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Abstract: In order to construct prediction intervals without the cumbersome—and typically
unjustifiable—assumption of Gaussianity, some form of resampling is necessary. The regres-
sion set-up has been well-studied in the literature but time series prediction faces additional
difficulties. The paper at hand focuses on time series that can be modeled as linear, nonlinear
or nonparametric autoregressions, and develops a coherent methodology for the construction
of bootstrap prediction intervals. Forward and backward bootstrap methods using predictive
and fitted residuals are introduced and compared. We present detailed algorithms for these
different models and show that the bootstrap intervals manage to capture both sources of
variability, namely the innovation error as well as estimation error. In simulations, we compare
the prediction intervals associated with different methods in terms of their achieved coverage
level and length of interval.

Keywords and phrases: Confidence intervals, forecasting, time series..

1. Introduction

Statistical inference is not considered complete if it is not accompanied by a measure of its inherent
accuracy. With point estimators, the accuracy is measured either by a standard error or a confidence
interval. With (point) predictors, the accuracy is measured either by the predictor error variance or
by a prediction interval.

In the setting of an i.i.d. (independent and identically distributed) sample, the problem of predic-
tion is not interesting. However, when the i.i.d. assumption no longer holds, the prediction problem
is both important and intriguing; see Geisser (1993)[20] for an introduction. Typical situations where
the i.i.d. assumption breaks down include regression and time series.

The literature on predictive intervals in regression is not large; see e.g. Caroll and Ruppert (1991)
[12], Patel (1989) [32], Schmoyer (1992)[36] and the references therein. Note that to avoid the cum-
bersome (and typically unjustifiable) assumption of Gaussianity, some form of resampling is nec-
essary. The residual-based bootstrap in regression is able to capture the predictor variability due
to errors in model estimation. Nevertheless, bootstrap prediction intervals in regression are often
characterized by finite-sample undercoverage. As a remedy, Stine (1985)[37] suggested resampling
the studentized residuals but this modification does not fully correct the problem; see the discussion
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in Olive (2007)[30]. Politis(2013)[33] recently proposed the use of predictive (as opposed to fitted)
residuals to be used in resampling which greatly alleviates the finite-sample undercoverage.

Autoregressive (AR) time series models, be it linear, nonlinear, or nonparametric, have a formal
resemblance to the analogous regression models. Indeed, AR models can typically be successfully
fitted by the same methods used to estimate a regression, e.g., ordinary Least Square (LS) regression
methods for parametric models, and scatterplot smoothing for nonparametric ones. The practitioner
has only to be careful regarding the standard errors of the regression estimates but the model-based,
i.e., residual-based, bootstrap should in principle be able to capture those.

Therefore, it is not surprising that model-based resampling for regression can be extended to
model-based resampling for auto-regression. Indeed, standard errors and confidence intervals based
on resampling the residuals from a fitted AR model has been one of the first bootstrap approaches
for time series; cf. Freedman (1984) [19], Efron and Tibshirani (1986) [15], and Bose (1988) [6].

However, the situation as regards prediction intervals is not as clear; for example, the conditional
nature of the predictive inference in time series poses a difficulty. There are several papers on
prediction intervals for linear AR models but the literature seems scattered and there are many
open questions: (a) how to implement the model-based bootstrap for prediction, i.e., how to generate
bootstrap series; (b) how to construct prediction intervals given the availability of many bootstrap
series already generated; and lastly (c) how to evaluate asymptotic validity of a prediction interval.
In addition, little seems to be known regarding prediction intervals for nonlinear and nonparametric
autoregressions.

In the paper at hand we attempt to give answers to the above, and provide a comprehensive
approach towards bootstrap prediction intervals for linear, nonlinear, or nonparametric autoregres-
sions. The models we will consider are of the general form:

• AR model with homoscedastic errors

Xt = m(Xt−1, ..., Xt−p) + εt (1.1)

• AR model with heteroscedastic errors

Xt = m(Xt−1, ..., Xt−p) + σ(Xt−1, ..., Xt−p)εt. (1.2)

In the above, m(·) and σ(·) are unknown; if they can be are assumed to belong to a finite-dimensional,
parametric family of functions, then the above describe a linear or nonlinear AR model. If m(·)
and σ(·) are only assumed to belong to a smoothness class, then the above models describe a
nonparametric autoregression. Regarding the errors, the following assumption is made:

ε1, ε2, · · · are i.i.d. (0, σ2), and such that εt is independent from {Xs, s < t} for all t; (1.3)

in conjuction with model (1.2), we must further assume that σ2 = 1 for identifiability. Note, that
under either model (1.1) or (1.2), the causality assumption (1.3) ensures that E(Xt|{Xs, s < t}) =
m(Xt−1, ..., Xt−p) gives the optimal predictor of Xt given {Xs, s < t}; here optimality is with respect
to Mean Squared Error (MSE) of prediction.

Section 2 describes the foundations of our approach. Pseudo-series can be generated by either
a forward or backward bootstrap, using either fitted or predictive residuals—see Section 2.1 for a
discussion. Predictive roots are defined in Section 2.2 while Sections 2.3 and 2.4 discuss notions
of asymptotic validity. Section 3 goes in depth as regards bootstrap prediction intervals for linear
AR models. Section 4 addresses the nonlinear case using two popular nonlinear models as concrete
examples. Finally, Section 5 introduces bootstrap prediction intervals for nonparametric autoregres-
sions. Appendix A contains some technical proofs. A short conclusions section recapitulates the main
findings making the point that the forward bootstrap with fitted or predictive residuals serves as
the unifying principle across all types of AR models, linear, nonlinear or nonparametric.
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2. Bootstrap prediction intervals: laying the foundation

2.1. Forward and backward bootstrap for prediction

As previously mentioned, an autoregression can be formally viewed as regression. However, in pre-
diction with an AR(p) model, linear or nonlinear, an additional difficulty is that the one-step-ahead
prediction is done conditionally on the last p observed values that are themselves random.

To fix ideas, suppose X1, · · · , Xn are data from the linear AR(1) model: Xt = φ1Xt−1 + εt where
|φ1| < 1 and the εt are i.i.d. with mean zero. Given the data, the MSE–optimal predictor of Xn+1

given the data is φ1Xn which is approximated in practice by plugging-in an estimator, say φ̂1, for
φ1. Generating bootstrap series X∗1 , X

∗
2 , · · · from the fitted AR model enables us to capture the

variability of φ̂1 when the latter is re-estimated from bootstrap datasets such as X∗1 , · · · , X∗n.
For the application to prediction intervals, note that the bootstrap also allows us to generate

X∗n+1 so that the statistical accuracy of the predictor φ̂1Xn can be gauged. However, none of these
bootstrap series will have their last value X∗n exactly equal to the original value Xn as needed for

prediction purposes. Herein lies the problem, since the behavior of the predictor φ̂1Xn needs to be
captured conditionally on the original value Xn.

To avoid this difficulty, Thombs and Schucany(1990)[39] proposed to generate the bootstrap data
X∗1 , · · · , X∗n going backwards from the last value that is fixed at X∗n = Xn. This is the backward
bootstrap method that was revisited by Breidt, Davis and Dunsmuir(1995)[10] who gave the correct
algorithm of finding the backward errors. Note that the generation of X∗n+1 is still done in a forward
fashion using the fitted AR model conditionally on the value Xn.

Nevertheless, the natural way autoregressions evolve is forward in time, i.e., given Xt−1, the next
observation is generated as Xt = φ1Xt−1 + εt, and so on. Thus, it is intuitive to construct bootstrap
procedures that run forward in time, i.e., given X∗t−1, the next bootstrap observation is generated
as

X∗t = φ̂1X
∗
t−1 + ε∗t , (2.1)

and so on. Indeed, most (if not all) of the literature on bootstrap confidence intervals for AR models
uses the natural time order to generate bootstrap series. It would be nice to be able to build upon this
large body of work in order to construct prediction intervals. However, recall that predictive inference
is to be conducted conditionally on the last value Xn in order to be able to place prediction bounds
around the point predictor φ̂1Xn. So how can one ensure that X∗n = Xn so that X∗n+1 = φ̂1Xn+ε∗n+1?

Aided by the additive structure of the AR model, it is possible to “have our cake and eat it too”,
i.e., generate bootstrap series forward in time but also ensure that X∗n+1 is constructed correctly.
This procedure will be called the forward bootstrap method for prediction intervals, and comprises
of two steps:

A. Choose a starting value X∗0 appropriately, e.g., choose it at random from one of the original
data X1, · · · , Xn. Then, use recursion (2.1) for t = 1, 2, . . . , n in order to generate bootstrap

data X∗1 , · · · , X∗n. Re-compute the statistic of interest (in this case φ̂1) from the bootstrap data

X∗1 , · · · , X∗n to obtain the bootstrap statistic φ̂∗1.
B. Re-define the last value in the bootstrap world, i.e., let X∗n = Xn. Compute the one-step

ahead bootstrap predictor X̂∗n+1 = φ̂∗1Xn, and also generate the future bootstrap observation

X∗n+1 = φ̂1Xn + ε∗n+1.

The above algorithm works because the two constituents of the prediction error Xn+1 − X̂n+1 =
(φ1Xn− φ̂1Xn) + εn+1, i.e., estimation error (φ1Xn− φ̂1Xn) and innovation error εn+1 are indepen-
dent, and the same is true in the bootstrap world.



L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 4

As stated above, the algorithm is specific to an AR(1) model but its extension to higher-order
models is straightforward and will be given in the sequel. Indeed, the forward bootstrap is the method
that can be immediately generalized to apply for nonlinear and nonparametric autoregressions as
well, thus forming a unifying principle for treating all AR models. The forward bootstrap idea has
been previously used for prediction intervals in linear AR models by Masarotto(1990)[26] and Pascual
et al. (2004)[31] but with some important differences; for example, Masarotto(1990)[26] omits the
important step B above—see Section 3.8 for a discussion.

Remark 2.1. Both aforementioned bootstrap ideas, backward and forward, hinge on an i.i.d. re-
sampling of the residuals obtained from the fitted model. In the AR(1) case, the fitted residuals are

obtained as ε̂t = Xt − φ̂1Xt−1 for t = 2, 3, · · · , n. Nevertheless, Politis(2013)[33] made a strong case
that resampling the predictive residuals gives more accurate prediction intervals in regression, be it
linear or nonparametric. Section 3 defines a particular notion of predictive residuals in autoregres-
sion, and shows their potential benefit in constructing bootstrap prediction intervals.

2.2. Predictive roots and h-step ahead optimal prediction

Given the ability to generate bootstrap datasets using a valid resampling procedure, the question
arises as to how to actually construct the prediction interval. Notably, in the related problem of
confidence interval construction there are two main approaches: (a) the percentile approach along
with the associated bias correction and acceleration expounded upon in Efron and Tibshirani (1994)
[16]; and (b) the approach based on pivots and roots as in Bickel and Freedman (1981) [3], Beran
(1984) [2], Hall (1992) [22], and Politis, Romano and Wolf (1999) [34]. Both approaches are popular
although the latter is more conducive for theoretical analysis.

Politis(2013)[33] gave the definition of ’predictive roots’ to be used in order to construct prediction
intervals in regression. We will extend this idea to autoregression. Let X1, · · · , Xn be an observed
stretch of a time series that follows a stationary autoregressive model with order p, i.e., model (1.1)
or (1.2); the autoregression can be linear, nonlinear or nonparametric. The objective is a prediction
interval for the h-step ahead value Xn+h for some integer h ≥ 1; the one-step ahead case is, of
course, the most basic.

Denote by X̂n+h the point predictor of Xn+h based on the data X1, · · · , Xn; since X̂n+h is a
function of the data, we can write X̂n+h = Π(X1, · · · , Xn). Let V̂ 2

n be an estimate of V ar(Xn+h −
X̂n+h|X1, · · · , Xn) which is the conditional variance in h-step ahead prediction; since V̂n is a function
of the data, we denote V̂n = V (X1, · · · , Xn).

Definition 2.1. Predictive root and studentized predictive root. The h-step ahead predictive
root is defined as Xn+h − X̂n+h, i.e., it is the error in the h-step ahead prediction. The studentized

predictive root is Xn+h−X̂n+h

V̂n
.

Given a bootstrap pseudo series X∗1 , · · · , X∗n, analogs of the aforementioned quantities can be
defined, i.e., X̂∗n+h = Π(X∗1 , · · · , X∗n) and V̂ ∗n = V (X∗1 , · · · , X∗n).We can then similarly define the
bootstrap predictive roots.

Definition 2.2. Bootstrap predictive root and studentized bootstrap predictive root. The
bootstrap predictive root is defined as X∗n+h − X̂∗n+h. The studentized bootstrap predictive root is
X∗

n+h−X̂
∗
n+h

V̂ ∗
n

.
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2.3. Prediction intervals and asymptotic validity

Given the data X1, · · · , Xn, our goal is to construct a prediction interval that will contain the future
value Xn+h with a prespecified coverage probability. With an AR(p) model, linear or nonlinear, the
predictor will be a function of the last p data points, i.e., Xn−p+1, · · · , Xn. Hence the prediction
interval’s coverage probability should be interpreted as conditional probability given Xn−p+1, · · · , Xn.

Definition 2.3. Asymptotic validity of prediction intervals.
Let Ln, Un be functions of the data X1, · · · , Xn. The interval [Ln, Un] will be called a (1− α)100%
asymptotically valid prediction interval for Xn+h given Xn−p+1, · · · , Xn if

P (Ln ≤ Xn+h ≤ Un)→ 1− α as n→∞ (2.2)

for all (Xn−p+1, · · · , Xn) in a set that has (unconditional) probability equal to one.

The probability P in (2.2) should be interpreted as conditional probability given Xn−p+1, · · · , Xn

although it is not explicitly denoted; hence, Definition 2.3 indicates conditional validity of the pre-
diction interval [Ln, Un].

The salient point in all bootstrap algorithms that will be discussed is to use the bootstrap dis-
tribution of the (potentially studentized) bootstrap predictive root to estimate the true distribu-
tion of the (potentially studentized) predictive root. Bootstrap probabilities and expectations are
usually denoted by P ∗ and E∗, and they are understood to be conditional on the original data
X1 = x1, · · · , Xn = xn. Since Definition 2.3 involves conditional validity, we will understand that
P ∗ and E∗ are also conditional on X∗n−p+1 = xn−p+1, · · · , X∗n = xn when they are applied to ‘future’
events in the bootstrap world, i.e., events determined by {X∗s for s > n}; this is not restrictive since
we will ensure that our bootstrap algorithms satisfy this requirement. For instance, both P and P ∗

in Remark 2.2 below represent probabilities conditional on Xn−p+1 = xn−p+1, · · · , Xn = xn and
X∗n−p+1 = xn−p+1, · · · , X∗n = xn respectively.

Remark 2.2. Suppose the (conditional) probability P (Xn+h− X̂n+h ≤ a) is a continuous function
of a in the limit as n→∞. If one can show that

sup
a
|P (Xn+h − X̂n+h ≤ a)− P ∗(X∗n+h − X̂∗n+h ≤ a)| P−→ 0,

then standard results imply that the quantiles of P ∗(X∗n+h− X̂∗n+h ≤ a) can be used to consistently

estimate the quantiles of P (Xn+h − X̂n+h ≤ a), thus leading to asymptotically valid prediction
intervals. Similarly, if one wants to construct asymptotically valid bootstrap prediction intervals
based on studentized predictive roots, it suffices to show that

sup
a
|P (

Xn+h − X̂n+h

V̂n
≤ a)− P ∗(

X∗n+h − X̂∗n+h
V̂ ∗n

≤ a)| P−→ 0.

2.4. Asymptotic pertinence of bootstrap prediction intervals

Asymptotic validity is a fundamental property but it does not tell the whole story. Prediction
intervals are particularly useful if they can also capture the uncertainty involved in model estimation
although the latter is asymptotically negligible.

To give a concrete example, consider the simple case where X1, X2, · · · are i.i.d. N(µ, σ2); this is
a special case of an AR model with no dependence present. Given the data X1, · · · , Xn, we estimate
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the unknown µ, σ2 by the sample mean and variance µ̂, σ̂2 respectively. Then, the exact Normal
theory (1− α)100% prediction interval for Xn+h is given by

µ̂± tn−1(α/2)σ̂
√

1 + n−1. (2.3)

One could use the standard normal quantile z(α/2) instead of tn−1(α/2), i.e., construct the
prediction interval:

µ̂± z(α/2)σ̂
√

1 + n−1. (2.4)

Since 1 + n−1 ≈ 1 for large n, an even simpler prediction interval is available:

µ̂± z(α/2)σ̂. (2.5)

Notably, all three above prediction intervals are asymptotically valid in the sense of Definition
2.3. Nevertheless, as discussed in Politis(2013)[33], interval (2.5) can be called naive since it fails to
take into account the variability that results from the error in estimating the theoretical predictor
µ by µ̂. The result is that, although asymptotically valid, interval (2.5) will be characterized by
under-coverage in finite samples; see Geisser (1993) for an in-depth discussion.

By contrast, interval (2.4) does take into account the variability resulting from estimating the
theoretical predictor. Therefore, interval (2.4) deserves to be called something stronger than asymp-
totically valid; we will call it pertinent to indicate that it asymptotically captures all three elements
of the exact interval (2.3), namely:
(i) the quantile tn−1(α/2) associated with the studentized root;
(ii) the error variance σ2; and
(iii) the variability associated with the estimated parameters, i.e., the factor

√
1 + n−1.

In general, an exact interval analogous to (2.3) will not be available because of non-normality of
the errors and/or nonlinearity of the optimal predictor. A ‘pertinent’ interval such as (2.4) would be
something to strive for. Notably, the bootstrap is an attempt to create prediction intervals that are
asymptotically pertinent in that (a) they are able to capture the variability due to the estimated
quantities—note that in AR(p) models the correction term inside the square root of (2.3) would be
O(p/n) not just 1/n, and in nonparametric AR models it would be O( 1

hn ) with h→ 0 as n→∞, i.e.,
this correction is not so trivial; and (b) they are able to approximate well the necessary quantiles.

Interestingly, while interval (2.3) is based on the distribution of the studentized predictive root,
the bootstrap can also work with nonstudentized roots; in this case, the bootstrap would attempt to
estimate the product tn−1(α/2) σ̂ as a whole instead of breaking it up in its two constituent pieces.
Nevertheless, it may be the case that the studentized bootstrap may lead to better approximations,
and therefore more accurate prediction intervals, although the phenomenon is not as clear-cut as in
the case of bootstrap confidence intervals. Finally, note that bootstrap prediction intervals are not
restricted to be symmetric around the predictor like (2.3); thus, they may also capture the skewness
of the predictive distribution which is valuable in its own right.

To formally define the notion of pertinence, consider the homoscedastic model (1.1), and recall
that eq. (1.3) implies that the MSE–optimal predictor of Xn+1 given X1 = x1, . . . , Xn = xn is
m(xn, ..., xn−p+1). Hence we set X̂n+1 = m̂(xn, . . . , xn−p+1) where m̂(·) is a consistent estimator of
m(·); without loss of generality, assume that m̂(·) has rate of convergence an, i.e., an(m̂(·)−m(·)) has
a well-defined, non-trivial asymptotic distribution where an → ∞ as n → ∞. Then, the predictive
root can be written as

Xn+1 − X̂n+1 = εn+1 +Am (2.6)

where Am = m(xn, . . . , xn−p+1)− m̂(xn, . . . , xn−p+1) = Op(1/an) represents the estimation error.
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Similarly, the bootstrap predictive root can be written as

X∗n+1 − X̂∗n+1 = ε∗n+1 +A∗m (2.7)

where A∗m = m̂(xn, . . . , xn−p+1)− m̂∗(xn, . . . , xn−p+1). By construction, the model-based bootstrap
should, in principle, be capable of asymptotically capturing both the pure prediction error, i.e., the
distribution of εn+1, as well as the estimation error. We are then led to the following definition.

Definition 2.4. Asymptotic pertinence of bootstrap prediction intervals under
model (1.1). Consider a bootstrap prediction interval for Xn+1 that is based on approximating
the distribution of the predictive root Xn+1 − X̂n+1 of eq. (2.6) by the distribution of the boot-
strap predictive root X∗n+1 − X̂∗n+1 of eq. (2.7). The interval will be called asymptotically per-
tinent provided the bootstrap satisfies the following three conditions as n → ∞ conditionally on
Xn−p+1 = xn−p+1, · · · , Xn = xn.

(i) supa |P (εn+1 ≤ a)−P ∗(ε∗n+1 ≤ a)| P−→ 0, presupposing that the error distribution is continuous.

(ii) |P (anAm ≤ a) − P ∗(anA∗m ≤ a)| P−→ 0 for some sequence an → ∞, and for all points a where
the assumed nontrivial limit of P (anAm ≤ a) is continuous.
(iii) ε∗n+1 and A∗m are independent in the bootstrap world—as their analogs are in the real world due
to the causality assumption (1.3).
Furthermore, the bootstrap prediction interval for Xn+1 that is based on the approximating the dis-
tribution of the studentized predictive root (Xn+1 − X̂n+1)/V̂n by the distribution of the bootstrap
studentized predictive root (X∗n+1 − X̂∗n+1)/V̂ ∗n will be called asymptotically pertinent if, in addition
to (i)—(iii) above, the following also holds:

(iv) V̂n/V̂
∗
n

P−→ 0.

For concreteness, the above focuses on one-step ahead prediction but analogous definitions can be
constructed for h-step ahead prediction intervals using studentized or unstudentized predictive roots.

Remark 2.3. Note that asymptotic pertinence is a stronger property than asymptotic validity. In
fact, under model (1.1), just part (i) of Definition 2.4 together with the consistency of m̂(·) and
m̂∗(·), i.e., the fact that both Am and A∗m are op(1) due to an →∞, are enough to imply asymptotic
validity of the bootstrap prediction interval. Also note that part (ii) of Definition 2.4 is the condition
needed in order to show that the bootstrap can yield asymptotically valid confidence intervals for the
conditional mean m(·). In many cases in the literature, this condition has been already established;
we can build upon this for the purpose of constructing pertinent prediction intervals.

Consider now the heteroscedastic model (1.2). Much of the above discussion carries over verbatim;
for example, our predictor of Xn+1 given X1 = x1, . . . , Xn = xn is still X̂n+1 = m̂(xn, . . . , xn−p+1).
The only difference is that the predictive root is

Xn+1 − X̂n+1 = σ(xn, . . . , xn−p+1)εn+1 +Am (2.8)

and the bootstrap predictive root is

X∗n+1 − X̂∗n+1 = σ̂(xn, . . . , xn−p+1)ε∗n+1 +A∗m (2.9)

where σ̂(·) is a (consistent) estimator of σ(·) that is employed in the bootstrap data generation
mechanism. Hence, the following definition is immediate.

Definition 2.5. Asymptotic pertinence of bootstrap prediction intervals under
model (1.2). Consider a bootstrap prediction interval for Xn+1 that is based on approximating
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the distribution of the predictive root Xn+1 − X̂n+1 of eq. (2.8) by the distribution of the bootstrap
predictive root X∗n+1−X̂∗n+1 of eq. (2.9). The interval will be called asymptotically pertinent provided
the bootstrap satisfies conditions (i)—(iii) or Definition 2.4 together with the additional consistency
requirement:

(iv′) σ(xn, . . . , xn−p+1)− σ̂(xn, . . . , xn−p+1)
P−→ 0.

Furthermore, the bootstrap prediction interval for Xn+1 that is based on the approximating the dis-
tribution of the studentized predictive root (Xn+1 − X̂n+1)/V̂n by the distribution of the bootstrap
studentized predictive root (X∗n+1 − X̂∗n+1)/V̂ ∗n will be called asymptotically pertinent if, in addition
condition (iv) or Definition 2.4 also holds.

Remark 2.4. Taking into account that Am = op(1) as n → ∞, a simple estimator for the (condi-

tional) variance of the predictive root Xn+1 − X̂n+1 under model (1.2) is V̂n = σ̂(xn, . . . , xn−p+1).
Thus, in the case of one-step ahead prediction, condition (iv) or Definition 2.4 can be re-written as

σ̂(xn, . . . , xn−p+1)− σ̂∗(xn, . . . , xn−p+1)
P−→ 0, i.e., it is just a bootstrap version of condition (iv′) or

Definition 2.5. As a matter of fact, resampling in the heteroscedastic model (1.2) entails using stu-
dentized residuals. In this case, the predictive root method becomes tantamount to the studentized
predictive root method when the simple estimator V̂n = σ̂(xn, . . . , xn−p+1) is used; see Section 5.2
for more discussion.

2.5. Prediction interval accuracy: asymptotics vs. finite samples

The notion of ‘pertinence’ was defined in order to identify a prediction interval that has good finite-
sample performance as it imitates all the constituent parts of an ‘ideal’ interval. Inadvertently, the
notion of ‘pertinence’ was defined via asymptotic requirements. Nevertheless, the asymptotics alone
are still not very informative in terms of the interval’s finite-sample accuracy, i.e., the attained
coverage level.

Going back to the simple interval (2.3), note that we typically have σ̂2 = σ2 + Op(1/
√
n) while

the approximations z(α/2) ≈ tn−1(α/2) and
√

1 + n−1 ≈ 1 have a smaller error of order O(1/n).
So the determining factor for the asymptotics is the accuracy of the estimator σ̂2. However, there
are many

√
n–convergent estimators of σ2 having potentially very different finite-sample behavior.

The default estimator is the sample variance of the fitted residuals but this tends to be downwardly
biased; the predictive residuals—although asymptotically equivalent to the fitted residuals—lead to
improved finite-sample performance as alluded to in Remark 2.1.

Similarly, the quantity (i) of Definition 2.4 is typically of order Op(1/
√
n). In general, this rate of

convergence can not be improved, and dictates the rate of convergence for the coverage probability
of eq. (2.2) under the homoscedastic model (1.2). Once again, using the empirical distribution of
the predictive—as opposed to the fitted—residuals in order to generate ε∗t makes a huge practical
difference in finite samples despite the fact that the two are asymptotically equivalent.

The most challenging situation in practice occurs in the set-up of the heteroscedastic model
(1.2) with the conditional variance function σ(·) being unknown but assumed smooth. Here the
rate of convergence of the coverage probability of eq. (2.2) will be dictated by the nonparametric
rate of estimating σ(·), i.e., the rate of convergence of the quantity appearing in condition (iv′) of
Definition 2.5; see Section 5.2 for more details. This is perhaps the only case where the asymptotics
are informative as regards the finite-sample performance of the prediction interval, i.e., the less
accurately attained coverage levels in the presence of heteroscedasticity of unknown functional form.
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3. Bootstrap Prediction Intervals for Linear Autoregressions

Consider the strictly stationary, causal AR(p) model defined by the recursion

Xt = φ0 +

p∑
j=1

φjXt−j + εt (3.1)

which is a special case of model (1.1) with the εt being i.i.d. with mean zero, variance σ2 and
distribution Fε. The assumed causality condition (1.3) is now tantamount to φ(z) = 1− φ1z− · · · −
φpz

p 6= 0 for |z| ≤ 1. Denote φ = (φ0, φ1, φ2, · · · , φp)′ the vector of autoregressive parameters, and

φ̂ = (φ̂0, φ̂1, · · · , φ̂p)′ and φ̂(z) = 1− φ̂1z − · · · − φ̂pzp the respective estimates. Let X̂t be the fitted

value of Xt, i.e., Xt = φ̂0 +
∑p
j=1 φ̂jXt−j . Finally, let Yt = (Xt, Xt−1, · · · , Xt−p+1)′ be the vector of

the last p observations up to Xt.
Stine(1987)[38] used a bootstrap method to estimate the prediction mean squared error of the

estimated linear predictor of an AR(p) model with i.i.d. Gaussian errors. Relaxing the assumption
of Gaussian errors, Thombs and Schucany(1990)[39] proposed a backward bootstrap method to find
prediction intervals for linear autoregressions conditioned on the last p observations; their method
was described in Section 2.1. The backward bootstrap method was revisited by Breidt, Davis and
Dunsmuir(1995)[10] who gave the correct algorithm of finding the backward errors.

Masarotto(1990)[26] proposed a forward bootstrap method based on the studentized predictive
root to obtain prediction intervals for AR(p) models. Notably, his method omits the crucial step B of
the Forward bootstrap method defined in Section 2.1. As a result, his intervals are not asymptotically
pertinent since the basic premise of Definition 2.4 regarding the construction of the interval is not
satisfied; however, his intervals are asymptotically valid because the omitted/distorted term has to do
with the estimation error which vanishes asymptotically. Finally, Pascual et al. (2004)[31] proposed
another forward bootstrap method and applied it to prediction intervals for both autoregressive as
well as ARMA models; their intervals are constructed via an analog of the percentile method without
considering predictive roots—see Section 3.8 for more discussion.

In the present section, we first give the detailed algorithms for constructing forward bootstrap
prediction intervals using fitted and/or predictive residuals, and then prove the consistency of the
predictive root method for prediction intervals. We then study the corresponding backward methods.
We show how both backward and forward methods can be improved by introducing the predictive
residuals. In simulation, we will see that the methods with predictive residuals have improved cover-
age level compared to the methods with fitted residuals; this result is not unexpected since a similar
phenomenon occurs in linear regression—cf. Politis (2013)[33]. In Section 3.8, we review alternative
approaches to construct bootstrap prediction intervals, and compare them with ours.

3.1. Forward Bootstrap Algorithm

As described in Section 2.1, the idea of forward bootstrap method is that given observations X1 =
x1, · · · , Xn = xn, we can use the fitted AR recursion to generate bootstrap series “forward” in
time starting from some initial conditions. This recursion stops when n bootstrap data have been
generated; to generate the (n + 1)th bootstrap point (and beyond), the recursion has to be re-
started with different initial values that are fixed to be the last p original observations. The details
for estimating the coefficients, generating the bootstrap pseudo-data and constructing the prediction
intervals using both fitted and predictive residuals are given below in Sections 3.1.1 and 3.1.2
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3.1.1. Forward Bootstrap with Fitted Residuals

Given a sample {x1, · · · , xn} from (3.1), the following are the steps needed to construct the prediction
interval for future value Xn+h based on the predictive root method.

Algorithm 3.1. Forward bootstrap with fitted residuals (Ff)

1. Use all observations x1, · · · , xn to obtain the Least Squares (LS) estimators φ̂ =

(φ̂0, φ̂1, · · · , φ̂p)′ by fitting the following linear model
xn
xn−1

...
xp+1

 =


1 xn−1 · · · xn−p
1 xn−2 · · · xn−p−1
...

...
...

...
1 xp · · · x1



φ0
φ1
...
φp

+


εn
εn−1

...
εp+1

 . (3.2)

2. For t = p+ 1, · · · , n, compute the fitted value and fitted residuals:

x̂t = φ̂0 +

p∑
j=1

φ̂jxt−j , and ε̂t = xt − x̂t.

3. Center the fitted residuals: let rt = ε̂t − ¯̂ε for t = p+ 1, · · · , n, and ¯̂ε = (n− p)−1
∑n
p+1 ε̂t; let

the empirical distribution of rt be denoted by F̂n.

(a) Draw bootstrap pseudo residuals {ε∗t , t ≥ 1} i.i.d. from F̂n.

(b) To ensure stationarity of the bootstrap series, generate n+m pseudo-data for some large
positive m and then discard the first m data. Let (u∗1, · · · , u∗p) be chosen at random from the
set of p–tuplets {(xk, · · · , xk+p−1) for k = 1, · · · , n− p+ 1}; then generate {u∗t , t ≥ p+ 1}
by the recursion:

u∗t = φ̂0 +

p∑
j=1

φ̂ju
∗
t−j + ε∗t , for t = p+ 1, · · · , n+m.

Then define x∗t = u∗m+t for t = 1, 2, · · · , n.
(c) Based on the pseudo-data {x∗1, · · · , x∗n}, re-estimate the coefficients φ by the LS estimator

φ̂
∗

= (φ̂0
∗
, φ̂1
∗
, · · · , φ̂p

∗
)′ as in step 1. Then compute the future bootstrap predicted values

x̂∗n+1, · · · , x̂∗n+h by the recursion:

x̂∗n+t = φ̂0
∗

+

p∑
j=1

φ̂j
∗
x̂∗n+t−j for t = 1, · · · , h

where x̂∗n+t−j = xn+t−j when t ≤ j
(d) In order to conduct conditionally valid predictive inference, re-define the last p obser-

vations to match the original observed values, i.e., let x∗n−p+1 = xn−p+1, · · · , x∗n = xn.
Then, generate the future bootstrap observations x∗n+1, x

∗
n+2, · · · , x∗n+h by the recursion:

x∗n+t = φ̂0 +

p∑
j=1

φ̂jx
∗
n+t−j + ε∗n+t, for t = 1, 2, · · · , h.
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(e) Calculate a bootstrap root replicate as x∗n+h − x̂∗n+h.

4. Steps (a)-(e) above are repeated B times, and the B bootstrap replicates are collected in the
form of an empirical distribution whose α-quantile is denoted q(α).

5. Compute the predicted future values x̂n+1 · · · , x̂n+h by following recursion:

x̂n+t = φ̂0 +

p∑
j=1

φ̂j x̂n+t−j for t = 1, · · · , h

where x̂n+t−j = xn+t−j for t ≤ j.
6. Construct the (1− α)100% equal-tailed prediction interval for Xn+h as

[x̂n+h + q(α/2), x̂n+h + q(1− α/2)]. (3.3)

3.1.2. Forward Bootstrap with Predictive Residuals

Motivated by Politis(2013)[33], we consider using predictive, as opposed to fitted, residuals for the

bootstrap. We define the predictive residuals in the AR context as ε̂
(t)
t = xt− x̂(t)t where x̂

(t)
t is com-

puted from the delete-xt data set, i.e., the available data for the scatterplot of xk vs. {xk−p, · · · , xk−1}
over which the LS fitting takes place excludes the single point that corresponds to k = t.

The forward bootstrap procedure with predictive residuals is similar to Algorithm 3.1; the only
difference is in step 2.

Algorithm 3.2. Forward bootstrap with predictive residuals (Fp)

1 same as step 1 in Algorithm 3.1.
2 Use the delete-xt dataset to compute the LS estimator

φ̂
(t)

= (φ̂0
(t)
, φ̂1

(t)
, · · · , φ̂p

(t)
)′

as in step 1, i.e., compute φ̂
(t)

by changing regression model (3.2) as follows: delete the row
of xt in left hand side of (3.2), delete the row (1, xt−1, · · · , xt−p) in the design matrix, delete

εt from the vector of ε and change the φ̂ to φ̂
(t)

at the right hand side .
Then, calculate the delete-xt fitted values:

x̂t
(t) = φ̂0

(t)
+

p∑
j=1

φ̂j
(t)
xt−j , for t = p+ 1, · · · , n

and the predictive residuals: ε̂
(t)
t = xt − x̂(t)t for t = p+ 1, · · · , n.

3-6 Change the ε̂t into ε̂
(t)
t ; the rest is the same as in Algorithm 3.1.

Remark 3.1. The LS estimator φ̂ is asymptotically equivalent to the popular Yule-Walker (YW)
estimators for fitting AR models. The advantage of YW estimators is that they almost surely lead to a
causal fitted model. By contrast, the LS estimator φ̂ is only asymptotically causal but it is completely
scatterplot-based, and thus convenient in terms of our notion of predictive residuals. Indeed, for any
bootstrap method using fitted residuals (studentized or not), e.g., the forward Algorithm 3.1 or the
backward Algorithm 3.5 in the sequel, we could equally employ the Yule-Walker instead of the LS
estimators. But for methods using our notion of predictive residuals, it is most convenient to be able
to employ the LS estimators. To elaborate, consider the possibility that for our given dataset the
LS estimator φ̂ turns out to be not causal; we then we have two options:
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• Use a bootstrap algorithm with fitted residuals based on the YW estimator φ̃ = Γ̂−1p γ̂
p

where

Γ̂p is the p × p matrix with ij element γ̂(i − j), γ̂
p

is a vector with ith element γ̂(i) =

n−1
∑n−|i|
k=1 (Xk − X̄)(Xk+|i| − X̄) and X̄ = n−1

∑n
k=1Xk.

• To use bootstrap with predictive residuals, we can define the delete-xt estimates of the au-
tocovariance as γ̂(t)(i) = n−1

∑
k(Xk − X̄(t))(Xk+|i| − X̄(t)) where the summation runs for

k = 1, . . . , n− |i| but with k 6= t and k 6= t− |i|, and X̄(t) = (n− 1)−1
∑
k 6=tXk. Then define

the delete-xt YW estimator φ̃
(t)

= (φ̃0
(t)
, φ̃1

(t)
, · · · , φ̃p

(t)
)′ = (Γ̂

(t)
p )−1γ̂(t)

p
where matrix Γ̂

(t)
p

has ij element γ̂(t)(i − j), and vector γ̂(t)
p

has ith element γ̂(t)(i). Now, barring positive defi-

niteness issues, we can carry out Algorithm 3.2 with φ̃
(t)
, x̃t

(t) = φ̃0
(t)

+
∑p
j=1 φ̃j

(t)
xt−j and

ε̃
(t)
t = xt − x̃(t)t instead of φ̂

(t)
, x̂t

(t) and ε̂
(t)
t respectively.

Note that if the LS estimator φ̂ is causal—as it is hopefully the case—we can use either fitted or

predictive residuals but will need to discard all bootstrap pseudo-series that lead to a non-causal φ̂
∗
;

this is equally important for the Backward Bootstrap methods discussed in Section 3.4.

3.2. Forward Studentized Bootstrap with Fitted Residuals

In the previous two subsections we have described the forward bootstrap based on predictive roots.
However, as already mentioned, we can use studentized predictive roots instead; see Definition 2.1
and Remark 2.2. The forward bootstrap procedure with fitted and/or predictive residuals is similar
to Algorithm 3.1; the only differences is in step 3(e) and 6.

To describe it, let ψj for j = 0, 1, · · · be the MA(∞) coefficients of the AR(p) model, i.e., ψj
is the coefficient associated with zj in the power series expansion of φ−1(z) for |z| ≤ 1, defined by
1/φ(z) = ψ0+ψ1z+· · · ≡ ψ(z); the power series expansion is guaranteed by the causality assumption
(1.3). It is then easy to see that the variance of the h-step ahead predictive root Xn+h − X̂n+h is

σ2
∑h−1
j=0 ψ

2
j . The latter can be interpreted as either conditional or unconditional variance since the

two coincide in a linear AR(p) model.

Similarly, let 1/φ̂(z) = ψ̂0+ψ̂1z+ · · · ≡ ψ̂(z), and 1/φ̂∗(z) = ψ̂∗0 +ψ̂∗1z+ · · · ≡ ψ̂∗(z). Denote by σ̂2

and σ̂∗2 the sample variances of the fitted residuals and the bootstrap fitted residuals respectively;
the latter are defined as x∗t − x̂∗t for t = p+ 1, · · · , n.

Algorithm 3.3. Forward Studentized bootstrap with fitted residuals (FSf)
The algorithm is the same as Algorithm 3.1 except for steps 3(e) and 6 that should be replaced by
the following steps:

3(e) Calculate a studentized bootstrap root replicate as

x∗n+h − x̂∗n+h
σ̂∗(
∑h−1
j=0 ψ̂

∗2
j )1/2

.

6 Construct the (1− α)100% equal-tailed predictive interval for Xn+h as

[x̂n+h + σ̂(

h−1∑
j=0

ψ̂2
j )1/2q(α/2), x̂n+h + σ̂(

h−1∑
j=0

ψ̂2
j )1/2q(1− α/2)] (3.4)

where q(α) is the α-quantile of the empirical distribution of the B collected studentized bootstrap
roots.
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Remark 3.2. For all the algorithms introduced above, in step 3(d) we redefine the last p val-
ues of the bootstrap pseudo-series to match the observed values in order to generate out-of-sample
bootstrap data and/or predictors. If we calculate the future bootstrap predicted values and observa-
tions without fixing the last p values of the bootstrap pseudo-series, i.e., if we omit step 3(d), then
Algorithm 3.3 becomes identical to the method proposed by Masarotto(1990)[26] .

3.2.1. Forward Studentized Bootstrap with Predictive Residuals

As mentioned before, we can resample the predictive—as opposed to the fitted—residuals; the algo-
rithm is as follows.

Algorithm 3.4. Forward Studentized bootstrap with predictive residuals(FSp)

1 Same as step 1 in Algorithm 3.1.
2 Same as step 2 in Algorithm 3.2

3-6 Change the ε̂t into ε̂
(t)
t ; the rest is the same as Algorithm 3.3

Remark 3.3. As in the regression case discussed in Politis(2013)[33], the Fp method yields improved
coverage as compared to the Ff method since predictive residuals are inflated as compared to fitted
residuals. Interestingly, the FSp method is not much better than the FSf method in finite samples.
The reason is that when we studentize the predictive residuals, the aforementioned inflation effect
is offset by the simultaneously inflated bootstrap estimator σ̂∗ in the denominator. In the Monte
Carlo simulations of Section 3.7, we will see that the Fp, FSf and FSp methods have similarly good
performance while the Ff method is the worst, exhibiting pronounced undercoverage.

3.3. Asymptotic Properties of Forward Bootstrap

We now discuss the asymptotic validity of the aforementioned Forward Bootstrap methods. First

note that Step 3(c) of the Algorithm that concerns the construction of φ̂
∗

is identical to the related
construction of the bootstrap statistic routinely used to derive confidence intervals for φ; see e.g.
Freedman(1984)[19].

Theorem 3.1 (Freedman(1984)[19]). Let {Xt} be the causal AR(p) process (3.1) with Eεt = 0,
var(εt) = σ2 > 0 and E|εt|4 < ∞. Let {x1, · · · , xn} denote a realization from {Xt}. Then as
n→∞,

d0(L∗
(√

n(φ̂
∗
− φ̂)

)
,L
(√

n(φ̂− φ
)

)
P−→ 0 (3.5)

where L,L∗ denote probability law in the real and bootstrap world, and d0 is Kolmogorov distance.

For the next theorem, continuity (and twice differentiability) of the error distribution are assumed.

Theorem 3.2 (Boldin(1982)[4]). Let F̂n be the empirical distribution of fitted residuals {ε̂t} centered
to mean zero. Let Fε be the distribution of errors ε satisfying the assumptions of Theorem 3.1 and
supx |F ′′ε (x)| <∞. Then, for any integer h ≥ 1,

sup
x
|F̂n(x)− Fε(x)| = Op(1/

√
n) (3.6)

Recall the notation Yt = (Xt, Xt−1, · · · , Xt−p+1)′. Then,

X∗n+1 =
(
1 Y ′n

)
φ̂+ ε∗n+1
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Xn+1 =
(
1 Y ′n

)
φ+ εn+1.

Using eq. (3.6) and Slutsky’s Lemma (together with induction on h) shows that

d0(L∗
(
X∗n+h

)
,L (Xn+h))

P−→ 0

from which it follows that the Ff prediction interval (3.3) is asymptotically valid. In view of Theorem
3.1, the stronger property of asymptotic pertinence also holds true.

Corollary 3.3. Under the assumptions of Theorem 3.1 and Theorem 3.2, the Ff prediction interval
(3.3) is asymptotically pertinent.

We now move on to the Fp interval that is based on predictive residuals. The following lemma
shows that the difference between fitted and predictive residuals is negligible asymptotically; still,
the difference may be important in small samples.

Lemma 3.4. Under the assumptions of Theorem 3.1, ε̂t − ε(t)t = Op(
1
n ).

The proof of Lemma 3.4 is given in the Appendix. The asymptotic equivalence of the fitted
and predictive residuals immediately implies that the Fp prediction interval is also asymptotically
pertinent.

Corollary 3.5. Under the assumptions of Theorem 3.1 and Theorem 3.2, the Fp prediction interval
of Algorithm 3.2 is asymptotically pertinent.

3.4. Backward Bootstrap: Definition and Asymptotic Properties

The difference of the backward bootstrap to the forward bootstrap is in the way they generate
the bootstrap pseudo-data X∗1 , · · · , X∗n. The idea of starting from the last p observations (that
are given) and generate the bootstrap-pseudo data {X∗n−p, · · · , X∗1} backward in time using the
backward representation

φ(B−1)Xt = φ0 + wt

was first proposed by Thombs and Schucany(1990)[39] and improved/corrected by Breidt, Davis
and Dunsmuir(1995)[10]; here, B is the backward shift operator: BkXt = Xt−k, and {wt} is the
backward noise defined by

wt =
φ(B−1)

φ(B)
εt. (3.7)

Thombs and Shucany(1990)[39] generated the fitted backward residuals ŵt as ŵt = xt − φ̂0 −
φ̂1xt+1 − · · · − φ̂pxt+p, for t = 1, 2, · · · , n − p. Then they fixed the last p values of the data, and

generated the pseudo series backwards through the following backwards recursion, x∗t = φ̂0+φ̂1x
∗
t+1+

· · ·+ φ̂px
∗
t+p+w∗t , for t = n−p, n−p−1, · · · , 1 with w∗t being generated i.i.d. from F̂w, the empirical

distribution of the (centered) ŵts.
However, as pointed out by Breidt et al. (1995)[10], although the backward errors wts are uncor-

related, they are dependent. So it is not advisable to resample {w∗t } as i.i.d. from F̂w. Nevertheless,
the forward errors εt are independent; so we can generate ε∗t i.i.d. from F̂n. After obtaining the ε∗t s,
we are then able to generate the bootstrapped backward noise w∗t using the bootstrap analog of
(3.7), i.e.,

w∗t =
φ̂(B−1)

φ̂(B)
ε∗t .
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3.4.1. Algorithm for Backward Bootstrap with Fitted Residuals

Our algorithm for backward bootstrap with fitted residuals is exactly the same as that of Breidt et
al. (1995)[10]. However, we also propose the backward bootstrap with predictive residuals which has
better finite sample properties. In addition, we address the construction of prediction intervals via
either unstudentized or studentized predictive roots.

Algorithm 3.5. Backward bootstrap with fitted residuals (Bf)

1-2. same as the steps in Algorithm 3.1.
3. Center the fitted residuals: let rt = ε̂t − ¯̂ε for t = p+ 1, · · · , n, and ¯̂ε = (n− p)−1

∑n
p+1 ε̂t, the

empirical distribution of rt is denoted by F̂n.

(a) Choose a large positive integer M and create the independent bootstrap pseudo-noise
ε∗−M , · · · , ε∗n, ε∗n+1, · · · from F̂n; then generate the bootstrap backward noises {w∗t , t =
−M, · · · , n} recursively as follows:

w∗t =

{
0, t < −M
φ̂1w

∗
t−1 + · · ·+ φ̂pw

∗
t−p + ε∗t − φ̂1ε∗t+1 − · · · − φ̂pε∗t+p, t ≥ −M

(b) Fix the last p values,i.e., x∗n = xn, · · · , x∗n−p+1 = xn−p+1, and then generate a bootstrap
realization {X∗t } by the backward recursion:

x∗t =

{
φ̂0 + φ̂1x

∗
t+1 + · · ·+ φ̂px

∗
t+p + w∗t t = n− p, n− p− 1, · · · , 1

xt t = n, n− 1, · · · , n− p+ 1.

(c) Based on the pseudo-data {x∗1, · · · , x∗n}, re-estimate the coefficients φ by LS estimators

φ̂
∗

= (φ̂0
∗
, φ̂1
∗
, · · · , φ̂p

∗
)′ as in step 1. Then compute the future bootstrap predicted values

x̂∗n+1, · · · , x̂∗n+h via:

x̂∗n+t = φ̂0
∗

+

p∑
j=1

φ̂j
∗
x̂∗n+t−j for t = 1, · · · , h

where x̂∗n+t−j = x∗n+t−j when t ≤ j.
(d) Compute the future bootstrap observations x∗n+1, x

∗
n+2, · · · , x∗n+h through the last p obser-

vations by the forward recursion:

x∗n+t = φ̂0 +

p∑
j=1

φ̂jx
∗
n+t−j + ε∗n+t for t = 1, 2, · · · , h.

(e) Calculate a bootstrap root replicate as

x∗n+h − x̂∗n+h

4. Steps (a)-(e) in the above are repeated B times, and the B bootstrap replicates are collected in
the form of an empirical distribution whose α-quantile is denoted q(α).
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5. Compute the predicted future values x̂n+1 · · · , x̂n+h by following recursion:

x̂n+t = φ̂0 +

p∑
j=1

φ̂j x̂n+t−j for t = 1, · · · , h.

Note that when t ≤ j, x̂n+t−j = xn+t−j
6. Construct the (1− α)100% equal-tailed predictive interval for Xn+h as

[x̂n+h + q(α/2), x̂n+h + q(1− α/2)]. (3.8)

3.4.2. Algorithm for Backward Bootstrap with Predictive Residuals

Algorithm 3.6. Backward bootstrap with predictive residuals (Bp)

1-2. Same as steps 1-2 in Algorithm 3.2

3-6. Change the ε̂t into ε̂
(t)
t , the predictive residuals defined in step 2 of Algorithm 3.2; the rest is

the same as in Algorithm 3.5.

3.4.3. Algorithm for Backward Studentized Bootstrap with Fitted Residuals

Algorithm 3.7. Backward studentized bootstrap with predictive residuals (BSf)
This algorithm is the same as Algorithm 3.5 except steps 3(e) and 6 that should be taken as steps
3(e) and 6 of Algorithm 3.3.

3.4.4. Algorithm for Backward Studentized Bootstrap with Predictive Residuals

Algorithm 3.8. Backward bootstrap with predictive residuals (BSp)

Change the ε̂t into ε̂
(t)
t , the predictive residuals defined in step 2 of Algorithm 3.2; the rest is the

same as in Algorithm 3.7.

Remark 3.4. The asymptotic validity of the backward bootstrap prediction interval with fitted
residuals, i.e., interval (3.8), has been proven by Breidt et al. (1995)[10]; it is not hard to see that
the property of asymptotic pertinence also holds true here. In view of Lemma 3.4, the backward
bootstrap prediction interval with predictive residuals is also asymptotically pertinent, and the same
is true for the studentized methods.

Remark 3.5. Similarly to the forward bootstrap methods—see Remark 3.3—, the Bp and BSf
methods give improved coverage compared to the Bf method but the technique of predictive residuals
does not add much in the studentized case (BSp); see the simulations of Section 3.7.

3.5. Generalized Bootstrap Prediction Intervals

Chatterjee and Bose(2005)[14] introduced the generalized bootstrap method for estimators ob-
tained by solving estimating equations. The LS estimators of the AR coefficients is a special case.
With a bootstrapped weight (wn1, · · · , wnn) in the estimating equations, the generalized boot-
strapped estimators are obtained simply by solving the bootstrapped estimating equations. The
generalized bootstrap method is computationally fast because we do not need to generate the
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pseudo-series; instead we just resample the weights (wn1, · · · , wnn) from some distribution, e.g.,
Multinomial(n; 1/n, · · · , 1/n).

Inspired by the idea of generalized bootstrap, we now propose a new bootstrap approach for
bootstrap prediction intervals in linear AR models.

Algorithm 3.9. Generalized bootstrap with fitted residuals (Gf)

1-2. Same as the steps in Algorithm 3.1
3. (a) Calculate the bootstrapped estimator of the coefficients

φ̂
∗

= (X ′WX)−1X ′WY,

where X =


1 xn−1 · · · xn−p
1 xn−2 · · · xn−p−1
...

...
...

...
1 xp · · · x1

, Y =


xn
xn−1

...
xp+1


and W is a diagonal matrix whose diagonal elements (w1, · · · , wn−p) are sampled from
Multinomial (n− p; 1/(n− p), · · · , 1/(n− p)).

(b) Compute the future bootstrap predicted values X̂∗n+1, · · · , X̂∗n+h by the recursion:

X̂∗n+t = φ̂0
∗

+

p∑
j=1

φ̂j
∗
X̂∗n+t−j for t = 1, · · · , h,

and the future bootstrap observations X∗n+1, X
∗
n+2, · · · , X∗n+h by the recursion:

X∗n+t = φ̂0 +

p∑
j=1

φ̂jX
∗
n+t−j + ε∗n+t, for t = 1, 2, · · · , h;

as usual, X̂∗n+t−j = X∗n+t−j = xn+t−j when t ≤ j, and ε∗n+1, . . . , ε
∗
n+h are sampled

i.i.d. from the empirical distribution of the (centered) fitted residuals. Finally, calculate
the bootstrap predictive root replicate as X∗n+h − X̂∗n+h.

4-6. Same as the corresponding steps from Algorithm 3.1.

The Generalized bootstrap can also be performed using the predictive residuals.

Algorithm 3.10. Generalized bootstrap with predictive residuals (Gp)
The algorithm is identical to Algorithm 3.9 with the following changes: replace step 2 of Algorithm
3.9 with step 2 of Algorithm 3.2, and use the predictive residuals instead of the fitted residuals in
step 3[b] of Algorithm 3.9.

Under regularity conditions, Chatterjee and Bose(2005)[14] proved the consistency of the Gen-

eralized bootstrap in estimating the distribution of
√
n(φ̂− φ), i.e., equation (3.5). Using Theorem

3.2 and Lemma 3.4, it then follows that both Gf and Gp prediction intervals are asymptotically
pertinent.

Remark 3.6. Chatterjee and Bose(2005)[14] shows that the resampling conditional variance of√
nσ−1n (φ̂

∗
− φ̂) is consistent for the asymptotic variance of

√
n(φ̂ − φ). Note that there’s a σ−1n in

the first expression, where σ2
n is the variance of wi. If we sample the weight (w1, · · · , wn) from a

multinomial distribution and the variance is 1 − 1/(n − p), the difference between the conditional

variance of (φ̂
∗
− φ̂) and σ−1n (φ̂

∗
− φ̂) is of order O( 1

n2 ),which is negligible.
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3.6. Joint Prediction Intervals

Having observed the time series stretch {X1, · · · , Xn}, we may wish to construct joint, i.e., simulta-
neous, prediction intervals for {Xn+1, · · · , Xn+H} for some H ≥ 1. Let a positive integer h ≤ H, and
denote by g(Yn;φ) the theoretical MSE-optimal predictor of Xn+h based on Yn = (Xn, · · · , Xn−p+1).

The true Xn+h, the practical predictor X̂n+h, and the predictive root are given as follows:

Xn+h = g(Yn;φ) +

h−1∑
j=0

ψjεn+h−j (3.9)

X̂n+h = g(Yn; φ̂) (3.10)

Xn+h − X̂n+h =
(
g(Yn;φ)− g(Yn; φ̂)

)
+

h−1∑
j=0

ψjεn+h−j . (3.11)

Under the linear AR model (3.1), g(·) is a linear function of Yn whose coefficients only depend on φ;

similarly, the ψj are the coefficients of the power series expansion of φ−1(z), i.e., they only depend
on φ.

Resampling is extremely useful for the construction of univariate prediction intervals but it is
absolutely indispensable for joint prediction intervals. To see why, note that the objective is to esti-
mate the distribution of the predictive root (3.11). The first difficulty is in capturing the distribution

of the first term g(Yn;φ)− g(Yn; φ̂) in (3.11); this term is quite small compared to the second term

Uh =
∑h−1
j=0 ψjεn+h−j . Nevertheless, even if we ignore the first term, the major difficulty is that the

random variables U1, . . . , UH are dependent. If we assume the {εt} are i.i.d. N(0, σ2), then U1, . . . , UH
has a multivariate normal distribution given Yn = y. One could estimate its covariance matrix, and
form the joint prediction intervals for {Xn+1, · · · , Xn+H} based on Normal theory. However, this

method not only ignores the variability from estimating φ by φ̂, i.e., the first term g(Yn;φ)−g(Yn; φ̂)
in (3.11), but it relies on the assumption of normal errors that is nowdays unrealistic.

Nevertheless, the bootstrap can construct joint/simultaneous prediction intervals in a straight-
forward manner (and without resorting to unrealistic assumptions) since the bootstrap can mimic
a multivariate distribution as easily as a univariate one. In our case, we use the bootstrap to mimic
the multivariate distribution of a collection of predictive roots or studentized predictive roots.

To construct the joint prediction intervals using one of the bootstrap methods based on predictive
roots, the easiest procedure is to approximate the distribution of the maximum predictive root
MH = maxh=1,...,H |Xn+h − X̂n+h| by that of its bootstrap analog.

Algorithm 3.11. Joint prediction intervals based on maximum predictive root

1. Choose any one of the aforementioned bootstrap methods, i.e., forward, backward or generalized,
with fitted or predictive residuals.

2. For each of the B bootstrap replications, construct all H bootstrap predictive roots X∗n+h−X̂∗n+h
for h = 1, . . . ,H, and let M∗H = maxh=1,...,H |X∗n+h − X̂∗n+h|.

3. Collect the B replicates of M∗H in the form of an empirical distribution whose α-quantile is
denoted qH(α).

4. Construct the H intervals

[X̂n+h − qH(1− α), X̂n+h + qH(1− α)] for h = 1, . . . ,H (3.12)

where the hth interval is a prediction interval for Xn+h; the above H intervals have
joint/simultaneous coverage of (1− α)100% nominally.
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5. Under the necessary regularity conditions that would render each individual prediction inter-
val to be asymptotically valid and/or pertinent, the H simultaneous intervals (3.12) would be
likewise asymptotically valid and/or pertinent.

Recall that the prediction error variance, i.e., the conditional/unconditional variance of Xn+h −
X̂n+h, equals σ2(

∑h−1
j=0 ψ

2
j ), i.e., it is an increasing function of h. Since the intervals (3.12) are of

the type plus/minus the same constant for all h, it follows that the intervals (3.12) are unbalanced
in the sense that the interval for h = h1 would have bigger (individual) coverage as compared to the
interval for h = h2 when h2 > h1. In order to construct balanced prediction intervals the concept of
studentized predictive roots comes in handy.

Algorithm 3.12. Joint prediction intervals based on maximum studentized predictive root

1. Choose any one of the aforementioned bootstrap methods, i.e., forward, backward or generalized,
with fitted or predictive residuals.

2. For each of the B bootstrap replications, construct all H studentized bootstrap predictive roots

X∗n+h − X̂∗n+h
σ̂∗(
∑h−1
j=0 ψ̂

∗2
j )1/2

for h = 1, . . . ,H,

and let

M̄∗H = max
h=1,...,H

|X∗n+h − X̂∗n+h|
σ̂∗(
∑h−1
j=0 ψ̂

∗2
j )1/2

.

3. Collect the B replicates of M̄∗H in the form of an empirical distribution whose α-quantile is
denoted q̄H(α).

4. Construct the H intervals

[X̂n+h − σ̂(

h−1∑
j=0

ψ̂2
j )1/2q̄H(1− α), X̂n+h + σ̂(

h−1∑
j=0

ψ̂2
j )1/2q̄H(1− α)] for h = 1, . . . ,H; (3.13)

the above H intervals are asymptotically balanced, and have joint/simultaneous coverage of
(1− α)100% nominally.

5. Under the necessary regularity conditions that would render each individual prediction inter-
val to be asymptotically valid and/or pertinent, the H simultaneous intervals (3.13) would be
likewise asymptotically valid and/or pertinent.

3.7. Monte Carlo Studies

In this section, we evaluate the performance of all the 10 aforementioned bootstrap methods, i.e., four
forward methods with fitted or predictive residuals using nonstudentized or studentized predictive
root (Ff, Fp, FSf and FSp), four corresponding backward methods (Bf, Bp, BSf and BSp) and two
generalized bootstrap methods (Gf and Gp) in the case of an AR(1) model: Xt+1 = φ1Xt + εt with

(1) φ1 = 0.9 or 0.5;
(2) errors εt i.i.d. from N(0,1) or two-sided exponential(Laplace) distribution rescaled to unit

variance;
(3) 500 ‘true’ datasets each of size n = 50 or 100, and for each ‘true’ dataset creating B = 1000

bootstrap pseudo-series;
(4) prediction intervals with nominal coverage levels of 95% and 90%.



L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 20

For the ith ‘true’ dataset, we use one of the bootstrap methods to create B = 1000 bootstrap sam-
ple paths (step 4 of the algorithms), and construct the prediction interval (step 6 of the algorithms)
[Li, Ui]. To assess the corresponding empirical coverage level (CVR) and average length (LEN) of

the constructed interval, we also generate 1000 one-step ahead future values Yn+1,j = φ̂1xni + ε∗j for

j = 1, 2, · · · , 1000 where φ̂1 is the estimate from the ith ‘true’ dataset and xni is the ith dataset’s
last value. Then, the empirical coverage level and length from the ith dataset are given by

CV Ri =
1

1000

1000∑
j=1

1[Li,Ui](Yn+1,j) and LENi = Ui − Li

where 1A(x) is the indicator function of set A. Note that the ability to generate the future values
Yn+1,j independently from the bootstrap datasets allows us to estimate CV Ri in a more refined way
as opposed to the usual 0-1 coverage.

Finally, the coverage level and length for each bootstrap method is calculated by the average
{CV Ri} and {LENi} over the 500 ‘true’ datasets, i.e.

CV R =
1

500

500∑
i=1

CV Ri and LEN =
1

500

500∑
i=1

LENi.

Note, however, that the value of the last observation xni is different from dataset to dataset; hence
the coverage CV R represents an unconditional coverage probability, i.e., an average of the conditional
coverage probability discussed in the context of asymptotic validity.

normal φ1 = 0.5 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.930 3.848 0.490 0.881 3.267 0.386
Fp 0.940 4.011 0.506 0.895 3.405 0.406
Bf 0.929 3.834 0.500 0.880 3.261 0.393
Bp 0.941 4.017 0.521 0.896 3.410 0.410
FSf 0.942 4.036 0.501 0.894 3.391 0.395
FSp 0.941 4.028 0.493 0.894 3.393 0.399
BSf 0.941 4.016 0.514 0.894 3.388 0.402
BSp 0.942 4.033 0.500 0.896 3.402 0.398
Gf 0.930 3.847 0.483 0.881 3.264 0.389
Gp 0.940 4.007 0.502 0.895 3.402 0.399

n = 100
Ff 0.940 3.895 0.357 0.892 3.294 0.283
Fp 0.945 3.968 0.377 0.899 3.355 0.281
Bf 0.940 3.895 0.371 0.892 3.286 0.275
Bp 0.945 3.971 0.375 0.899 3.360 0.289
FSf 0.946 3.981 0.358 0.899 3.355 0.282
FSp 0.945 3.977 0.370 0.899 3.350 0.277
BSf 0.945 3.978 0.366 0.898 3.349 0.275
BSp 0.946 3.978 0.366 0.898 3.352 0.283
Gf 0.940 3.891 0.359 0.891 3.289 0.275
Gp 0.944 3.969 0.383 0.897 3.350 0.284

Table 1: Simulation Results of AR(1) with normal innovations and φ1 = 0.5
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normal φ1 = 0.9 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.933 3.906 0.489 0.884 3.306 0.395
Fp 0.943 4.063 0.513 0.898 3.443 0.411
Bf 0.927 3.824 0.485 0.878 3.255 0.388
Bp 0.939 4.007 0.516 0.893 3.402 0.408
FSf 0.945 4.107 0.515 0.898 3.450 0.411
FSp 0.945 4.099 0.506 0.899 3.444 0.408
BSf 0.939 4.018 0.502 0.892 3.397 0.403
BSp 0.940 4.032 0.501 0.894 3.406 0.399
Gf 0.928 3.838 0.490 0.878 3.261 0.394
Gp 0.938 3.999 0.505 0.892 3.393 0.406

n = 100
Ff 0.941 3.915 0.355 0.893 3.306 0.282
Fp 0.945 3.989 0.371 0.899 3.368 0.282
Bf 0.939 3.892 0.363 0.891 3.284 0.273
Bp 0.945 3.976 0.372 0.898 3.356 0.287
FSf 0.946 4.005 0.355 0.900 3.373 0.286
FSp 0.946 3.997 0.365 0.899 3.369 0.279
BSf 0.945 3.981 0.362 0.898 3.352 0.274
BSp 0.945 3.982 0.355 0.898 3.355 0.282
Gf 0.939 3.890 0.355 0.890 3.286 0.275
Gp 0.944 3.967 0.381 0.897 3.353 0.285

Table 2: Simulation Results of AR(1) with normal innovations and φ1 = 0.9

Laplace φ1 = 0.5 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.930 4.175 0.804 0.881 3.270 0.570
Fp 0.937 4.376 0.828 0.892 3.420 0.597
Bf 0.929 4.176 0.815 0.881 3.267 0.571
Bp 0.937 4.376 0.882 0.892 3.415 0.600
FSf 0.940 4.176 0.873 0.894 3.438 0.578
FSp 0.941 4.376 0.851 0.894 3.452 0.583
BSf 0.939 4.457 0.862 0.893 3.436 0.587
BSp 0.941 4.462 0.875 0.895 3.443 0.583
Gf 0.930 4.177 0.774 0.881 3.274 0.577
Gp 0.937 4.367 0.864 0.892 3.420 0.611

n = 100
Ff 0.939 4.208 0.612 0.891 3.274 0.431
Fp 0.943 4.302 0.638 0.897 3.344 0.439
Bf 0.940 4.220 0.616 0.892 3.274 0.429
Bp 0.943 4.290 0.618 0.896 3.340 0.431
FSf 0.945 4.343 0.622 0.898 3.363 0.431
FSp 0.945 4.349 0.629 0.898 3.362 0.429
BSf 0.945 4.338 0.618 0.898 3.362 0.435
BSp 0.945 4.340 0.615 0.898 3.357 0.424
Gf 0.940 4.238 0.627 0.892 3.285 0.424
Gp 0.943 4.305 0.638 0.897 3.355 0.439

Table 3: Simulation Results of AR(1) with Laplace innovations and φ1 = 0.5
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Laplace φ1 = 0.9 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.930 4.236 0.826 0.886 3.317 0.574
Fp 0.937 4.417 0.833 0.896 3.462 0.597
Bf 0.929 4.179 0.894 0.881 3.280 0.645
Bp 0.937 4.380 0.977 0.892 3.426 0.681
FSf 0.943 4.520 0.885 0.898 3.502 0.595
FSp 0.943 4.510 0.866 0.899 3.510 0.601
BSf 0.939 4.451 0.963 0.894 3.458 0.671
BSp 0.940 4.481 0.987 0.896 3.470 0.685
Gf 0.929 4.159 0.780 0.880 3.260 0.576
Gp 0.936 4.343 0.864 0.891 3.411 0.597

n = 100
Ff 0.940 4.229 0.620 0.892 3.286 0.429
Fp 0.944 4.321 0.636 0.897 3.358 0.428
Bf 0.940 4.225 0.618 0.891 3.270 0.423
Bp 0.943 4.302 0.626 0.896 3.336 0.427
FSf 0.946 4.367 0.620 0.899 3.382 0.428
FSp 0.946 4.365 0.627 0.899 3.380 0.423
BSf 0.945 4.356 0.624 0.898 3.365 0.431
BSp 0.945 4.353 0.617 0.898 3.356 0.416
Gf 0.940 4.233 0.620 0.892 3.285 0.418
Gp 0.943 4.316 0.641 0.896 3.348 0.436

Table 4: Simulation Results of AR(1) with Laplace innovations and φ1 = 0.9

Tables 1, 2, 3, 4 summarize the findings of our simulation; the entry for st.err is the standard
error associated with each average length.

Some important features are as follows:

• As expected, all bootstrap prediction intervals considered are characterized by some degree
of under-coverage. It is encouraging that the use of predictive residuals appears to partially
correct the under-coverage problem in linear autoregression as was the case in linear regression;
see Politis(2013)[33].

• The Fp, Bp and Gp methods using predictive residuals have uniformly improved CVRs as
compared to Ff, Bf and Gf using fitted residuals. The reason is that the finite-sample empirical
distribution of the predictive residuals is very much like a re-scaled (inflated) version of the
empirical distribution of fitted residuals.

• The price to pay for using predictive residuals is the increased variability of the interval length
in all unstudentized methods. However this is a finite-sample effect since asymptotically the
omission of a finite number of points from the scatterplot makes little difference; see Lemma
3.4.

• The four studentized methods have similar performance to the respective unstudentized meth-
ods using predictive residuals. Thus, using predictive residuals is not deemed necessary for the
studentized methods although it does not seem to hurt; see also Remark 3.3.

• The coverages of the Gf intervals resemble that of Ff and Bf intervals. Similarly, the coverages
of Gp intervals resemble that of Fp and Bp intervals.

3.8. Alternative Approaches to Bootstrap Prediction Intervals for Linear
Autoregression Model

In this section, we will discuss other existing methods for constructing the prediction intervals for
linear autoregression. We will compare all the methods mentioned in this section with all the methods
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previously proposed in this paper in simulation.

3.8.1. Bootstrap Prediction Intervals Based on Studentized Predictive Roots

Box and Jenkins(1976)[9] proposed a widely used prediction interval for an AR(p) model as

[x̂n+h + zα/2σ̂(

h−1∑
j=0

ψ̂2
j )1/2, x̂n+h + z1−α/2σ̂(

h−1∑
j=0

ψ̂2
j )1/2], (3.14)

where ψ̂j , j = 0, 1, · · · are the coefficients of the power series ψ̂(B) = φ̂−1(B), zα is the αth quantile
of a standard normal variate, and σ̂ is an estimate of σ, the standard deviation of the innovations
{εt}. This prediction interval only takes into account the variability from the errors but does not
account for the variability from the estimation of the model, thus it is not asymptotically pertinent;
in fact, it is the analog of the naive interval (2.5). Furthermore, this interval is asymptotically valid
only under the assumption of Gaussian errors which is nowdays unrealistic.

To relax the Gaussianity assumption, and to capture the variability from both the errors and the
model estimation, Masarotto (1990)[26] proposed a bootstrap method to construct the prediction
interval as follows: for each pseudo series x∗1, · · · , x∗n, · · · , x∗n+h, generate the studentized bootstrap
predictive root

r∗ =
x∗n+h − x̂∗n+h

σ̂∗(
∑h−1
j=0 ψ̂

∗2
j )1/2

, (3.15)

where σ̂∗ and ψ̂∗2j are obtained from the pseudo-series in the same way σ̂ and ψ̂j obtained from the
true series. Suppose we generate B values of r∗, and order them as (r∗1 , · · · , r∗B). Letting k = bBαc,
the (1− α)100% prediction interval is

[x̂n+h + r∗kσ̂(

h−1∑
j=0

ψ̂2
j )1/2, x̂n+h + r∗B−kσ̂(

h−1∑
j=0

ψ̂2
j )1/2]. (3.16)

The main difference of the above from our studentized prediction intervals is that we make it a
point—either using Backward or Forward bootstrap—to fix the last p bootstrap pseudo values to
the values present in the original series with regard to generating out-of-sample bootstrap data
and/or predictors. For example, we obtain the bootstrap predicted value x̂∗n+h and future value
x∗n+h in Algorithm 3.1 steps 3(c) and 3(d) using the original datapoints xn−p+1, . . . , xn, thus ensuring
the property of asymptotic pertinence, i.e., capturing the estimation error. As already mentioned,
Masarotto’s interval (3.16) is not asymptotically pertinent. A computationally more efficient version
of Masarotto’s method was proposed by Grigoletto(1998)[21].

3.8.2. Bootstrap Prediction Intervals Based on Percentile Methods

By contrast to the root/predictive root methods adopted in this paper, some authors have chosen to
construct bootstrap prediction intervals via a percentile method reminiscent of Efron’s [16] percentile
method for confidence intervals. To elaborate, the percentile method uses the bootstrap distribution
of X∗n+h to estimate the distribution of the future value Xn+h while we use the distribution of the
bootstrap predictive root (studentized or not) to estimate the distribution of the true predictive
root. The methods in this subsection are all based on the percentile method.
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Cao et al. (1997)[11] proposed a computationally fast bootstrap method in order to relax the
Gaussianity assumption implicit in the Box/Jenkins interval (3.14). Conditionally on the last p
observations, they only generate the future bootstrap observations only instead of generating the
whole bootstrap series up to x∗n+h. i.e. they define x∗s = xs, for s = n − p + 1, · · · , n, and then
compute the future pseudo-data by the recursion:

x∗t = φ̂0 + φ̂1x
∗
t−1 + · · ·+ φ̂px

∗
t−p + ε̂∗t for t = n+ 1, · · · , n+ h. (3.17)

As was the case with the Box/Jenkins interval (3.14), the prediction interval of Cao et al. (1997)[11]
does not make any attempt to capture the variability stemming from model estimation.

Alonso, Peña, Romo(2002)[1] and Pascual, Romo and Ruiz(2004)[31] used a different way to
generate the future bootstrap values; they used the recursion

x∗s = φ̂∗0 + φ̂∗1x
∗
s−1 + · · ·+ φ̂∗px

∗
s−p + ε̂∗s for t = n+ 1, · · · , n+ h (3.18)

where x∗s = xs, for s = n−p+1, · · · , n. Notably, recursion (3.18) generates the future pseudo-values

using the parameters φ̂
∗

instead of φ̂ as is customary; e.g., compare with recursion (3.17). We will call
the percentile interval based on (3.18), the APR/PRR bootstrap method; note that the APR/PRR
interval does consider the variability from the model estimation albeit in a slightly different than
usual fashion.

Alonso, Peña, Romo(2002)[1] also considered the possibility that the order p is not fixed but
allowed to increase with the sample size, i.e., the well-known AR-sieve bootstrap. Mukhopadhyay
and Samaranayake(2010)[28] also used the APR/PRR method in an AR-Sieve context together with
an ad hoc inflation of the scale of the bootstrap errors in order to improve coverage.

3.8.3. Monte Carlo Studies

In the following two tables, we provide simulation results with an AR(1) model with φ1 = 0.5 for
the aforementioned methods: Box/Jenkins (BJ), Cao et al. (1997), APR/PRR and Masarotto (M).
These should be compared to our 10 methods presented in Tables 1 and 3.

normal φ1 = 0.5 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

BJ 0.934 3.832 0.402 0.880 3.216 0.338
M 0.946 4.510 0.599 0.898 3.792 0.493

Cao 0.917 3.720 0.532 0.871 3.199 0.417
APR/PRR 0.930 3.858 0.498 0.880 3.268 0.390
n = 100

BJ 0.943 3.887 0.275 0.892 3.262 0.231
M 0.948 4.514 0.430 0.898 3.793 0.348

Cao 0.936 3.853 0.392 0.888 3.262 0.291
APR/PRR 0.939 3.893 0.368 0.891 3.283 0.283

Table 5: Simulation Results of AR(1) with normal innovations and φ1 = 0.5



L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 25

Laplace φ1 = 0.5 nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

BJ 0.923 3.812 0.603 0.885 3.199 0.506
M 0.942 4.827 0.960 0.897 3.817 0.692

Cao 0.921 4.065 0.863 0.873 3.197 0.605
APR/PRR 0.930 4.211 0.832 0.882 3.279 0.573
n = 100

BJ 0.931 3.877 0.456 0.894 3.254 0.383
M 0.946 4.802 0.668 0.897 3.789 0.479

Cao 0.938 4.198 0.650 0.888 3.245 0.452
APR/PRR 0.940 4.226 0.628 0.892 3.282 0.434

Table 6: Simulation Results of AR(1) with Laplace innovations and φ1 = 0.5

To summarize our empirical findings:

• The BJ method has similar coverage rates as APR/PRR and our Ff method when the error
is normal. However, when the errors have Laplace distribution, the BJ method performs very
poorly.

• Our forward and backward methods with fitted residuals (Ff and Bf) outperform both Cao
and APR/PRR methods. This conclusion is expected and consistent with the discussion in the
previous sections.

• Our methods with predictive residuals (Fp and Bp) and the studentized methods
(FSf,FSp,BSf,BSp) are the best performing in terms of coverage.

• Masarotto’s (M) method has similar performance to our FSf method; this was somewhat
expected in view of Remark 3.2 but it is also deserving of further discussion—see Remark 3.7
in what follows.

3.8.4. More Monte Carlo: AR(2) model

In this subsection, we provide simulation results based on an AR(2) model:

Xt = 1.55Xt−1 − 0.6Xt−2 + εt.

Tables 7 and 8 present the coverages using both normal and Laplace innovations; for each type of
innovation we generate 500 data sets each of size n = 50 or 100; as before, for each data set, we
generate B = 1000 pseudo-series. The results are qualitatively similar to the AR(1) simulations.
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normal errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

BJ 0.926 3.771 0.402 0.868 3.165 0.337
M 0.942 4.098 0.515 0.894 3.455 0.413

Cao 0.905 3.640 0.560 0.859 3.150 0.424
APR/PRR 0.926 3.931 0.523 0.875 3.324 0.410

Ff 0.931 3.933 0.521 0.883 3.328 0.417
Fp 0.946 4.171 0.543 0.902 3.527 0.434
Bf 0.926 3.850 0.499 0.874 3.254 0.394
Bp 0.942 4.100 0.527 0.897 3.471 0.424
FSf 0.946 4.185 0.547 0.901 3.521 0.441
FSp 0.945 4.159 0.537 0.899 3.496 0.431
BSf 0.941 4.082 0.517 0.893 3.429 0.408
BSp 0.941 4.085 0.513 0.894 3.443 0.409
Gf 0.926 3.858 0.524 0.875 3.270 0.416
Gp 0.941 4.098 0.541 0.895 3.470 0.430

n = 100 CVR LEN st.err CVR LEN st.err
BJ 0.939 3.862 0.274 0.885 3.241 0.230
M 0.945 4.002 0.361 0.897 3.370 0.281

Cao 0.931 3.816 0.393 0.879 3.218 0.286
APR/PRR 0.937 3.904 0.361 0.887 3.296 0.282

Ff 0.939 3.908 0.358 0.889 3.295 0.280
Fp 0.945 4.026 0.366 0.899 3.399 0.283
Bf 0.938 3.893 0.367 0.889 3.294 0.277
Bp 0.946 4.026 0.377 0.898 3.384 0.286
FSf 0.946 3.020 0.362 0.898 3.384 0.286
FSp 0.945 4.014 0.360 0.897 3.381 0.278
BSf 0.945 4.003 0.368 0.897 3.379 0.286
BSp 0.945 4.016 0.368 0.897 3.371 0.279
Ff 0.938 3.895 0.369 0.888 3.284 0.280
Fp 0.945 4.007 0.369 0.899 3.389 0.284

Table 7: Simulation Results of AR(2) model Xt = 1.55Xt−1− 0.6Xt−2 + εt with normal innovations
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Laplace errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

BJ 0.918 3.755 0.580 0.877 3.151 0.487
M 0.940 4.488 0.839 0.894 3.489 0.576

Cao 0.915 3.994 0.841 0.864 3.151 0.599
APR/PRR 0.929 4.235 0.800 0.880 3.335 0.596

Ff 0.931 4.252 0.828 0.883 3.322 0.582
Fp 0.942 4.529 0.873 0.898 3.537 0.613
Bf 0.929 4.200 0.814 0.878 3.266 0.570
Bp 0.939 4.448 0.859 0.893 3.469 0.601
FSf 0.943 4.569 0.858 0.899 3.563 0.611
FSp 0.943 4.563 0.871 0.899 3.564 0.620
BSf 0.940 4.507 0.881 0.894 3.493 0.596
BSp 0.940 4.483 0.832 0.894 3.479 0.586
Gf 0.928 4.201 0.825 0.878 3.279 0.592
Gp 0.939 4.456 0.874 0.893 3.486 0.606

n = 100 CVR LEN st.err CVR LEN st.err
BJ 0.929 3.842 0.440 0.890 3.224 0.369
M 0.944 4.358 0.596 0.896 3.371 0.420

Cao 0.934 4.151 0.644 0.883 3.213 0.443
APR/PRR 0.938 4.219 0.615 0.887 3.256 0.419

Ff 0.939 4.206 0.566 0.889 3.271 0.410
Fp 0.944 4.357 0.645 0.897 3.387 0.430
Bf 0.937 4.194 0.600 0.888 3.259 0.421
Bp 0.943 4.343 0.653 0.896 3.367 0.438
FSf 0.945 4.374 0.591 0.897 3.388 0.421
FSp 0.944 4.377 0.620 0.898 3.393 0.424
BSf 0.944 4.363 0.623 0.896 3.372 0.429
BSp 0.944 4.369 0.637 0.897 3.377 0.432
Gf 0.938 4.199 0.604 0.888 3.258 0.417
Gp 0.944 4.344 0.630 0.896 3.366 0.427

Table 8: Simulation Results of AR(2) model Xt = 1.55Xt−1−0.6Xt−2 + εt with Laplace innovations

3.8.5. More Monte Carlo: conditional coverages in an AR(1) model

We now revert to the AR(1) model in order to investigate the conditional coverage of some intervals
of interest. Recall that the nature of the previous simulations resulted in average coverages since
each of the 500 ‘true’ datasets had a different last value.

In order to investigate conditional coverages, we now fix the last value of each of the ‘true’
datasets to some chosen value; the ‘true’ datasets are then generated using backward bootstrap with
Xn fixed. Tables 9 and 10 compare the Masarotto (M) method with our four forward methods. As
discussed in Section 3.8.1, Masarotto’s method is a forward studentized method; the only difference
between Masarotto’s method to our FSf method is that Masarotto does not fix the last p values of
the bootstrap series to match the ones from the original series.
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normal errors nominal coverage 95% nominal coverage 90%
Xn = 3 CVR LEN st.err CVR LEN st.err

M 0.947 4.108 0.368 0.899 3.450 0.290
FSf 0.951 4.216 0.355 0.905 3.540 0.272
FSp 0.951 4.222 0.337 0.905 3.535 0.264
Ff 0.946 4.125 0.342 0.898 3.466 0.269
Fp 0.951 4.217 0.341 0.904 3.537 0.265

Xn = 2 CVR LEN st.err CVR LEN st.err
M 0.945 4.002 0.362 0.899 3.384 0.283

FSf 0.947 4.045 0.357 0.902 3.417 0.274
FSp 0.947 4.049 0.349 0.902 3.413 0.263
Ff 0.943 3.959 0.350 0.895 3.350 0.270
Fp 0.947 4.047 0.358 0.902 3.415 0.270

Xn = 1 CVR LEN st.err CVR LEN st.err
M 0.944 3.960 0.364 0.897 3.340 0.282

FSf 0.944 3.957 0.369 0.897 3.336 0.279
FSp 0.945 3.968 0.366 0.897 3.335 0.269
Ff 0.939 3.877 0.370 0.891 3.273 0.275
Fp 0.944 3.966 0.380 0.898 3.340 0.269

Xn = 0 CVR LEN st.err CVR LEN st.err
M 0.945 3.956 0.366 0.897 3.329 0.283

FSf 0.944 3.937 0.371 0.895 3.313 0.281
FSp 0.944 3.949 0.374 0.895 3.312 0.272
Ff 0.939 3.861 0.379 0.889 3.252 0.281
Fp 0.943 3.944 0.389 0.896 3.318 0.273

Table 9: Simulation Results of AR(1) model Xt = 0.5Xt−1 + εt with normal innovations when
n = 100.

Laplace errors nominal coverage 95% nominal coverage 90%
Xn = 3 CVR LEN st.err CVR LEN st.err

M 0.946 4.475 0.594 0.897 3.473 0.422
FSf 0.948 4.562 0.572 0.901 3.557 0.401
FSp 0.948 4.568 0.581 0.902 3.563 0.410
Ff 0.944 4.424 0.558 0.895 3.465 0.398
Fp 0.947 4.521 0.578 0.900 3.537 0.410

Xn = 2 CVR LEN st.err CVR LEN st.err
M 0.944 4.366 0.602 0.897 3.392 0.412

FSf 0.946 4.407 0.592 0.899 3.426 0.404
FSp 0.946 4.403 0.597 0.900 3.434 0.407
Ff 0.940 4.265 0.579 0.893 3.338 0.397
Fp 0.944 4.359 0.593 0.898 3.410 0.407

Xn = 1 CVR LEN st.err CVR LEN st.err
M 0.943 4.326 0.614 0.896 3.343 0.426

FSf 0.944 4.329 0.613 0.896 3.339 0.424
FSp 0.944 4.333 0.607 0.897 3.352 0.422
Ff 0.938 4.188 0.601 0.889 3.259 0.420
Fp 0.942 4.286 0.610 0.894 3.331 0.427

Xn = 0 CVR LEN st.err CVR LEN st.err
M 0.944 4.324 0.613 0.896 3.336 0.429

FSf 0.943 4.316 0.622 0.895 3.321 0.429
FSp 0.944 4.310 0.606 0.896 3.334 0.431
Ff 0.938 4.172 0.608 0.889 3.238 0.432
Fp 0.941 4.267 0.609 0.894 2.316 0.439

Table 10: Simulation Results of AR(1) model Xt = 0.5Xt−1 + εt with Laplace innovations when
n = 100.
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The CVRs in Tables 9 and 10 represent conditional coverages given the chosen value for Xn. As
expected, the worst coverage is associated with the Ff method. Our other three methods, FSf, FSp
and Fp all have very accurate CVRs.

Remark 3.7. Recall that Masarotto’s intervals are asymptotically valid but not pertinent. However,
they appear to have accurate conditional coverages. To further shed light on this phenomenon, recall
that the distribution of the bootstrap predictive root depends on Xn = xn since

X∗n+1 − X̂∗n+1 = (φ̂− φ̂∗)xn + ε∗n+1. (3.19)

Since φ̂ − φ̂∗ = Op(1/
√
n), it is apparent that the term (φ̂ − φ̂∗)xn is small compared to the

error term ε∗n+1; this is why using the wrong xn—as Masarotto’s method does—can still yield
accurate coverages. The situation is similar for studentized bootstrap roots since the first term
of the numerator contains a term including xn. Nevertheless, there is no reason to forego using
the correct xn in the bootstrap predictive root (3.19). To elaborate, Masarotto replaces the term

(φ̂ − φ̂∗)xn in (3.19) with (φ̂ − φ̂∗)X∗n where X∗n is random (with mean 0). If xn is near zero and
X∗n happens to be near its mean, then the terms match well; but there is an issue of unnecessary
variability here that is manifested with higher standard errors of the lengths of the Masarotto
intervals, and also with inflated CVRs—but this inflation is due to a fluke, not a bona fide capturing
of the predictor variability. Now if xn is large (in absolute value), there is an issue of bias in the
centering of the Masarotto intervals but this is again masked by the unnecessary/excess variability

of the term (φ̂ − φ̂∗)X∗n. Thus, adjusting the last p values of the bootstrap series to match the
original ones is highly advisable in an AR(p) model. Furthermore, it becomes crucial in situations
with heteroscedastic errors as in eq. (1.2) where the scale of the error also depends on these last p
values.

4. Bootstrap prediction intervals for nonlinear AR models

The linear AR model (3.1) is, of course, the simplest special case of the additive model (1.1).
Nevertheless, there are situations where the autoregression function m(·) is nonlinear. Furthermore,
the errors could have (conditional) heteroscedasticity which would bring us to the more general
model (1.2).

As it is cumbersome to provide general theory covering all nonlinear AR models we will address
in detail two prominent examples. Section 4.1 focuses on the Threshold AutoRegressive (TAR)
models in which the autoregression function m(·) is only piecewise linear. Section 4.3 discusses the
Autoregressive Conditional Heteroskedasticity (ARCH) models in which the variance of the error εt
conditional on Xt−1, . . . , Xt−p is σ2(Xt−1, . . . , Xt−p) as in (1.2).

The predictive analysis of nonlinear AR models, including the nonparametric AR models of Sec-
tion 5, differs from the analysis of linear AR models in two fundamental ways:

• There is no immediate way of formulating a Backward Bootstrap procedure in the nonlin-
ear/nonparametric AR case; this is due to the difficulty in propagating the error backwards
via the nonlinear autoregression function. However, the Forward Bootstrap applies verbatim
including the possibility of resampling the predictive residuals.

• It is not easy to derive the h-step ahead optimal predictors in general when h > 1.

To elaborate on the last point, note that models (1.1) and (1.2) are tailor-made for one-step
ahead prediction; under the causality assumption (1.3), the quantity m(Xn, . . . , Xn−p+1) appearing
there is nothing other than the the conditional mean E(Xn+1|Xn, . . . , Xn−p+1) which is the MSE-
optimal predictor of Xn+1 given {Xs, s ≤ n}. For h > 1 one might consider iterating the one-step
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ahead optimal predictor in order to recursively impute the missing data Xn+1, · · · , Xn+h−1 required
to finally predict Xn+h. In a (causal) linear AR model, this imputation procedure indeed leads to
the optimal h-step ahead predictor; however, there are no guarantees that iteration will give an
optimal—or even reasonable—predictor in the nonlinear case.

Thus, in what follows we focus on the h = 1 case paired with the following concrete recommen-
dation: if indeed h-step ahead prediction intervals are desired with h > 1, then work directly with
the model

Xt = m(Xt−h, ..., Xt−h−p+1) + σ(Xt−h, ..., Xt−h−p+1)εt (4.1)

instead of model (1.2) whether σ(·) is constant or not. Notably, all the procedures discussed
in this paper are scatterplot-based so they immediately extend to cover the scatterplot of Xt

vs. (Xt−h, ..., Xt−h−p+1) that is associated with model (4.1).

4.1. Bootstrap prediction intervals for TAR models

Threshold autoregressive (TAR) models were introduced by H. Tong more than 30 years ago; see
Tong (2011) [40] for a review. A TAR(p) model is a special case of the additive model (1.1) where
the autoregression function m(·) is piecewise linear. For example, a two-regime TAR(p) is defined
by (1.1) letting

m(Xt−1, · · · , Xt−p) = (φL0 + φL1Xt−1 + · · ·+ φLpXt−p)1{Xt−d < C}

+ (φR0 + φR1 Xt−1 + · · ·+ φRpXt−p)1{Xt−d ≥ C} (4.2)

where d is an integer in [1, p], C is the threshold of the two regimes, and both AR models φL and

φR are assumed causal; a multiple-regime TAR model is defined analogously.
TAR models can be estimated in a straightforward way from the scatterplot; see e.g., Chan (1993)

[13]. For example, in the TAR(p) model (4.2), one can estimate φL0 , φ
L
1 , · · · , φLp by Least Squares (LS)

using only the points of the scatterplot of Xt vs. (Xt−1, · · · , Xt−p) that correspond to Xt−d < C;
similarly, one can estimate φR0 , φ

R
1 , . . . , φ

R
p by Least Squares using only the points that correspond

to Xt−d ≥ C. The asymptotic theory is immediate as long as the number of scatterplot points in
either regime increases in proportion to the sample size. If the threshold C is unknown, it can be
estimated (also via LS) at a rate that is faster than

√
n so that the limit distribution of the LS

estimators remains unaffected; see Li and Ling (2012) [25] and the references therein.
The Algorithms for the four Forward bootstrap prediction interval methods (Ff, Fp, FSf, and FSp)

under model (4.2) are identical to the corresponding ones from Section 3 with the understanding that
LS estimation—both in the real and in the bootstrap world—is performed as described above, i.e.,
using only the points of the scatterplot that correspond to the relevant regime. It is also immediate
to show the asymptotic pertinence of all four Forward bootstrap prediction intervals under standard
conditions. Sufficient conditions are Conditions 1–3 of Chan (1993) [13], i.e., that Xt satisfying (4.2)
is a stationary ergodic Markov process with finite 4th moments, and that the AR innovations εt
possess a uniformly continuous and strictly positive density function.

4.2. Monte Carlo studies: TAR(1) case

We now present some simulation results using the simple TAR(1) model: Xt = m(Xt−1) + εt where
m(x) = 0.5x if x < 0 but m(x) = 0.9x if x ≥ 0. The value of the threshold C = 0 was treated as
unknown; it was estimated from the data by minimizing Residual Sum of Squares over the range
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from the 15th to the 85th percentile of the data. If the LS estimates of either φL or φR turned out
not causal, then the simulation reverted to fitting a linear AR model covering both regimes.

The construction of the simulation parallels the ones in Section 3, and the results are qualitatively
similar with the Ff being inferior to the other three: Fp, FSf, and FSp; see Tables 11 and 12.

Normal nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.917 4.061 0.630 0.861 3.403 0.504
Fp 0.937 4.354 0.630 0.889 3.668 0.513
FSf 0.936 4.398 0.717 0.885 3.658 0.563
FSp 0.935 4.332 0.637 0.884 3.614 0.514

n = 100
Ff 0.930 3.957 0.409 0.876 3.334 0.310
Fp 0.940 4.117 0.387 0.890 3.472 0.304
FSf 0.939 4.112 0.425 0.889 3.458 0.326
FSp 0.939 4.112 0.389 0.888 3.451 0.304

Table 11: Simulation Results of TAR(1) with normal innovations when threshold is unknown.

Laplace nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err

Ff 0.925 4.332 0.940 0.874 3.420 0.669
Fp 0.940 4.689 0.999 0.895 3.686 0.672
FSf 0.940 4.775 1.088 0.895 3.744 0.756
FSp 0.939 4.721 1.059 0.894 3.689 0.718

n = 100
Ff 0.935 4.227 0.623 0.884 3.304 0.456
Fp 0.943 4.425 0.624 0.896 3.460 0.457
FSf 0.943 4.446 0.672 0.895 3.457 0.485
FSp 0.943 4.457 0.653 0.896 3.469 0.467

Table 12: Simulation Results of TAR(1) with Laplace innovations when threshold is unknown.

4.3. Bootstrap prediction intervals for ARCH models

Autoregressive Conditional Heteroskedasticity (ARCH) models were introduced by Engle(1982)[4]
in an effort to model financial returns and the phenomenon of ‘volatility clustering’. In an ARCH(p)
model, the variance of the error εt conditional on Xt−1, . . . , Xt−p is a function of (Xt−1, . . . , Xt−p) as
in (1.2). So there is a interesting structure in the conditional variance of Xt given (Xt−1, . . . , Xt−p).
By contrast, in ARCH modeling it is customarily assumed that the conditional mean m(·) ≡ 0;
in practice this means that the data have had their conditional mean estimated and removed at a
preliminary step.

Thus, in this subsection, we consider data from a stationary and ergodic process {Xt} that satisfies
the ARCH(p) model:

Xt = σt−1(β)εt with σ2
t−1(β) = β0 + β1X

2
t−1 + · · ·+ βpX

2
t−p. (4.3)

In the above, β = (β0, β1, · · · , βp)′ are the unknown parameters to estimated that are assumed
nonnegative, and the errors εt are i.i.d. (0,1) with finite 4th moment, and independent of {Xs, s < t}.
ARCH models are typically estimated using quasi-maximum likelihood estimation (QMLE); see e.g.
Weiss(1986)[41], Bollerslev and Wooldridge (1992)[5], and Francq and Zakoian (2010) [17]. The
bootstrap prediction intervals of Reeves(2000)[35], Olave Robio (1999)[29] and Miguel and Olave
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(1999) [27] are all based on QMLE; they are of the ‘percentile’-type as the APR/PRR method
discussed in Section 3.8.2, and do not attempt to capture the estimation error similarly to Cao et
al. (1997)[11].

Note that eq. (4.3) can be considered as a model with multiplicative i.i.d. error structure. Model-
based resampling can be defined in an analogous way using multiplicative errors instead of additive.
Interestingly, model (4.3) also implies an additive model for the squared data, namely:

X2
t = β0 + β1X

2
t−1 + · · ·+ βpX

2
t−p + τ(Xt−1, . . . , Xt−p)ξt (4.4)

where ξt is a martingale difference, and τ(·) an appropriate function; for details, see Kokoszka and
Politis (2011) [24] and the references therein. Eq.(4.4) suggests that it may be possible to estimate
the ARCH parameters by Least Squares on the scatterplot of X2

t vs. (X2
t−1, · · · , X2

t−p). Indeed, this
is possible (and consistent) but not optimal. Instead, Bose and Mukherjee(2003) proposed a linear
estimator of the ARCH parameter by solving two sets of linear equations. This method does not
involve nonlinear optimization and gives a closed form expression, so it is computationally easier to
obtain the estimator compared to QMLE. Simulation results in Bose and Mukherjee(2003)[7] also
show that the proposed estimator performs better than the QMLE even for small sample sizes such
as n = 30.

Bose and Mukherjee(2009)[8] further proposed a weighted linear estimator (WLE) to estimate
the ARCH parameters, and a corresponding bootstrap weighted linear estimator (BWLE) that is
asymptotically valid. In the next subsection, we extend the method of Bose and Mukherjee(2009)[8],
and propose an algorithm for bootstrap prediction intervals for ARCH models based on BWLE.

4.3.1. Bootstrap Algorithm Based on BWLE with Fitted Residuals

Let {x1, · · · , xn} be the observations from model (4.3), let yi = x2i , zi = (1, yi, yi−1, · · · , yi−p+1)′,

Z =


z′p
z′p+1

...
z′n−1

 and Y =


yp+1

yp+2

...
yn

. Below is the algorithm for constructing bootstrap prediction

intervals for ARCH(p) model based on BWLE with fitted residuals (BWLEf).

Algorithm 4.1. Bootstrap algorithm based on BWLE with fitted residuals (BWLEf)

(1) Compute the preliminary weighted least squares estimator (PWLS) as β̂pr = (Z ′UZ)−1Z ′UY ,
where U is a (n− p)× (n− p) diagonal matrix whose ith diagonal term is

ui =
1

[(1 + yi) · · · (1 + yi+p−1)]
.

And then compute the weighted linear estimator (WLE) of β as

β̂n =
{ n−1∑
i=p

vi−p+1[ziz
′
i/(z

′
iβ̂pr)

2]
}−1{ n−1∑

i=p

vi−p+1[ziyi+1/(z
′
iβ̂pr)

2]
}
,

where vi = ui for i = 1, 2, · · · , n− p.

(2) Compute the residuals as ε̂t = xt/

√
β̂′nzt−1. Then center the residuals: r̂t = ε̂t− 1

n−p
∑n
i=p+1 ε̂i

for t = p+ 1, · · · , n. Denote the empirical distribution of r̂t as F̂ε.
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(3) (a) Generate a (n− p)× (n− p) diagonal matrix W whose diagonal elements (w1, · · · , wn−p)
are a sample from a multinomial (n− p, 1

n−p ,
1

n−p , · · · ,
1

n−p ) distribution.

(b) Compute the bootstrapped preliminary weighted least squares estimator (BPWLS) as β̂∗pr =

(Z ′WUZ)−1Z ′WUY and the bootstrapped weighted linear estimator (BWLE) β̂∗n as

{ n−1∑
i=p

wi−p+1vi−p+1[ziz
′
i/(z

′
iβ̂
∗
pr)

2]
}−1{ n−1∑

i=p

wi−p+1vi−p+1[ziyi+1/(z
′
iβ̂
∗
pr)

2]
}

(c) Compute H2
n = var(wi) = 1− 1

n−p and

x∗n+1 = σn(β̂n +
β̂n − β̂∗n
Hn

)ε∗n+1,

where σn(β) =
√
β0 + β1X2

n + · · ·+ βpX2
n−p+1, and ε∗n+1 is generated from F̂ε in step(2).

(4) Repeat step(3) B times and collect x∗n+1,1, · · · , x∗n+1,B in the form of an empirical distribution
whose α-quantile is denoted as q(α). Then the (1− α)100% equal-tailed predictive interval for
Xn+1 is given by

[q(α), q(1− α/2)] (4.5)

Remark 4.1. Note that under the ARCH model (4.3), E(Xn+1|Xs, s ≤ n) = 0 by construction,
so the interval (4.5) is always an interval around zero. However, the width of the interval crucially
depends on the last p values Xn, · · · , Xn−p+1, thereby capturing the ‘volatility’ of the process. In
addition, interval (4.5) can also capture potential asymmetry/skewness of the process as it will not
be exactly centered at zero.

Remark 4.2. There are other choices available for the preliminary weight U , bootstrapped prelim-
inary weight W and the bootstrap weight V as long as they satisfy assumption(W1) and equations
(11),(12),(17)-(19),(21) of Bose and Mukherjee(2009)[8]; see also Chatterjee and Bose(2005)[14] for
more examples of the bootstrapped preliminary weight W .

4.3.2. Bootstrap Algorithm Based on BWLE with Predictive Residuals

An advantage of using scatterplot-based estimators is that we can obtain the predictive residuals

through deleting one data-point from the scatterplot. To get the predictive residual ε̂
(t)
t , we can

exclude the pair (zt−1, yt) from the scatter plot of yk vs. zk−1 in Algorithm 4.1.

Algorithm 4.2. Bootstrap algorithm based on BWLE with predictive residuals (BWLEp)
To get the bootstrap algorithm based on BWLE with predictive residuals we only need to substitute

{ε̂(t)t , t = p+ 1, · · · , n} for {ε̂t, t = p+ 1, · · · , n} in step(2) of Algorithm 4.1; the rest is the same.

The following steps describe how to get the predictive residuals {ε̂(t)t , t = p+ 1, · · · , n} in detail.

1 Let Z(t) be the matrix Z excluding the row z′t−1, Y (t) be the vector Y excluding yt, U
(t) be the

diagonal matrix excluding the diagonal element ut−p.

2 Compute β̂
(t)
pr = (Z ′(t)U (t)Z(t))−1Z ′(t)U (t)Y (t), and

β̂(t)
n =

{ n−1∑
i=p,i 6=t−1

ui−p+1[ziz
′
i/(z

′
iβ̂

(t)
pr )2]

}−1{ n−1∑
i=p

ui−p+1[ziyi+1/(z
′
iβ̂

(t)
pr )2]

}
.

3 Finally compute the predictive residual ε̂
(t)
t = xt/

√
β̂
′(t)
n zt−1.
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4.3.3. Asymptotic Properties of BWLEf and BWLEp

Assume that the process {Xt, t ≥ 1} is stationary and ergodic and satisfies (4.3) and E(ε4t ) < ∞.
We further assume that the assumptions for all the weights V , U and W mentioned in Remark 4.2
are satisfied and the assumptions of Lemma 2 from Bose and Mukherjee(2009) hold. Under these
assumptions, Theorem 2 of Bose and Mukherjee(2009)[8] showed

sup{|F ∗n(x)− Fn(x)|;x ∈ Rp+1} = op(1) (4.6)

where Fn and F ∗n denote the cumulative distribution functions of
√
n(β̂n−β) and H−1n

√
n(β̂∗n− β̂n)

in the real and bootstrap world respectively.
Recall that in step (3)(c) of Algorithms 4.1 and 4.2, we employed eq. (4.6) to approximate the

distribution of β − β̂n by the distribution of
β̂n−β̂∗

n

Hn
. The result is that the prediction intervals from

Algorithms 4.1 and 4.2 are both asymptotically valid; they can also be called asymptotically pertinent
with an appropriate modification of the definition of pertinence to account for the multiplicative
model (4.3).

4.3.4. Bootstrap Algorithm Based on QMLE

Bootstrap prediction intervals for ARCH models based on QMLE were proposed by Reeves(2000)[35],
Olave Robio (1999)[29] and Miguel and Olave (1999) [27]; for easy reference, their algorithm can be
described as follows.

Algorithm 4.3. Bootstrap algorithm based on QMLE

1 Fit an ARCH(p) model to the data. Let β̂ = (β̂0, β̂1, · · · , β̂p)′ denote the QMLE estimates.

2 Calculate the residuals: ε̂t = xt/σt−1(β̂), for t = p + 1, · · · , n. And then center the residuals:
rt = ε̂t − ¯̂ε for t = p+ 1, · · · , n, where ¯̂ε = (n− p)−1

∑n
t=p+1 ε̂t.

3 (a) Use β̂ and residuals {ε̂t}, along with initial conditions u∗1 = x1, · · · , u∗p = xp to generate
{u∗t , t ≥ p+ 1} by recursion:

u∗t =
√
β̂0 + β̂1u∗2t−1 + · · ·+ β̂pu∗2t−p ε

∗
t ,

where ε∗t is a random draw from the pool of centered residuals {rt, t = p + 1, · · · , n}.
To ensure stationarity of the pseudo-series, generate n + m pseudo data for some large
positive m, i.e. {u∗1, · · · , u∗n, u∗n+1, · · · , u∗n+m}, and discard the first m data.

(b) Fit an ARCH(p) model to pseudo-data {x∗t = u∗t+m, t = 1, 2, · · · , n} and re-estimate the

QMLE β̂∗ = (β̂∗0 , β̂
∗
1 , · · · , β̂∗p)′.

(c) Fix the last p pseudo-data to the true data: x∗n−p+1 = xn−p+1, x
∗
n−p+2 = xn−p+2, · · · , x∗n =

xn and generate the future bootstrap value {x∗n+t, t ≥ 1} by the following recursion,

x∗n+t =
√
β̂∗0 + β̂∗1x

∗2
n+t−1 + · · ·+ β̂∗px

∗2
n+t−p ε

∗
n+t,

where ε∗n+t is a random draw from the centered residuals.
4 Repeat steps 3(a)-(c) B times and collect B bootstrap h-step ahead future values in the form of

empirical distribution whose α-quantile is denoted q(α). Construct the (1−α)100% equal-tailed
prediction intervals for Xn+h as

[q(α/2), q(1− α/2)].
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The above prediction interval is of the ‘percentile’-type as discussed in Section 3.8.2.

Remark 4.3. Our bootstrap Algorithm BWLEf and BWLEp are computationally faster and more
stable as compared to the bootstrap method based on QMLE because of the following two reasons.
First, BWLEf and BLWEp have closed form expressions of the solutions of the two linear equations
involved while QMLE requires numerical optimization. Secondly, there is no need to create pseudo-
series through recursion in Algorithms for BWLEf and BWLEp.

4.4. Monte Carlo Studies

We use Monte Carlo simulations to assess the performance of our two methods, BWLEf and BWLEp
from Algorithms 4.1 and 4.2, and the bootstrap method based on QMLE of Reeves(2000)[35], Olave
Robio (1999)[29] and Miguel and Olave (1999) [27]. We create 500 data sets for each of the following
scenarios: sample size n = 50, 100 or 200; innovations are from standard normal or Laplace (rescaled
to unit variance) distribution; data are generated from Model 1 or Model 2 listed below.

• Model 1: ARCH(1), Xt =
√

0.5 + 0.25X2
t−1 εt

• Model 2: ARCH(2), Xt =
√

0.1 + 0.2X2
t−2 εt

normal errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err
BWLEf 0.927 3.040 0.762 0.877 2.610 0.608
BWLEp 0.941 3.269 0.883 0.890 2.675 0.654
QMLE 0.924 2.964 0.657 0.873 3.507 0.523
n = 100 CVR LEN st.err CVR LEN st.err
BWLEf 0.940 3.098 0.607 0.890 2.607 0.491
BWLEp 0.946 3.203 0.631 0.896 2.655 0.496
QMLE 0.937 3.055 0.562 0.888 2.582 0.448
n = 200 CVR LEN st.err CVR LEN st.err
BWLEf 0.945 3.190 0.720 0.896 2.680 0.587
BWLEp 0.948 3.230 0.716 0.898 2.700 0.590
QMLE 0.943 3.152 0.650 0.894 2.661 0.545

Table 13: Simulation Results of ARCH(1) model 1 with normal innovations

Laplace errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err
BWLEf 0.931 3.428 1.457 0.883 2.645 1.080
BWLEp 0.943 3.811 1.735 0.892 2.773 1.128
QMLE 0.928 3.279 1.211 0.877 2.542 0.892
n = 100 CVR LEN st.err CVR LEN st.err
BWLEf 0.941 3.466 1.503 0.894 2.662 1.086
BWLEp 0.947 3.615 1.500 0.897 2.717 1.101
QMLE 0.937 3.334 1.228 0.887 2.575 0.919
n = 200 CVR LEN st.err CVR LEN st.err
BWLEf 0.941 3.320 0.882 0.892 2.559 0.644
BWLEp 0.944 3.378 0.865 0.893 2.577 0.631
QMLE 0.940 3.272 0.778 0.889 2.531 0.569

Table 14: Simulation Results of ARCH(1) model 1 with Laplace innovations
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normal errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err
BWLEf 0.926 1.339 0.337 0.875 1.124 0.275
BWLEp 0.943 1.477 0.407 0.894 1.193 0.295
QMLE 0.926 1.304 0.225 0.875 1.099 0.179
n = 100 CVR LEN st.err CVR LEN st.err
BWLEf 0.936 1.351 0.264 0.886 1.135 0.212
BWLEp 0.946 1.414 0.277 0.895 1.169 0.220
QMLE 0.936 1.332 0.189 0.887 1.125 0.151
n = 200 CVR LEN st.err CVR LEN st.err
BWLEf 0.942 1.374 0.237 0.892 1.154 0.198
BWLEp 0.948 1.407 0.252 0.898 1.173 0.202
QMLE 0.943 1.366 0.183 0.892 1.148 0.147

Table 15: Simulation Results of ARCH(2) model 2 with normal innovations

Laplace errors nominal coverage 95% nominal coverage 90%
n = 50 CVR LEN st.err CVR LEN st.err
BWLEf 0.930 1.599 1.485 0.883 1.242 1.105
BWLEp 0.944 1.852 2.051 0.896 1.324 1.130
QMLE 0.928 1.537 2.224 0.879 1.134 0.982
n = 100 CVR LEN st.err CVR LEN st.err
BWLEf 0.941 1.454 0.357 0.891 1.116 0.257
BWLEp 0.948 1.549 0.405 0.898 1.156 0.271
QMLE 0.939 1.434 0.419 0.890 1.103 0.245
n = 200 CVR LEN st.err CVR LEN st.err
BWLEf 0.939 1.486 0.509 0.890 1.145 0.365
BWLEp 0.943 1.523 0.500 0.893 1.165 0.380
QMLE 0.941 1.455 0.391 0.890 1.122 0.212

Table 16: Simulation Results of ARCH(2) model 2 with Laplace innovations

We compare the coverage levels(CVR) and length(LEN) of all the intervals constructed by the
three methods mentioned above with nominal coverage levels of 95% and 90%. Tables 13, 14, 15
and 16 show that the BWLEp method outperforms both BWLEf and QMLE with respect to the
coverage level but the variability of the interval length is increased as a price to pay for using
predictive intervals. Interestingly, BWLEf and QMLE have similar coverage level but the QMLE
has the smallest variance of interval length.

5. Bootstrap Prediction Intervals for Nonparametric Autoregression

In this section, we construct bootstrap prediction intervals in a general nonparametric autoregression
model fitted via kernel smoothing. As previously mentioned, the forward bootstrap method—in all
variations—is the unifying principle for bootstrap all AR models, linear or nonlinear. Thus, for
nonparametric AR models we also employ the forward bootstrap method with fitted or predictive
residuals as in Sections 3 and 4, and show that it properly estimates the distribution of the future
value capturing both the variability of the kernel estimator and the variability of the innovations
from the autoregression model.

In Section 5.1, we give the bootstrap procedure for a nonparametric autoregression with i.i.d. er-
rors, i.e., model (1.1). In Section 5.2, we extend the model allowing heteroscedastic errors, i.e.,
model (1.2). In either case, the functions m(·) and σ(·) are unknown but assumed smooth and εt ∼
i.i.d. (0, σ2); in (1.2), we further assume σ2 = 1. Monte Carlo simulations are given in Section 5.3.
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5.1. Nonparametric Autoregression with i.i.d Innovations

In this subsection, we consider a stationary and geometrically ergodic process of the form (1.1) with
the conditional mean function m(·) being unknown but assumed smooth. We first give the algorithms
using fitted residuals and predictive residuals and then discuss their asymptotic validity.

5.1.1. Forward Bootstrap Algorithm with Fitted and Predictive Residuals

Given a sample {x1, x2, · · · , xn}, let yt = (xt, xt−1, · · · , xt−p+1)′ as before. The resampling algo-
rithms for the predictive distribution of future value Xn+1 are as follows.

Algorithm 5.1. Forward Bootstrap with Fitted Residuals

(1) For y ∈ Rp, construct the Nadaraya-Watson kernel estimator m̂(·) as

m̂(y) =

∑n−1
t=p K(‖y−yt‖h )xt+1∑n−1
t=p K(‖y−yt‖h )

, (5.1)

where ‖·‖ is a norm in Rp, K(·) is compactly supported, symmetric density function on R with
bounded derivative, and satisfying

∫
K(v)dv = 1. The bandwidth satisfies h→ 0 but hn→∞.

(2) Compute the fitted residuals: ε̂i = xi − m̂(yi−1), for i = p+ 1, · · · , n
(3) Center the residuals: r̂i = ε̂i − (n− p)−1

∑n
t=p+1 ε̂t, for i = p+ 1, · · · , n.

(a) Sample randomly(with replacement) from the values r̂p+1, · · · , r̂n to create bootstrap
pseudo errors ε∗i , i = −M + p, · · · , n+ 1 for some large positive M .

(b) Set (x∗−M , x
∗
−M+1, · · · , x−M+p−1) equal to p consecutive values drawn from {x1, · · · , xn}.

Then generate x∗i , by the recursion:

x∗i = m̂(y∗i−1) + ε∗i for i = −M + p, · · · , n.

(c) Drop the first M ‘burn in’ observations to make sure that the starting values have an
insignificant effect. Then construct the kernel estimator m̂∗(·) from the bootstrap series
{x∗1, · · · , x∗n}, i.e., let

m̂∗(y) =

∑n−1
i=p K(

‖y−y∗i ‖
h )x∗i+1∑n−1

i=p K(
‖y−y∗i ‖

h )
(5.2)

where y∗t = (x∗t , x
∗
t−1, · · · , x∗t−p+1)′.

(d) Now fix the last p pseudo values to be the true observations, i.e., redefine y∗n = yn, and
then calculate the bootstrap predictor

X̂∗n+1 = m̂∗(y∗n) = m̂∗(yn)

and the future bootstrap observation

X∗n+1 = m̂(y∗n) + ε∗n+1 = m̂(yn) + ε∗n+1.

(e) Calculate the bootstrap predictive root replicate as X∗n+1 − X̂∗n+1.

(4) steps (a)-(e) in the above are repeated B times, and the B bootstrap predictive root replicates
are collected in the form of an empirical distribution whose α-quantile is denoted q(α).
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(5) Then, a (1− α)100% equal-tailed predictive interval for Xn+1 is given by

[m̂(yn) + q(α/2), m̂(yn) + q(1− α/2)] (5.3)

Estimating m(·) in the above could in principle be done via different smoothing methods, e.g., local
polynomials, splines, etc. We employ the Nadaraya-Watson kernel estimator m̂(·) just for simplicity
and concreteness. To define the predictive residuals, however, recall that the chosen estimator must
be scatterplot-based.

Algorithm 5.2. Forward Bootstrap with Predictive Residuals

(1) same as step(1) of Algorithm 5.1.
(2) Use the delete-xt dataset as described in Section 3.1.2 to compute the delete-one kernel esti-

mator

m̂(t)(y) =

∑n
i=p+1,i6=tK(‖y−yi−1‖

h )xi∑n
i=p+1,i6=tK(‖y−yi−1‖

h )
for t = p+ 1, · · · , n. (5.4)

Then calculate the predictive residuals: ε̂
(t)
t = xt − m̂(t)

t (yt−1) for t = p+ 1, · · · , n.

(3)-(5) Replace ε̂t by ε̂
(t)
t in Algorithm 5.1; the remaining steps are the same.

The studentized versions of Algorithm 5.1 and 5.2 are defined analogously to the ones in Section
3.

Algorithm 5.3. Forward Studentized bootstrap with fitted residuals (FSf) or predictive residuals
(FSp)
For FSf, define σ̂ and σ̂∗ to be the sample standard deviation of the fitted residuals ε̂t and bootstrap
residuals ε̂∗t respectively. For FSp, define σ̂ and σ̂∗ to be the sample standard deviation of the pre-

dictive residuals ε̂
(t)
t and their bootstrap analogs ε̂

∗(t)
t respectively.

Then, replace steps 3(e) and 6 of Algorithm 3.1 and/or 5.2 by the following steps:

3(e) Calculate a studentized bootstrap root replicate as (X∗n+1 − X̂∗n+1/σ̂
∗.

(6) Construct the (1− α)100% equal-tailed predictive interval for Xn+h as

[X̂n+1 + σ̂ q(α/2), X̂n+1 + σ̂ q(1− α/2)] (5.5)

where q(α) is the α-quantile of the empirical distribution of the B collected studentized bootstrap
roots.

5.1.2. Asymptotic Properties

In this subsection, we focus on a stationary and geometrically ergodic process of order p = 1; the
general case of order p is similar. Then, the nonparametric autoregression model takes the simple
form

Xt = m(Xt−1) + εt (5.6)

where the innovations {εt} are i.i.d. with mean zero, variance σ2, and distribution Fε that is contin-
uous with density fε that is strictly positive; as always, we assume the causality assumption (1.3).
To ensure {Xt} is geometrically ergodic, the following condition is sufficient:

(A) {Xt} obeys (5.6) with |m(x)| ≤ C1 + C2|x| for all x and some C1 <∞, C2 < 1.
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In a very important work, Franke, Kreiss and Mammen (2002) [18] showed the consistency of
the bootstrap in constructing confidence bands for the autoregression function in the nonparametric
model (5.6).

Theorem 5.1 (Franke, Kreiss and Mammen (2002) [18]). Consider a dataset X1 = x1, . . . , Xn = xn
from model (5.6). Assume assumption (A) given above, as well as assumptions (AB1)–(AB10) of
Franke, Kreiss and Mammen (2002) [18]. Also assume h→ 0 but hn→∞.
If h = O(n−1/5), then

d0(Fε, F̂n)
P−→ 0 as n→∞

where d0 is Kolmogorov distance, and F̂n is the empirical distribution of fitted residuals centered at
mean zero.
Furthemore, if h = o(n−1/5), then

d0(L∗(
√
nh{m̂(xn)− m̂∗(xn)}),L(

√
nh{m(xn)− m̂(xn)}) P−→ 0. (5.7)

Below is the analog of Lemma 3.4 in the nonparametric AR case; its proof is in the Appendix.

Lemma 5.2. Under the assumptions of Theorem 5.1 with h = O(n−1/5), we have ε̂t− ε̂(t)t = Op(
1
n )

as n→∞.

From the above results, the following corollary is immediate.

Corollary 5.3. Under the assumptions of Theorem 5.1 with h satisfying hn1/5 → c ≥ 0, we have:
If c > 0, then the prediction interval (5.3) is asymptotically valid, and the same is true for its analog
using predictive residuals, i.e., the interval of Algorithm 5.2. Similarly, the two studentized intervals
of Algorithm 5.3 (based on fitted or predictive residuals) are asymptotically valid.
If c = 0, the four intervals mentioned above are also asymptotically pertinent.

Remark 5.1. The condition hn1/5 → c > 0 leads to optimal smoothing in that the large-sample
MSE of m̂(xn) is minimized. In this case, however, the bias of m̂(xn) becomes of exact order
O(1/

√
hn) which is the order of its standard deviation, and (5.7) fails because the bootstrap can

not capture the bias term exactly. This is of course important for confidence interval construction—
for which (5.7) was originally developed—and is routinely solved via one of three approaches: (a)
plugging-in explicit estimates of bias in the two distributions appearing in (5.7); (b) using a band-
width satisfying hn1/5 → 0 leading to under-smoothing, i.e., making the bias of m̂(xn) negligible as
compared to the standard deviation; or (c) using the optimal bandwidth h ∼ cn−1/5 with c > 0 but
resampling based an over-smoothed estimator. Either of these approaches work—the simplest being
under-smoothing—but note that the problem is not as crucial for prediction intervals that remain
asymptotically valid in both cases c > 0 or c = 0. Furthermore, using the optimal bandwidth, the
quantity appearing in part (ii) of Definition 2.4 would be Op(1) instead of op(1) so the four intervals
mentioned in Corollary 5.3 could be called ‘almost’ pertinent in the sense that they capture correctly
the order of magnitude of the estimation error which is O(1/

√
hn).

Resampling based an over-smoothed estimator will be further explored in the next section.

5.2. Nonparametric Autoregression with Heteroscedastic Innovations

We now consider the nonparametric autoregression model (1.2). Similarly to Section 5.1, we use
Nadaraya-Watson estimators to estimate the unknown smooth functions m and σ. In particular,
m̂(y) is exactly as given in (5.1) while σ̂2(y) is defined as
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σ̂2(y) =

∑n−1
t=p K(‖y−yt‖h )(xt+1 − m̂(yt))

2∑n−1
t=p K(‖y−yt‖h )

(5.8)

where, for simplicity, we use the same bandwidth h as the one used for m̂(y).

Remark 5.2. As mentioned in Remark 5.1, in generating the bootstrap pseudo-series it may be
advantageous to use over-smoothed estimators of m and σ that will be denoted by m̂g and σ̂g
respectively; these are computed in the exact same way as m̂ and σ̂ but using an over-smoothed
bandwidth g instead of h that satisfies

g/h→∞ with h ∼ cn−1/5 for some c > 0. (5.9)

Such over-smoothing was originally proposed for bootstrap confidence intervals in nonparametric
regression by Härdle and Marron(1991)[23]. It can also be useful in the nonparametric AR model
(1.1) with i.i.d. innovations but it is particularly helpful in the heteroscedastic model (1.2).

5.2.1. Forward Bootstrap Algorithm with Fitted Residuals

Given a stationary sample {x1, x2, · · · , xn}, let yt = (xt, · · · , xt−p+1)′. The resampling algorithm for
the predictive distribution of future value Xn+1 is as follows:

Algorithm 5.4.

(1) Construct the estimates m̂(·) and σ̂2(·) by formulas (5.1) and (5.8).
(2) Compute the residuals:

ε̂i =
xi − m̂(yi−1)

σ̂(yi−1)
(5.10)

for i = p+ 1, · · · , n
(3) Center the residuals: r̂i = ε̂i − (n− p)−1

∑n
t=p+1 ε̂t, for i = p+ 1, · · · , n.

(a) Sample randomly (with replacement) from the values rp+1, · · · , rn to create bootstrap
pseudo errors ε∗i for i = −M + p, · · · , 1, 2, · · · , n + 1 where M is some large positive
integer.

(b) Set (x∗−M , x
∗
−M+1, · · · , x−M+p−1) equal to p consecutive values from {x1, · · · , xn}, and

then generate x∗i by the recursion:

x∗i = m̂g(y
∗
i−1) + σ̂g(y

∗
i−1)ε∗i for i = −M + p, · · · , n. (5.11)

(c) Drop the first M ‘burn in’ observations to make sure that the starting values have an
insignificant effect. And then construct the kernel estimator m̂∗ from the bootstrap series
{x∗1, · · · , x∗n} as in (5.2).

(d) Re-define the last p pseudo values X∗n = xn, · · · , X∗n−p+1 = xn−p+1, i.e., y∗n = yn where

y∗i = (x∗i , x
∗
i−1, · · · , xt−p+1)′. Then, compute the bootstrap root replicate as X∗n+1 − X̂∗n+1

where X̂∗n+1 = m̂∗(y∗n) = m̂∗(yn); recall that m̂∗ uses bandwidth h as the original estimator
m̂. Also let

X∗n+1 = m̂g(y
∗
n) + σ̂g(y

∗
n)ε∗n+1 = m̂g(yn) + σ̂g(yn)ε∗n+1.

(4) Steps (a)-(d) in the above are repeated B times, and the B bootstrap root replicates are collected
in the form of an empirical distribution whose α-quantile is denoted q(α).
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(5) Then, a (1− α)100% equal-tailed predictive interval for Xn+1 is given by

[m̂(yn) + q(α/2), m̂(yn) + q(1− α/2)] (5.12)

The corresponding Bootstrap Algorithm with Predictive Residuals is as follows.

5.2.2. Forward Bootstrap Algorithm with Predictive Residuals

Algorithm 5.5.

(1) same as step (1) of Algorithm 5.4.
(2) Use the delete-xt dataset to compute the delete-one kernel estimators m̂(t) by (5.4) and σ̂(t) by

σ̂(t)(y) =

∑n
i=p+1,i6=tK(‖y−yi−1‖

h )(xi − m̂(t)(yi−1))2∑n
i=p+1,i6=tK(‖y−yi−1‖

h )
. (5.13)

Then, calculate the predictive residuals:

ε̂
(t)
t =

xt − m̂(t)(yt−1)

σ̂(t)(yt−1)
for t = p+ 1, · · · , n. (5.14)

(3)-(5) Replace ε̂t by ε̂
(t)
t in Algorithm 5.4; the remaining steps are the same.

Remark 5.3. As in all nonparametric methods, m̂(y) and σ̂(y) will only be accurate when y is
in a dense area of the xt vs. yt−1 scatterplot so that local averaging is effective. Computing these
estimates in a sparse area of the scatterplot leads to inaccuracies in general but the problem is

compounded when computing predictive residuals. To see why, note that
∑n
i=p+1,i6=tK(‖yt−1−yi−1‖

h )
in the denominator of (5.4) and (5.13) could be zero or close to zero if yt−1 is far from {yi, i 6= t−1},
and the estimates m̂(t) and σ̂(t) may be ill-defined. Consider the case where K(

‖yt−1−yj−1‖
h ) 6= 0

for some j, and K(‖yt−1−yi−1‖
h ) is close to 0 for all i 6= t, j; then m̂(t)(yt−1) ≈ xj and σ̂(t)(yt−1) ≈

xj − m̂(t)(yj−1) ≈ 0. In this case, the denominator of (5.14) is close to while m̂(t)(yj−1) is close to

xj , and ε̂
(t)
t will be extremely large. To avoid these situations, we delete all ε̂

(t)
t that is not defined

or extremely large from the pool of predictive residuals.

5.2.3. Asymptotic Properties

For simplicity, we again focus on a stationary and geometrically ergodic process of order 1. Then
the nonparametric autoregression model with heteroscedastic innovations takes the simple form,

Xt = m(Xt−1) + σ(Xt−1)εt (5.15)

where the innovations {εt} are i.i.d. (0,1) and satisfy causality condition (1.3).

Theorem 5.4 (Franke, Kreiss and Mammen(2002) [18]). Consider a dataset X1 = x1, . . . , Xn = xn
from model (5.15), and choose the bandwidths h, g to satisfy (5.9). Under assumptions (AB1)-(AB12)
of Franke, Kreiss and Mammen(2002) [18] we have:

d0(L∗(
√
nh{m̂g(xn)− m̂∗(xn)}), (L(

√
nh{m(xn)− m̂(xn)})) P−→ 0,
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d0(L∗(
√
nh{σ̂g(xn)− σ̂∗(xn)}), (L(

√
nh{σ(xn)− σ̂(xn)})) P−→ 0,

and
d0(Fε, F̂n)

P−→ 0 as n→∞

where d0 is Kolmogorov distance, and F̂n is the empirical distribution of fitted residuals centered to
mean zero.

As before, we also have:

Lemma 5.5. Under the assumptions of Theorem 5.4, ε̂t − ε̂(t)t = Op(
1
n ) as n→∞.

From Theorem 5.4 and Lemma 5.5, the following corollary is immediate.

Corollary 5.6. Under the assumptions of Theorem 5.4, , the prediction interval (5.12) is asymp-
totically pertinent, and the same is true for its analog using predictive residuals, i.e., the interval of
Algorithm 5.5.

Note that we can also define intervals based on studentized predictive roots here as well; how-
ever, as mentioned in Remark 2.4, studentization offers little advantage on top of using studentized
residuals.

Remark 5.4. To elaborate on the last point, consider the case of fitted residuals; the case of
predictive residuals is similar. The predictive root is

Xn+1 − X̂n+1 = m(xn)− m̂(xn) + σ(xn)εn+1.

As in Remark 2.4, in order to get a simple estimate of the variance of Xn+1− X̂n+1 it is convenient
to omit the term m(xn)−m̂(xn) which is asymptotically negligible. This leads to the approximation

Xn+1 − X̂n+1 ' σ(xn)εn+1,

and the corresponding prediction variance estimate V̂ 2
n = σ̂2(xn). In the bootstrap world, we have

X∗n+1 − X̂∗n+1 = m̂g(xn)− m̂∗(xn) + σ̂g(xn)ε∗n+1 ' σ̂g(xn)ε∗n+1.

Thus, the interval based on the predictive root method would be based on the approximation

P (Xn+1 − X̂n+1 ≤ a) ' P ∗(X∗n+1 − X̂∗n+1 ≤ a)

for (almost) all a, which is approximately equivalent to

P (σ(xn)εn+1 ≤ a) ' P ∗(σ̂g(xn)ε∗n+1 ≤ a). (5.16)

By contrast, the studentized predictive roots, real-world and bootstrap, are given by

Xn+1 − X̂n+1

V̂n
= εn+1 and

X∗n+1 − X̂∗n+1

V̂ ∗n
= ε∗n+1.

So, the interval based on the studentized predictive root method would be based on the approxima-
tion

P (
Xn+1 − X̂n+1

V̂n
≤ a) ' P ∗(

X∗n+1 − X̂∗n+1

V̂ ∗n
≤ a)
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which is equivalent to

P (
σ(xn)

σ̂(xn)
εn+1 ≤ a) ' P ∗( σ̂g(xn)

σ̂∗(xn)
ε∗n+1 ≤ a). (5.17)

In the above, the error in the estimates σ̂(xn) and σ̂∗(xn) is Op(1/
√
hn) = Op(n

−2/5) while the
error in the estimate σ̂g(xn) is Op(g

2) which is of bigger order because of the suboptimal smoothing
employed in constructing σ̂g(·). It is this bigger term of order Op(g

2) that determines the accu-
racy of approximation (5.17) making it approximately equivalent to approximation (5.16). Hence,
the studentized root method does not promise to offer an advantage here. In fact, as the Monte
Carlo simulations of Section 5.3 show, the studentized root intervals FSf and FSp have identical
performance in practice as their unstudentized counterparts Ff and Fp.

5.3. Monte Carlo Studies

5.3.1. Simulation Results for Nonparametric Autoregression with i.i.d. Errors

We present Monte Carlo simulations to assess the performance of the bootstrap methods with fitted
and predictive residuals through average coverage level (CVR) and length (LEN) as defined in Section
3.7. To evaluate the performance of the bootstrap methods for nonparametric autoregression with
i.i.d. innovations, we use the following models, all of order p = 1.

• Model 1: Xt+1 = sin(Xt) + εt+1

• Model 2: Xt+1 = 0.8 log(3X2
t + 1) + εt+1

• Model 3: Xt+1 = −0.5 exp(−50X2
t )Xt + εt+1

Normal innovations nominal coverage 95% nominal coverage 90%
n = 100 CVR LEN st.err CVR LEN st.err

Ff 0.927 3.860 0.393 0.873 3.255 0.310
Fp 0.943 4.099 0.402 0.894 3.456 0.317
FSf 0.938 4.020 0.403 0.887 3.387 0.314
FSp 0.939 4.030 0.405 0.888 3.390 0.313

n = 200
Ff 0.938 3.868 0.272 0.886 3.263 0.219
Fp 0.948 4.012 0.283 0.899 3.385 0.231
FSf 0.945 3.966 0.280 0.894 3.339 0.222
FSp 0.945 3.970 0.282 0.895 3.344 0.228

Laplace innovations nominal coverage 95% nominal coverage 90%
n = 100

Ff 0.933 4.161 0.648 0.879 3.218 0.452
Fp 0.944 4.430 0.658 0.896 3.445 0.470
FSf 0.942 4.388 0.675 0.892 3.386 0.466
FSp 0.942 4.364 0.641 0.892 3.386 0.465

n = 200
Ff 0.937 4.122 0.460 0.885 3.198 0.329
Fp 0.943 4.275 0.455 0.895 3.341 0.341
FSf 0.943 4.250 0.473 0.893 3.293 0.333
FSp 0.941 4.234 0.447 0.893 3.299 0.327

Table 17: Nonparametric autoregression with i.i.d innovations-model 1
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As before, {εt} are i.i.d. N(0,1) or Laplace rescaled to unit variance; the kernel K(·) was the normal
density with bandwidth h chosen by cross validation. Note that the smaller sample size considered
here was n = 100 due to the reduced rate of convergence in nonparametric estimation.

Tables 17, 18 and 19 summarize the simulation results for each of the four Forward methods (Ff,
Fp, FSf, and FSp) under each model. The conclusions are similar as in the parametric cases, namely
that Fp, FSf, and FSp are all better than Ff. As before, using predictive residuals is important in the
unstudentized case but not so important in the studentized case as FSf and FSp have very similar
performance.

Normal innovations nominal coverage 95% nominal coverage 90%
n = 100 CVR LEN st.err CVR LEN st.err

Ff 0.928 3.870 0.388 0.875 3.260 0.308
Fp 0.946 4.143 0.393 0.900 3.495 0.305
FSf 0.940 4.051 0.393 0.890 3.407 0.309
FSp 0.941 4.049 0.387 0.891 3.407 0. 306

n = 200
Ff 0.936 3.877 0.297 0.883 3.270 0.238
Fp 0.948 4.053 0.295 0.899 3.418 0.238
FSf 0.943 3.992 0.302 0.893 3.359 0.241
FSp 0.944 3.999 0.292 0.894 3.364 0.234

Laplace innovations nominal coverage 95% nominal coverage 90%
n = 100 CVR LEN st.err CVR LEN st.err

Ff 0.932 4.175 0.639 0.880 3.237 0.449
Fp 0.944 4.458 0.649 0.898 3.472 0.464
FSf 0.942 4.414 0.667 0.893 3.415 0.466
FSp 0.941 4.380 0.631 0.893 3.406 0.452

n = 200
Ff 0.937 4.110 0.455 0.884 3.192 0.322
Fp 0.944 4.284 0.452 0.895 3.347 0.336
FSf 0.942 4.247 0.467 0.892 3.296 0.328
FSp 0.942 4.234 0.453 0.892 3.297 0.327

Table 18: Nonparametric autoregression with i.i.d innovations-model 2



L. Pan and D. Politis/Bootstrap prediction intervals for autoregressions 45

Normal innovations nominal coverage 95% nominal coverage 90%
n = 100 CVR LEN st.err CVR LEN st.err

Ff 0.932 3.832 0.369 0.881 3.236 0.282
Fp 0.940 3.946 0.380 0.892 3.332 0.296
FSf 0.940 3.945 0.372 0.891 3.323 0.280
FSp 0.940 3.944 0.376 0.891 3.322 0.288

n = 200
Ff 0.941 3.862 0.265 0.890 3.257 0.210
Fp 0.945 3.926 0.274 0.896 3.312 0.214
FSf 0.944 3.921 0.263 0.895 3.302 0.206
FSp 0.945 3.929 0.271 0.896 3.309 0.210

Laplace innovations nominal coverage 95% nominal coverage 90%
n = 100 CVR LEN st.err CVR LEN st.err

Ff 0.934 4.192 0.636 0.882 3.228 0.447
Fp 0.938 4.295 0.640 0.890 3.322 0.455
FSf 0.941 4.361 0.647 0.891 3.350 0.454
FSp 0.940 4.317 0.622 0.891 3.335 0.443

n = 200
Ff 0.939 4.143 0.478 0.889 3.205 0.327
Fp 0.941 4.190 0.467 0.893 3.269 0.337
FSf 0.943 4.226 0.471 0.894 3.268 0.324
FSp 0.942 4.206 0.460 0.894 3.273 0.329

Table 19: Nonparametric autoregression with i.i.d. innovations-model 3

5.3.2. Simulation Results for Nonparametric Autoregression with Heteroscedastic Errors

To evaluate the performance of the bootstrap methods for nonparametric autoregression with het-
eroscedastic innovations, we employed the following two models:

• Model 4: Xt = sin(Xt−1) +
√

0.5 + 0.25X2
t−1εt

• Model 5: Xt+1 = 0.75Xt + 0.15Xtεt+1 + εt+1.

Table 20 and 21 summarize the simulation results of model 4 and model 5 using an over-smoothed
resampling bandwidth, i.e., letting g = 2h where h is chosen by cross validation as in the previous
subsection. Doubling the original bandwidth h is a simple rule-of-thumb used in previous work in
nonparametric regression.

The main points from the simulation are as follows:

• As alluded to at the end of Section 5.2.3, the studentized root intervals FSf and FSp have
identical performance as their unstudentized counterparts Ff and Fp.

• As in the case of nonparametric regression with heteroscedasticity treated in Politis(2013)[33],
resampling predictive residuals gives improved coverage levels as compared to using the fitted
residuals.

• It is apparent that the coverages are not as accurate as in the previsously considered cases
of time series without heteroscedasticity of nonparametric form. Still the oversmoothing trick
seems to be a big part of rendering the CVRs associated with the Fp (or FSp) method rea-
sonable.

To confirm the last point above, we repeat the simulation without an an over-smoothed resampling
bandwidth, i.e., letting g = h; we omit the FSf and FSp entries as they are indistinguishable from
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their Ff and Fp counterparts. Tables 22 and 23 show the results that are characterized by extreme
undercoverage that is unacceptable. Using an over-smoothed resampling bandwidth appears to be a
sine qua non in the presence of conditional heteroscedasticity whose functional form is unknown.

g = 2h nominal coverage 95% nominal coverage 90%
normal innovations CVR LEN st.err CVR LEN st.err

n = 100
Ff 0.894 3.015 0.926 0.843 2.566 0.783
Fp 0.922 3.318 1.003 0.868 2.744 0.826
FSf 0.894 3.018 0.934 0.843 2.569 0.790
FSp 0.923 3.337 1.017 0.869 2.761 0.839

n = 200
Ff 0.903 2.903 0.774 0.848 2.537 0.647
Fp 0.921 3.164 0.789 0.863 2.636 0.654
FSf 0.903 2.986 0.779 0.847 2.534 0.652
FSp 0.921 3.168 0.796 0.863 2.638 0.657

Laplace innovations CVR LEN st.err CVR LEN st.err
n = 100

Ff 0.895 3.197 1.270 0.843 2.521 0.909
Fp 0.921 3.662 1.515 0.866 2.740 0.967
FSf 0.894 3.200 1.300 0.843 2.523 0.930
FSp 0.922 3.691 1.553 0.866 2.762 0.989

n = 200
Ff 0.905 3.028 0.955 0.851 2.395 0.747
Fp 0.921 3.285 1.029 0.864 2.514 0.776
FSf 0.904 3.026 0.972 0.850 2.392 0.757
FSp 0.921 3.294 1.041 0.864 2.520 0.783

Table 20: Heteroscedastic model 4 with g = 2h

g = 2h nominal coverage 95% nominal coverage 90%
normal innovations CVR LEN st.err CVR LEN st.err

n = 100
Ff 0.931 4.063 1.453 0.888 3.465 1.228
Fp 0.950 4.672 1.621 0.908 3.704 1.321
FSf 0.930 4.054 1.462 0.887 3.457 1.232
FSp 0.950 4.481 1.639 0.908 3.711 1.332

n = 200
Ff 0.941 4.034 1.322 0.898 3.427 1.113
Fp 0.952 4.262 1.404 0.909 3.556 1.173
FSf 0.940 4.029 1.326 0.898 3.422 1.117
FSp 0.953 4.262 1.411 0.910 3.557 1.178

Laplace innovations CVR LEN st.err CVR LEN st.err
n = 100

Ff 0.923 4.414 2.283 0.881 3.512 1.811
Fp 0.943 5.081 2.865 0.899 3.827 2.001
FSf 0.922 4.384 2.256 0.880 3.490 1.784
FSp 0.943 5.103 2.951 0.900 3.844 2.076

n = 200
Ff 0.933 4.222 1.484 0.888 3.338 1.151
Fp 0.945 4.594 1.656 0.900 3.525 1.249
FSf 0.932 4.204 1.475 0.887 3.323 1.149
FSp 0.945 4.597 1.661 0.900 3.530 1.255

Table 21: Heteroscedastic model 5 with g = 2h
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heteroscedastic nominal coverage 95% nominal coverage 90%
normal innovations CVR LEN st.err CVR LEN st.err

n = 100
Ff 0.838 2.630 1.093 0.776 2.238 0.930
Fp 0.871 2.889 1.193 0.804 2.391 0.989

n = 200
Ff 0.864 2.733 1.007 0.801 2.317 0.845
Fp 0.885 2.888 1.024 0.817 2.405 0.846

Laplace innovations CVR LEN st.err CVR LEN st.err
n = 100

Ff 0.847 2.719 1.349 0.785 2.147 1.000
Fp 0.878 3.094 1.571 0.812 2.330 1.063

n = 200
Ff 0.871 2.687 1.098 0.810 2.128 0.873
Fp 0.890 2.914 1.207 0.824 2.233 0.921

Table 22: Heteroscedastic model 4 without over-smoothed bandwidth

heteroscedastic nominal coverage 95% nominal coverage 90%
normal innovations CVR LEN st.err CVR LEN st.err

n = 100
Ff 0.884 3.619 1.575 0.831 3.079 1.317
Fp 0.911 3.969 1.732 0.856 3.290 1.414

n = 200
Ff 0.904 3.706 1.490 0.854 3.146 1.255
Fp 0.919 3.916 1.602 0.866 3.264 1.323

Laplace innovations CVR LEN st.err CVR LEN st.err
n = 100

Ff 0.880 3.886 2.351 0.829 3.085 1.841
Fp 0.906 4.452 3.852 0.850 3.354 2.066

n = 200
Ff 0.900 3.803 1.787 0.846 3.005 1.405
Fp 0.915 4.129 1.962 0.860 3.172 1.485

Table 23: Heteroscedastic model 5 without over-smoothed bandwidth

6. Conclusions

In the paper at hand, we present a comprehensive approach for the construction of prediction
intervals in AR models. The construction is based on predictive roots, studentized or not, and notions
of validity were defined and discussed. In addition, the usage of predictive residuals in model-based
resampling is proposed, and shown to improve coverage levels in finite samples.

There is a lot of previous work in the special case of linear AR models but the literature has
been lacking a unifying methodology. We survey the existing approaches and bring them under two
umbrellas: Backward vs. Forward bootstrap. The Backward bootstrap has been the most well-known
in the literature; we develop further the idea of the Forward bootstrap for prediction intervals, and
add the necessary steps needed for it to achieve conditional validity.

To date, little seems to be known concerning prediction intervals for nonlinear and/or nonpara-
metric autoregressions. We show that the Forward bootstrap can be equally applied to such models
with some care as regards the particulars; for example, bandwidth considerations are important in
the nonparametric case. All in all, it is apparent that the Forward bootstrap with fitted or predictive
residuals may serve as the unifying principle for prediction intervals across all types of AR models,
linear, nonlinear or nonparametric.
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Appendix A: Technical proofs.

Proof of Lemma 3.4.

Proof. Let M =


1 Xn−1 · · · Xn−p
1 Xn−2 · · · Xn−p−1
...

...
...

...
1 Xp · · · X1

, N =


Xn

Xn−1
...

Xp+1

;

also let Mt be the matrix after deleting the row Z ′t = (1, Xt−1, · · · , Xt−p) in M , and Nt be the
vector after deleting Xt in N . Then

φ̂ = (M ′M)−1M ′N

= [(M ′tMt)
−1ZtZ

′
t + Ip+1]−1(M ′tMt)

−1(M ′tNt + ZtXt)

= [Ip+1(1 +Op(
1

n
))]−1(M ′tMt)

−1M ′tNt(1 +Op(
1

n
))

= φ̂
(t)

+Op(
1

n
)

Here Xt = Op(1), ZtZ
′
t is a (p + 1) × (p + 1) matrix whose entries are of Op(1) while M ′tMt is a

(p+ 1)× (p+ 1) matrix whose entries are the summation of n bounded in probability terms; hence,

ZtZ
′
t = M ′tMt ·Op( 1

n ). Similarly ZtXt = M ′tNt ·Op( 1
n ). Thus, ε̂t − ε(t)t = Z ′t(φ̂

(t)
− φ̂) = Op(

1
n ).

Proof of Lemma 5.2.

Proof.

m̂(Xt−1) =

∑n−1
i=1 K(Xt−1−Xi

h )Xi+1∑n−1
i=1 K(Xt−1−Xi

h )

m̂(t)(Xt−1) =

∑n−1
i=1 K(Xt−1−Xi

h )Xi+1 −K(Xt−1−Xt−1

h )Xt∑n−1
i=1 K(Xt−1−Xi

h )−K(Xt−1−Xt−1

h )

=

∑n−1
i=1 K(Xt−1−Xi

h )Xi+1 −K(0)Xt∑n−1
i=1 K(Xt−1−Xi

h )−K(0)

let an =
∑n−1
i=1 K(Xt−1−Xi

h )Xi+1, δa = K(0)Xt; bn =
∑n−1
i=1 K(Xt−1−Xi

h ), δb = K(0). then

m̂(t)(Xt−1) =
an − δa
bn − δb

=
an
bn

(
1− δa/an
1− δb/bn

)

=
an
bn

(1− δa/an)(1 + δb/bn + (δb/bn)2 + o(δb/bn)2)

=
an
bn

+Op(1/n)

= m̂(Xt−1) +Op(1/n)

It follows that ε̂t − ε̂(t)t = Xt − m̂(Xt−1)− (Xt − m̂(t)(Xt−1)) = Op(1/n)
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Proof of Lemma 5.5.

Proof. We can prove in a similar way as in Lemma 5.2 that m̂(x)− m̂(t)(x) = Op(1/n) and σ̂(x)−
σ̂(t)(x) = Op(1/n). Then,

ε̂t − ε̂(t)t =
Xt − m̂(Xt−1)

σ̂(Xt−1)
− Xt − m̂(t)(Xt−1)

σ̂(t)(Xt−1)

=
Xt − m̂(Xt−1)− (Xt − m̂(t)(Xt−1))

σ̂(Xt−1)
(1 +Op(1/n))

= Op(1/n)(1 +Op(1/n)) = Op(1/n).
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