-ln-N N Recreqsplchl
Request-split-chnge-ln-N N- 1 Recreqssplchlbeh
Invite-split-N N Recinvsplit
Invite-split-N N-l Recackrqsbeh
Forspl-beh-N-f 1, (N> 1) Leadforsplit2
Forspl-beh-N-f N Recbehinda
Forspl-beh-N-r N+l Recaheadb
Forspl-beh-N-r Last(> N+ 1) Lastbusy
Request-chng-ln 1 Recreqchln
Request-emerch 1 Recreqemerch
Fault-lqrobe last Recfault lprobe
Probe-l last Recprobe 1
Probe-2 last Recprobe2
Probe-no-vehicle last Recprobenov
cant-go free agent, ln# = 0 Reccantgo

Name: Newfault Fig: 1, 9
Admitted in: N NE SA CA
Input: -
Requires: Messrec
If branch: Yes Condition: Fault flag set? Speed? Stop

ahead?
Effect: 1. If any fault flag set call Qtwofaults;

2. Endif; if maystop flag is set, ;
3. Else if speed < < target, call Slowspeed;
4. Endif; endif; go to Actcalled;

A-12

A . 5 B U S Y C H E C K
AS.1 MERGE (Figure A.2)

Name: Busychek
Specification in: Sup (1)

Fig: 1,2,3,4,5,6

Name: Callmerge Fig: 2, 10
Admitted in: N NE SA
Input: -
Requires: Mersplit (10)
If branch: No Condition: -
Effect: Send Rqmerge; set merge(l)-flag = 1 in Busychek; reset flag in noreqml ;

set busy; return;

Name: Contactm
Admitted in: N NE SA
Input: -

Fig: 2

Requires: Sepmeasure and close spacing
If branch: Yes Condition: Flag set?
Effect: 1. Send confirm-merge; set flag = 3;

2. If flag set set stime in norepm3 = time + (increment);
3. Else set stime in norepm3 = time;
4. Endif; return;

Name: Norepm 1
Admitted in: N NE SA
Input: -

Fig: 2

Requires: Recnackreqm (no messages)
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, reset busy; call Toolong;
3. Else no action; endif; endif;
4. return;

Name: Norepm2 Fig: 2
Admitted in: N NE SA
Input: -
Requires: Recconmer
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, reset busy; call Toolong;
3. Else no action; endif; endif;
4. return;

A-13

Name: Norepm3 .
Admitted in: N NE SA
Input: -

Fig: 1,2

Requires: Buschek merge(l) Flag = 3
If branch: Yes Condition: (Time - stime excessive)?
Effect: 1. If (time - stime) not excessive, no action;

2. Else set split(2); reset merge(l);
3. endif; return;

Name: Recackreqm
Admitted in: N NE SA
Input: Message flags

Fig: 1, 2

Requires: Buschek - merge(l) flag = 1
If branch: Yes Condition: Ack-request-merge rec’d?
Effect: 1. If ack-request-merge received, increment target speed; Set

merge(l)-flag=2; reset message flag; reset flags in Noreqml, Contactm;
return;
2. Else call Recnackreqm; return; endif;

Name: Recackreqmerbeh
Admitted in: N NE SA

Fig: 2, 8

Input: Message Ack-request-merge
Requires: Messrec pos = last
If branch: No
Effect: Set merge(3): set busy; return;

Condition: -

Name: Reccon-mer
Admitted in: N NE SA
Input: -

Fig:

Requires:Buschek - merge(2)
If branch: Yes Condition: Confirm-merge received?
Effect: 1. If confirm-merge received, update ownsize and transmit new control data,

pltn#, etc; reset busy; reset message flag; reset flag in norepm2; reset
merge(2);
2. Else call norepm2;
3. Endif; return;

A-15

Name: Recnackreqm
Admitted in: N NE SA

Fig: 2

Input: Message flags
Requires: Recackreqm
If branch: Yes Condition: Nack-request-merge rec’d?
Effect: 1. If nack-request-merge received, reset busy; reset message flag; reset flag in

Norepm 1; reset merge(1);
2. Else call Norepml; endif;
3. return;

Name: Recreqmer3set
Admitted in: N SA
Input: Message Request-merge-3
Requires: Messrec
If branch: No
Effect: Set merge(3); set busy; return;

Fig: 2, 8

Condition: -

Name: Recrqmer Fig: 2, 8
Admitted in: N NE SA
Input: Message request-merge
Requires: Messrec
If branch: Yes Condition: Same lane? Busy?
Effect: 1. If in same lane, then

2. If not busy and no fault set, call Sendackreqmer;
3. Else call Sendnackreqmer;
4. Endif; endif;retum;

Name: Recunmerge
Admitted in: N NE SA
Input: -

Fig: 2

Requires: Buschek, merge(l), flag = 2
If branch: Yes Condition: Unmerge rec’d? Delmerge
rec’d?
Effect: 1. If unmerge received, reset message flag; set split(2);

2. Else if delmerge received, reset message flag; set flag in contactm;
3. Else call sepmeasurem;
4. Endif; endif; return;

A-16

Name: Sendackreqmer .
Admitted in: N NE SA
Input: -

Fig: 2, 8

Requires: Recreqmer and not busy
If branch: No Condition: -
Effect: 1. Send ack-request-merge;

2. Set busy; set merge(2); reset flag in norepm2;
3. return;

Name: Sepmeasure
Admitted in: N NE SA
Input: -

Fig: 1,2

Requires: Recunmerge
If branch: Yes
sepn)?

Condition: Separation < lJ*(inplat

Effect: 1. Reads separation from veh ahead on probe.
2. If this less than (normal in-platoon separation)*lS call Stillgo;
3. Else call Contactm;
4. Endif; return;

Name: Sendnackreqmer
Admitted in: N NE SA
Input: -
Requires: Recreqmer and busy
If branch: No
Effect: Send nack-request-merge; return;

Fig: 2, 8

Condition: -

Name: S tillgo
Admitted in: N NE SA
Input: -

Fig: 2

Requires: Sepmeasure
If branch: Yes Condition: Flag set?
Effect: 1. If flag not set, set flag; set stime = time;

2. Else if (time - stime) not excessive, no action
3. Else call Toolong; endif; endif;
4. return;

A-17

Name: Toolong Fig: 2, 3
Admitted in: N NE SA CA
Input: -
Requires: Several precursors
If branch: No Condition: -
Effect: Send message too-long to system (includes state vector, and flags in Buschek);

reset busy; reset merge and split flags in Buschek; return;

Note. System will advise controllers - this can be a system fault, but presents no immediate
danger.

A-18

AS.2 SPLIT (Figure A.3)

Name: Busychek
Specification in: Sup (1)

Name: Callsplit
Admitted in: N NE SA CA
Input: - ’
Requires: Mersplit (5) or Linkmess (5)
If branch: Yes
Effect: 1. Sets busy;

2. If pos = 1, call invitesplit;
3. Else call reqsplit;
4. Endif; return;

Fig: 1,2,3,4,5,6

Fig: 3, 10

Condition: Pos = l?

Name: Invitesplit
Admitted in: N NE SA CA
Input: -

Fig: 3, 10

Requires: Callsplit, pos = 1
If branch: No Condition: -
Effect: Send invite-split; Set split (1); reset flag in norepsl; update state vector;

return;

Name: Newlead
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Buschek, split (2) set, flag = 2.
If branch: No Condition: -
Effect: Decrement target speed. set pos = 1; update state vector; Set flag = 3; Reset

flags in spliton and noreps2; return;

Name: Noreps 1
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Recconsplit (no messages)
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;
4. return;

A-19

Name: Noreps
Admitted in: N NE SA &A

Fig: 3

Input: -
Requires: Recnackreqspl (no messages)
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;
4. return;

Name: Noreps
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Recsplitover (no messages)
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, call Toolong
3. Else no action; endif; endif;
4. return;

Name: Recackreqsplit
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Buschek, split(2) set, flag = 1.
If branch: Yes Condition: Ack-req_split received?
Effect: 1. If ack-request-split received, reset message flag; set flag = 2; reset flag

in noreps2;
2. Else call Recnackreqsplit;
3. Endif; return;

Name: Recakrqsbeh
Admitted in: N NE SA CA

Fig: 3, 8

Input: Message Ack-request-split or invite-split to vehicle behind
Requires: Messrec
If branch: No Condition: -
Effect: Reset message flag; set busy; set split(3); reset flag in noreps3; return;

A-21

Name: Reconsplit j
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Buschek, split(1) set
If branch: Yes Condition: confirm-split received?
Effect: 1. If confirm-split received, reset message flag; reset busy; send split-over;

reset flag in norepsl; reset split(l);
’ 2. Else call norepsl ;

3. Endif; return;

Name: Reqsplit
Admitted in: N NE SA CA
Input: -

Fig: 3, 10

Requires: Callsplit, pos > 1
If branch: No Condition: -
Effect: Send request-split; set split(2); set flag =l; reset flag in noreps2; return;

Name: Recinv-spl Fig: 3, 8
Admitted in: N NE SA CA
Input: Message invite-split
Requires: Messrec
If branch: No Condition: -
Effect: Reset message flag; set busy; set split(2) - flag = 2; return;

Name: Recnackreqs
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Recackreqs, ack not received
If branch: Yes Condition: Nack-request-split received?
Effect: 1. If nack-request-split received, reset busy; reset message flag; reset split(2);

reset flag in noreps2;
2. Else call noreps2;
3. endif; return;

Name: Recreqsplit Fig: 3, 8
Admitted in: N NE SA CA
Input: Message request-split
Requires: Messrec and pos = 1;
If branch: Yes Condition: Same lane? Busy?
Effect: 1. If same lane, then

2. If busy or fault set, call Sendnackreqs;
3. Else call Sendackreqs;
4. Endif; endif; return;

A-22

N a m e : Recreqsplchl .
Admitted in: N SA

Fig: 3, 8

Input: Message Rqspl-change-lane
Requires: Messrec
If branch: No Condition: -
Effect: Set split(2); set split(2)-flag = 2; reset flag in noreps2; set busy; return;

Name: Recreqsplchlbeh
Admitted in: N SA

Fig: 3, 8

Input: Message request-split-change-lane rec’d for vehicle behind
Requires: Messrec
If branch: No Condition: -
Effect: Set split(3); set busy; reset flag in noreps3; return;

Name: Recsplitover Fig: 3
Admitted in: N NE SA CA
Input: -
Requires: Buschek, split(3).
If branch: Yes Condition: split-over received?
Effect: 1. If split-over received, reset message flag; reset busy; reset flag on

noreps3; reset split(3);
2. Else call noreps3;
3. endif; return;

Name: Sendackreqs Fig: 3, 8
Admitted in: N NE SA CA
Input: -
Requires: Recreqsplit
If branch: No Condition: -
Effect: Send ack-request-split; set busy; set split(l); reset flag in norepsl; update

state vector; return

Name: epmeasures
Admitted in: N NE SA CA
Input:

Fig: 3

Requires: Buschek, split(2)-flag = 3.
If branch: No Condition: -
Effect: Read from probe separation from vehicle ahead; pass this in calling Splitdone;

return;

A-23

Name: Sendnackreqs
Admitted in: N NE SA dA
Input: -

Fig: 3, 8

Requires: Recreqsplit and busy set
If branch: No
Effect: Send nack-request-split; return

Condition: -

Name: Spliton
Admitted in: N NE SA CA
Input: -

Fig: 3

Requires: Splitdone (no messages)
If branch: Yes Condition: Flag? long delay?
Effect: 1. If flag not set, set flag; stime = time;

2. Else if (time - stime) excessive, call Toolong;
3. Else no action; endif; endif;
4. return;

Name: Splitdone Fig: 3
Admitted in: N NE SA CA
Input: Distance from veh ahead (= d)
Requires: Sepmeasures,
If branch: Yes Condition: d < platoon spacing?
Effect: 1. If d < platoon spacing, call spliton;

2. Else send confirm-split; reset busy; reset flag in Spliton; reset split(2);
3. endif; return;

Name: Toolong
Specification in: Merge (2).

Fig: 2, 3

A-24

AS.3 CHANGELANE (Figure A.4)

Name: Busychek
Specification in: Sup (1)

Fig: 1,2,3,4,5,6

Name: Callchangelane Fig: 4, 10
Admitted in: N NE SA CA
Input: -
Requires: Linkmess (10)
If branch: No Condition: -
Effect: Set busy; set chng(1); set flag = 1; call Reqchngln; return;

Name: Chltomer2
Admitted in: N SA
Input: -
Requires: Sendconchl2
If branch: No
Effect: Reset chng(1); set merge(2); return;

Fig: 4

Condition: -

Name: Compposns
Admitted in: N SA
Input: -

Fig: 4

Requires: Buschek, chng(2) and flag = 4
If branch: Yes Condition: Results of calculation
Effect: 1. From pos, speed of entering car, own speed, ownsize, pos and data sent,

determine change-lane strategy:
2. If veh is to join behind, call Sendreqdecel; flag = 5;
3. Else if in centre, call Sendreqsplchll; flag = 5;
4. Else ahead, call Dropback; flag = 6;
5. Endif; endif; return;

Name: Dropback Fig: 4
Admitted in: N SA
Input: -
Requires: Compposns
If branch: No Condition:
Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive

at gate at head of platoon;
2. Records targets, stores them; flag = 6; return;

A-25

Recnackreqch

Recackreqch

Rck rec’d.
T-b-n t o rest

Flag . 4. 5

I

Racreadecel

Recconrplchl

Cm-sol rec’d

Reccondecal

Con-dc 1 ret ‘d

cIaq = 7

l

Rccforaplcall2

Fo~wsol.cailed:

peser b u s y

I

Uodate vectcr
T h e n flag = 13

Syscalll

MessaQe “O-tc 1
to system

m,,lt role faults

Sendconvoid

Pass1

Fess gate:
Ucdate .ectc-

T h e n F:ag = 1;

I1
Rccforsplcalll

For~sol.called:

rese t busy

Figure A.4. Change Lane (initiator).
(t-p = hlming pod)

A-26

RectbnlIIihanr-but-m
rec’a,

Reset b u s y

SL/scsll3
Gee tco btq.

Send

-4Chnge.messed-m

.iate oassed

tell system

Recunconchll

ComPPosnsL-lCO -care
cos1t ICC5:

fl’ strate9y

Sendreqdec

Norepch2

2 g a t e s cmssea:
tel I s y s t e m
r e s e t busy

Ret t bn2

’ !hanr.cut s-0
rec’d

p,set ousy

I

I

NorepchS

-+ 3 qates oassed:
t e l l s y s t e m .
-eset b u s y

RecunconchlP

tale oassed.

Sendcondecel

Forsplit

irc.SDl called
- s e n d

fo~~snl.cslled

Recforsplcalll

~or.sol.celled

Reset busy

Figure A.4a. Change Lane (recipient).
(t-p = turning point)

A-27

Name: Forsplitl
Admitted in: N NE SA CA

Fig: 4

Input: -
Requires: Recconsplit
If branch: Yes Condition: Forced split called? sect in
NE?
Effect: 1. If forced split called (ie forspl(1) in buschek set), send forced-split-called;

r e s e t chng(2);
2. Else if section is now in NE or CA, send-forced-split- called; reset
chng(2); reset busy;
3. Endif; call Recforsplcall3; return;

Name: Forsplit Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Sendcondecel
If branch: Yes Condition: Forced split called? sect in
NE?
Effect: 1. If forced split called (ie forspl(1) in buschek set), send forced-split-called;

reset chng(2);
2. Else if section is now in NE or CA, send-forced-split- called; reset
chng(2); reset busy;
3. Endif; call Recforsplcall4; return;

Name: Norepch 1 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Recforsplcall2
If branch: Yes Condition: Gate passed? Counter > l?
Effect: 1. If gate signal received, then if signal indicates section of receiver is in NE,

reset busy;
2. Else counter + = 1; if counter > 1, then reset busy; advise system - no
confirmation from platoon . . . ;
3. Endif; endif; endif; return;

A-28

Fig: 4Name: Norepch2 j
Admitted in: N SA
Input: -
Requires: Recforsplcall3
If branch: Yes Condition: Gate present? Counter > l?

Flag?
Effect: 1. If gate present, then

2. If flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 1, reset busy; reset chng(2); advise system;
4. Else if flag set, reset flag;
5. Endif; endif; endif; return;

A-29

Name: Norepch3 j
Admitted in: N SA
Input: -

Fig: 4

Requires: Recunconchl2
If branch: Yes Condition: Gate present? Counter > O?

Flag?
Effect: 1. If gate present, then

2. If ‘flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 1, reset busy; reset chng(2); advise system;
4. Else if flag set, reset flag;
5. Endif; endif; endif; return;

Name: Norepch4
Admitted in: N SA
Input: -

Fig: 4

Requires: Recunconchll
If branch: Yes Condition: Gate present?
Effect: 1. If gate present, ;

2. Else reset busy; reset chng(2); advise system;
3. Endif; return;

Name: NorepchS
Admitted in: N SA
Input: -

Fig: 4

Requires: Recunconchl3
If branch: Yes Condition: Gate present? Counter > 2?

Flag?
Effect: 1. If gate present, then

2. If flag reset, set flag; counter + = 1;
3. Endif; Else if counter > 2, reset busy; reset chng(2); advise system;
4. Else if flag set, reset flag;
5. Endif; endif; endif; return;

A-30

Name: Pass1
Admitted in: N NE SA CA
Input: -
Requires: Buschek, chng(1) and flag = 8
If branch: Yes

Effect: 1. If gate detected, then
2. If flag 1 set, then

Fig: 4

Condition: Gate detected? Turning
point? Flag 1, Flag 2 set?

3. If tcp detected, turn to pass gate; update state vector; set flag 2;
4. Endif; else set flag 1;
5. Endif; else if flag 2 set; flag (buschek) = 11;
6. Else if flag 1 set, call Syscall2; reset busy;
7. Endif; endif; endif; return;

Name: Pass2
Admitted in: N NE SA CA
Input: -
Requires: Buschek, chng(1) and flag = 6
If branch: Yes

Effect: 1. If gate detected, then
2. If flag 1 set, then

Fig: 4

Condition: Gate detected? Turning
point? Flag 1, Flag 2 set?

3. If t-p detected, turn to pass gate; update state vector; set flag 2;
4. Endif; else set flag 1;
5. Endif; else if flag 2 set; flag (buschek) = 9;
6. Else if flag 1 set, call Syscalll; reset busy;
7. Endif; endif; endif; return;

Name: Pass3
Admitted in: N NE SA CA
Input: -
Requires: Buschek, chng(1) and flag = 7
If branch: Yes

Effect: 1. If gate detected, then
2. If flag 1 set, then

Fig: 4

Condition: Gate detected? Turning
point? Flag 1, Flag 2 set?

3. If t-p detected, turn to pass gate; update state vector; set flag 2;
4. Endif; else set flag 1;
5. Endif; else if flag 2 set; flag (buschek) = 10;
6. Else if flag 1 set, call Syscalll; reset busy;
7. Endif; endif; endif; return;

A-31

Name: Recackreqchl Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Recnackreqchl
If branch: Yes Condition: Ack-rqchng-ln received?
Effect: 1. Send thanx-but-no to all irrelevant replies;

2. If relevant reply received from adjacent lane, store stated speed; set
flag =4; reset counter in norepchl;

’ 3. Else if reply only from next lane, store stated speed;
4. Endif; endif; reset all message flags; return;

Name: Reccondecel
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Recconsplchl
If branch: Yes
Effect: 1. If confirm-decel received,

2. Reset message flag; if in position,
3. Flag = 7; reset both flags in Pass3;
4. Else set fault #ll;

Condition: Confirm-decel received?

5. Endif; else call Recforsplcalll ;
6. Endif; return;

Name: Recconchll
Admitted in: N SA
Input: -

Fig: 4

Requires: Buschek, chng(2) and flag = 7
If branch: Yes Condition: Confirm-change-ln received?
Effect: 1 1. If confirm-change-lane received, reset chng(2); set merge(l); if gap ahead

is too big call Syscall3;
2. Endif; else call Recunconchll;
3. Endif; return;

Name: Recconchl2 Fig: 4
Admitted in: N SA
Input: -
Requires: Buschek, chng(2) and flag = 7
If branch: Yes Condition: Confirm-change-ln received?
Effect: 1. If confirm-change-lane received, send mer3set; reset chng(2); set merge(2);

2. Else call Recunconchl2;
3. Endif; return;

A-32

Name: Recconchl3 j Fig: 4
Admitted in: N SA
Input: -
Requires: Buschek and chng(3)
If branch: Yes Condition: Confirm-change-lane
received?
Effect: 1. If confirm-change-lane received, reset busy; reset chng(3); reset message

’ marker;
2. Else call Rectbn2;
3. Endif; return;

Name: Reccondropt
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, Chng(2), flag = 5
If branch: Yes Condition: Confirm-dropt received?
Effect: 1. If confirm-dropt received, then if in position,

2. set flag = 7; reset counter in Norepch3; reset message flag;
3. Else send forsplit-called;
4. Endif; else adjust speed to meet target; call Recconsplit;
5. Endif; return;

Name: Recconsplit Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Reccondropt
If branch: Yes Condition: Confirm-split received?
Effect: 1. If confirm-split received,

2. If near gate, reset message flag; send split-over;
3. If in position, send confirm-split-change-lane; reset counter in Norepch3; flag=7;
4. Else send for-split-called;
5. Endif; else continue to achieve position; call Forsplitl;
6. Endif; else call Forsplitl;
7. Endif; return;

A-33

Name: Recconsplitchl .
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Recreqdecel
If branch: Yes
received?

Condition: Confirm-split-chng-In

Effect: 1. If confirm~split~change_lane received,
2. Reset message flag; if in position,
3. Flag = 6; reset both flags in pass2;
4. Else set fault #ll;
5. Endif; else call Reccondecel;
6. Endif; return;

Name: Rectbn 1 Fig: 4
Admitted in: N SA
Input: -
Requires: Repwait
If branch: Yes Condition: Thanx-but-no received:
Effect: 1. If thanx-but-no received, reset busy; reset message marker; reset chng(2);

2. Endif; return;
Name: Rectbn2 Fig: 4
Admitted in: N SA
Input: -
Requires: Recconchl3
If branch: Yes Condition: Thanx-but-no received:
Effect: 1. If thanx-but-no received, reset busy; reset message marker; reset chng(3);

2. Else call Recunconchl3;
3. Endif; return;

Name: Repwait 1
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chnge(l), flag = 1, 2, or 3.
If branch: No Condition: -
Effect: Call Recnackch; flag + = 1; return;

Name: Repwait
Admitted in: N SA
Input: -

Fig: 4

Requires: Buschek, chnge(2), flag = 1, 2, or 3.
If branch: No Condition: -
Effect: Call Rectbnl; flag + = 1; return;

A-34

Name: Recforsplcalll
Admitted in: N NE SA Ck

Fig: 4

Input: -
Requires: Voidch, Sendcondropt
If branch: Yes Condition: Forced-split-called received?
Effect: 1. If forced~split~called received, reset busy; reset message flag;

2. endif; return;

Name: Recforsplcall2 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Reccondecel
If branch: Yes Condition: Forced~split_called received?
Effect: 1. If forced~split~called received, reset message flag; reset busy;

2. Else call Norepchl;
3. endif; return

Name: Recforsplcall3 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Forsplit 1
If branch: Yes Condition: Forced-split-called received?
Effect: 1. If forced~split_called received, reset busy; reset message flag;

2. Endif; call norepch2; return;

Name: Recforsplcall4 Fig: 4
Admitted in: N NE SA CA
Input: -
Requires: Forsplit:!
If branch: Yes Condition: Forced~split~called received?
Effect: 1. If forced-split-called received, reset busy; reset message flag;

2. endif; return;

A-35

Fig: 4

Condition: Flag = 3? Nack-qchng-ln
received?

2. If veh in adjacent lane has sent nack-request-chng-ln, send thanx-but-no to
all those who have replied, except the nack-er; reset busy;
3. Else if no replies from adjacent lane, and veh in lane two away has sent
nack-request-change-lane send thanx-but-no to all others; reset busy; reset
all message flags;
4. Else call Recreqackchl;
5. Endif; endif; endif; return;

Name: Recnackreqchl j
Admitted in: N NE SA CA
Input: -
Requires: Repwait
If branch: Yes

Effect: 1. If flag = 3, then

Name: Reqchngln Fig: 4, 10
Admitted in: N NE SA CA
Input: -
Requires: Callchangelane
If branch: No Condition: -
Effect: Send reqchng-lane, including lot and maxspeed; return;

A-36

Name: Recreqchngln . Fig: 4, 8
Admitted in: N NE SA CA S C
Input: Lot and maxspeed of sender.
Requires: Messrec
If branch: Yes Condition: Within 2 lanes on side of

change? Busy? in N or SA?
Effect: 1. If in adjacent or next lane on side of change, and within platoon spacing of

’ lot, t hen
2. If “busy” not set, and mode is N or SA, and no fault set, call
Sendackreqchln with data received;
3. Else call Sendnackreqchln;
4. Endif; endif; return;

Name: Recreqdecel;
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chng(l), flag = 5.
If branch: Yes Condition: Request-decel received?
Effect: 1. If request-decel received, flag = 11; store target time of arrival at gate;

reset message flag;
2. Else call Recconspl; set speed to stated speed of requester;
3. Endif; return;

Name: Recunconchll Fig: 4
Admitted in: N SA
Input: -
Requires: Recconchl2
If branch: Yes Condition: Unconfirm-change-ln
received?
Effect: 1. If unconfirm change-lane received, reset chng(2); reset busy; reset message flag;

2. Else call Norepch4;
3. Endif; return;

Name: Recunconchl2 Fig: 4
Admitted in: N SA
Input: -
Requires: Recconchl2
If branch: Yes Condition: Unconfirm-change-m
received?
Effect: 1. If unconfirm change-lane received, reset chng(2); reset busy; reset message flag;

2. Else call Norepch3;
3. Endif; return;

A-37

N a m e : Recunconchl3 j Fig: 4
Admitted in: N SA
Input: -
Requires: Tectbn2
If branch: Yes Condition: Unconfirm-chng-ln received?
Effect: 1. If unconfirm-change&ne received, reset busy; reset message flag; reset chng(3);

2. Else call norepch5;
3. Eridif; return;

Name: Sendackreqchln
Admitted in: N SA

Fig: 4, 8

Input: lot and maxspeed of requester
Requires: Recreqchngln, not busy and right mode
If branch: Yes
Effect:

Condition: Lane adjacent? next to this?
1. Set new speed - minimum of own and requester’s maxspeed;
2. Send Ack-request-change-lane with lane and new speed; set busy; store
data sent and received;
3. If in adjacent lane, set chng(2); set flag = 1;
4. Else set chng(3); reset counter and flag in NorepchS;
5. Endif; return;

Name: Sendconchln 1
Admitted in: N SA
Input: -

Fig: 4

Requires: Buschek, chng(1) and flag = 9
If branch: Yes Condition: Gap too big?
Effect: 1. Send confirm-change-lane to all participating agents;

2. If gap ahead too big; call Syscall3;
3. Endif; call Chltomerl; return;

Name: Sendconchln2
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chng(1) and flag = 10
If branch: No Condition: -
Effect: Send confirm-change-lane to all participating agents; call chltomerl; return;

A-38

Name: Sendcondecel .
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chng(2), flag = 6
If branch: Yes Condition: Gate near?
Effect: 1. Adjust speed to reach gate at target time;

2. If gate near, then if in position,
3. Send confirm-decel; flag = 8;
4. Else send forsplit-called;
5. Endif; else call forsplit2;
6. Endif; return;

Name: Sendcondropt
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chng(1) and flag = 12
If branch: Yes Condition: Gate reached?
Effect: 1. Adapt speed to reach gate at target time;

2. If gate reached,
3. If in position, flag = 6; send confirm-dropt; reset flags in pass2;
4. Else send forsplit-called;
5. Endif; else call Recforsplcalll ;
6. Endif; return;

Name: Sendconvoid
Admitted in: N SA
Input: Reading from probe

Fig: 4

Requires: Buschek, chng(1) and flag = 11
If branch: Yes Condition: Vehs in platoon spacing?
Effect: 1. Send confirm-change-lane to any participating agent;

2. If vehicles ahead in platoon spacing detected, advise system;
3. Endif; reset busy; reset chng(1); return;

Name: Sendnackreqchln
Admitted in: N NE SA CA S C Q
Input: -

Fig: 4, 8

Requires: Recreqchln and (busy or wrong mode)
If branch: No Condition: -
Effect: Send nack-request-change-lane; return;

Name: Sendreqdecel
Admitted in: N SA
Input: -

Fig: 4

A-39

Requires: Compposns j
If branch: No Condition: -
Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive

at gate at back of platoon;
2. Records targets, stores them; sends request-decel with this data;
3. Resets counter, flag in norepch2; flag = 5;
4. return;

Name: Sendreqsplchl Fig: 3, 4
Admitted in: N SA
Input: -
Requires: Compposns
If branch: No Condition: -
Effect: 1. Determines position and velocity of both vehicles so that enterer will arrive

at gate behind vehicle (N-l) of platoon;
2. Records targets, stores them; sends request-split-change-lane to vehicle N;
3. Resets counter, flag in norepch2; flag = 5;
4. return;

Name: S yscalll
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Pass2, pass3, and no t-p
If branch: No Condition: -
Effect: Send unconfirm-change-lane; Send to system no-tp-1; return;

Name: Syscall2
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Pass1 , and no t-p
If branch: No Condition: -
Effect: Send unconfirm-change-lane; send to system no-tp-2; set fault #6; return;

A-40

Name: Syscall3
Admitted in: N SA
Input: -

Fig: 4

Requires: Sendconchll or Recconchll and big gap
If branch: No Condition: -
Effect: Send change-messed-up (with ID’s of participants); return;

Name: Voidchange
Admitted in: N NE SA CA
Input: -

Fig: 4

Requires: Buschek, chng(l), flag = 4
If branch: Yes Condition: Gate near?
Effect: 1. If gate near (as determined by lot and its broadcast of its Lx), send

change-to-void; flag = 8; reset both flags in Passl;
2. Else call Recforsplcalll ;
3. Endif; return;

A-41

AS.4 FORCED-SPLIT (Figure A.5)

Name: Buslead 1
Admitted in: N NE SA CA

Fig: 5, 10, 11

Input: -
Requires: Fsl set, (pas = 1) and busy
If branch: Yes Condition: multiple
Effect: 1. Action according to flag set in buschek:

Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepforsl; break;
Split(1): reset split(l); set forsplit(1); set time in Norepforsl; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepforsl; break;
Chng(3): store data; set active flag; set forsplit(1); set time in Norepforsl;
break;
Emerch(x), x = 2,3,4,5 set forsplit(1); set time in Norepforsl; advise system;
break;
Forspl(x), x = 1,6: Call stop mode; advise system;

2. endifs; return;

Name: Buslead
Admitted in: N NE SA CA
Input: -

Fig: 5, 8

Requires: Leaqforsplitl and busy
If branch: Yes Condition: multiple
Effect: 1. Action according to flag set in buschek;

Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepforsl; break;
Split(l): reset split(l); set forsplit(1); set time in Norepforsl; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepforsl; break;
Chng(3): store data; set active flag; set forsplit(1); set time in Norepforsl;
break;
Emerch(x), x = 2,3,4,5 set forsplit(1); set time in Norepforsl; advise system;
break;
Forspl(x), x = 1,6: Call stop mode; advise system;

2. endifs; return;

A-42

F&behinds
VCh N pet's
fso1.b.N.f

Set b u s y 1
II

Leedforsplitl

L e n d e r ret’s-4fSOl.D.1.f
S e t fo~sollll

S t o r e act Ions

Lesdforsplit2

Leader ret’s
fsol-b.Nf fN>l)

S e t forsoIl

Buslcad3

S t o r e actions
S e n d messa e s

F.t~r) -=I, 8.5

Buslesdl Sendbehind

S t o r e a c t 10-5 ien : skncis
S e n d messa e s

F,t(rl .=I, ?A
csDl.b.l-

beck

Figure AS. Forced Split (initiation).

A-43

Buschok

Buach4t

Forsolll)‘m
Ol-OQP@S*

QCa~tl

I f f a u l t 1
ana slou mode

Crashst 00

4

Rocconrrpll

Reset busy
Srod fsolovcr

Norogfocsl

If tImQ “01
rC,QK ausy

send faDlovr~

I
I Flso

Scpmhssfrl

RQad OPODC.
If d o n e c a l l
Formi ~tdonr

Send Con.forso
irQQ - fjaQ = d
Else ~lno = 5

R e a c t history:

Splitsga1nP

Read ~ISKO~Y:
‘cset b u s y

0’ +ec scll:rl1

Set
merge(l)-2

Send fSOlOVQr

s e w f¶D)OVQr

1

Rmxonfspl3“1S e t meroe(ll-3
SF-a f?DiOVQ’
Sew en-.-e

set mQrOQ(! I-3
send f.nlove*
SC”0 C”” .*QQ-

Rocconfspl4
I

set
sol1t~2)-3

Send fSDlOVQr

NorcptorsS

TlmQ UPI
s e t sollt12)-3
send fsolover

Rcaa orobe.
Gso fullw OPQn

flag * 2

Se*a fsolover
Se-a con.sol

Norepfora6

Reset busy
Send fSOIOVQ’
sew co-msoI

Figure ASa. Forced Split (implementation).

A-44

Fig: 5, 8Name: Buslead .
Admitted in: N NE SA CA
Input: -
Requires: Leadforsplit2 and busy
If branch: Yes Condition: multiple
Effect: 1. Action according to flag set in buschek;

Merge(l): set forsplit(4); store data; set active flag; break;
’ Merge(2): reset merge(2); set forsplit(1); set time in Norepforsl; break;

Split(l): reset split(l); set forsplit(1); set time in Norepforsl; break;
Split@); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepforsl; break;
Chng(3): store data; set active flag; set forsplit(1); set time in Norepforsl;
break;
Emerch(x), x =
break;

2,3,4,5 set forsplit(1); set time in Norepforsl; advise system;

Forspl(x), x = 1,6: Call stop mode; advise system;
2. endifs; return;

Name: Buslead Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires: Forspll and busy
If branch: Yes Condition: multiple
Effect: 1. Action according to flag set in buschek;

Merge(l): set forsplit(4); store data; set active flag; break;
Merge(2): reset merge(2); set forsplit(1); set time in Norepforsl; break;
Split(l): reset split(l); set forsplit(1); set time in Norepforsl; break;
Split(2); set forsplit(5); store data; set active flag; break;
Chng(2): set forsplit(1); set time in Norepforsl; break;
Chng(3): store data; set active flag; set forsplit(1); set time in Norepforsl;
break;
Emerch(x), x =
break;

2,3,4,5 set forsplit(1); set time in Norepforsl; advise system;

Forspl(x), x = 1,6: Call stop mode; advise system;
2. endifs; return;

Name: Busychek
Specification in: Sup (1)

Fig: 1,2,3,4,5,6

A-45

Name: Forspla
Admitted in: N NE SA CA

Fig: 5, 10

Input: -
Requires: Actcalled
If branch: No Condition: -
Effect: Set busy; set forspl(2); set flag = 1; call Sendaheadb; call Sendbehindb; return;

Name: Forspll Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires: Actcalled
If branch: Yes Condition: Busy?
Effect: 1. If busy, call Buslead4;

2. Else set busy; set forspl(1); set time in Norepforsl;
3. Endif; call Sendbehindl; return;

Name: Fs 1 set
Admitted in: N NE SA CA
Input: -

Fig: 5, 10, 11

Requires: Sendbehinda and pos = 1
If branch: Yes Condition: Busy?
Effect: 1. If busy, call Busleadl ;

2. Else set busy; set forspl(1); set time in Norepforsl;
3. Endif; return;

Name: Fs2set
Admitted in: N NE SA CA
Input: -

Fig: 5, 11

Requires: Sendaheadbl and not busy, sendbehindbl
If branch: No Condition: -
Effect: Set busy; set forspl(2); set flag = 1; return;

Name: Fs3set
Admitted in: N NE SA CA
Input: -

Fig: 5, 10, 11

Requires: Sendaheada or (Sendbehinda and pos > 1)
If branch: No Condition: -
Effect: Set busy; set forspl(3); set time in norepfors2; return;

A-46

Name: Forsplitdone 1
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Sepmeasfsl or Waitsep
If branch: Yes Condition: Free agent?
Effect: 1. Send confirm-for-split;

2. If free agent, set flag = 4;
3. Else set flag = 5; set stime in Waitfast; reset flags in Splitagain and mergeagain;
4. Endif; return;

Name: Histfor Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Recfsplitover2
If branch: Yes Condition: More messages stored?
Effect: 1. If more messages stored, send forward oldest; delete it from store;

2. Else reset busy; reset flag in recfsplitover2;
3. endif; return;

Name: Lastbusy Fig: 5, 8
Admitted in: N NE SA CA
Input: forspl b (pas-x)-r (x > 1) received
Requires: M&s&c and pos = last
If branch: Yes Condition: Busy? and multiple.
Effect:l. If busy, act on flag in buschek:

Merge(3): send Unmerge; store data; set forspl(6); set time in Recfsplitover2;
reset flag in Recfsplitover2; break;
Split(3): store data; set forspl(6); set time in Recfsplitover2; reset flag in
Recfsplitover2; break;
Forspl(6): Inform system; call stop mode;

2. Endifs; endif; return;

Name: Leadforsplit 1 Fig: 5, 8
Admitted in: N NE SA CA
Input: Message Forsplit-behind 1 f received by leader @OS = 1)- -
Requires: Messrec
If branch: Yes Condition: Busy?
Effect: 1. Setforspl(1); set time in Norepforsl ;

2. If busy call Buslead2;
3. Else set busy;
4. Endif; return;

A-47

Name: Leadforsplit2
Admitted in: N NE SA Ck

Fig: 5, 8

Input: Forsplit-behind-(N> 1)-f received by leader
Requires: Messrec
If branch: Yes Condition: Busy?
Effect: 1. Set forspl(1); set time in Norepforsl;

2. If busy call Buslead3;
3. Else set busy;
4. Endif; return;

Name: Mergeagain Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Splitagain
If branch: Yes Condition: Flag set? merge-hist received?
Effect: 1. If flag set, then if more stored history, read it;

2. If item received is confirm-merge,
3. Reset busy; reset forspl(2); reset flag; set target speed back to normal;
4. Endif; else set merge(2); reset flag; set target speed back to normal;
5. Endif; else if item received is merge-hist, set flag;
6. Endif; endif; return;

Name: Newlead
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek, forspl(2), flag = 1
If branch: Yes Condition: Fault#l set?
Effect: 1. Update state vector; reduce target speed;

2. If fault #l set, flag = 3; time to waitsep;
3. Else flag = 2;
4. Endif; return;

Name: Norepfors 1 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Recconspll
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset busy, reset forspl(1); send for-split-over;

2. Endif; return;
Name: Norepford
Admitted in: N NE SA CA
Input: -
Requires: Recsplitoverl

Fig: 5

A-48

If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset busy, reset forspl(3);

2. Endif; return;

Name: Norepfors3 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Kecsplitoved
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(4); set merge(l); set flag = 2; send

forsp-over; reset flag in Stillgo;
2. Else call sepmeasfs2;
3. Endif; return;

Name: Norepfors4 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Recsplitover3
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(4); set merge(l); set flag = 3; send

confirm-merge; send forsp-over; set time in Norepm3; set target speed back
to normal;
2. Endif; return;

Name: Norepfors3 Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Recsplitover2
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(5); set split(2); set flag = 3; send

fsplitover; reset flag in Spliton;
2. Else call sepmeasfs3;
3. Endif; return;

A-49

N a m e : Norepfo r s6 , Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: RecsplitoverS
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, reset forspl(5); reset busy; send confirm-split;

send forsp-over; set target speed back to normal;
’ 2. Endif; return;

Name: Qfalt 1
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(1) set
If branch: Yes Condition: Mode SA or CA?
Effect: 1. If mode is SA or CA, send Crashstopbehind;

2. Else call Recconfspll ;
3. Endif; return;

Name: Qmess
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(6)
If branch: Yes Condition: Message received?
Effect: 1. If message received, store it and add it as data to call to Recfsplitoved;

2. Else add Null mark to call;
3. Endif; call Recfsplitover2; return;

Name: Qslowmode Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Buschek and forspl(2), flag = 3 (therefore fault #l)
If branch: Yes Condition: Mode SA or CA?
Effect: 1. If mode = CA or SA, send Crashstopbehind;

2. Else call Waitsep;
3. Endif; return;

A-50

Name: Recaheadb
Admitted in: N NE SA CA

Fig: 5, 8

Input: Message Forsplit-behind-@os-1)-r received
Requires: Messrec
If branch: Yes
Effect: 1. Set forspl(2); set flag = 1;

2. If busy, call Sendunmerge2;
3. Else set busy;

Condition: Busy?

4. Endif; reset message flag; return;

Name: Recbehinda Fig: 5, 8
Admitted in: N NE SA CA
Input: Veh @OS> 1) receives fspl b- -@os)-f
Requires: Messrec
If branch: No Condition: -
Effect: Set busy; set forspl(3); set time in norepfors2; reset message flag; return;

Name: Recconfsll Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Qfaltl
If branch: Yes
Effect:

Condition: Confirm-forsplit received?
1. If confirm-forsplit received, reset busy; reset message flag; reset forspl(
send for-split-over;

1);

2. Else call norepforsl;
3. Endif; return;

Name: Recconfspl2
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(4)
If branch: Yes
Effect:

Condition: Confirm-for-split received?
1. If confirm-forced-split received, reset forspl(4); set merge(l); set flag = 2;
send fsplitover; reset flag in Stillgo; reset message flag;
2. Else call Norepfors3;
3. Endif; return;

A-5 1

Name: Recconfspl3 /
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(4), flags = 2
If branch: Yes Condition: Confirm-for-
Effect: 1. If confirm-for-split received, reset forspl(4); set merge(l)

send confirm-merge; send forsp-over; set time in Norepm3;
’ back to normal;

2. Else call Norepfors4;
3. Endif; return;

Name: Recconfspl4
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(5)

-split received?
; set flag = 3;
set target speed

If branch: Yes Condition: Confirm for-split received?
Effect: 1. If confirm-forced-split received, reset forspl(5); set split(2); set flag = 3;

send fsplitover; reset flag in Spliton; reset message flag;
2. Else call NorepforsS;
3. Endif; return;

Name: RecconfsplS
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(5), flag = 2
If branch: Yes Condition: Confirm-for-split received?
Effect: 1. If confirm-for-split received, reset forspl(5); reset busy; send

confirm-split; send forsp-over; set target speed back to normal;
2. Else call Norepfors6;
3. Endif; return;

Name: Recfsplitoverl
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek, forspl(3)
If branch: Yes Condition: For-split-over received?
Effect: 1. If for-splitover received, reset busy, reset forspl(3); reset message flag;

2. Else call norepfors2;
3. Endif; return;

A-52

N a m e : Recfsplitover2 ,
Admitted in: N NE SA CA

Fig: 5

Input: Message received by Qmess or null
Requires: Qmess
If branch: Yes Condition: For-split-over received?

Time elapsed? Flag set?

Effect: 1. If flag set, call Histfor;
2. Else if for-split-over received, set flag;
3. Else if (time - stime) excessive, set flag;
4. Endif; endif; return;

Name: Sendaheada
Admitted in: N NE SA CA
Input: -

Fig: 5, 10, 11

Requires: Fault4or5 or Recackcont
If branch: Yes Condition: Pos = l?
Effect: 1. Send backward message forsplit-behind-@os)-r;

2. If pos = 1, call Fslset;
3. Else call Fs3set; send forward message forsplit-behind- (pas)-f;
4. Endif; return;

Name: Sendaheadb Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires: Forspla
If branch: No Condition: -
Effect: Send forward message forsplit-behind-@os-1)-f; return;

Name: Sendbehindb Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires: Forspla
If branch: No Condition: -
Effect: Send back message forsplit-behind-@os-1)-r; return;

A-53

Name: Sendbehindbl .
Admitted in: N NE SA CA
Input: -

Fig: 5, 11

Requires: Nocontmess (11)
If branch: Yes Condition: Pos = last?
Effect: 1. Send forward message forsplit-behind-@os-1)-f;

2. If pos = last, then if busy call Sendunmergel;
3. Else call FBset;
4. Endif; call fs2set; send back message forsplit-behind- @x-1)-b;
5. Endif; return;

Name: Sendbehindl
Admitted in: N NE SA CA
Input: -

Fig: 5, 10

Requires: Forspll (and so pos = 1)
If branch: No
Effect: Send fspl b 1 r back; return;- - -

Condition: -

Name: Sepmeasfsl Fig: 5
Admitted in: N NE SA CA
Input: Reading, d, of forward probe
Requires: Buschek and forfpl(2), flag = 2
If branch: Yes Condition: d = platoon spacing?
Effect: 1. If d > = platoon spacing call Forsplitdone;

2. Endif; return;

Name: Sepmeasfs2
Admitted in: N NE SA

Fig: 5

Input: Distance d from preceding vehicle - probe reading
Requires: Norepfors3
If branch: Yes Condition: d < 1.5*(in-platoon spacing)?
Effect: 1. If d < 1.5*(in-platoon spacing); set flag = 2; set time in Norepfors4 equal

to that in Norepfors3;
2. Endif; return;

Name: Sepmeasfs3
Admitted in: N NE SA

Fig: 5

Input: Distance d from preceding vehicle - probe reading
Requires: NorepforsS
If branch: Yes Condition: d > = platoon spacing?
Effect: 1. If d > = platoon spacing; set flag = 2; set time in Norepfors6 equal to

that in NorepforsS;
2. Endif; return;

A-54

Name: Splitagainl
Admitted in: N NE SA CA

Fig: 5

Input: -
Requires: Testactflag and activity flag set (therefore free agent)
If branch: Yes Condition: Act flag set? Split-hist

received?
Effect: 1. If more stored history, read item;

2. If flag set, then if item is split-hist, reset flag;
3. Endif; else if item is confirm-split; reset busy; reset forspl(2); set target speed
back to normal;

4. Endif; endif; else if flag set, ;
5. Else set split(l); reset flag; reset forspl(2); set target speed back to normal;
6. Endif; endif; return;

Name: Splitagain
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek, forspl(2) flag = 5
If branch: Yes Condition: Flag set? Split-hist received?
Effect: 1. If more stored history, read item;

2. If flag set; then if item is confirm-split, reset busy; reset forspl(2); set target
speed back to normal;

3. Endif; else if item is split-hist, set flag;
4. Endif; endif; else if flag set, set split(l); reset flag; reset forspl(2); set target
speed back to normal;

5. Endif; endif; return;

Name: Sendunmergel
Admitted in: N NE SA CA
Input: -

Fig: 5, 11

Requires: Sendaheadbl and busy (implies pos = last)
If branch: Yes Condition: Multiple
Effect: 1. Set forspl(2); set flag = 1;

2. Action according to flag in buschek:
Merge(3): reset merge(3); send unmerge; break;
Split(3): store data; set active flag; break;
Forspl(6): inform system; call stop mode;

3. Endifs; return;

Name: Sendunmerge2
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Recaheadb and busy (implies pos = last)

A-55

If branch: Yes
Effect: 1. Action according to flag in buschek:

Condition: Multiple

Merge(3): reset merge(3); send Unmerge; break;
Split(3): store data; set active flag; break;
Forspl(6): inform system; call stop mode;

2. Endifs; return;

Name: Testactflag
Admitted in: N NE SA CA
Input: -

Fig: 5

Requires: Buschek and forspl(2), flag = 4 (therefore free agent)
If branch: Yes Condition: Active flag set?
Effect: 1. If active flag set, call splitagainl ;

2. Else reset busy; reset forsplit(2); target speed back to normal;
3. Endif; return;

Name: Waitfast Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Mergeagain
If branch: Yes Condition: (time - stime) excessive?
Effect: (Note: Wait interval is for message to pass down platoon and back - measured

in millisec.
1. If (time - stime excessive) reset busy; reset forspl(2); target speed back to
normal;
2. Endif; return;

Name: Waitsep Fig: 5
Admitted in: N NE SA CA
Input: -
Requires: Qslowmode
If branch: Yes Condition: (time - stime) excessive?
Effect: 1. If (time - stime) excessive, call Forsplitdone;

2. Endif; return

A-56

AS.5 EMER-CHANGE (Figure A.6)

Name: Busychek
Specification in: Sup (1)

Fig: 1,2,3,4,5,6

Name: Callstop Fig: 6
Admitted in: NE CA
I n p u t : -
Requires: Passemch
If branch: Yes Condition: Flag? gate near? SA speed?
Effect: 1. If flag set, then if gate near ;

2. Else if maxspeed is SA speed, call Stop mode; reset any lanes put into SA;
3. Else call Sacall for each lane affected;
4. Endif; send unconfirm-emer-change; message emerch-fail to system; reset busy;
5. Else if gate near set flag;
6. Endif; endif; return;

Name: Compposn
Admitted in: NE CA
Input: -

Fig: 6

Requires: Buschek, emerch(1) and flag = 7
If branch: Yes Condition: result of calculation
Effect: From known speed and positions of other vehicles predict time at a lot some

way ahead at which all partners should be in position; send this target to
partners via messages emerch-target; reset flag0 in Qallrec; if position sent is
before next gate set flag1 in Qallrec = 0; else set flag1 = 1; endif; reset flag
in neset3; Flag = 8; return;

Name: Emerchcall Fig: 6, 10
Admitted in: N NE SA CA
Input: -
Requires: Actcalled
If branch:? Yes Condition: Fault #6 or #7?
Effect: 1. Set busy; set emerch(1); set flag = 1; call Nesetl;

2. If fault #6 or fault #7 is present, reroute reception and transmission channels so
that side transmission becomes system transmission and side reception system
reception, set flag in Sendreqemerch;

3. Else reset flag in Sendreqemerch;
4. Endif; return;

A-57

Name: Forsplitcall
Admitted in: N NE SA CA

Fig: 6

Input: -
Requires: Inposn
If branch: Yes Condition: For-split called?
Effect: 1. If for-split called (ie forspl(1) in buschek set), send for-split-called to

changer; reset emerch(x);
’ 2. Else call recforsplcal3;

3. Endif; return;

Name: Inposn
Admitted in: N NE SA CA
Input: -

Fig: 6

Requires: Buschek, emerch(x) (2 < =x c =5) and flag = 7
If branch: Yes Condition: In target position? Gate?
Effect: 1. Call forsplitcalll;

2. If lot = target position, then
3. If gate near, send message (message depends on x, see below); flag = 8; reset flag
in Norepem3;

4. Endif; endif; return;

Value of x Message
2 adj-ahead-ok
3 adj-behind-ok
4 next ahead-ok
5 nextIbehind_ok

Name: Neset 1 Fig: 5, 10
Admitted in: N NE SA CA
Input: -
Requires: Emerchcall
If branch:? Yes Condition: Mode = CA? Fault = #6, #7?
Effect: 1. If fault #6 or #7 set, then if mode = CA, ;

2. Else mode = NE from previous gate to one two ahead; maxspeed unchanged;
3. Endif; endif; call Sendreqemerch; return;

A-58

i _ _ _ _ _ _ _ _ _ _,

1
t

Sondreaemerch Necc t 1 Euschck

Lot e n d U If fault, imercn(ll 1 � l

mersoeed in S e t N o - E n t r y orogress
message Mode

I

4 1
Rscnsckrqemch

t-b-n t o
others:

r e s e t b u s y

t

Receckrqemch

1-b-n t o a n y
o the rs :

Clap * 6. 7

I

,

Sacall

If n o ahleld
vehs. c e l l SR

mode
c

Flao
= E.

Voidemerch

A t gate SW-0
emerch.to.vo1a

Flag = 9

+

A*cPorrpltcall

Reset busy:
Rdvrse s y s t e m

Comppocn

S e n d 1 WQel
t;,others

,ag - 4

Recadjahead

Qdl-ahead veh
In D0S1110~

Set ‘1SQ

fid,-behlnd veh
1” Dosltlon~

Aecnrxtsheed

Nevt-ahead ven
In DOS11 :on

Recnextbehind

Newt-oe-1-a veh
I” Dos,t,o”-4S e t Flag

if QalC oaesed

t - l

q,%el h&y:
snd fsul t .
set NE m o d e

AdvIse syslem

Figure A.6. Emergency Change (initiator).

A-59

Sendsckraemch

Recconemer

tan-evch
rec’d

qeset busy

Figure A. 6a. Emergency Change (participant).

A-60

Name: Neset2 Fig: 6
Admitted in: NE CA
Input: -
Requires: Recforsplitcal2
If branch: Yes Condition: Faults? Flag?
Effect: 1. If fault #6 or #7, then if flag set, then if gate near, ;

2. Else set NE (and if necessary SA in parallel lanes) for two gates ahead; restore
previous mode for section behind gate just passed;
3. Endif; else if gate near, set flag;
4. Endif; endif; endif; call Qallrec; return;

Fig: 6Name: Neset3
Admitted in: N SA
Input: -
Requires: Buschek. emerch(1) and flag = 10
If branch: Yes Condition: Faults?
Effect: 1. If fault #6 or #7, set new lane to NE mode, no change in maxspeed; reset

lane to left to original mode and original speed; reset any lane set to SA to
previous value;
2. Endif; call Sendconemerch; return;

Name: Norepm 1 Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Recposn
If branch: Yes Condition: Flag? time excessive;
Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;

2. Endif; else set flag; set stime = time;
3. Endif; return;

Name: Norepm2 Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Recunconfirm
If branch: Yes Condition: Flag? time excessive;
Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;

2. Endif; else set flag; set stime = time;
3. Endif; return;

A-61

Name: Norepm3
Admitted in: N NE SA dA
Input: -

Fig: 6

Requires: Recunconfirm2
If branch: Yes Condition: Flag? time excessive;
Effect: 1. If flag set, then if (time - stime) excessive, reset emerch(x); reset busy;

2. Endif; else set flag; set stime = time;
3. Endif; return;

Name: Passemerch
Admitted in: NE CA
Input: -

Fig: 6

Requires: Buschek, emerch(1) flag = 9
If branch: Yes Condition: Turning point here?
Effect: 1. If turning point here change lane; update vector from gate data; set

flag= 10;
2. If new ln# = 0, send fault-out to system;
3. Endif; else call Callstop;
4. Endif; return;

Name: Qallrec Fig: 6
Admitted in: NE CA
Input: -
Requires: Neset2
If branch: Yes Condition: 4 flags? flagO? flagl? gate

?
pact: 1. If flag0 is set, then if flag1 = 0, then

2. If gate is near, then if all 4 flags are set,
3. Send emerch-at-gate-x; set counter in Passemch; Flag = 9;
4. Endif; else send unconfirm-emerch; reset busy; reset emerch(1);
5. Endif; else if gate is near ;
6. Else set flag1 = 0; reset flag0;
7. Endif; else if gate is near set flag0;
8. Endif; endif; return;

Name: Recadjahead
Admitted in: NE CA
Input: -

Fig: 6

Requires: Buschek, emerch(1) and flag = 8
If branch: Yes Condition: Adj-ahead-ok received?
Effect: 1. If adj-ahead-ok received, reset message flag; set flag in Qallrec;

2. Endif; call recadjbehind; return;

A-62

Name: Recadjbehind j Fig: 6
Admitted in: NE CA
Input: -
Requires: Recadjahead
If branch: Yes Condition: Adj-behind-ok received?
Effect: 1. If adj-behind-ok received, reset message flag; set flag in Qallrec;

2. Endif; call recnextahead; return;

Name: Recackrqemerch Fig: 6
Admitted in: NE CA
Input: -
Requires: Recnackrqemch
If branch: Yes Condition: Replies received each position?
Effect: 1. If no ack-req-emerch messages received, set flag = 6; if speed of vehicle

is low, call Sacall for adj and next;
2. Endif; else for each position (adj or next, ahead or behind):

a. If no relevant acks, set flag in Qallrec; if this is a behind position and
speed of vehicle is low, call Sacall;
b. Endif; endif; send thanx-but-no to all irrelevant respondents;

3. Set flag = 7; endif; return;

Name: Recconemer
Admitted in: N NE SA CA
Input: -

Fig: 6

Requires: Buschek emerch(x) (2~ =x< =5) and flag = 8
If branch: Yes Condition: Con-emerch received?
Effect: 1. If con-emerch received, then reset emerch(x); reset busy; revert to normal speed;

2. Else call Recunconfirm2;
3. Endif; return;

Name: Recposn Fig: 6
Admitted in: N NE SA CA
Input: Speed, posn, ln# of caller
Requires: Buschek, emerch(x), (2 < =x < =5) and flag = 6
If branch: Yes Condition: emerch-target received?
Effect: 1. If emerch-target received, store target and caller’s details; reset flag in

Norepem2; flag = 7;
2. Else call Norepm 1;
3. Endif; return;

A-63

Name: Rectnb 1
Admitted in: N NE SA C!A
Input: -

Fig: 6

Requires: Repwatel , flag = 5
If branch: Yes Condition: Thanx-but-no received?
Effect: 1. If thanx-but-no received, reset emerch(x), reset busy;

2. Endif; return;

Name: Repwate
Admitted in: NE CA
Input: -

Fig: 6

Requires: Buschek, emerch(1) and flag = 1,2,3,4,or 5.
If branch: Yes Condition: Flag = 5?
Effect: 1. If flag = 5, call recnackrqemch;

2. Endif; flag = flag + 1; return;

Name: Repwatel
Admitted in: N SA
Input: -

Fig: 6

Requires: Buschek, emerch(x) (2 < =x < =5) and flag = y (1 < = y < =5)
If branch: Yes Condition: Flag = 5?
Effect: 1. If flag = 5, call Rectbnl; reset flag in Norepem 1;

2. Endif; flag + = 1; return;

Name: Recforsplitcall Fig: 6
Admitted in: NE CA
Input: -
Requires: Voidemerch
If branch: Yes Condition: For-split called?
Effect: 1. If for-split-called is received, reset message flag; send for-split-called to

other partners in emerch; reset emerch(1); advise system; reset busy;
2. Endif; return;

Name: Recforsplitcal2 Fig: 6
Admitted in: NE CA
Input: -
Requires: Recnextbehind
If branch: Yes Condition: For-split called?
Effect: 1. If for-split_called is received, reset message flag; send for-split-called to

other partners m emerch; reset emerch(1); reset busy; advise system;
2. Endif; call neset2; return;

A-64

Name: Recforsplitcal3 j Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Forsplitcall
If branch: Yes Condition: For-split called?
Effect: 1. If for~split_called is received, reset message flag;

reset busy; reset emerch(x);
2. En’dif; call recunconfirm; return;

Name: Recnextahead Fig: 6
Admitted in: NE CA
Input: -
Requires: Recadjbehind
If branch: Yes Condition: Next-ahead-ok received?
Effect: 1. If next-ahead-ok received, reset message flag; set flag in Qallrec;

2. Endif; call recnextbehind; return;

Name: Recnextbehind Fig: 6
Admitted in: NE CA
Input: -
Requires: Recnextahead
If branch: Yes Condition: Next-behind-ok received?
Effect: 1. If next-behind-ok received, reset message flag; set flag in Qallrec;

2. Endif; call recforsplitcal2; return;

Name: Recnackreqemch
Admitted in: NE CA
Input: -

Fig: 5

Requires: Repwate, flag = 5
If branch: Yes Condition: Relevant nack-qemerch
received?
Effect: 1. If a relevant nack-reqemerch received, (relevant means that there is not

another platoon behind the vehicle but ahead of the nacker), then
2. If it is a nack because it system mode makes it impossible to reach this
speed, reset own target speed;
3. Endif; send thanx-but-no to all others who have sent messages; reset busy;

reset emerch(1); reset all message flags;
4. Else call Recackreqemch;
5. Endif; return;

A-65

Name: Recreqemerchange
Admitted in: N NE SA CA

Fig: 6, 8

Input: L.oc, ln# and flag from sender
Requires: Messrec and request-emerchange received
If branch:? Yes Condition: - Busy? NE or CA?
Effect: I. Reset message flag;

2. If less than platoon spacing ahead of lot of sender or if less than two
spacings behind in lane to immediate right or next, then
3. If busy or if fault set or if mode = CA or NE or if mode = SA and stated
speed of sender too high, call Sendnackrqemerch;
4. Else call Sendackrqemerch; if fault #6 or #7 is set,
5. Reroute transmission to system transmission and so for reception; set flag;
6. Endif; endif; endif; return;

Name: Recunconfirm Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Recforsplcal3
If branch: Yes Condition: Unconfirm-emerch received?
Effect: 1. If unconfirm-emerch received, reset busy; reset emerch(x);

2. Else call Norepem2;
3. Endif; return;

Name: Recuncontirm2 Fig: 6
Admitted in: N NE SA CA
Input: -
Requires: Reccomemer
If branch: Yes Condition: Unconfirm-emerch received?
Effect: 1. If unconfirm-emerch received, reset busy; reset emerch(x);

2. Else call Norepem3;
3. Endif; return;

Name: SacalI Fig: 6, Gen
Admitted in: NE CA
Input: Lane affected and lot
Requires: Recackrqemch
If branch: No Condition: -
Effect: From gate behind stated position to two ahead, lane stated to SA mode; return;

A-66

Name: Sendackrqemerch j
Admitted in: N SA
Input: -

Fig: 6, 8

Requires: Recreqemerch
If branch:? No
Effect: 1. Set busy;

Condition: -

set emerch(2) (forward and in adjacent lane),
’ emerch(3) (rearward and in adjacent lane),

emerch(4) (forward in next lane), or
emerch(5)(rearward in next lane);

2. Set flag = 1;
3. SendAck-request-emerchange with lot and ln# after x-lchrons for emerch(x);
return;

Name: Sendconemerch Fig: 6
Admitted in: NE CA
Input: -
Requires: Neset3
If branch: No Condition: -
Effect: Send confirm-emerch; reset busy; reset emerch(1); reset any lanes put into SA;

return;

Name: Sendnackrqemerch Fig: 6, 8
Admitted in: N NE SA CA
Input: -
Requires: Recreqemerch
If branch: No Condition: -
Effect: Send nack-request-emer-chng with lot, lane# and maxspeed; return;

Name: Sendreqemerch Fig: 5, 10
Admitted in: NE CA
Input: -
Requires: Nesetl
If branch:? No Condition: -
Effect: Send Request-emerchange with lane, lot and maxspeed; return;

Name: Voidemerch
Admitted in: NE CA
Input: -

Fig: 6

Requires: Buschek, emerch(6), flag = 6
If branch: Yes Condition: Gate near?
Effect: 1. If gate near, send emerch-to-void naming gate; flag = 9; reset flag in Callstop;

2. Else call Recforsplitcalll;
3. Endif; return;

A-67

A.6 PLATOON-LEADER’S PROBE (Figure A.7)

Name: Forprob
Specification in: SUP

Fig: 1, 7

Name: Insight
Admitted in: N NE SA CA

Fig: 7

Input: Distances of vehicles seen in probe (or null)
Requires: Forprob and flag = 1
If branch: Yes Condition: Vehicles visible?
Effect: 1. If any vehicle can be seen, select one most likely to be in same lane;

2. Send probe-l, including state vector and range of vehicle perceived (using
corrected lot stored in Startprobe); set flag = 2;
3. Else send probe-nov, giving state vector; set flag = 9;
4. Endif; return;

Name: Nofault Fig: 7
Admitted in: N NE SA CA
Input: Message No-fault-l from system
Requires: Forprob, flag = 16, 17, 18
If branch: Yes Condition: Message No-fault-l rec’d?
Effect: 1. If message No-fault-l received, reset message flag; reset flag;

2. Else flag += 1;
3. Endif; return;

Name: Novehnorep
Admitted in: N NE SA CA
Input: -

Fig: 7

Requires: Forprob, flag = 12
If branch: No
Effect: Reset flag in forprob; return;

Condition: -

Name: Probeagain
Admitted in: N NE SA CA
Input: -

Fig: 7

Requires: Forprob, flag = 5
If branch: No Condition: -
Effect: Send probe-;!, giving state vector; flag = 6; return;

A-68

else f]aQ * 1 6

;:a0_ ,=

f-l
Novch-Oreo‘. I

Figure A.7. Forward Probe.

A-69

Name: Recackprobenov 1
Admitted in: N NE SA CA
Input: Location of sender

Fig: 7

Requires: Forprob and flag = 9, 10, 11
If branch: Yes Condition: Ackqrobe-nov received?
Effect: 1. If ackgrobe-nov received, work out distance and likely angle from stated

location;
’ 2. If reply valid, flag = 15;

3. Endif; endif; reset message flag; flag + = 1; return;

Name: Recackprobenov2
Admitted in: N NE SA CA
Input: Location of sender

Fig: 7

Requires: Forprob and flag = 13, 14, 15
If branch: Yes Condition: Ackgrobe-nov received?
Effect: 1. If ackqrobe-nov received, work out distance and likely angle from stated

location;
2. If reply valid, flag = 20;
3. Endif; endif; reset message flag; flag - = 1; return;

Name: Recackprobel
Admitted in: N NE SA CA
Input: Location of sender

Fig: 7

Requires: Forprob, and flag = 2,3,4
If branch: Yes Condition: Ackqrobe-1 received?
Effect: 1. If ackqrobe-1 received, work out distance and likely angle from stated location;

2. If reply valid, reset flag;
3. Endif; endif; reset message flag; flag + = 1; return;

Name: Recackprobe2
Admitted in: N NE SA CA
Input: Location of sender

Fig: 7

Requires: Forprob, and flag = 6,7
If branch: Yes Condition: Ackgrobe-2 received?
Effect: 1. If ackgrobe 2 received, work out distance and likely angle from stated location;

2. If reply valid ie within 30 m or so), set flag = - 1;
3. Endif; endif; reset message flag; flag + = 1; return;

A-70

Name: RecackprobelZa
Admitted in: N NE SA CA
Input: Location of sender

Fig: 7

Requires: Forprob, and flag = 8
If branch: Yes Condition: Ackgrobe-2 received?
Effect: 1. If ackqrobe-2 received, work out distance and likely angle from stated location;

2. If reply valid (ie within 30 m or so), reset message flag; reset flag;
3. Else if only one vehicle visible, send Faultl-l-veh to system; reset message flag;

flag = 16;
4. Else flag = 19;
5. Endif; endif; else if only one vehicle visible, send Fault1 1 veh to system;
flag= 16;

- -

6. Else flag = 19;
7. Endif; endif; return;

Name: Recprobe 1
Admitted in: N NE SA CA
Input: -
Requires: Messrec
If branch: Yes
Effect: 1. If probe-l received,

2. Set flag in Forprob = 20;
3. Else reset message flag;
4. Endif; return;

Name: Recprobe2
Admitted in: N NE SA CA
Input: -
Requires: Messrec
If branch: Yes
Effect: 1. If probe-2 received

2. Set flag in Forprob = 2 1;
3. Else reset message flag;
4. Endif; return;

Name: Recprobenov
Admitted in: N NE SA CA
Input: -
Requires: Messrec
If branch: Yes
Effect: 1. If probe-nov received,

2. Set flag in Forprob = 22;
3. Else reset message flag;
4. Endif; return;

Fig: 7, 8

Condition: Probe-l received?

Fig: 7, 8

Condition: Probe-2 received?

Fig: 7, 8

Condition: Probe-nov received?

A-71

Name: Sendackprobenov
Admitted in: N NE SA CA
Input: L.oc of sender, sta&d range
Requires: Forprob, flag = 22
If branch: Yes

Fig: 7

Condition: Within 1 S*platoon spacing
of sender?

Effect: 1. If within range (1.5 times platoon spacing, say) of sender,
2. Send Ackqrobe-nov;
3. Endif; reset flag; reset message flag; return;

Name: Sendackprobe 1
Admitted in: N NE SA CA

Fig: 7

Input: L.uc of sender, stated range
Requires: Forprob, flag = 20
If branch: Yes Condition: At location specified
Effect: 1. If tolerably near (10 me&es say) to specified range from sender,

2. Send Ackqrobe-1 ;
3. Endif; reset flag; reset message flag; return;

Name: Sendackprobe2
Admitted in: N NE SA CA

Fig: 7

Input: Lot of sender, stated range
Requires: Forprob, flag = 21
If branch: Yes Condition: At location specified
Effect: l.If approximately (25 metres say) at specified range from sender,

2. Send Ackqrobe-2;
3. Endif; reset flag; reset message flag; return;

Name: Setfaultl
Admitted in: N NE SA CA
Input: -
Requires: Forprob, flag = 19
If branch: No
Effect: Set fault #l; reset flag; return;

Fig: 7

Condition: -

Name: Startprobe
Admitted in: N NE SA CA
Input: Lot of gate (gate is near)
Requires: Mersplit (10)
If branch: Yes
Effect: 1. If busy ;

Fig: 7, 10

Condition: Pos? Busy? Fault #l or #3 set?

2. Else if fault #l or #3 set ;
3. Else if pos = 1, then store any correction to lot as revealed by gate reading; set
flag in Forprob = 1;

4. Endif; endif; endif; return;

A-72

A.7 RECEIPT OF MESSAGES (Figure A.81

Name: Buslead
Specification in: Forced-Split (5)

Fig: 5, 8

Name: Buslead
Specification in: For-split (5)

Fig: 5

Name: Cacall
Specification in: Gen

Fig: 8

Name: Crashstopcall
Specification in: Gen

Fig: 8

Name: Cutspeed
Specification in: Gen

Fig: 8

Name: Lastbusy
Specification in: For-split (5)

Fig: 5, 8

Name: Leadforsplit 1
Specification in: Forced-split (5)

Fig: 5

Name: Leadforsplit2
Specification in: Forced-split (5)

Fig: 5, 8

Name: Messrec
Specification in: SUP

Fig: 1,8

Name: Necall
Specification in: Gen

Fig: 8

Name: Norcall
Specification in: Gen

Fig: 8

Name: Passon
Admitted in: N NE SA CA

Fig: 8

Input: Message Request-merge rec’d, pos = last > 1
Requires: Messrec
If branch: Yes Condition: Same lane as requester?
Effect: l.If in same lane as requester, pass message up platoon;

2. Endif; return;

A-73

Crashstcocall S t o o c a l l
Cacall Secell2
Nocal 1
Normcsll &y;;”

Sct~auit

i

Figure A. 8. Messages.
(Messages responded to are in ovals.)

A-74

m e s s a g e s Vr”““‘----I”-‘--‘-------------- t-------------------------,-------------------------~-----------------------,
Forsral-beh-N-f Forrplwbch-N-f

DOS = 1, N,l

Lesdforrplit2
Lesdforrplitl

‘------“““‘-‘----*------------,
C!,“PP, 97 t 1,”

i,,,,,,,,,,,,,,,,,,,,,,,,,i,,,,,,,,,,,,,-----------j

Figure A.8a. Messages (continued).
(Messages responded to are in ovals.)

A-75

Name: Recaheadb
Specification in: For-split‘ (5)

Name: Recackreqmerbeh
Specification in: Merge(2)

Name: Recakrqsbeh
Specification in: Split (3)

Name: Recbehinda
Specification in: For-split (5)

Name: Reccantgo
Specification in: Joinquit (12)

Name: Recfaultlprobe
Specification in: Faults (9)

Name: Recinv-spl
Specification in: Split (3)

Name: Recprobel
Specification in: Forqrob (7)

Name: Recprobe2
Specification in: Forprob (7)

Name: Recprobenov
Specification in: Forqrob (7)

Name: Recreqsplit
Specification in: Split (3)

Name: Recreqmer3set
Specification in: Merge (2)

Name: Recreqchngln
Specification in: Change-lane (4)

Name: Recrcqemerchange
Specification in: Emer-change (6)

Fig: 5, 8

Fig: 2, 16

Fig: 3, 8

Fig: 5, 8

Fig: 8, 12

Fig: 8, 9

Fig: 3, 8

Fig: 7, 8

Fig: 7, 8

Fig: 7, 8

Fig: 3, 8

Fig: 2, 8

Fig: 4, 8

Fig: 6, 8

A-76

Name: Recreq-mer
Specification in: Merge (i)

Name: Recreqsplchl
Specification in: Split (3)

Name: Recreqsplchlbeh
Specification in: Split (3)

Name: Sacall
Specification in: Gen

Name: Sendackreqchln
Specification in: Change-lane (4)

Name: Sendackrqemerch
Specification in: Emer-change (6)

Name: Sendackreqmer
Specification in: Merge (2)

Name: Sendackreqs
Specification in: Split (3)

Name: Sendonf
Specification in: For-split (5)

Name: Sendnackreqchln
Specification in: Change-lane (4)

Name: Sendnackreqmer
Specification in: Merge (2)

Name: Sendnackreqs
Specification in: Split (3)

Name: Sendnackrqemerch
Specification in: Emer-change (6)

Name: S topcall
Specification in: Gen

Fig: 2, 8

Fig: 3, 8

Fig: 3, 8

Fig: 8

Fig: 4, 8

Fig: 6, 8

Fig: 2, 8

Fig: 3, 8

Fig: 5, 8

Fig: 4, 8

Fig: 2, 8

Fig: 3, 8

Fig: 6, 8

Fig: 8

A-77

Name: (Intfalt)
Admitted in: N NE SA CA
Input: MON routines

Fig: 9

Requires: Fault detected by internal monitor
If branch: Yes Condition: Fault #l? #ll?
Effect: 1. Sets fault flag #l - #ll as appropriate;

2. If fault #l, reset counter in Qtwofaults;
3. Endif; else if fault 11, and speed < c target, and Maystop flag reset, set Mystp
flag;

4. Endif;

Note This routine is strictly part of MON

A-78

A.8 NEW FAULTS (Figure A.9)

Name: Newfault
Specification in: Sup

Fig: 1, 9

Name: Nex ttum
Admitted in: N NE SA CA
I n p u t : -

Fig: 9

Requires: Reclocishere, no message received
If branch: No Condition: -
Effect: Decrement counter in Qtwofaults; return;

Name: Qtwofaults
Admitted in: N NE SA CA
Input: Fault flags

Fig: 9

Requires: Newfalt, and some faults present
If branch: Yes Condition: Proscribed or 3+ faults?
Effect: 1. If more than two faults (etc) present, call Sendstopit;

2. Endif; if one of pairs of faults, modes and flags listed below present, call
Sendstopit;

3. Endif; if fault #l is present, then if counter is set,
4. Call Reclocishere;
5. Else call Sendfaultlprobe;
6. Endif; return;

Note
The following pairs of faults, etc. can induce a hazard, and therefore should induce Stopit.

#l with #2, #3, or #lO
#6 with #8
#7 with ??!3
#lO and CA mode
Maystop flag and #l or #3

Name: Recfaultlprobe
’

Fig: 8, 9
Admitted in: N NE SA CA
Input: Message fault-lqrobe received, with lot
Requires: Messrec
If branch: Yes Condition: Same lane? In range? Pos?
Effect: 1. If pos = last, then

2. If ln# and lot indicate that vehicle is in same lane as sender and not more than
two platoon spacings ahead, send lot is here (includes 10~);- -
3. Endif; endif; return;

A-79

Newfslt

Check f a u l t
Flaos

I

ctr
rl?se:

Sendfeultlorobe

I
ct-
set

Figure A.9. Fault Flags.

A-80

Name: Reclocishere
Admitted in: N NE SA CA

Fig: 9

Input: -
Requires: Qtwofaults, fault #l and counter set
If branch: Yes Condition: Lot is here received?
Effect: 1. If lot is here received, call Setspeed, passing lot of sender;

2. Else & nextturn;
3. Endif; return;

Name: Recmaystop
Admitted in: N NE SA CA
Input: -

Fig: 9

Requires: Message Maystop from system
If branch: No
Effect: Sets relevant flag in Newfalt; return;

Condition: -

Note Maystop is sent when there is evidence of congestion.

Name: Recsetfault Fig: 9
Admitted in: N NE SA CA
Input: Message Setfault from system
Requires: Fault detected by system
If branch: Yes Condition: Fault #l, #l l?
Effect: 1. Sets fault flag #1 - #l 1 as appropriate;

2. If fault #l, reset counter in Qtwofaults;
3. Endif; else if fault #ll, and speed < < target, and Maystop flag not set, set
Maystop flag;

4. Endif; return;

Name: Setspeed Fig: 9
Admitted in: N NE SA CFA
Input: Lot and speed of sender of lot is here- -
Requires: Reclocishere
If branch: No Condition: -
Effect: Set maxspeed to maintain lJ*(normal platoon spacing), using normal

longitudinal control algorithm;

Name: Sendfaultlprobe
Admitted in: N NE SA CA
Input: -

Fig: 9

Requires: Qtwofaults, fault #l present, counter reset
If branch: No Condition: -
Effect: Send fault-lqrobe with lot and In#; set counter in Qtwofaults = 4; return;

A-81

Name: Sendistop .
Admitted in: N NE SA CA
Input: -

Fig: 9

Requires: Slowspeed and speed = 0, pos = 1
If branch: No Condition: -
Effect: Vehicle has stopped behind vehicle ahead. No maystop sent Breakdown ahead?

1. If no contact, send message I-stop to system, with lot of vehicle ahead;
2. Else send collision;
3. Endif; return;

Name: Slowspeed Fig: 9
Admitted in: N NE SA CA
Input: Speed reading, distance to next vehicle
Requires: Newfalt
If branch: Yes Condition: Pos?
Effect: 1. If pos = 1, send message slow-speed to system; (this includes speed and

distance to veh ahead) [System may respond with Maystop, a degraded mode
or a setfault]
2. If speed = 0; call SendIstop;
3. Endif; endif; return;

Name: Sendstopit Fig: 9
Admitted in: N NE SA CA
Input: -
Requires: Qtwofaults
If branch: Yes Condition: Fault #8?
Effect: 1. Vehicle has a dangerous combination of two faults or 3 or more. Maxspeed

= 0;
2. If fault #8, send message I-stop to gate, indicating lot and ln# and
fault-in-me; (System will send Stopcall, inducing Stop mode)
3. Else send I-stop (same message) to system;
4. Endif; return;

A-82

A.9 NEW ACTIONS (Figure A.lO)

Name: Actcalled
Specification in: SUP (1)

Name: Buslead 1
Specification in: Forsplit (5)

Name: Buslead
Specification in: Forsplit (5)

Name: Callchangelane
Specification in: Change-lane (4)

Name: Callmerge
Specification in: Merge (2)

Name: Callsplit
Specification in: Split (3)

Name: Emerchcall
Specification in: Emer-change (6)

Name: Fault4orS
Admitted in: N NE SA CA
Input: -
Requires: Faultset, fault #4 or fault #5 present
If branch: Yes
Effect: 1. If pos = last call Forspla;

2. Else call Sendaheada;
3. Endif; return;

Fig: 1, 10, 12

Fig: 5, 10, 11

Fig: 5, 10

Fig: 4, 10

Fig: 2, 10

Fig: 3, 10

Fig: 6, 10

Fig: 10

Condition: Pos?

Name: Forspla
Specification in: Forsplit (5)

Name: Forspll
Specification in: Forsplit (5)

Name: Fs 1 set
Specification in: Forsplit (5)

Name: Fs3set
Specification in: Forsplit (5)

Fig: 5, 10

Fig: 5, 10

Fig: 5, 10, 11

Fig: 5, 10, 11

A-83

Name: Invitesplit .
Specification in: Split (3)

Fig: 3, 10

Name: Linkmess Fig: 10
Admitted in: N NE SA CA
Input: Messages from Link Control
Requires: Faultset
If branch: ‘Yes Condition: Any relevant messages?

Free agent? Busy?
Effect: 1. If busy, ;

2. Else if Ln# = 0, then if message indicates enter; call Callchng-In;
3. Else call Takeback;
4. Endif; endif; if In# = 1 and message indicates exit at next gate and

ownsize = 1, call Callchng-ln;
5. Else if message indicates exit at passed gate send passed-exit;
6. Endif; endif; if (time-stime) <O, stime = time;
7. Endif; if (time - stime) > 15 set (say), then
8. If ownsize = 1, then if message indicates change of n lanes to some lot = loco

and lot > loco - n*X,
9. Call Callchng-ln;
10. Endif; else if pos = 1 or pos = ownsize, then if message indicates change of n

lanes to some lot = loco and lot > loco - n*X - Y,
11. Call Callsplit;
12. Endif; else if message indicates change of n lanes to some lot = loco and

lot > loco - n*X - 2*Y,
13. Call Callsplit;
14. Endif; endif; else call Mersplit;
15. Endif; endif; return;

Note Recording and processing of link messages is beyond scope of this specification. X is
distance taken to change lanes. It is set by Link Control on entry (will be a function of flow):
Y is distance to split - set in same way.

A-85

Name: Mersplit j
Admitted in: N NE SA CA
Input: -

Fig: 10

Requires: Linkmess and not busy
If branch: Yes Condition: Pos = l? Ownsize? Flag?
Time?
Effect: , l.Ifpos= 1, then if flag set, then if (time - stime) excessive (30 EC?),

2. Set stime = time; if ownsize C = MO and forward probe indicates vehicle
in range,

3. Reset flag; Call Callmerge;
4. Endif; If ownsize > = SO, reset flag; call Invite-split for vehicle with pos
= ownsizel2;
5. Endif; endif; else set flag; set stime = time; call Startprobe;
6. Endif; endif; return;

Note MO - Maximum size at which platoon will seek merge - and SO - Minimum size at
which platoon will split - are constants set by Link Control.

Name: Neset 1
Specification in: Emerch-change (6)

Name: Reqsplit
Specification in: Split (3)

Name: Reqchngln
Specification in: Change-lane (4)

Name: Sendaheada
Specification in: Forsplit (5)

Name: Sendbehindb
Specification in: Forsplit (5)

Name: Sendbehindl
Specification in: Forsplit (5)

Name: Sendreqemerch
Specification in: Emer-change (6)

Name: Startprobe
Specification in: Forprob (7)

Name: Takeback
Specification in: Join and Quit (12)

Fig: 5, 10

Fig: 3, 10

fig: 4, 10

Fig: 5, 10, 11

Fig: 5, 10

Fig: 5, 10

Fig: 5, 10

Fig: 7, 10

Fig: 10, 12

A-86

A.10 CONTROL DATA (Figure A.ll)

N a m e : Busleadl
Specification in: Forsplit (5)

Fig: 5, 10, 11

Name: Controlmess Fig: 11
Admitted in: N NE SA CA
Input: Flags 1 (control data) and 2 (ack-cant) from Contdat
Requires: Contdat
If branch: Yes Condition: Flags
Effect: 1. If flag 1 is set, reset flag 1; set counter in Nocontmess to M; call Newvector;

2. Else call Nocontmess;
3. Call Recackcont (passing flags 1 and 2 as input);
4. Return;

Name: Contdat
Specification in: SUP (1)

Fig: 1, 11

Name: Fs 1 set
Specification in: Forsplit (5)

Fig: 5, 10, 11

Name: Fs2set
Specification in: Forsplit (5)

Fig: 5, 11

Name: Fs3set
Specification in: Forsplit (5)

Fig: 5, 10, 11

Name: Newvector Fig: 11
Admitted in: N NE SA CA
Input: Control message
Requires: Controlmess
If branch: Yes Condition: Change of leader?
Effect: 1. If message gives leader or ownsize different from state vector, then if busy,

2. If merge(l) or merge(3) is set, reset it; reset busy; update state vector;
3. Else if split(2) is set ;
4. Else if flag A is set, ; decrement A-counter; if A-counter = 0, then
5. Reset flag A; set A counter to M; Message odd-change to system; reset busy;
update state vector;
6. Endif; else set flag A; set A-counter to M;
7. Endif; endif; endif; endif; else if flag B is set, decrement B-counter; if B-counter
= 0, then
8. Reset flag B; set B-counter to M; update state vector;
9. Endif; else set flag B; set B-counter to M;
10. Endif; else reset flag A; set A counter to M; reset flag B; set B-counter to M;
11. Endif; return;

A-87

Name: Nocon tmess Fig: 11
Admitted in: N NE SA CA
Input: -
Requires: Contmess
If branch: Yes Condition: Flags? Counter?
Effect: 1. If Newlead flag is set; send control data as leader; decrement counter; if

counter = 0, then
2. Reset newlead flag; set counter = M; call Sendbehindbl;
3. Endif; else decrement counter; if counter = 0, then
4. Send control data as leader; set newlead flag; set counter = M;
5. Endif; endif; return;

Name: Recackcont Fig: 11
Admitted in: N NE SA CA
Input: Flags
Requires: Controlmess
If branch: Yes Condition: Flag? Counter?
Effect: 1. If flag 2 passed is set, reset flag X; set counter to 2;

2. Else if flag 1 is set, decrement counter X; if counter = 0, then
3. Reset flag X; set counter = 2; call Sendaheada;
4. Endif; endif; return;

Name: Sendaheada
Specification in: Forsplit (5)

Fig: 5, 10, 11

Name: Sendbehindb 1
Specification in: Forsplit (5)

Fig: 5, 11

Name: Sendunmergel
Specification in: Forsplit (5)

Fig: 5, 11

A-89

A.11 JOINING AND LEAVING (Figure A.12)

Name: Actcalled
Specification in: SUP (1)

Fig: 1, 10, 12

Name: Askin Fig: 12
Admitted in: Entry lane
Input: Driver request
Requires: None!
If branch: Yes Condition: Destination specified?
Effect: 1. If destination specified, send request-enter to system;

2. While true,
a. examine message flags; if any set,
b. if it is Are_you-fitted, reset flag; break;
c. endif; else reset flag;
d. endif;

3. Endwhile; Go to Monsys;
4. Else display to driver “No destination stated”;
5. Endif; stop;

Name: Manualok Fig: 1, 12
Admitted in: Exit lane
Input: -
Recjuires: Takeback
If branch: Yes
received?

Condition: Message Manual-OK

Effect: 1. If message manual-ok received,
2. Message to driver - “have a good day!“; autocontrol off; stop;
3. Else call Toofar;
4. Endif; return;

Name: Monsys Fig: 12
Admitted in: Entry lane
Input: Are_you-fitted rec’d
Requires: Askin
If branch: Yes Condition: Controls fit?
Effect: 1. If MON indicates controls fit, send Im-OK; go to Waitentry;

2. Else send Im-off; go to Nogol;
3. Endif;

A-90

Nogo 1

‘y?N -

Unf1t t o enter

htcslled
I

Figure A.12. Joining and Leaving.

A-91

Name: Nogol
Admitted in: Entry lane
Input: -

Fig: 12

Requires: Monsys - controls unfit
If branch: No Condition: -
Effect: Display to driver “Self monitor indicates fault(S) #x, get vehicle repaired”; stop;

Name: Nogo
Admitted in: Entry lane

Fig: 12

Input: Text with message no-entry
Requires: Waitentry - no-entry received
If branch: No Condition: -
Effect: Display to driver “Entry refused - (message text}; stop;

Note Reason may be in vehicle - license outdated, carrying
external load, etc or within system - downstream section
closed, destination in other direction, etc.

Name: Reccantgo
Admitted in: Entry lane

Fig: 8, 12

Input: Message cant_go received, with gate ID
Requires: Messrec or Waitentry
If branch: No Condition: -
Effect: Alter link data to indicate exit at this gate; set flag in takeback; send I-quit; return;

Name: Takeback
Admitted in: N NE SA CA
Input: -

Fig: 10, 13

Requires: Linkmess (10) or Reccantgo (13)
If branch: Yes Condition: Flag
Effect: 1. If flag set, display to Driver: “Sorry - entry barred”;

2. Endif; Display to driver “Please take control”; call Manualok; (driver can send
Im-ready)

3. Return;

Name: Takeover Fig: 1, 12
Admitted in: Entrylane
Input: Message You-are-in received
Requires: Waitentry
If branch: No Condition: -
Effect: 1. Set link data included in message; set state vector (from message); reset

flag in Takeback;
2. Go to Actcalled;

A-92

Name: Toofar
Admitted in: Exit lane
Input: -
Requires: Manualok
If branch: Yes
Effect: 1. If any message received,

2. On message,

Fig: 12

Condition: Messages received?

Manual-ok:
Inch-on :
End-of-lane:
{default):

3. Endif; return;

break;
maxspeed very low; reset flag; break;
stop; reset flag; break;
reset flag;

Name: Waitentry Fig: 12
Admitted in: Entry lane
Input: -
Requires: Monsys
If branch: Yes Condition: Message received
Effect: 1. While true,

a. examine message flags; if any set,
b. on flag,

You-are-in: go to Takeover;
No-entry (with text): reset flag; go to Nogo2;
Cantgo: reset flag; go to Reccantgo;
(default): reset flag;

c. endif;
2. Endwhile;

A-93

A.12 SYSTEM

Note: This description does not explain how the platoon-level roadside system works. It will
in fact cycle steadily, and respond to many messages from and to many vehicles. Here we
consider the interaction with each vehicle separately.

The interaction takes the form of receipt of a message and a response, which may or may not
require consultation of stored data.

All the following messages are received and retransmitted with the marker indicating fault #6
or #7 in the vehicle making the lane-change. Each is simply retransmitted.

Message: Request-emer-change (Sendreqemerch, fig 6)
Respond with: Request-emer-change;

Message: Ack-request-emer-change (Sendackrqemch, fig 6)
Respond with: Ack-request-emer-change;

Message: Nack-request-emer-change (Sendnackrlemch, fig 6)
Respond with: Nack-request-emer-change;

Message: Confirm-emer-change (Sendconemerch, fig 6)
Respond with: Confirm-emer-change;

Message: Thanx-but-no (Recackrqemch, recnackrqemch, fig 6)
Respond with: Thanx-but-no;

Message: Unconfirm-emer-change (Callstop, fig 6)
Respond with: Unconfirm-emer-change;

Message: Emerch-to-void (Voidemerch, fig 6)
Respond with: Emerch-to-void; set turning-point;

Message: Emer-change-at-gate-x (Qallrec, fig 6)
Respond with: Emer-change-at-gate-x; set turning-point;

Message: Adj-ahead-ok etc (Inposn, fig 6)
Respond with: Adj-ahead-ok;

A-94

The following messages cause the reactions stated in the descriptions referred to:

Messages:
Nesetl (Nesetl, fig 6) No-entry mode, if fault #6 or #7 for next two sections
Neset2 (Neset2, fig 6) No entry mode extended as gate passed
Neset3 (Neset3, fig 6) No-entry mode transformed following lane-change, and SA mode also
removed.

Message: SAcall (Sacall, fig 6)
Not restricted to a particular fault. Calls SA mode to enable a safe emer-change.

Message: Fault-xqresent (Actcalled, fig 10)
Respond with: Add vehicle to list of faulty vehicles; if a vehicle remains on this list too long,
advise system operators.

Message: Fault-out (Passemch, fig 6)
Respond with: Remove vehicle from list; if system operators advised of its presence, advise
again;

Message: Fault 1 lveh (Forprob, fig 7).
Respond with: If another vehicle with fault #4 or #5 is present send No-fault-l; else no
action;

Gate messages.

The following messages do not provoke a transmitted message but what is said below:

Messages:
Confirm~split~change_lane (in transmitted form)(Recconsplit, fig 4)
Confirm-dropt (Sendcondropt, fig 4)
Confirm-decel (Sendcondecel, fig4)
Change-to-void (Voidch, fig 4)
Emerch-to-void (Voidemerch, fig 6)
Emerch-at-gate-x (Qallrec, fig 6)

Respond with:
1. While 8 sets pass,
2. While giving-side VPD has not yet been occupied or is occupied,
3. If receiving side VPD is not occupied, activate turning point;
4. Else deactivate turning-point;
5. Endif; endwhile; deactivate turning point;
6. Endwhile;

Note. In the case of an exit gate, the receiving-side VPD extends downstream.

A-95

Entry and Exit Messages.

Message: Request-entry. (Askin, fig 12)
Respond with: Are_you-fitted to vehicle. Record existence, destination.

Message: Im-OK (MONsys, fig 12)
Respond with: 1. If licence valid and destination achievable, send Urin.

2. Else send No-entry, with reason as text; delete record of vehicle;
3. Endif;

Message: Im-off (MONsys, fig 12)
Respond with: - . Delete record of vehicle.

Message: [Vehicle has passed last on-gate]
Respond with: [Localized message] Cant-go

Message: I-quit (Reccantgo, fig 12)
Respond with: - . Delete record of vehicle

Message: [Vehicle almost at end of TL after last on-gate](Toofar, fig 12)
Respond with: [Localized message] Inch-on

Message: [Vehicle at end of TL] (Toofar, fig 12)
Respond with: [Local&d message] End-of-lane

Message: Im-ready (Takeback, fig 12)
Respond with: 1. While brakes are being applied,;

2. Endwhile; send Manualok; delete vehicle from record;

Mode Changes.

All these messages are followed by advice to system operators, who alone can reverse their
effects.

Messages: Crashstopbehind (Qfalt 1, fig 5), also unnamed messages indicating fence breach,
or intrusion of platoon crush on to detector at gate.
Respond with: Crashstopcall (see Gen) for vehicles in platoon calling, plus two following
sections; Cacall for following (N) sections; SAcall for parallel sections on lanes adjacent to
CA section; advise system supervisors;
Messages: Callstop (Callstop, fig 6), I-stop (SendIstop, fig. 9)
Collision (SendIstop, fig.9), Stopit (Sendstopit, fig.9)
Respond with: Stopcall (see Gen) for two sections behind caller;

A-96

Cacall for following (N) sections; SAcall for parallel sections on lanes adjacent to CA
sections; advise system supervisors;

Message: Slowspeed (Slowspeed, fig. 9),
Respond with: 1. If other reports in same area send May-stop to affected lanes;

advise supervisors;
2. Else store info;
3. Endif;

Message: Unnamed message indicating slow-moving or stationary vehicle on exit lane,
downstream of primary detector VPD.

Respond with: Sacall for exit lane

Suspect vehicles list.

Messages:
Norepchll (Norepchll , fig 4)
Norepchi2 (Norepchl2, fig 4)
Norepchl3 (Norepchl3, fig 4)
Norepchl4 (Norepchl4, fig 4)
NorepchlS (NorepchlS, fig 4)
No-tp-1 (Syscalll, fig 4)
No-tp-2 (Syscall2, fig 4)
Change-messed-up (Syscall3, fig 4)
Too-long (Toolong, figs 2,3)
Respond with: 1. If there is a recently reported faulty vehicle in the same area, ;

2. Else if one of the vehicles concerned has been involved in such
incidents before,
3. Advise supervisors; Send Setfalt#ll;
4. Else if gate (not for Too-long) has been involved before,
5. Close gate; advise supervisors;
6. Else add vehicles involved to suspect vehicles list;
7. Endif; endif; endif; return;

A-97

A.13 LIST OF MESSAGES

The list of messages below gives the references to figures (6 = Figure A.6, etc), in which
messages are referred to.

up = message transmitted forward in platoon
Down = message transmitted rearward in platoon

’ out = message transmitted between platoons
Ex = message transmitted to system
In = message transmitted by system
* = message is not addressed to particular vehicle

Message

Acknowledge-control-data
Ack-request-change-lane
Ack-request-emerch
Ack-request-merge
Ack-request-split
Adj-ahead-OK
Adj-beh_OK
Cacall
Callstop
CantJo
Change-mixed-up
Change-to-void
Collision
Confirm-change-lane
Confirm-decelerate
Confirm-dropt
Confirm-emerch
Confirm-merge
Confirm-split
Confirm~split~change~lane
Controldata
Crashstop
Crashstopcall
Cutspeed
Emerch-at-gate-x
Emerch-target
Emerch-to-void
Fault-lgrobe
Fault-xgresent
Forced-split-called

Figure Link

11 UP
4 out
6 out
2 Out,Down
3 Down
6 out
6 out
8 In
5, 6 Ex

12 In
4 Ex
4 Out,Ex
9 out
4 out
4 Out,Ex
4 Out,Ex
6 Out,Ex
2 Out,Up
3 out
4 Out,Ex

11 Down
ManY Ex,In
8 In
8 In
6 Out.Ex
6 Ex
6 Out,Ex
9 out*
9 Ex
4s out

A-98

Message

Forsplit b (N)-f
Forsplitb-(N)-r
ForsplitIoier
Gatepassed
Im-off
Im-OK
Im-ready
Inch-on
Invite-split
I-quit
I-stop
Maystop
Merge 3 set
Nack-&quest-change-lane
Nack-request-emerch
Nack-request-merge
Nack-request-split
Necall
Neset 1
Neset2
Neset3
Next-ahead-OK
Next-beh_OK
No-fault- 1
Norcall
Norepchl 1
Norepchl:!
Norepchl3
Norepchl4
NorepchlS
NoJP-1
NoJP-2
Probe- 1
Probe-2
Probe-nov
Request-change-lane
Request-decelerate
Request-emerch
Request-entry
Request-merge
Request-split
Request-split-change-lane

Figure Link

597 UP
597 Down
7 Down
6 Ex

12 Ex
12 Ex
12 Ex
12 Ex
3 Down

12 Ex
9 Ex
8 In
2 Down
4 out
6 out
2 Out,Down
3 Down
8 In
6 Ex
6 Ex
6 Ex
6 out
6 out
7 In
8 In
4 Out,Ex
4 Out,Ex
4 Out,Ex
4 Out,Ex
4 Out,Ex
4 Out,Ex
4 Out,Ex
7 out*
7 out*
7 out*
4 out*
4 out
6 out*

12 Ex
2 out*,up
3 UP
3, 4 Down

A-99

Message

Sacall
Sacall
Slowspeed
Split-over
s topcal1
Stopit
Thanx-but-no
Toofar
Toolong
Unconfirm-change-lane
Unconfirm-emerch
Unmerge

Figure

6 Ex
8 In
9 Ex
3 Down
8 In
9 Ex

496 out
12 In
2,3,4 Ex
4 out
6 out
295 out

Link

m.lo\74albpecif

A-100

