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Abstract

Anisotropic Turbulence and Protostellar Feedback in Molecular Clouds

by

Charles Edward Hansen
Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Christopher McKee, Chair

I investigate the decay and regeneration of turbulence in molecular clouds and the resulting
star formation in those clouds in the presence of protostellar feedback. Studies of turbulence
generally only consider isotropic turbulence, while the turbulence in molecular clouds may
be anisotropic. I perform a series of simulations of anisotropic turbulence and measure its
decay rate. I find that anisotropic turbulence decays slower than isotropic turbulence. When
I break the velocity dispersion into isotropic and anisotropic components, I find the decay
time is the crossing time of the isotropic component, which can be much slower than the
total velocity dispersion. As part of this study, I present a measure of anisotropy that can be
calculated in observations of molecular clouds. I also investigate the effects of compression
on turbulence. This is motivated by the need to replenish turbulent energy. Using a series of
simulations of contracting turbulence, I find that turbulence behaves as a monatomic ideal
gas under isotropic compression. I also find that compression in a single direction imparts
energy to that direction, but does not transfer that energy to the other two directions.

Finally, I perform a series of high resolution star formation simulations with adaptive
mesh refinement (AMR) including hydrodynamics, gravity, radiation, protostellar outflows
and protostellar luminosity. The simulations provide a self-consistent story of star formation,
all while matching observations. The matched observations include the masses of both stars
and prestellar cores, the clustering of cores and the luminosity function of protostars. In
this story of star formation, cores form on the Jeans length of the host cloud. Each core
forms a central star or binary, but also fragments repeatedly down 0.05 M¯ stars. The stellar
radiation prevents fragmentation below this mass scale, but is not important on larger scales.
The protostellar outflows eject 2/3 of the incoming mass, leaving 1/3 of the core mass for
stars.
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Chapter 1

Introduction

Stars are the basic building block of the universe. A complete theory of star formation
is essential to the understanding of everything in astrophysics from the formation of the
Earth to the formation and evolution of entire galaxies. Forming such a theory is one of the
most challenging goals of astrophysics. The difficultly lies in the extremely large dynamic
range of star formation and the multitude of physical processes involved. Star formation
begins in giant molecular clouds (GMCs) on scales of 100 pc and continues down to the
radius of the sun, which is over 1 billion times smaller. The fundamental physical processes
governing this transition to smaller sizes are gravity and turbulence. Radiation, magnetic
fields, thermodynamics, and molecular chemistry also play important roles in forming each
star.

Star formation in our galaxy takes place in molecular clouds ranging from a few pc
to 100 pc with observed masses of up to a few 106 M¯ (Williams & McKee 1997). These
molecular clouds are being pulled inwards by their own gravity, but pushed outwards by
supersonic turbulence (McKee & Ostriker 2007). These two effects nearly cancel each other
out, leaving only a few percent of cloud gas able to form stars in a dynamical time (Krumholz
& Tan 2007). The rate of this formation depends sensitively on the nature of the supersonic
turbulence, but many aspects of turbulence in molecular clouds are poorly understood.

One of the more important questions in turbulence is how long it lives. Observations
show that turbulence is ubiquitous in molecular clouds (Larson 1981; Solomon et al. 1987).
Molecular clouds themselves are thought to live for 20-30 million years (Blitz & Shu 1980;
Williams & McKee 1997; Blitz et al. 2007; Kawamura et al. 2009), suggesting turbulence
should live for at least that long. Simulations of turbulence, however, show that it should
decay in under ∼ 10 million years (Mac Low et al. 1998; Stone et al. 1998). If these decay
rates are correct, turbulence needs to be regenerated somehow. There are many candidates
for this, including protostellar outflows (Li & Nakamura 2006; Banerjee et al. 2007; Nakamura
& Li 2007; Wang et al. 2010), ionization from high-mass stars (Matzner 2002; Krumholz &
Matzner 2009), supernovae (Mac Low & Klessen 2004), and external accretion (Klessen &
Hennebelle 2010; Goldbaum et al. 2011). None of these mechanisms can work in all clouds,
leaving the overall picture of turbulence regeneration quite complicated.
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When turbulence does allow parts of the molecular cloud to collapse, that gas will
accumulate behind shocks and gather mass into prestellar cores. Once those cores reach
enough mass, they become gravitationally unstable and collapse into one or more protostars
(Shu 1977; McKee & Tan 2003). Gas from the cores will fall onto an accretion disk around
each protostar that will funnel the gas inwards. Magnetic fields in these accretion disks will
become twisted and power bipolar outflows. These outflows will eject or entrain over half of
the incoming mass (Matzner & McKee 2000). This means that typical observed cores will
be more massive than typical observed stars (Alves et al. 2007; Enoch et al. 2008).

The mass of the cores, and therefore the stars, should naively be set by the densities
and temperatures of the host molecular clouds. However, observations show that stars
have a universal mass function over a range of cloud Jeans masses (Kroupa 2002; Chabrier
2003; Bastian et al. 2010). This suggests that something must set a universal mass scale.
Possibilities include dust self-opacity (Low & Lynden-Bell 1976), gas-dust coupling (Larson
2005; Elmegreen et al. 2008), and protostellar radiation (Offner et al. 2009b; Krumholz et al.
2011).

These effects are all very complicated and require powerful simulations (Klein et al.
2007). These simulations must both incorporate a variety of physical effects and simulate
a wide dynamic range. Traditional fixed-grid codes have been developed for almost any set
of physics one would care to simulate, but they suffer from poor dynamic range and can-
not model the collapse of clouds into cores or cores into stars. Particle methods such as
smoothed-particle hydrodynamics (SPH) are great for capturing collapse, but are inaccurate
in simulating shocks and instabilities, which are essential for turbulence and for star forma-
tion (Agertz et al. 2007). My method of choice is adaptive mesh refinement (AMR), which
can simulate shocks like a fixed-grid code, but can refine grids around areas of collapse, like
a particle code (Truelove et al. 1998; Klein 1999).

In this dissertation, I investigate the means of maintaining turbulence in star forming
clouds and then the effects of protostellar feedback on star formation. This is done with
a series of simulations and detailed analysis of these simulations, including comparisons to
observations and analytic theories.

Turbulence simulations generally only consider isotropic turbulence, while molecular
clouds themselves have clear anisotropies. In Chapter 2, I use the ORION code to simulate
anisotropic turbulence and measure its decay rate. I find that anisotropic turbulence decays
slower than isotropic turbulence. When I break the velocity dispersion into isotropic and
anisotropic components, I find the decay time is the crossing time of the isotropic component,
which can be much slower than the total velocity dispersion. I also present a measure of
anisotropy that can be calculated in observations of molecular clouds. This chapter represents
a paper published in The Astrophysical Journal.

In Chapter 3, I investigate the effects of compression on turbulence. This is motivated
by the need to replenish turbulent energy. Using a series of simulations in ORION with
homologous contraction, I find that turbulence behaves as a monatomic ideal gas under
isotropic compression. I also find that compression in a single direction imparts energy to
that direction, but does not transfer that energy to the other two directions. This chapter
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is an outgrowth of Chapter 2 and is not submitted to any journal.
In Chapter 4, I perform a series of high resolution star formation simulations with

ORION AMR including hydrodynamics, gravity, radiation, protostellar outflows and pro-
tostellar luminosity. The simulations provide a self-consistent story of star formation, all
while matching observations. The matched observations include the IMF, the mass function
of observed cores, the clustering of cores and the luminosity function of protostars. In this
story of star formation, cores form on the Jeans length of the host cloud. Each core forms
a central star or binary, but also fragments repeatedly down 0.05 M¯ stars. The stellar ra-
diation prevents fragmentation below this mass scale, but is not important on larger scales.
The protostellar outflows eject 2/3 of the incoming mass, leaving 1/3 of the core mass for
stars. This chapter represents a paper in preparation to be submitted to The Astrophysical
Journal.
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Chapter 2

Anisotropy Lengthens the Decay
Time of Turbulence in Molecular
Clouds

Abstract

The decay of isothermal turbulence with velocity anisotropy is investigated using compu-
tational simulations and synthetic observations. We decompose the turbulence into isotropic
and anisotropic components with total velocity dispersions σiso and σani, respectively. We
find the decay rate of the turbulence depends on the crossing time of only the isotropic
component. A cloud of size L with significant anisotropy in its turbulence has a dissipation
time, tdiss = L/(2σiso). This translates into turbulent energy decay rates on the cloud scale
that can be much lower for anisotropic turbulence than for isotropic turbulence. To help fu-
ture observations determine whether observed molecular clouds have the level of anisotropy
required to maintain the observed level of turbulence over their lifetimes, we performed prin-
cipal component analysis on our simulated clouds. Even with projection effects washing out
the anisotropic signal, there is a measurable difference in axis-constrained principal compo-
nent analysis performed in directions parallel and perpendicular to the direction of maximum
velocity dispersion. When this relative difference, ψ, is 0.1, there is enough anisotropy for
the dissipation time to triple the expected isotropic value. We provide a fit for converting ψ
into an estimate for the dissipation time, tdiss.

2.1 Introduction

Observations show that supersonic velocity dispersions are ubiquitous in molecular
clouds (Larson 1981; Solomon et al. 1987). These velocity dispersions are commonly be-
lieved to be supersonic turbulence (Elmegreen & Scalo 2004). Supersonic turbulence is an
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important determinant in the density and velocity statistics of molecular clouds. The prob-
ability distribution function of the density in particular is essential for analytical models of
star formation (Padoan & Nordlund 2002; Krumholz & McKee 2005; Hennebelle & Chabrier
2008, 2009; Krumholz et al. 2009). As important as turbulence is for star formation, there
are few observational constraints on the evolution of turbulence over time. The difficulty
in estimating ages of clouds combined with the small cloud-to-cloud variation of measur-
able turbulence statistics (Heyer & Brunt 2004) make it hard to construct an evolutionary
sequence of turbulence. In principle, one could measure the decay rate of a cloud by mea-
suring the luminosity of dissipation structures, but the uncertainties are too high due to
energy sources other than turbulent decay. Another approach is to measure abundances of
molecules that are theoretically formed in turbulent dissipation structures due to reliance
on endothermic reactions. The dissipation rate should influence the amount of high tem-
perature gas available in the dissipation structures and that should in turn influence the
rate of the endothermic reactions. Attempts to explain the observed abundances of such
molecules (Falgarone et al. 1995, 2006; Godard et al. 2009) find they are dependent on many
parameters and cannot be used to extract a dissipation rate. Given the lack of observable
constraints on turbulent evolution, we must rely on theoretical arguments.

In the standard theory for isotropic incompressible turbulence (Kolmogorov 1941), en-
ergy from the largest scales cascades into smaller scales in a self-similar fashion until the
energy reaches a viscous scale and dissipates. In this scenario, turbulence should decay at a
rate

1

2

dσ2
v

dt
= −ε

σ3
v

L
, (2.1)

where ε is a dimensionless constant, L is the injection scale of the turbulent energy and σ2
v

is the mass-weighted mean-square velocity,

σ2
v ≡

〈ρv2〉
〈ρ〉 . (2.2)

Brackets indicate spatial averages, ρ is the mass density and v is the fluid velocity. Nu-
merical simulations of incompressible hydrodynamic turbulence find ε = 0.6 (Kaneda et al.
2003). Compressible turbulence can also dissipate energy in radiative shocks, but the overall
dissipation rate remains approximately unchanged. Numerical simulations (Mac Low et al.
1998; Stone et al. 1998; Mac Low 1999; Ostriker et al. 1999; Padoan & Nordlund 1999;
Lemaster & Stone 2009) have found ε = 0.6− 0.8. Turbulence in these simulations decays in
a single crossing time. Alternatively, note that the Kolmogorov energy scaling relation from
incompressible turbulence can be recreated in the compressive regime by replacing instances
of v with ρ1/3v (Lighthill 1955; Fleck 1996; Kritsuk et al. 2007). This suggests an alternate
decay equation, 1

2
d/dt〈ρv2〉 = −εalt〈ρv3〉/L, where εalt is a dimensionless constant similar to

ε, but not identical. For comparison with past studies, we shall use ε and not εalt.
The short timescale decaying turbulence is a problem when compared to cloud lifetimes,

which are thought to be 20-30 Myr (Blitz & Shu 1980; Williams & McKee 1997; Blitz et al.
2007; Kawamura et al. 2009) while the typical crossing time of these clouds is ∼10 Myr.
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Opposing theories hold that molecular clouds are transient objects formed in converging
flows of atomic gas and only live for a single dynamical time (Ballesteros-Paredes et al. 1999;
Vázquez-Semadeni et al. 2007; Banerjee et al. 2009; Vázquez-Semadeni et al. 2010). Theories
that rely on short-lived clouds can explain the turbulence observed in molecular clouds, but
they significantly over-predict the star-formation rate. If the turbulence dissipates in a
crossing time and the molecular cloud can collapse into stars, clouds will convert 100% of
their mass into stars in a free fall time, as opposed to the observed rates of a few percent. If
clouds do live for several dynamical times, either something is replenishing the lost turbulent
energy or some mechanism prevents the decay in the first place by storing energy in a slowly
decaying mode. Recent investigations have concentrated on replenishing the energy through
stellar feedback such as protostellar outflows (Li & Nakamura 2006; Banerjee et al. 2007;
Nakamura & Li 2007; Wang et al. 2010), HII regions (Matzner 2002; Krumholz & Matzner
2009), or supernovae (Mac Low & Klessen 2004). Driving turbulence primarily with stellar
feedback is difficult because clouds with high star formation rates, such as the Rosette
Nebula, and clouds with extremely low star formation rates, such as Maddalena’s cloud,
have indistinguishable turbulent properties (Heyer et al. 2006). In addition, most internal
driving sources deposit their energy on scales less than the cloud size, while observations find
the driving scale must be at least as large as the molecular clouds themselves (Ossenkopf
& Mac Low 2002; Brunt et al. 2009). The most promising driving mechanism to date
is external accretion. Many molecular clouds accrete gas from their HI envelopes (Fukui
et al. 2009). Gas in the envelope has a higher specific energy than the cloud itself and can
transmit that energy into the cloud upon accretion. How much energy can be transferred this
way is uncertain, but specific transfer rates should be able to reproduce both the observed
turbulence and the observed star formation rates (Klessen & Hennebelle 2010; Vázquez-
Semadeni et al. 2010; Goldbaum et al. 2011). For clouds without enough accretion power,
there is no clear mechanism for driving turbulence while also reproducing the observations.

The alternative to driving turbulence is storing turbulent energy in a slowly decaying
mode. Arons & Max (1975) postulated that magnetic fields could prolong turbulence by
storing energy in long-lived Alfven waves. Numerical simulations of MHD turbulence (Mac
Low et al. 1998; Stone et al. 1998; Mac Low 1999; Ostriker et al. 1999; Padoan & Nordlund
1999) however, found that magnetic fields did not significantly change the decay rate as the
Alfven waves coupled with quickly decaying modes.

Here we demonstrate that large scale anisotropy in the turbulent velocity field leads to
slow decay and thus may be an alternative to steadily driven turbulence. Our simulations do
not include magnetic fields and so are only a proof of principle. Detailed observations show
large velocity gradients on the scale of the clouds (Brunt et al. 2009; Kirk et al. 2010). These
gradients indicate a preferred axis for the turbulence on large scales. Previous isotropic
simulations cannot address this effect. Small scale anisotropy is predicted in the presence
of strong magnetic fields from an imbalanced cascade (Maron & Goldreich 2001; Cho et al.
2002), and may be an explanation for the inferred velocity anisotropy in Taurus below 0.4
pc (Heyer et al. 2008). However, this turbulence does not decay more slowly than isotropic
hydrodynamic turbulence in simulations. It explains only anisotropy on scales much less
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than the driving scale, not the observed cloud scale velocity gradients. Velocity anisotropy
needs to be present on the turbulent injection scale to truly slow down decay.

Given the uncertainty in the source of turbulent energy, it is difficult to predict the
anisotropy resulting from turbulent driving. Nevertheless, all methods of driving have in-
herent anisotropy. In accretion driven turbulence (Klessen & Hennebelle 2010; Goldbaum
et al. 2011), the angular distribution of mass in the accretion reservoir should determine
the anisotropy. If the accreted gas preferentially comes from one direction, the velocity dis-
persion will be larger in that direction. In a similar manner, turbulence powered by HII
regions will be anisotropic if the driving HII regions are primarily on one side of the cloud.
Turbulence powered by colliding flows will naturally have anisotropy in the direction of the
collision. This has been measured in Vázquez-Semadeni et al. (2007), where the velocity
dispersion in the collision direction is twice the dispersion in other directions at early times.
At late times, the effect is reversed and the dispersion in the collision direction is less than
half the dispersion in the other directions. Regardless of the driving source, any turbulence
with power on the cloud scale should be anisotropic. Only a handful of turbulent modes can
fit in the cloud on the cloud scale, so one direction should dominate due to cloud-to-cloud
variance (the interstellar analog of cosmic variance).

We introduce a framework for decay of anisotropic turbulence in §2. In §3, we describe
our simulations. We quantify the relationship between anisotropy and decay rate in §4. In
§5 we introduce a method for measuring anisotropy in molecular clouds, and we summarize
our conclusions in §6.

2.2 Anisotropic Turbulence

The isotropic model of turbulence in equation (2.1) is a function only of length and a
single rms velocity, but a turbulent cloud could have up to three independent rms velocities.
Three rotationally invariant velocities can be derived from the Reynold’s stress tensor, τ ,

τij = 〈ρvivj〉. (2.3)

Because τ is real and symmetric, there exists a cartesian coordinate system where it is
diagonal

τ =



〈ρv2

i 〉 0 0
0 〈ρv2

j 〉 0
0 0 〈ρv2

k〉


 . (2.4)

The eigenvalues, λi, of τ therefore represent twice the non-thermal kinetic energy along
the three axes of this diagonalizing coordinate system. If the cloud is isotropic, the off-
diagonal terms will be zero in any cartesian coordinate system and the eigenvalues are all
equal to two thirds of the total kinetic energy. Even if the three cardinal directions in a
simulation have equal energies, anisotropy can be present. Any correlation between velocities
in the cardinal directions will create anisotropy, which will be detected with the off-diagonal
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terms in τ . Velocity dispersion, σi can be recovered from λi by

σi =
√

λi/〈ρ〉. (2.5)

As a convention, the velocities can always be ordered such that σ1 ≥ σ2 ≥ σ3.
With three velocities, clouds now have three specific energies, 1

2
σ2

i , and three time scales,
L/σi. Even if we assume no coupling between the time scales, equation (2.1) expands into
three equations

1

2

dσ2
1

dt
= −C11

σ3
1

L
− C12

σ2
1σ2

L
− C13

σ2
1σ3

L
, (2.6)

1

2

dσ2
2

dt
= −C21

σ2
2σ1

L
− C22

σ3
2

L
− C23

σ2
2σ3

L
, (2.7)

1

2

dσ2
3

dt
= −C31

σ2
3σ1

L
− C32

σ2
3σ2

L
− C33

σ3
3

L
, (2.8)

where the elements of matrix C are non dimensional constants similar to ε. The set of three
equations can be rewritten as

1

2

d ln σ2
i

dt
= −Cijσj

L
, (2.9)

where repeated indices imply summation.
The goal of this paper is to determine whether the presence of anisotropy can decrease

turbulent decay in molecular clouds. This is primarily accomplished by measuring the ele-
ments of C for the full range of anisotropy.

2.3 Simulations

To determine the effect of anisotropy on the turbulent decay rate, we performed a series
of simulations. We perform these simulations using the parallel adaptive mesh refinement
code, ORION, in fixed grid mode. While ORION possesses adaptive refinement abilities,
simulating turbulence requires refining most of the simulation domain. In this situation, fixed
grid simulations are more computationally efficient than adaptive grids. ORION utilizes
a conservative second order Godunov scheme to solve the equations of compressible gas
dynamics (Truelove et al. 1998; Klein 1999),

∂ρ

∂t
+∇ · (ρv) = 0, (2.10)

∂ρv

∂t
+∇ · (ρvv) = −∇P, (2.11)

where ρ, P , and v are the fluid density, pressure, and velocity respectively. In these simula-
tions, the gas is isothermal and the sound speed is a constant, as this is a good approximation
in molecular clouds. The boundary conditions are periodic in all variables.
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Simulations start with a constant density and are perturbed with a constant solenoidal
driving pattern similar to that described in Mac Low (1999). These perturbations correspond
to a Gaussian random field with a Burgers power spectrum, P (k) ∝ k−2 (Frisch & Bec 2001),
over some range of driving wavenumbers, kd, which can vary from simulation to simulation.
Most simulations use driving wavelengths kd = 1− 2 to produce the largest possible inertial
range. Simulations at kd = 2 − 3 and kd = 3 − 4 were also used to determine the effect of
varying the driving range. When the density field is no longer smooth, the center-of-mass
velocity of the driving pattern will not be zero and will vary in time. To avoid accumulation
of net momentum in the simulation, we subtract the center-of-mass velocity from the driving
pattern at each time step before the driving occurs. Each simulation is driven for two crossing
times at Mach 10 and then allowed to decay to Mach 3. Only the data during this decay phase
are used for analysis. The initial Mach number needs to be high so that decaying turbulence
remains supersonic. Mach 10 was chosen because higher Mach number simulations did not
show a converged dissipation rate at our resolution of 2563. We performed 21 of these
simulations.

The anisotropy was controlled in two ways, by changing the relative amplitudes of the
driving pattern in different directions or by changing the wavenumber of the driving pattern.
When creating a driving pattern, there are two independent fields, one for each velocity
direction minus a constraint from a requirement for the turbulence to be solenoidal. For
the anisotropic patterns, the amplitude of each field is chosen randomly from a Gaussian
distribution. To achieve simulations that are nearly isotropic, the amplitudes are set to
be identical. It is physically impossible to obtain complete isotropy with this method, as
any correlations between the independent fields will enhance the velocity dispersion in one
direction and suppress it in another. The wavenumber of the driving pattern was also used in
setting anisotropy. The most anisotropic simulations were produced using driving patterns
with power at kd = 1 − 2 with slope k−2. These include simulations with over 95% of the
turbulent power in a single direction. To make more isotropic turbulence, power is moved
to smaller scales. This was accomplished by simulations driven at kd = 3− 4. This had the
effective result of averaging over 27 independent kd = 1− 2 driving patterns, which reduces
the relative amount of power any single turbulent mode can contain.

2.4 Results

Turbulent quantities were calculated at intervals of approximately 10% of a crossing time
for each simulation where the crossing time is defined as L / (σv) and is itself a function
of time. At each of these intervals the components of the stress tensor τij are calculated.
The eigenvalues, λi, of this tensor are found and the eigenvelocities, σi, are calculated from
equation (2.5). The total velocity dispersion, σv, is also calculated. Given measurements σi,n

and σv,n at time tn and measurements σi,n+1 and σv,n+1 at time tn+1, there are intermediate
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quantities

tn+ 1
2

=
1

2
(tn + tn+1), (2.12)

σv,n+ 1
2

=
1

2
(σv,n + σv,n+1), (2.13)

σi,n+ 1
2

=
1

2
(σi,n + σi,n+1), (2.14)

εn+ 1
2

=
(σv,n − σv,n+1)L

(tn+1 − tn)σ2
v,n+ 1

2

. (2.15)

The decay coefficient ε is a function of time differences of measured quantities and is best
defined at the half time interval. The intervals themselves are close enough together that
σv,n and σv,n+ 1

2
differ by typically 1% to 5%, depending on the decay rate. The half-interval

choice does not affect the results in any significant way.
We also introduce two new velocity dispersions useful for analysis

σiso ≡
√

3σ3, (2.16)

σani ≡
√

σ2
v − σ2

iso. (2.17)

The two velocities represent a cloud with a perfectly isotropic velocity distribution with 3D
dispersion σiso and an additional perfectly anisotropic velocity distribution σani that is absent
in at least one direction.1 When normalized by the total 3D turbulent velocity dispersion,
σiso/σv and σani/σv both can range from 0 to 1. Simulations can be divided into two classes
based on these ratios. Turbulence with σiso/σv < 0.7 will be called anisotropic and turbulence
with σiso/σv > 0.7 will be called quasi-isotropic. The middle velocity dispersion, σ2, is not
used above, but it is well correlated with and approximately equal to σ3. Averaging over
the most anisotropic simulations, the median value of σ2/σ3 is 1.6. For comparison, the
median value of σ1/σ2 is those simulations is 5. The median of the ratio σ2/σ3 is 1.2 over
the quasi-isotropic simulations.

We note that most of the power is on the largest scales, which is a characteristic of
both the turbulence in our simulations and the turbulence in Nature. As a consequence,
a significant fraction of the energy can be in apparently coherent motions, such as large
scale velocity gradients as observed in Perseus (Kirk et al. 2010). In the absence of periodic
boundary conditions, the motions can take the form of overall expansion or contraction;
just such behavior in molecular clouds has been observed by Brunt et al. (2009). Another
consequence of the power being concentrated on the largest scales is that the power in the
range of driving wavelengths dominates the total in our simulations (and quite possibly in

1There are many velocity dispersions in this paper and it may be helpful to summarize them all in one
place. The total 3D velocity dispersion is σv. It can be represented as the sum of two 3D velocity dispersions
σiso and σani. The eigenvalues of the Reynold’s stress tensor go into the 1D velocity dispersions σ1, σ2, and
σ3 with σ1 ≥ σ2 ≥ σ3. The 1D version of σv is σ (σ ≡ σv/

√
3). Similarly, the 1D version of σiso is σ3.
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molecular clouds as well). The values of the velocity dispersions σ that we analyze here are
therefore determined to a significant extent by the power at these wavelengths. Anisotropic
hydrodynamic turbulence in the interstellar medium requires anisotropic driving.

The evolution of kinetic energy for a sample of quasi-isotropic and anisotropic sim-
ulations is shown in Figure 2.1. The quasi-isotropic simulations all decay faster than the
anisotropic simulations. Each anisotropic simulation has a unique decay rate while the quasi-
isotropic simulations all follow the same path. The evolution of ε, σiso/σv and σani/σv for
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Figure 2.1 The evolution of kinetic energy over time for quasi-isotropic (left panel) and
anisotropic (right panel) simulations of decaying turbulence. The kinetic energy is normalized
by the kinetic energy at time zero. The quasi-isotropic simulations all demonstrate the same
general behavior. Anisotropic simulations each decay at their own pace, though always
slower than the quasi-isotropic simulations. The anisotropic simulations have initial σiso/σ
values of 0.25, 0.40, 0.50 and 0.55 from top (slower decay) to bottom (faster decay)

a typical strongly anisotropic run are shown in Figure 2.2. Right after driving is turned
off, the decay rate fluctuates for half a crossing time for every simulation. After that point,
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the decay rate is relatively stable with occasional fluctuations, such as the one that occurs
at 3 crossing times in Figure 2.2. This behavior lasts until the total velocity dispersion is
about sonic, at which point pressure forces become important. Thermal pressure effectively
transmits energy dissipated from a single direction into all three directions. This increases
the isotropy of the turbulence and also increases ε. The analysis is cut off before this point,
but the simulation is allowed to continue in Figure 2.2 to show the effect. In the supersonic
regime, isotropy can increase or decrease, depending on the particular realization of the
turbulence. In Figure 2.2, the isotropy slowly decreases, and then slowly increases, until it
rapidly increases in the sonic regime.

Given that anisotropy decreases for subsonic velocity dispersions, it is possible that
anisotropy is a function of scale even for supersonic turbulence. In this situation, anisotropy
would be strongest at the driving wavelength, and would slowly decrease until the turbulence
is isotropic around the sonic scale. When we compare power spectra for σ1 and σ3, however,
anisotropy is equally strong at all scales in the inertial range (the anisotropy does decrease
moving from from the driving range to the inertial range). A typical anisotropic power
spectrum is shown in Figure 2.3. When the 3D velocity dispersion is supersonic, both σ1

and σ3 follow a featureless Burgers power spectrum for the inertial range. The inertial range
typically ends at k ∼ 25, which is well before the sonic scale at k ∼ 100, when the turbulence
should eventually shift to a Kolmogorov power spectrum.

To calculate the coefficients in equation (2.9), we calculate σi and dσi/dt at each point in
time, which also yields an ε and σiso/σv. The binned results of these measurements are shown
in Figure 2.4. There appears to be a qualitative change in the decay rate above σiso/σ = 0.7.
For the purposes of fitting equation (2.9), we ignore all points above this cutoff. We then
perform a linear regression for each velocity component with the left hand side of equation
(2.9) as the dependent variables and σi as independent variables.

We find that the three elements Ci1 are best fit by zero, with error bars of 0.1. This
means that the largest velocity, σ1, does not contribute to turbulent decay. We find that the
elements Ci2 are also best fit by zero, but with much larger error bars, 0.5. The last three
elements, Ci3 are 1.7, also with error bars around 0.5. The velocity dispersions σ2 and σ3

are well correlated with each other, which adds uncertainty into fits of Ci2 or Ci3 separately.
The summed coefficients Ci2 + Ci3 are 1.7± 0.3. For future analysis, we will stick with the
best fit coefficients, Ci2 = 0 and Ci3 = 1.7. The final matrix is then in equation (2.18):

C =




0± 0.1 0± 0.5 1.7∓ 0.5)
0± 0.1 0± 0.5 1.7∓ 0.5)
0± 0.1 0± 0.5 1.7∓ 0.5)


 . (2.18)

Because the errors in Ci2 and Ci3 are negatively correlated, they are marked with ± and ∓
respectively.

Putting these coefficients into equations (2.6) to (2.8) yields

1

2

dσ2
1

dt
= −σ2

1

1.7σ3

L
= −σ2

1

σiso

L
, (2.19)
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Figure 2.2 The evolution of relative anisotropic velocity dispersion, relative isotropic velocity
dispersion, and decay coefficient for a simulation in which σani/σv was initially 0.93. This is a
highly anisotropic case. The left plot shows the evolution over decay time and the right plot
shows evolution over total velocity dispersion. Note the ratio of the anisotropic component
of the velocity dispersion to the isotropic component is relatively constant until the mach
number drops below 3. At this point, pressure forces can convert anisotropic kinetic energy
into isotropic energy.

1

2

dσ2
2

dt
= −σ2

2

1.7σ3

L
= −σ2

2

σiso

L
, (2.20)

1

2

dσ2
3

dt
= −σ2

3

1.7σ3

L
= −σ2

3

σiso

L
. (2.21)

Note that the fact that the coefficients in the rightmost equations are unity is a result of our
simulations and not an assumption.

With the decay rates of the individual energy components, we can construct a total
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Figure 2.3 Compensated power spectra for σ1 and σ3 for strongly anisotropic turbulence
after it has been allowed to decay to Mach 6. The normalization of the power is different for
the different velocities, but the slopes are the same.

energy decay rate
1

2

dσ2
v

dt
= −σ2

vσiso

L
. (2.22)

To look more like equation (2.1), we use the dimensionless decay coefficient ε such that

σv
dσv

dt
= −ε

σ3
v

L
, (2.23)

ε ≡ − L

σ2
v

dσv

dt
=

σiso

σv

. (2.24)

This entire derivation of ε has been performed while ignoring the quasi-isotropic clouds,
which have σiso/σv > 0.7. These clouds show a relatively constant ε ∼ 0.7, which agrees with
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ε = 0.6− 0.8 from prior isotropic studies. For the full range of σiso/σv, ε is described by the
equation

ε =

{
(1.0± 0.2)σiso/σv if σiso/σv ≤ 0.7
0.7± 0.05 if σiso/σv > 0.7

. (2.25)

A cloud with specific kinetic energy, E = 1
2
σ2

v has a dissipation time tdiss,

tdiss ≡ E

dE/dt
=

L

2εσv

. (2.26)

In the anisotropic case,

tdiss =
L

2σiso

(
σiso

σv

< 0.7). (2.27)

The simulated variation of ε versus isotropy is shown in Figure 2.4. Note that while
quasi-isotropic simulations agree with ε = 0.6− 0.8 from prior studies, ε is always lower for
anisotropic simulations and even approaches zero for completely anisotropic simulations.

For turbulence with solenoidal driving like ours, the expected ratio of solenoidal energy
to compressive energy in isotropic supersonic turbulence is 2 to 1 (Elmegreen & Scalo 2004).
This ratio can be less than one for compressive forcing (Federrath et al. 2008, 2010) and up
to 10 when magnetic fields are included (Boldyrev et al. 2002; Porter et al. 2002; Vestuto
et al. 2003). To investigate the effect of anisotropy on this ratio, we calculate the similar
ratio 〈|∇ × v|2〉/〈(∇ · v)2〉. This ratio as a function of anisotropy is shown in Figure 2.5.
For quasi-isotropic simulations, the ratio stays at 2 during the supersonic regime. The ratio
starts to increase in the anisotropic simulations.

To check the effect of resolution on these results, one of the anisotropic simulations has
been repeated at 5123, shown in Figure 2.6. The decay rate is not converged at a resolution
of 2563 until 1 crossing time has passed. The turbulence at this point is Mach 9. Removing
all data points above Mach 9 does not change any results, particularly those shown in Figure
2.4. The anisotropy is already converged to a level below the natural fluctuations even at 1283

resolution. The general results of decay rate as a function of anisotropy appear converged
by 2563 resolution.

2.5 Observed Anisotropies

Now that we have a relationship between turbulent decay rate and velocity anisotropy,
we would like to know the range of anisotropy in molecular clouds. To compare simulations
to observations, we created optically thin synthetic observations from the simulations and
performed a principal component analysis (PCA) from Heyer & Schloerb (1997) and Brunt
& Heyer (2002). The analysis calculates velocity eigenvectors and eigenimages and can be
useful in filtering out high frequency noise often present in turbulent data. The first velocity
eigenvector is roughly a gaussian in velocity space, centered at the center-of-mass velocity of
the cloud, vcm. The second velocity eigenvector is similar to a derivative of the first velocity
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Figure 2.4 Decay coefficient vs isotropy, data from all simulations binned together. Horizontal
error bars represent bin width and vertical error bars represent uncertainty of the mean of
data within the bin. There is more data at the highest anisotropy, which reduces the error
bars compared to the higher isotropy points. The simulations divide into anisotropic and
quasi-isotropic, with the dividing line at σiso/σv = 0.7. For the anisotropic simulations,
the decay coefficient is proportional to σiso/σv. For quasi-isotropic simulations, the decay
coefficient is constant.

eigenvector. This produces a positive gaussian below vcm and a negative gaussian above it.
Each subsequent velocity eigenvector is like a derivative of the previous one. At each position
in the position-position-velocity observation data, one can convolve the data in velocity space
with a velocity eigenvector. This produces an eigenimage. The first eigenimage represents
the signal from gas at velocities near vcm and is roughly proportional to the signal from the
entire cloud. The second eigenimage, which contains both a negative and a positive spike in
its eigenvector, shows the signal from gas at velocities greater than vcm subtracted from the
signal of gas at velocities less than vcm. The second eigenimage usually has the strongest
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Figure 2.5 Ratio of solenoidal to compressive velocities squared versus velocity dispersion
isotropy. The ratio remains near the isotropic value of 2 for quasi-isotropic simulations, but
starts to increase when σiso/σv < 0.7.

signal and is similar to the first velocity moment of column density. The second eigenimages
are shown in Figure 2.7 for simulations with σiso/σv values of 0.2, 0.5, and 0.8, to represent
strong, intermediate and weak anisotropy. All simulations were driven with power in the
range k = 1− 2 and have Mach 10 turbulent velocity dispersion. The strong anisotropy case
shows a coherent gradient in velocity, which breaks up as the anisotropy becomes weaker.
Given the velocity gradients observed with PCA in molecular clouds (Heyer et al. 2006;
Brunt et al. 2009), even the intermediate anisotropy case might be too isotropic to match
real clouds.

Anisotropic velocity dispersions by themselves do not guarantee the gradients in line-
of-sight velocity required to create the left two panels of Figure 2.7. Only the solenoidal
component of the turbulent velocity field contains the local velocity shear that can combine
into a large scale gradient. As a counter example, a cloud with a large scale expansion or
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Figure 2.6 Decay Rate and Anisotropy for the same anisotropic driving pattern at different
resolutions. The anisotropy is constant across resolutions, but the decay rate is not converged
at 2563 until one crossing time.

contraction mode in one direction would also have anisotropic velocity dispersions, but the
turbulence would be mostly compressive and there would be no observed velocity gradi-
ent. As demonstrated in Figure 2.5, the turbulence in our anisotropic simulations is mostly
solenoidal.

To quantify the coherency of the gradient in Figure 2.7, we perform the axis-constrained
PCA from Heyer et al. (2008). This analysis involves performing PCA on many thin strips
of data oriented both parallel and perpendicular to some reference direction. The parallel
slices return eigenvectors with velocity scale δvx and eigenimages with length scale ξx (note
that δvx is the line of sight velocity in a strip along the x direction, not the x component of
the velocity). The perpendicular slices return analogous quantities δvy and ξy. If the data
is isotropic, a plot of δvx versus ξx will be identical to δvy versus ξy. If not, the difference
between the two plots can show the anisotropy. The reference angle is then rotated until
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Figure 2.7 Second PCA eigenimages for strong, intermediate, and weak anisotropy from left
to right. The turbulent energy and driving scale in all three simulations are the same. The x
and y axes are position in the plane of the sky and cover the entire width of the simulation.
The units of the image are column density, the actual values of which are not significant.

a maximum difference is found; this angle is perpendicular to the direction of strongest
velocity dispersion in the plane of the sky. In Heyer et al. (2008), it was perpendicular to
the magnetic field. The length scale ξ in this paper is the same as τ in Heyer et al. (2008),
but is changed to prevent confusion with the Reynold’s stress tensor, τ . Plots of δv versus
ξ are shown in Figure 2.8 for the same simulations shown in Figure 2.7.

In the axis-constrained PCA plots, the anisotropy is strongest on large scales, closest to
the energy injection scale. The anisotropy is introduced through energy injection while the
energy cascade maintains the injected anisotropy. This is different from Heyer et al. (2008),
where the driving is isotropic and the anisotropy is introduced from the energy cascade in
a strong magnetic field. In the Heyer et al. (2008) study, the axis-constrained PCA plots
show the largest difference at small scales. In principle, a cloud with both anisotropic energy
injection and an anisotropic energy cascade will show differences on both large and small
scales.

To quantify the anisotropy information from plots such as Figure 2.8, we define an
integrated anisotropy.

ψ ≡
∫

(|δvx − δvy|)
(δvx + δvy)

d ln ξ. (2.28)

For our simulations, the lower limit of the integral is twice our resolution and the upper
limit is half the driving scale. In an observed cloud, the driving scale should be replaced
by the cloud size and the simulation resolution should be replaced by either the telescope
resolution or possibly the local Jeans length of the cloud. The goal of ψ is to represent an
average relative difference between δvx and δvy. In principle, it could reach as high as 1.0,
but it ranges between 0.01 and 0.2 in our simulations. For the fit to Taurus from Heyer et al.
(2008), ψ = .11 when the limits of integration are 5 and 30 pixels. The advantage of ψ is
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Figure 2.8 δvx and δvy vs ξ for strong, intermediate, and weak anisotropy from left to right.
The blue triangles represent the direction with the largest velocity dispersion in the plane
of the sky and the green circles represent the perpendicular direction. In each case, the
direction is chosen to maximize the difference between δvx and δvy.

that now we have a single number to represent the anisotropy of a single observation of a
cloud.

To quantify the dependence of ψ on anisotropy in our simulations, each simulation is
‘observed’ at an early time (Mach ∼ 9) from all three cardinal directions. This produces 3
different values of ψ and 3 different line of sight velocity dispersions, σlos, per simulation.
We measured ψ at later times for 3 of the simulations and found that ψ does not depend on
Mach number, but can fluctuate by up to 20% over time. Because we are now dealing with
observed velocities, it is useful to use the one dimensional velocity dispersion, σ ≡ σv/

√
3.

When using σ, the isotropy is measured by σ3/σ, with

σ3

σ
≡ σiso

σv

, (2.29)
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because σ3 and σ are equal to σiso/
√

3 and σv/
√

3, respectively. Figure 2.9 shows ψ compared
to σ3/σ and σ3/σlos for all measurements of ψ. The plot of ψ vs σ3/σ shows a general negative
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Figure 2.9 Observed anisotropy, ψ vs σ3/σ and σ3/σlos for a variety of simulations, in three
different lines of sight for each simulation. The piecewise linear fit to the data in the right
panel is plotted as the solid line.

correlation between, but it contains data where both quantities are near zero. Both high ψ
and low σ3/σ indicate high anisotropy, which causes the negative correlation. The anisotropy
is measurable only when it is pointed towards the observer. It is therefore possible for high
anisotropy turbulence (low σ3/σ) to produce a quasi-isotropic signature (low ψ) when the
anisotropy is in the plane of the sky. A quasi-isotropic simulation (high σ3/σ) can never
produce a strong anisotropy signature (high ψ). When the anisotropy is in the plane of
the sky, σlos/σ will be suppressed, leading to a tighter correlation between ψ and σ3/σlos

than that between ψ and σ3/σ. The relation between ψ and σ3/σlos can be expressed in a
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piecewise linear fashion (see Figure 2.9)

ψ =

{
(0.17± 0.03)− 0.27 σ3/σlos if σ3/σlos ≤ 0.45
(0.08± 0.02)− 0.06 σ3/σlos if σ3/σlos > 0.45

. (2.30)

Given the two observable quantities, ψ and σlos, one can estimate σ3, and therefore
σiso, using equation (2.30). If the cloud is anisotropic (ψ > 0.04), this can then be used to
calculate the dissipation time with the additional observable, L.

tdiss =
(0.08± 0.03)L

(0.17− ψ)σlos

. (2.31)

For comparison, if the cloud is quasi-isotropic, σlos ∼ σ = σv/
√

3, and ε = 0.7, yielding the
equation

tdiss =
L

2εσv

∼ 0.4L

σlos

. (2.32)

For reference, tdiss from equation (2.31) is triple tdiss from equation (2.32) when ψ = 0.1

2.6 Conclusions

We have performed a series of hydrodynamic decaying, isothermal turbulence simula-
tions with varying levels of anisotropy. When we break the turbulence into isotropic and
anisotropic components, turbulence decays in roughly the crossing time of the isotropic
component. This translates into a decay coefficient ε that is the isotropic velocity dispersion
divided by the total velocity dispersion for most clouds and saturating at 0.7 for quasi-
isotropic turbulence. The decay time for these clouds is tdiss = L/(2σiso). A molecular cloud
whose size and velocity dispersion would normally indicate a lifetime of 10 Myr using ε = 0.7
can maintain its turbulence for the full observed lifetime of 30 Myr if the isotropic velocity
dispersion is 1/4 of the total dispersion and if our hydrodynamic results remain valid when
magnetic fields are included.

To help investigate whether observed molecular clouds have the level of anisotropy
required to maintain the observed level of turbulence over their lifetimes, we performed
Principal Component Analysis on our simulated clouds. Line-of-sight effects tend to wash
out anisotropic signals, but there can be a measurable difference in axis-constrained PCA
performed in directions parallel and perpendicular to the direction of maximum velocity
dispersion. When this relative difference, ψ, is 0.1, there is enough anisotropy for the dis-
sipation time to triple the expected isotropic value. We provide a fit for converting ψ into
an estimate for the dissipation time, tdiss. There are not currently publications with axis-
constrained PCA performed on molecular clouds outside of Taurus, but additional clouds
should be possible with future observations. This work has ignored the effects of magnetic
fields on the turbulence. Magnetic fields would have significantly increased the computa-
tional cost of this work. In addition, they could significantly complicate matters as the angle
between the magnetic field and the anisotropic velocity vector should be important, as well
as the Alfven Mach number. They will be included in future work.
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Chapter 3

Turbulence Under Compression

Abstract

In order to determine the behavior of supersonic turbulence under compression, we
derive a simple equation of state for turbulent pressure. This equation of state is equivalent to
a γ = 5/3 monatomic gas under isotropic compression. To verify our derivation, we simulate
decaying turbulence undergoing homologous contraction and recreate the derived equation
of state. As a consequence of this equation of state, the velocity dispersion of turbulence
will naturally asymptote to the velocity of its compression. Additionally, we explored the
behavior of turbulence under anisotropic compression. Turbulent velocity dispersion σi in
direction i follows the rule σi ∝ 1/ai, where ai is the scale factor in direction i. This
means that compression in one direction can impart energy into that direction while leaving
the other two directions alone. This is verified with simulations. When this happens, the
turbulence becomes extremely anisotropic and the decay rate goes to zero as shown in Hansen
et al. (2011).

3.1 Introduction

As explained in the previous chapter, the decay rate and driving mechanism of tur-
bulence in molecular clouds is an outstanding problem in star formation. One unexplored
method of driving turbulence is compression of a turbulent cloud. Molecular clouds can be
compressed by outside forces such as pressure from warm gas, ram pressure from colliding
flows or tidal gravity from spiral arms. Molecular clouds may also collapse under their own
self-gravity, causing a global compression. Depending on the effective equation of state of
supersonic turbulence, compression may add energy to that turbulence.

In the standard theory for isotropic incompressible turbulence (Kolmogorov 1941), en-
ergy from the largest scales cascades into smaller scales in a self-similar fashion until the
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energy reaches a viscous scale and dissipates. In this scenario, turbulence should decay at a
rate

1

2

dσ2
v

dt
= −ε

σ3
v

L
, (3.1)

where ε is a dimensionless constant, L is the injection scale of the turbulent energy and σ2
v

is the mass-weighted mean-square velocity,

σ2
v ≡

〈ρv2〉
〈ρ〉 . (3.2)

Brackets indicate spatial averages, ρ is the mass density and v is the fluid velocity. Numerical
simulations of incompressible hydrodynamic turbulence find ε = 0.6 (Kaneda et al. 2003).
Compressible turbulence can also dissipate energy in radiative shocks, but the overall dissi-
pation rate remains approximately unchanged. Numerical simulations (Mac Low et al. 1998;
Stone et al. 1998; Mac Low 1999; Ostriker et al. 1999; Padoan & Nordlund 1999; Lemaster
& Stone 2009) have found ε = 0.6− 0.8.

Equation (3.1) can be rewritten for the specific kinetic energy 2K ≡ σ2
v

d(2K)

dt
= −ε

(2K)3/2

L
. (3.3)

This can be integrated to yield

K = K0

(
1 +

t

td

)−2

, (3.4)

where td is the decay time, defined by td ≡ (
√

2L)/(ε
√

K0) and K0 is the kinetic energy
when t = 0.

The equations so far all assume there is no compression. In particular, ρ̄, the average
density, is constant. If there is a coherent background flow with background velocity field
vb, some energy should be added to the turbulence. If turbulence can be described by an
equation of state such that

∂ ln ρ̄K

∂ ln ρ̄
= γ, (3.5)

where ρ̄K is the turbulent pressure, equation (3.3) can be extended to

dK

dt
+ (γ − 1)K∇vb = −ε

K

td

(
K

K0

) 1
2

(3.6)

This equation is generally not integrable because ∇vb is an arbitrary function of time and
γ is unknown.
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3.2 Turbulence Equation of State

If Larson’s laws are used to derive an equation of state, one predicts a logatrope, ρ̄K ∝
log ρ̄, but Vazquez-Semadeni et al. (1998) and McKee & Tan (2003) showed that this does
not describe turbulence. Wu et al. (1985) demonstrated with direct numerical simulations
that incompressible turbulence responds as a γ = 5/3 gas. We will now derive the effective
γ for supersonic turbulence.

While direct numerical simulation is a powerful and preferred way of studying turbu-
lence, much can be learned from simpler models. In this section, we derive the simplest
model for turbulence, i.e., the one-equation model, taking a very simple means by which
turbulence energy is dissipated. We will show that compressible turbulence, modeled as a
turbulent pressure, can be represented as a gas with an adiabatic index of 5/3. Canuto
(1997) has derived a set of equations that describe compressible turbulence up to fourth
order. However, these equations are rather cumbersome and their physical interpretation is
unclear (for the inexperienced eye). However, his formalism and notation is excellent, so we
will choose to follow that. We will also largely follow his derivation.

3.2.1 Averaging

We begin by defining a mean and fluctuating component to the velocity, u, pressure,
P , and density field, ρ:

ui = ūi + u′i, (3.7)

ρ = ρ̄ + ρ′, (3.8)

p = P̄ + P ′, (3.9)

where the mean parts of ui, p, and ρ are defined as

ūi ≡ 〈ρui〉
ρ̄

, (3.10)

ρ̄ ≡ 〈ρ〉, (3.11)

P̄ ≡ 〈p〉. (3.12)

Note that ū is defined as the mass weighted statistical (time) average, while ρ̄ and P̄ are
simply defined as statistical average.

3.2.2 Derivation

We1 now begin with the continuity equation

dρ

dt
+ ρ

∂ui

∂xi

= 0, (3.13)

1This section until equation 3.29 written by Philip Chang.
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where repeated indices indicate summation, and the momentum equation:

dρui

dt
+ ρui

∂uj

∂xj

= − ∂p

∂xi

+
∂

∂xj

[
ρν

(
∂uj

∂xi

+
∂ui

∂xj

)
− 2

3
νρδij

∂uk

xk

]
, (3.14)

where ν is the viscosity. We will define the viscous stress tensor:

σij = νρ

(
∂uj

∂xi

+
∂ui

∂xj

)
− 2

3
νρδij

∂uk

xk

(3.15)

Averaging (〈〉) equation (3.14), we find

∂

∂t
ρ̄ū +

(
ρ̄ūiūj + 〈ρu′iu

′
j〉

)
,j

= 0, (3.16)

where we have presume that there is no large scale pressure gradient (P̄,i = 0) and that the
mean flow is unaffected by viscosity, σij,j = 0. Combining this with the averaged continuity
equation leaves us with a relatively simple equation for the mean flow

ρ̄
Dūi

Dt
+ 〈ρu′iu

′
k〉,k = 0. (3.17)

where D/Dt = ∂/∂t + ūi∂/∂xi.
We now multiply equation (3.17) by ūj and symmetrize in i and j to get

ρ̄
D

Dt
ūiūj = − (ūiτjk,k + ūjτik,k) , (3.18)

where we have defined τij = 〈ρu′iu
′
j〉. Equation (3.18) defines the evolution equation for the

large scale Reynolds stress, tij = ūiūj.
We now derive the evolution equation for the turbulent (averaged) Reynolds stress,

τij = 〈ρu′iu
′
j〉. To do this we start with the momentum equation (eq.[3.14]), multiply by uj,

symmetrize in i and j, and average. This gives

∂

∂t
(ρ̄ūiūj + τij) + (ρ̄ūiūjūk + τijūk + τikūj + τjkūi + τijk),k = 〈F ′

iuj〉+ 〈F ′
jui〉, (3.19)

where τijk = 〈ρu′iu
′
ju
′
k〉 and

F ′
i = −p′i + σ′ij,j

is the perturbed forces due to pressure and viscosity. To derive the above equation, we use
the following identities:

〈ρuiuj〉 = ρ̄ūiūj + τij (3.20)

〈ρuiujuk〉 = ρ̄ūiūjūk + τijūk + τikūjτjkūi + τijk (3.21)
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We apply equation (3.18) to remove the large scale Reynolds stress from equation (3.19),
which gives:

d

dt
τij + τijūk,k + τikūj,k + τjkūi,k + τijk,k = 〈F ′

iuj〉+ 〈F ′
jui〉. (3.22)

We now expand the term:

〈F ′
iuj〉+ 〈F ′

jui〉 = −〈p′,iu′j〉 − 〈p′,ju′i〉+ 〈σ′ik,ku
′
j〉+ 〈σ′jk,ku

′
i〉. (3.23)

The first two terms can be rewritten in terms of a trace and a trace-free component:

〈(p′,iu′j + p′,ju
′
i)〉 = πij +

2

3
δij〈(p′uk),k − p′uk,k〉, (3.24)

where

πij = 〈(p′,iu′j + p′,ju
′
i)〉 −

2

3
δij〈p′,kuk)〉

The last two terms of equation (3.23) can be rewritten as

〈(σ′ik,ku
′
j + σ′jk,ku

′
i)〉 = 〈(σ′iku′j + σ′jku

′
i), k〉 − εij, (3.25)

where εij = 〈σ′iku′j,k + σ′jku
′
i,k〉 is identified with the viscous dissipation.

Taking equations (3.23) and (3.25), we reorganize equation (3.22) to read:

d

dt
τij = −〈τijk+

2

3
p′ukδij−σ′iku

′
j−σ′jku

′
i〉,k−εij−τijūk,k−(τikūj,k + τjkūi,k)+

2

3
〈p′u′k,k〉. (3.26)

Before we simply this equation further, we will highlight the relevance of each term. We now
take the trace of the above equation to simplify further. Noting that τkk = 2ρ̄K, where K
is the turbulent kinetic energy, we find

2
dρ̄K

dt
= −〈τiik + 2p′uk − 2σ′iku

′
i〉,k − 2ε− 2ρ̄Kūk,k − 2τikūi,k + 2〈p′u′k,k〉, (3.27)

where the decay rate, ε = εii/2. Each term in equation (3.27) has a distinctive physical
interpretation. The first time on the RHS presents the diffusion of kinetic energy with the
first two terms in 〈〉 being the turbulent viscosity and the last term the molecular viscosity.
The second term is the energy dissipation rate of the turbulent kinetic energy. The third
term represents the increase of turbulence kinetic energy due to compression. This term
arises from the increase in the density. The fourth term is the coupling of turbulent kinetic
energy due to the mean (background) flow. Finally, the fifth term is the dissipation due to
pressure dilation.

The solution of equation (3.27) demands knowledge of ε, which can be prescribed or
solved for by the appropriate use of closure relations at the next order. However, equation
(3.27) is sufficient to determine the adiabatic index of compressible supersonic turbulence.
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Namely, we will assume pure contraction or dilation (zero shear), where D/3 = u1,1 = u2,2 =
u3,3. We then find

dρ̄K

dt
= −〈1

2
τiik + p′uk − σ′iku

′
i〉,k − ε− 5

3
ρ̄KD, (3.28)

where we have dropped the pressure dilation term. The numerical factor of 5/3 comes a factor
of D from the third term and a factor of 2/3 from the fourth term (recall that τii = 2K).
This numerical factor of 5/3 gives the adiabatic index of compressible turbulence. Finally,
in the absence of kinetic energy gradients, the first term goes away and we are left with

dρ̄K

dt
= −ε− 5

3
ρ̄KD. (3.29)

Thus, the effective γ for turbulent pressure is 5/3.
When γ = 5/3 is put in equation (3.1), we get

dK

dt
+

2

3
K∇vb = −ε

K

td

(
K

K0

) 1
2

(3.30)

Equation 3.30 is still not integrable unless we assume ∇vb is a constant. This constant has
units 1/time and we will define a compression time, tc = 1/∇vb. This also introduces a new
compression velocity, vc = L/(2tc), which is the time for a box of length L to reduce to zero
volume. Now equation (3.30) can be integrated to

K =

(
1 +

t

td
− t

tc

)−2

(3.31)

3.3 Numerical Methods

To validate the applicability of equation 3.1 to supersonic turbulence, we performed
a series of direct numerical simulations. Our simulations are performed using the code
Orion, which uses a conservative second order Godunov scheme to solve the equations of
compressible gas dynamics (Truelove et al. 1998; Klein 1999). The continuity and momentum
equations are

dρ

dt
+∇ · (~vρ) = 0 (3.32)

d~v

dt
+ (~v · ∇)~v = −1

ρ
∇p, (3.33)

with fluid variables density, ρ, velocity, ~v and pressure p. In order to simulate a cloud
undergoing compression, we have moved to a comoving coordinate system. Given a cube of
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length L0, undergoing contraction such that at any given time it’s physical length, Li in any
direction xi is Li = aiL0, one can define a comoving density ρc = ρ/(a1a2a3). A contracting
cube also has a background velocity gradient, ~vb, defined by vb,i = xidai/dt which can be
removed by defining a peculiar velocity, ~vp = ~v − ~vb.

In the case of isotropic contraction (a = a1 = a2 = a3), the (isothermal) fluid equations
are

dρc

dt
+

1

a
∇ · (~vpρc) = 0 (3.34)

d~vp

dt
+

1

a
(~vp · ∇)~vp = − ȧ

a
~vp − 1

aρc

∇pc (3.35)

pc = c2
isoρc. (3.36)

In the more general case where a1, a2, and a3 are independent, the first two fluid
equations become

dρc

dt
+

(
1

ai

d

dxi

)
(vp,iρc) = 0 (3.37)

dvp,i

dt
+

(
vp,j

aj

d

dxj

)
vp,i = − ȧi

ai

vp,i − 1

ρc

(
1

aj

d

dxj

)
pc (3.38)

where repeated indices imply summation.
Orion was modified to solve the comoving fluid equations by first modifying the Reimann

solver, replacing the quantity dxi with the quantity aidxi. This substitution transforms
equation 3.32 into equation 3.37 and it transforms equation 3.33 into equation 3.38 without
the − ȧi

ai
vp,i term on the right side of the equation. The missing term is added explicitly,

after the hydro equations are solved with the modified Reimann solver. The operator split
equation is then

dvp,i

dt
= − ȧi

ai

vp,i. (3.39)

Simulations start with a constant density and are perturbed with a constant solenoidal
driving pattern similar to that described in Mac Low (1999). These perturbations correspond
to a Gaussian random field with a Burgers power spectrum, P (k) ∝ k−2 (Frisch & Bec
2001), over the range of driving wavenumbers, kd = 3 − 4. When the density field is no
longer smooth, the center-of-mass velocity of the driving pattern will not be zero and will
vary in time. To avoid accumulation of net momentum in the simulation, we subtract the
center-of-mass velocity from the driving pattern at each time step before the driving occurs.
After two cloud crossing times, the driving is turned off and the compression begins.
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3.4 Results

3.4.1 Isotropic Compression

When the compression begins, a particular speed vc is chosen in each direction such that
one end of the simulation is moving at speed −vc and the other is moving at vc (the center
of mass velocity is zero). This velocity is kept constant throughout a simulation, making the
equation dLi/dt = −2vc,i always true. Due to numerical time step constraints, the turbulent
box can never reach zero length in any direction, but it can be evolved to an arbitrarily small
value.

The value of the compression speed can be chosen from three regimes, td À tc, td ¿ tc
and td ∼ tc. All three should be explored to validate equation 3.30. We already performed
many simulations in with td ¿ tc in Hansen et al. (2011). The results of runs with no
compression, tc is infinity, give the expected decay coefficient ε = 0.7.

The regime with td ∼ 100tc is shown in figure 3.1. At early times, the decay is minimal
and ρσ2 ∝ ρ5/3. As σ rises, td decreases until the decay time is no longer negligible and we
approach the regime where td ∼ tc. This regime is shown more clearly in a simulation with
initial values td = 0.5tc. The turbulent velocity decays until td = tc which is around σ = vc

for our driving range of k = 3− 4. This is shown in figure 3.2.

3.4.2 Anisotropic Compression

To better predict the effects of compression due to anisotropic astrophysical sources
such as tides, we would like to understand the behavior of turbulence under anisotropic
compression. The isotropic result ρ̄K ∝ ρ̄5/3 is equivalent to σ ∝ 1/a, where a is the
homologous scale factor. In the case of thermal pressure, the equation of state does not
distinguish between directions, but turbulent pressure can be broken into three directional
components, ρ̄σ2

i . The anisotropic equation of state for turbulent pressure is described by
σi ∝ 1/ai. If compression occurs in the x direction, but not y or z, ρ̄σ2

x ∝ ρ̄3 while ρ̄σ2
y and

ρ̄σ2
z are independent of ρ̄.

To test this, we repeated the simulations while compressing in only one direction. For
simplicity, we will always refer to that direction as the x direction. The compression in the
x direction is the same as in the isotropic case and is still described by vc and has an axis
specific compression time tc = Lx/(2vc). As in the isotropic case, we start with a simulation
with td = 100tc, shown in figure 3.3 In the rapidly compressing simulation, the compression
adds energy to σx, but leaves σy and σz unchanged. The result ρ̄σ2

x ∝ ρ̄3 is recovered.
Next, we consider the case with td = 0.5tc with anisotropic compression, shown in figure

3.4. At early times, σx in figure 3.4 behaves in a similar fashion to σ in figure 3.2, although
off by

√
3. The difference is that σy and σz decay freely. The simulation eventually reaches

a state where σx À σy ∼ σz. As shown in Hansen et al. (2011), ε approaches zero in this
case and therefore td approaches infinity. With the significantly reduced decay rate, figure
3.4 at late times approaches σx ∝ 1/Lx wile σy and σz continue to decay.
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Figure 3.1 Specific turbulent energy vs mean density for rapidly compressed turbulence. The
solid line represents the simulation data and the dashed line represents ρσ2 ∝ ρ5/3
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Figure 3.2 Turbulent velocity dispersion vs time for turbulence compressed with a compres-
sion time similar to the decay time
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Figure 3.3 Specific turbulent energy vs mean density for turbulence rapidly compressed in
the x direction. The solid line is the x energy, and the points represent the energy in the
other two directions. The dashed line is ρσ2

x = ρ3 [need to run this longer]
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Figure 3.4 Turbulent velocity dispersion vs time for turbulence mildly compressed in the x
direction. The solid line is the x energy, and the points represent the energy in the other
two directions.
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Isotropic compression cannot be solely responsible for regenerating turbulence in molec-
ular clouds because it requires reducing the cloud to zero volume in a time similar to the
decay time. Anisotropic compression, however, can offer a solution by compressing for a
short amount of time. This will add some energy to the system, but the energy that it adds
will all be in a single direction. This energy decays very slowly and can lead to arbitrarily
slow turbulent decay rates (Hansen et al. 2011).

3.5 Conclusions

In order to determine the behavior of supersonic turbulence under compression, we
derive a simple equation of state for turbulent pressure. This equation of state is equivalent to
a γ = 5/3 monatomic gas under isotropic compression. To verify our derivation, we simulate
decaying turbulence undergoing homologous contraction and recreate the derived equation
of state. As a consequence of this equation of state, the velocity dispersion of turbulence
will naturally asymptote to the velocity of its compression. Additionally, we explored the
behavior of turbulence under anisotropic compression. Turbulent velocity dispersion σi in
direction i follows the rule σi ∝ 1/ai, where ai is the scale factor in direction i. This
means that compression in one direction can impart energy into that direction while leaving
the other two directions alone. This is verified with simulations. When this happens, the
turbulence becomes extremely anisotropic and the decay rate goes to zero as shown in Hansen
et al. (2011).
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Chapter 4

Feedback Effects on Low Mass Star
Formation

Abstract

Protostellar feedback, both radiation and bipolar outflows, dramatically effects the frag-
mentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh
refinement (AMR) gravito-radiation-hydrodynamics code, to simulate low-mass star forma-
tion in a turbulent molecular cloud in the presence of protostellar feedback. We present
results for the first simulations of a star-forming cluster that include feedback from both ra-
diative transfer and protostellar outflows. We run four simulations to isolate the individual
effects of radiation feedback and outflow feedback as well as the combination of the two.
We find that, while radiation suppresses fragmentation by itself, outflows reduce protostellar
luminosities by a factor of ten, rendering protostellar radiation largely irrelevant above a
mass scale of 0.05 M¯. We find initial fragmentation of our cloud at the global Jeans length,
around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment
repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass
as predicted from core accretion models for star formation. We find that protostellar out-
flows do not significantly affect the overall cloud dynamics due to their small opening angles
and poor coupling to the dense gas. The outflows do remove 2/3 of the mass from our cores,
giving a core to star efficiency, εcore = 1/3. We are also able to reproduce many observation
of local star-forming regions. Our simulation with radiation and outflows reproduces the ob-
served protostellar luminosity function. All of our simulations can reproduce observed core
mass functions, though we find they are sensitive to telescope resolution. We also reproduce
the two-point correlation function of these observed cores. Lastly, we reproduce IMF itself,
including the low-mass end, when outflows are included.
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4.1 Introduction

The origin of the stellar initial mass function (IMF) is one of the most fundamental
problems of star formation. The IMF can be described by single power law for stars above
0.5 M¯ (Salpeter 1955), and a broken power law (Kroupa 2002) for stars below this mass.
Alternatively, it can be described as a log-normal distribution with characteristic mass mc =
0.2M¯ that joins with the Salpeter power law for stars above 1.0 M¯ (Chabrier 2005). Any
theory of the IMF must explain both the functional form and the characteristic mass. A
tantalizing observational clue to the functional form lies in dust observations in star-forming
regions (Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000, 2001; Motte et al.
2001; Beuther & Schilke 2004; Stanke et al. 2006; Alves et al. 2007; Enoch et al. 2008; Sadavoy
et al. 2010). These dust maps find many high density concentrations that are consistent with
prestellar and protostellar cores. When the mass of these cores is calculated, the core mass
function (CMF) has the same functional form as the IMF, but with a higher characteristic
mass, ranging from 0.2 M¯ to 1 M¯. If each core is converted to a small number of stars
with some efficiency, 0.2 < εcore < 1.0, the IMF can be recreated.

The observed CMF provides support to core accretion theories of star formation (Shu
1977; McKee & Tan 2003), which start with a bound core and produce a single stellar system.
Simulations of turbulence find the functional form of the core mass function (log-normal plus
power law) is the expected outcome of supersonic turbulence (Padoan & Nordlund 2002;
Padoan et al. 2007). Analytic predictions of a turbulent density field with self-gravity can
also reproduce this functional form (Hennebelle & Chabrier 2008, 2009). The characteristic
core mass is then the Jeans mass at some critical density and temperature. However, choosing
the correct density and temperature is problematic. In purely isothermal turbulence, there
is no characteristic Jeans mass. As objects collapse and the density increases, the Jeans
mass decreases. There is no transition where this decrease in Jeans mass will stop without
additional physics. This means the core masses are either infinitely small or functions of the
global Jeans mass of the host molecular cloud. Observations are consistent with a universal
IMF, however, even over a range of cloud Jeans masses (Kroupa 2002; Chabrier 2003; Bastian
et al. 2010). This means the characteristic core mass must be set by local physics, which
isothermal turbulence cannot provide. Star-forming regions are approximately isothermal
because the thermal time scales are much shorter than the dynamical time scales, but there
are ways to break this isothermality.

One approach is to focus on the coupling between gas and dust in star-forming envi-
ronments (Larson 2005; Elmegreen et al. 2008). At low densities, gas-dust coupling is poor
and the gas is theoretically slightly sub-isothermal (temperature decreases with increasing
density). At higher densities, gas and dust are well coupled and the gas is theoretically
slightly super-isothermal. This yields a critical density and temperature at the transition
that can be converted into a Jeans mass. This critical density, ρ ∼ 10−19 g cm−3, is lower
than the densities of large star-forming regions like Orion, however, and unlikely to explain
the characteristic core mass in these regions.

One critical mass is the point when dust becomes opaque to its own thermal radiation
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(Low & Lynden-Bell 1976). At that density, the gas will heat up and raise the Jeans mass,
creating a minimum Jeans mass of fragmentation. A barotropic simplification of this effect
sets the mass in many simulations (e.g. Bate & Bonnell (2005); Bonnell et al. (2006); Offner
et al. (2008); Hennebelle et al. (2011)). The density of this transition is extremely high
(∼ 10−13 g/cm3) (Masunaga et al. 1998) and the resulting Jeans mass (∼ 0.004M¯) is much
lower than the characteristic core mass (Low & Lynden-Bell 1976; Whitworth et al. 2007).
In addition, the barotropic approximation is inaccurate when compared to simulations that
include dust radiation (Krumholz et al. 2007a; Offner et al. 2009b; Bate 2009; Price & Bate
2009). The importance of dust radiation can be seen in Bate (2009) and Price & Bate (2009),
which include dust radiation, but effectively ignore protostellar luminosity. These studies
found that the inclusion of dust radiation significantly suppresses the formation of brown
dwarfs, showing dust radiation does raise the effective fragmentation mass compared to a
barotropic equation of state.

The most powerful break from isothermality comes from protostellar radiation. Massive
protostars are capable of heating an entire cloud (Krumholz et al. 2007a; Cunningham et al.
2011; Myers et al. 2011; Krumholz et al. 2011). Low-mass stars do not have the same thermal
influence, but simulations show they can still dramatically reduce fragmentation and recover
a 1 M¯ characteristic core mass (Offner et al. 2009b; Krumholz et al. 2011). Protostellar
radiation does not create a unique critical density, but it does weaken the density dependence
of the effective Jeans mass (Bate 2009).

Given a core mass function, there is still the question of CMF to IMF efficiency. The
primary mechanism for reducing the core mass is protostellar outflows. Stars of all masses
show bipolar outflows during their formation (Richer et al. 2000; Shepherd 2003). These
outflows remove mass that would otherwise accrete onto stars, thereby reducing the final
mass (Matzner & McKee 2000; Arce & Sargent 2006; Wang et al. 2010). Analytical estimates
of mass loss from winds can fully explain the range of mass loss expected from observations
0.2 < εcore < 1.0 depending on the details of the cores and the outflows (Matzner & McKee
2000). The outflows travel beyond their stars of origin and deposit energy into parsec-scale
turbulent motions. Evidence suggests that molecular cloud turbulence appears on the scale
of the entire cloud (Ossenkopf & Mac Low 2002; Brunt et al. 2009), so is most likely driven
by sources other than protostellar outflows. Nonetheless, the dynamics on parsec scales can
be significantly altered by outflows (Norman & Silk 1980; McKee 1989; Li & Nakamura 2006;
Banerjee et al. 2007; Nakamura & Li 2007; Swift & Welch 2008; Carroll et al. 2010; Arce
et al. 2010; Wang et al. 2010). Lastly, outflows allow radiation to escape the protostellar
core, promoting fragmentation (Cunningham et al. 2011).

In this paper, we will investigate the fragmentation of a parsec-scale molecular cloud
into cores and then into stars. This requires refinement down to small scales to capture the
fragmentation and radiative transfer to fragment at the correct mass scale, similar to Offner
et al. (2009b). This also requires simulation of protostellar outflows, to capture the CMF
to IMF efficiency, similar to Cunningham et al. (2011). The goal of this paper is to explain
both the observed CMF and the IMF while self-consistently finding εcore. In order to do
this, we will perform the first simulation of a star-forming cluster to include both radiative



Section 4.2. Simulations 39

Name Thermal Physics Winds? Finest Resolution [AU]
B Barotropic No 32

BW Barotropic Yes 32
R Radiation No 32

RW Radiation Yes 32

Table 4.1 Table of simulations

transfer and protostellar outflows.
We describe our numerical method and simulation setup in §2. In §3, we report the

results of our simulations. We discuss the implications of our results on star formation
theory and compare to observations in §4. We summarize our conclusions in §5.

4.2 Simulations

We perform four primary simulations with nearly identical initial conditions but different
physics. These simulations all include hydrodynamics, gravity and basic sink particle physics,
but may also include radiation and/or sink particle outflows. The simulations are shown in
table 4.1

4.2.1 Initial Conditions

All simulations have the same initial conditions, also used in Offner et al. (2009b). The
initial gas temperature is Tg = 10 K, the box length is L = 0.65 pc and the average density
is ρ̄ = 4.46 × 10−20 g cm−3, corresponding to nH = 1.91 × 104 cm−3. The total box mass
is 185 M¯. When appropriate, the radiation temperature, Tr is initialized to 10 K. The
radiation energy density is thus E = aT 4

r = 7.56× 10−11 erg cm−3.
To obtain the turbulent initial conditions, we begin without self-gravity and apply ve-

locity perturbations to an initially constant density field using the method described in Mac
Low (1999). These perturbations correspond to a Gaussian random field with flat power
spectrum in the range 1 ≤ k ≤ 2. These perturbations continue for three cloud cross-
ing times and then stop. At this point the turbulence follows a Burgers power spectrum,
P (k) ∝ k−2, characteristic of supersonic hydrodynamic turbulence. The 3D turbulent Mach
number is M = 6.6, which gives a 3D rms velocity dispersion, σv = 1.2 km/s. We choose
the Mach number so that the cloud is approximately virialized:

αvir =
5σ2

GM/R
' 1. (4.1)

This is slightly above the linewidth-size relation σ ' 0.7(R/1 pc)1/2 km s−1 (Solomon et al.
1987; Heyer & Brunt 2004), and is equivalent to σ = 1.2(R/1 pc)1/2 km s−1, which is well
within the observed range (e.g. Falgarone et al. 2009)
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After driving for three cloud crossing times, we then turn off driving, turn on gravity
and follow the subsequent gravitational collapse for approximately one global free fall time:

tff =

√
3π

32Gρ̄
= 0.315 Myr, (4.2)

where ρ̄ is the mean density of the box. The simulations with radiation become prohibitively
computationally expensive at late times and are stopped at t = 0.83 tff with a total stellar
mass of 30 M¯ for simulation R. The barotropic simulations are continued to t = 1.05 tff
before they are stopped. At this time the total stellar mass in simulation B is 50 M¯
compared to the total simulation mass of 185 M¯. There is still gas bound to protostars
when the simulations end, totaling 11 M¯. Our stellar mass estimates may therefore be too
low by 20%.

Given our temperature of 10 K, the Jeans length at ρ̄ is

λJ =

(
πc2

s

Gρ̄

)1/2

= 0.20 pc, (4.3)

and the Jeans mass is

MJ =
4π

3

(
λJ

2

)3

ρ̄ = 2.7 M¯. (4.4)

The turbulent Jeans mass, at density ρ = M2ρ̄, is 0.4 M¯.
The calculations have a 2563 base grid with 4 levels of refinement by factors of 2, giving

an effective resolution of 40963. This resolution corresponds to ∆x4 = 32 AU.

4.2.2 Evolution Equations

We use the parallel adaptive mesh refinement code ORION for our simulations. The
numerical method is nearly identical to previous papers (Krumholz et al. 2007a; Offner et al.
2009b; Cunningham et al. 2011; Krumholz et al. 2011; Myers et al. 2011). ORION solves
the equations of compressible gas dynamics including self-gravity, radiative transfer, and
radiating star particles, all on an adaptive grid. Every cell in the grid has four conserved
quantities: mass density, ρ, vector momentum density, ρv, gas energy density, ρe, and radia-
tion energy density, E. These conserved quantities can be used to calculate derived quantities
such as velocity, v, and pressure, P . In addition to the gas quantities, we evolve point-mass
star particles, each with a position xi, mass Mi, momentum pi, angular momentum, ji and
luminosity Li. The subscript i refers to the star particle number. The particle method
is explained in Krumholz et al. (2004) (hereafter KKM04), with the addition of radiation
(Krumholz et al. 2007a) and outflows (Cunningham et al. 2011). The full set of evolution
equations for gas and particles is

∂ρ

∂t
+∇ · (ρv) +

∑
i

[ṀKKM04W (ri)− Ṁw,iWw(ri)ξ(θi)] = 0, (4.5)
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∂ρv

∂t
+∇ · (ρvv) = −∇P − ρ∇φ−

∑
i

(ṗW (ri)− Ṁw,ivw,iWw(ri)ξ(θi) · r̂i), (4.6)

∂(ρe)

∂t
+∇ · [(ρe + P )v] = ρv∇φ− κRρ(4πB − cE)−

(
ρ

µmH

)2

Λ(Tg)− (4.7)

∑
i

[ε̇KKM04W (ri)− Ṁw,iWw(ri)ξ(θi)
kBTwK

µ(γ − 1)
],

∂

∂t
E −∇ ·

(
cλ

κRρ
∇E

)
= κP ρ (4πB − cE) +

(
ρ

µmH

)2

Λ(Tg) +
∑

i

LiW (ri), (4.8)

∇2φ = −4πG[ρ +
∑

i

Miδ(ri)], (4.9)

Ṁi =
1

1 + fw

ṀKKM04, (4.10)

Ṁw,i = fwṀi =
fw

1 + fw

ṀKKM04, (4.11)

ṗi = ṗKKM04, (4.12)

ri = x− xi, (4.13)

θi = acos(r̂i · ĵi). (4.14)

The quantities entering these equations are defined below. Equations (4.5) and (4.6) are
the fluid equations for mass and momentum, modified to include particles. Equations (4.7)
and (4.8) are the energy equations for gas and radiation respectively. The Poisson equation
for the gravitational potential, φ is given by equation (4.9). The particle evolution is given
by equations (4.10), (4.11) and (4.12). We use periodic boundary conditions for all gas and
particle quantities.

For the radiative runs, we adopt Marshak boundary conditions for the radiation field.
This allows radiation to escape from the box as it would from a molecular cloud. The
equation of state for the gas is given by

P =
ρkBTg

µmH

= (γ − 1)ρ

(
e− v2

2

)
, (4.15)

where µ = 2.33 is the mean molecular weight for molecular gas of Solar composition and γ
is the ratio of specific heats. We adopt, γ = 5/3, representing a monatomic ideal gas1. The
term κP ρ (4πB − cE) represents energy exchanged between the radiation field and the dust

1We choose a monatomic γ because most of the simulation domain is too cold to rotationally excite
molecular hydrogen
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in our gas, with B = caT 4
g /4π representing the Planck emission function. The opacities κP

and κR are given by the dust opacities from the iron normal, composite aggregates dust model
of Semenov et al. (2003). We assume that the gas and the dust are thermally coupled. When
the gas temperature exceeds the dust destruction temperature, the energy exchange term
goes to zero and the gas and radiation unrealistically decouple. To address cooling from
gas above the dust destruction temperature, we use the line cooling function Λ(Tg) from
Cunningham et al. (2006). This removes energy from the gas and adds that energy to the
radiation field (see Cunningham et al. (2011) for further details). The radiation flux limiter
is given by λ = 1

R

(
cothR − 1

R

)
, where R = |∇E|/κRρE (Levermore & Pomraning 1981).

It should be noted that we have excluded the radiation pressure and radiation enthalpy
advection terms from equation (4.8) that appear in the analogous equation in Krumholz
et al. (2007a). This approximation is justified in the formation of low-mass stars, as shown
in Offner et al. (2009b).

For the non-radiative runs, the energy exchange term from equation (4.7) disappears,
and we close the system of equations with a barotropic equation of state for the gas pressure:

P = ρc2
s +

(
ρ

ρc

)γ

ρcc
2
s, (4.16)

where cs =
√

kBT/µmH is the isothermal sound speed, γ = 5/3 and ρc is the critical density.
The critical density determines the transition from isothermal to adiabatic regimes and we
adopt ρc = 2×10−13 g cm−3 to agree with the collapse solution from Masunaga et al. (1998)
prior to H2 dissociation.

The particle quantities ṀKKM04, ṗKKM04 and ε̇KKM04 represent the sink particle accre-
tion rates of mass, momentum and energy from the surrounding gas in the absence of winds
as given by KKM04, with the function W representing a window function over the accretion
zone of the particle. A fraction, fw = 0.3, of the accreted mass for each particle is injected
back into the surrounding gas at velocity vw,i and temperature Tw = 104 K along the direc-
tion of the angular momentum vector of the particle. The wind speed is set by the Keplerian
speed at the surface of the star, vk,i =

√
GMi/r∗,i where r∗,i is the protostellar radius, but is is

capped at 60 km s−1 for computational speed. Specifically, vw,i = min(vk,i, 60 km s−1). The
velocity cap has a similar effect to the choice of Cunningham et al. (2011) to use vw,i = vk,i/3
for the most massive stars in the calculation. The wind is injected over a window function
Ww that is slightly larger than W for numerical reasons. The exact angular distribution of
the wind is described in the function ξ. The functional form is taken from Matzner & McKee
(1999) as implemented in Cunningham et al. (2011),

ξ(θ, θ0) =

[
ln

(
2

θ0

)
(sin2 θ + θ2

0)

]−1

, (4.17)

where θ0 is a flattening parameter that sets the opening angle of the wind. We use the
fiducial value of θ0 = 0.01. We update the luminosity of each star, Li, using the protostellar
evolution model described in the appendices of Offner et al. (2009b).
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So far, the evolution equations can be described as the fluid and radiation equations
from Offner et al. (2009b) combined with the particle equations and line cooling of Cun-
ningham et al. (2011), but there is one important modification. In the KKM04 sink particle
methodology, all particles with overlapping accretion zones are merged together. This gives
an effective merger radius of 8 cells, or 256 AU at a grid resolution of 32 AU. To limit this
effect, we changed the merger radius to 4 cells, representing the point when a particle is
in the accretion zone of another particle. This gives an effective merger radius of 128 AU
at our resolution. Even with this improvement, our particle algorithm will unrealistically
merge stars that pass within 128 AU. To address this, we have implemented a mass limit of
mmerge = 0.05 M¯, above which stars do not merge. This limit is chosen to correspond to the
mass at which a protostar’s core temperature becomes high enough to dissociate molecular
hydrogen and initiate second collapse (Masunaga et al. 1998; Masunaga & Inutsuka 2000).
Before second collapse, protostars are extended balls of gas with radii of a few AU and have a
much higher collisional cross-section than main sequence stars. After second collapse, stellar
mergers should be extremely rare and we do not allow them. This approach is also used in
Myers et al. (2011). The effects of this choice are explored in §4.9.

ORION utilizes a second order Godunov scheme to solve the equations of compressible
gas dynamics (Truelove et al. 1998; Klein 1999). These are equations (4.5)-(4.7), excluding
terms from stars and radiation. The Poisson equation (4.9) is solved using a multi-grid
iteration scheme (Truelove et al. 1998; Klein 1999; Fisher 2002). The flux-limited diffusion
radiation equation (4.8) and the radiation terms in equation (4.7) are solved using the conser-
vative update scheme from Krumholz et al. (2007b) modified to include the pseudo-transient
continuation of Shestakov & Offner (2008).

We use the Truelove criterion (Truelove et al. 1997) to determine the addition of new
AMR grids so that the gas density in the calculation always satisfies

ρ <
J2πc2

s

G(∆xl)2
, (4.18)

where ∆xl is the cell size on level l. We adopt a Jeans number of 0.125. In the simulations
with radiative transfer, it is necessary to resolve the spatial gradients in the radiation field.
Areas of high radiation gradients are near accreting stars, which tend to already be refined
under the Truelove criterion. This is not always true for more evolved stars, which have
higher luminosities and have accreted the dense gas that would trigger refinement. We find
that the radiation gradients are adequately resolved by refining whenever |∇E|∇xl/E > 0.25.

4.3 Results

4.3.1 Large Scale Evolution

The evolution of the barotropic simulations is depicted in Figure 4.1. Figures 4.2 and
4.3 depict the evolution of the radiative simulations without and with winds, respectively.
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1e-01 1 1e-01 1

Figure 4.1 Column density of the entire simulation domain for BW (left) and B (right) at
times 0, 0.2, 0.4, 0.6, 0.8 and 1.0 tff from top to bottom. Star particles are marked with
white circles. There is very little difference on the domain scale with and without winds for
the barotropic simulations.



Section 4.3. Results 45

1e-01 1 10 15 20 25 30

Figure 4.2 Column density (left) and density weighted Temperature (right) for simulation
R at times 0, 0.2, 0.4, 0.6, and 0.8 tff from top to bottom. Particles are marked with white
circles.
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1e-01 1 10 15 20 25 30

Figure 4.3 Same as Figure 4.2, but for simulation RW. The high temperature regions are
the paths of outflows. It only takes a small amount of gas at 104 K to move the average
temperature above 30 K through that line of sight.
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In all simulations, for t . 0.4tff , there are cloud-scale filaments that slowly contract, allowing
3 turbulent cores of width ∼ 20, 000 AU to form. This length is half the Jeans length at
the average cloud density. At this point, the cores begin to fragment, while new cores form,
eventually forming 6 fully developed cores. These cores each have a central stellar system
with ∼ 75% of the stellar mass in the core and an additional group of low-mass stars,
totalling ∼ 10 stars per core. These cores with multiple stars generally resemble observed
high-stellar-density cores (Teixeira et al. 2007; Chen & Arce 2010). There are an additional
20 stars in unfinished cores that form near the end of the simulation, giving a global total
of 80 stars. Three of the cores coalesce by the end of the simulation to form a single group
of 30 stars.

The evolution of the 3D rms velocity dispersion, σv, is shown in Figure 4.4. The
global turbulence decays until star formation kicks in at t ∼ 0.5tff . There are two main
mechanisms for star formation to increase σv. First, as stars accrete mass and deepen their
gravitational potential, the surrounding gas can convert gravitational energy into kinetic
energy as it falls into the stars. This is shown in the gradual increase in Mach number for
t > 0.6tff in the B simulation. This effect is strong enough to return σv to near its original
virialized value by itself. In rare cases, a many-body close encounter between stars will
eject some gas at high velocities. There is not much momentum injected this way and the
energy quickly dissipates, but it causes spikes in σv for the barotropic simulations, which have
more small-scale fragmentation and therefore more many-body close encounters. The second
mechanism occurs when protostellar winds are included. Some mass accreted onto stars is
directly injected around the stars at high velocities. This causes the smooth increase in σv

for simulations BW and RW as well as spikes from events with particularly high accretion
rates that lead to bursts in wind momentum.

The total momentum injected by winds for model BW is shown in Figure 4.5. For com-
parison, a characteristic value of the magnitude of the momentum associated with internal
motions in the cloud, Mcloudsigmav is also plotted. For t > 0.8tff , the total momentum that
has been injected by the winds is greater than the characteristic cloud momentum. At this
point, the total amount of turbulent momentum that has been dissipated (including dissipa-
tion of wind momentum) is roughly the total amount of momentum that has been injected
by the winds. By the end of the BW and RW simulations, the total wind momentum injected
into the cloud is over twice the characteristic cloud momentum. The kinetic energy injected
from the winds dissipates over time, suggesting a steady-state solution where the velocity
dispersion of the cloud is constant with time as the winds replenish energy as quickly as it
can dissipate.

4.3.2 Evolution of the Protostellar Population

The total mass in stars and the total number of stars as functions of time is shown are
Figures 4.6 and 4.7. The realization of the initial turbulence is slightly different between
the radiative and barotropic simulations, so star formation begins at different times. The
first stars form at t = 0.2tff for the radiative simulations and t = 0.35tff for the barotropic
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Figure 4.4 Time evolution of global rms Mach number for simulations with and without winds
and with and without radiation. The turbulent energy in all simulations decays for half a
global free fall time, at which point gravitational potential energy from stars is converted
into kinetic energy, which raises the rms velocity. When winds are included, they contribute
over twice as much energy as gravity itself.
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Figure 4.5 Total momentum that has been injected by wind over time for the barotropic
simulations. For comparison, the total mass of the simulation multiplied by the velocity
dispersion is also plotted. The total wind momentum integrates all injected momentum over
time, even from winds that have decayed. This way the amount of injected momentum is
eventually higher than the actual momentum of the cloud.

simulations. The turbulence overlaps enough between the two cases, however, that at later
times the total mass in stars is similar for the two cases. Winds reduce the mass in stars
by about a factor of 3 in both the radiative and barotropic cases. The number of stars does
not change between BW and B, implying winds do not cause or suppress fragmentation
by themselves. The number of stars in RW is significantly greater than in R, however,
because protostellar luminosity inhibits fragmentation and the winds reduce that luminosity.
The three simulations other than R show a dramatic increase in the number of stars at
0.6 tff < t < 0.8 tff .

The evolution of median stellar mass is shown in Figure 4.8. This is a rough proxy for
the characteristic mass of the protostellar mass function. Note that it will always be lower
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Figure 4.6 Total mass in stars as a function of time for the four main simulations. The mass
of the entire simulation domain is 180 M¯.

than the median mass of the IMF, because not all of the stars are finished accreting. Both
BW and RW maintain a median around 0.05 M¯ (similar to that of the protostellar mass
functions in McKee & Offner (2010)) throughout the simulation. The median does increase
for simulation BW around t > tff as the formation rate of new stars decreases. The median of
B fluctuates more, but is around 0.2 M¯. Lastly, R maintains a median around 0.5M¯. This
general behavior should be expected. The median mass is lowest when winds are included
and highest when radiation is allowed to suppress fragmentation. The case with both winds
and radiation ends up similar to BW because winds reduce protostellar luminosities.

The global luminosity evolution for the radiative simulations is plotted in Figure 4.9.
The winds reduce the total luminosity by a factor of up to 10 at any given time. This is
expected since the accretion luminosity is

Lacc ' GM?Ṁ?

R?

; (4.19)
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Figure 4.7 Number of stars as a function of time for the four main simulations. In the
barotropic case, the number of stars is unaffected by winds. In the radiative case, radiation
suppresses the number of stars unless wind is present.

given that the total mass in stars M? is reduced by a factor of 3 when winds are included,
and the total accretion rate of stars Ṁ? is also reduced by 3, the total luminosity is therefore
reduced by a factor of 9 assuming the stellar radii, R?, do not change. Main sequence stars
typically have a positive correlation between mass and radius, suggesting the factor of 9 is
an upper limit. However, at any given point in time, many stars in our simulations are in the
degenerate regime where mass and radius are negatively correlated (Chabrier et al. 2009),
which counteracts the positive correlation from the higher mass stars and keeps the total
luminosity ratio near 9.

The average stellar luminosity is shown in Figure 4.10. As was seen in the plot of total
luminosity, the mean and median values of protostellar luminosity are much lower when
winds are included. The disparity in average luminosity is even greater than the disparity
in total luminosity because there are fewer stars when winds are excluded. The average
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Figure 4.8 Median mass of stars as a function of time for the four main simulations. The two
cases with winds maintain low medians throughout the simulations. The case with radiation
without winds (case R) is able to suppress fragmentation and star formation largely stops
as the original stars accrete mass.

luminosity in simulation R is heavily influenced by a single 6.6 M¯ star that accounts for
over half the total luminosity in the simulation. Unlike the low-mass stars, most of this
luminosity is powered by nuclear fusion rather than accretion. Protostellar luminosities will
be discussed further in section 4.4.3

4.3.3 Thermal Evolution

All simulations start at a background temperature of 10 K and are bathed in 10 K
radiation. Stellar radiation and mechanical energy from protostellar outflows, can raise this
temperature. We have identified gas heated above 12 K as thermally affected by stellar
feedback. This represents all gas with energy density, ∝ T 4 at least twice that of 10 K
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Figure 4.9 Total stellar luminosity versus time for simulations with radiation both with and
without winds. Winds dramatically lower the radiation.

gas. The total mass of this gas is shown in Figure 4.11. The simulation with winds has
significantly less heated gas than the simulation without winds. This is due to the reduced
luminosity caused by the winds shown in Figure 4.9. In each simulation, the mass in heated
gas roughly follows the mass in stars. When winds are included, there is a relative bump
from wind-heated gas, though this is much smaller than the overall reduction in gas heated
from stellar luminosity.

To further explore the heated gas, temperature-density phase plots with and without
winds are shown in Figure 4.12. The phase plots with and without winds are notably different
in two areas. First, the wind gas fills the high-temperature, low-density domain, while the
same domain is empty without winds. Second, high-density gas with ρ > 10−16 g/cm3 has a
higher temperature range without winds than with winds because the extra stellar luminosity
heats that gas. When winds are included, that dense gas is less common in addition to being
colder; there is more fragmentation, which turns dense gas into stars. In addition, some of
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Figure 4.10 Mean and median stellar luminosity versus time for simulations with radiation.
The top panel is the simulation without winds and the bottom panel is the simulation with
winds.

the gas is also blown away by the winds themselves.

4.4 Discussion

4.4.1 Supporting a Cloud with Outflows

The turbulent evolution shown in Figures 4.4 and 4.5 roughly agrees with previous simu-
lations of molecular clouds with outflows, such as those in Nakamura & Li (2007). Turbulent
energy decays initially, only to be replaced by kinetic energy from winds and from gravity.
While these sources can increase the total kinetic energy of gas, the new turbulence is fun-
damentally different from the isotropic, homogeneous hydrodynamic turbulence it replaces.
This result is also seen in Nakamura & Li (2007), who find that the late time turbulent
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Figure 4.11 Total gas mass heated above 12 K versus time, compared to the background
value of 10 K. The total mass in stars is also plotted for reference.

statistics do not match expected isotropic hydrodynamic results. One key difference is the
energy from outflows is highly anisotropic. Outflow cavities are marked by long walls with
high velocity shear between the fast outflow gas and the slow ambient gas. This shear is
detectable as solenoidal energy. There is some compressive energy at the head of the outflow
cavity, but most of the surface area is the side walls of the cavity and not the head. The ratio
of solenoidal to compressive energy is 2 for isotropic turbulence with the solenoidal driving
used here. The evolution of the ratio of solenoidal energy to compressive energy is shown
in Figure 4.13. Wind injection greatly increases the solenoidal energy, steadily increasing
the solenoidal to compressive ratio over the course of the simulation. This new anisotropic
turbulence can behave fundamentally differently from isotropic turbulence (Hansen et al.
2011).

The other major difference between the initial turbulence and wind-driven turbulence
is seen in the rms velocity, σdense, of gas with ρ > ρ̄. Even in isotropic, homogenous, hy-
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Figure 4.12 Phase plot showing total gas mass as a function of temperature (y-axis) and
density (x-axis) for radiative simulations with (left) and without (right) winds. Phase plots
are taken at times of 0.25, 0.5 and 0.75 tff from top to bottom. The high-temperature low-
density gas on the left part of the wind phase plots is outflow gas. Warm, high-density gas
is near gas near a luminous star.
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Figure 4.13 Ratio of solenoidal to compressive energy versus time with and without winds
for the radiative simulations. For pure hydrodynamic, isotropic turbulence, this ratio should
be around 2. This ratio stays near 2 when winds are excluded. When winds are included,
the turbulence is much more anisotropic, leading to higher solenoidal fractions.

drodynamic turbulence, there is a negative correlation between density and velocity, causing
σdense < σv (Offner et al. 2009a). The winds themselves are collimated, very low density
gas and have difficulty transmitting energy into high density gas. This means that while
σv is much greater with winds than without, σdense does not change much when winds are
included. The evolution of σdense compared to σv is shown in Figure 4.14.

Because the dense gas is relatively unaffected by the outflows, if our cloud had been
centrally concentrated like that of Nakamura & Li (2007) or Wang et al. (2010), the dense part
of the cloud would have most likely collapsed on itself even with the support of protostellar
outflows. Magnetic fields may have an effect, as shown by Wang et al. (2010). The magnetic
fields help transmit outflow energy to a much larger solid angle, so that even a centrally
concentrated cloud can achieve a quasi-static balance between outflows and gravity.
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Figure 4.14 Time evolution of rms Mach number of dense gas and all gas with and without
winds. Winds significantly raise the Mach number of the light gas, but do not strongly
influence the dense gas turbulence.
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4.4.2 Comparison to the IMF

Our resolution of 32 AU is marginally good enough to capture binaries, so each star
particle should represent a single stellar object instead of a stellar system. At any given
time, about 2/3 of our star particles are in stellar multiples. The multiple properties are
dynamic due to unstable high-order multiples and we cannot compare to the observed sys-
tem properties. We can, however, compare to observed stellar properties. The protostellar
mass functions of the four main simulations are shown in Figure 4.15 and compared to the
stellar IMF in Chabrier (2005). The mass functions in Figure 4.15 are shown at the latest
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Figure 4.15 The mass function of all stars in each simulation are shown in blue histograms.
The mass function of the first 30 stars to form are overplotted in red hatched histograms.
The stellar IMF is plotted as the green line. Top left: RW at t = 0.83tff . Top right: R at
t = 0.83tff . Bottom left: BW at t = 1.09tff . Bottom right: B at t = 1.03tff

time available for each simulation. This time is later for the barotropic simulations due to
the computational expense of flux-limited diffusion with many stellar sources. The mass
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functions in Figure 4.15 are not exactly comparable to an IMF because some of the stars
are still accreting. These protostellar mass functions can be compared to those in McKee
& Offner (2010), where the turbulent core and competitive accretion models both roughly
match RW. To help approximate an IMF, we have also plotted the mass function of the
first 30 stars to form, which is the number of stars that form in the R simulation. Roughly
speaking, the last stars to form are all due to small-scale fragmentation at later times and
are less likely to be at their final mass. Even the first 30 stars are not at their final mass
when the radiative simulations stop.

As expected, the simulations without winds have mass functions skewed to higher masses
than those with winds. The mass functions of both simulations without winds have too
much mass at the high end compared to the IMF. The best fit to the IMF is from the BW
simulation. It has a deficit at high mass when all particles are considered and a surplus when
the first 30 particles are considered. It should be noted that the normalized mass functions
for BW and RW look nearly identical when compared at the same time (explored in the next
section). It is a good assumption that RW would also eventually match Chabrier at t ∼ tff .
Even at t = 0.83tff , the first 30 stars have only a small deficit at high mass compared to
Chabrier.

4.4.3 Comparison to Protostellar Luminosities

Theoretical predictions of protostellar luminosities are often too high compared to obser-
vations of regions of low-mass star formation (Kenyon et al. 1990; Young & Evans 2005; Enoch
et al. 2009), so it is important to compare our own simulations with observations. The mean
and median luminosities of protostars observed in nearby clusters are 〈Lobs〉 = 5.3+2.6

−1.9 L¯
and Lobs,med = 1.5+0.7

−0.4 L¯, respectively (Enoch et al. 2009; Evans et al. 2009; Offner &
McKee 2011). The typical mean and median luminosity in our simulation with winds are
〈L〉 = 6.9 L¯ and Lmed = 1.4 L¯, in agreement with the observations. An additional useful
quantity is the standard deviation of the luminosity, σ(L). This is sensitive to outliers in
the luminosity distribution, but this can be mitigated by using the log of the luminosity. We
find σ(log L) = 0.77 dex. This matches the observed value σ(log Lobs) = 0.7+0.2

−0.1. For these
comparisons, we have discarded stars with L < 0.05 L¯, below the detection limit of the
observations.

One theoretical prediction that also matches the observed protostellar luminosities is
the work of McKee & Offner (2010) and Offner & McKee (2011). This prediction differs
from the straightforward, constant accretion rate prediction (Fletcher & Stahler 1994a,b)
in three important ways. First, Offner & McKee (2011) assumed that 1/4 of the energy of
the gas that accreted onto the star was removed non-radiatively. This effect is captured in
our simulations. Second, they considered various accretion rates that rise over time, such
as predicted in core accretion and competitive accretion. These accretion rates all take the
form,

ṁ = ṁ1

(
m

mf

)j

m
jf

f , (4.20)
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where m is the instantaneous mass of a protostar, mf is the final mass of a protostar, and
ṁ1 is a constant throughout a cloud. More realistic accretion rates will rise at early times
and slowly decline over time, in what McKee & Offner (2010) call ‘tapered accretion’. There
are multiple approaches to this; the one taken by McKee & Offner (2010) is to assume a
linear decrease in the accretion rate with time, ṁ ∝ 1− t/tf , which implies that

ṁ = ṁ1

(
m

mf

)j

m
jf

f

[
1−

(
m

mf

)1−j
]1/2

. (4.21)

The values of j and jf for several different accretion theories are shown in table 4.2 as well
as the values measured in our simulations with winds. Radiative and barotropic simulations
produce the same j and jf . The fits shown are for equation (4.21). Our data do not
agree with the functional form for untapered accretion (equation (4.20)), but if this were
used, jf would remain the same while j ∼ −0.1. Our measured values of j = 0.3 ± 0.2

Accretion Mechanism j jf

Constant Accretion 0 0
Turbulent Core Accretion 0.5 0.75

Competitive Accretion 0.67 1
Simulations with Winds 0.3± 0.2 0.6± 0.2

Table 4.2 Accretion rate dependencies on instantaneous and final protostellar mass

and jf = 0.6 ± 0.2 marginally agree with the turbulent core accretion model, but do not
match any of the other theories. Our j and jf actually lie in between constant accretion
and turbulent core accretion. This suggests the most appropriate theory may be the the
two component turbulent core (2CTC) model, which is constant accretion at early times
and turbulent core accretion at later times. Our low j does not agree with Bondi-Hoyle
accretion, which accelerates with mass.

The last effect considered by McKee & Offner (2010) and Offner & McKee (2011) (as well
as Dunham et al. (2010)) is episodic accretion from FU Ori type protostars (e.g. Hartmann
& Kenyon 1996). If protostars spend most of their life in a low-accretion, low-luminosity
phase and accrete nearly all their mass during short intense accretion bursts, the median
stellar luminosity can be greatly reduced. This episodic accretion is thought to arise from
disk instabilities (Basu & Vorobyov 2005). We do not resolve disks and therefore do not see
episodic accretion in our simulations.

4.4.4 Preventing Fragmentation with Radiative Feedback

Fragmentation in the simulations happens in two distinct phases. First, the cloud as a
whole forms cores of size ∼ 20, 000 AU (0.1 pc). This size scale is half the Jeans length at
density ρ̄. These large scale cores each have a major filament within them that is above the
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critical line density for stability (Larson 1985; Inutsuka & Miyama 1992, 1997),

λcrit =
2kT

µmHG
. (4.22)

At our temperature, T = 10 K, the critical line density is λcrit = 1.0 × 1016 g cm−1. The
line densities of the filaments in our cores range from 1.7× 1016 to 4.0× 1016 g cm−1, similar
to filament line densities seen in Serpens (André et al. 2010). The general morphology is
similar to the hub-filament structure in Myers (2009, 2011) with the hub at the center of
each core.

The large scale fragmentation is not affected by radiation. There is simply not enough
protostellar luminosity to affect the large scales except possibly at late times in the R sim-
ulation. The winds do travel through the entire simulation domain and could theoretically
affect the fragmentation, but this does not happen in practice since the winds do not couple
well to the cores.

The second stage of fragmentation occurs as the filament in each core contracts under
self-gravity. The filaments can then fragment into many stars around the central stellar
system. Unlike the large-scale core formation, this small scale fragmentation can be signif-
icantly suppressed by radiation (Krumholz et al. 2007a; Offner et al. 2009b). This is best
demonstrated in Figure 4.7. Simulation R stagnates at 30 stars, while B and BW finish with
80 stars. At the end of R, the total protostellar luminosity is 2500 L¯ and this is currently
heating 30 M¯ of gas. Winds by themselves do not affect small scale fragmentation. The
total number of fragments, and therefore the total number of stars, are the same in the
barotropic simulations with and without winds, as shown in Figure 4.7. It should be noted
that our fragments occur in the core and not in accretion disks. This agrees with higher
resolution core evolution simulations (Offner et al. 2010).

When winds and radiation are combined, the winds have a significant indirect effect.
The winds lower the mass and accretion rate of the protostars, which lowers the luminosity
as seen in Figure 4.9. This means that the fragmentation suppression seen in comparing R to
B should be reduced when comparing RW to BW. To investigate this in more detail, we have
shown the mass functions of RW and BW, both at t = 0.83tff , in Figure 4.16. For purposes
of comparison, we have excluded stars with mass M < 0.05M¯, since these stars are usually
short lived and possibly subject to details of numerical sink particle formation or merging.
The two mass functions are nearly the same. A two sample Kolmogorov-Smirnov test gives
a 50% chance that both samples are drawn from the same underlying function. The primary
difference between the two mass functions lies in the heaviest star in the simulation. The
core that forms the heaviest star fragments early in BW, turning a star that is 2.8 M¯ in RW
into a 2.0 M¯ star in BW with two extra M ∼ 0.4M¯ stars. The reduced fragmentation in
RW for that star might be expected from radiative feedback, since that is the most luminous
star in the simulation.

To understand why radiation does not drastically change the picture for most stars,
consider the Jeans mass for internally heated gas. The Jeans mass, MJ , and Jeans length,
λJ , are normally functions of density and temperature, but when there are protostars, the
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Figure 4.16 Mass function for all stars with mass > 0.05M¯ for simulations RW (top) and
BW (bottom) with the Chabrier IMF also plotted. The two mass functions are similar. The
main difference comes from the largest star in RW fragmenting more in BW, lowering the
largest mass and adding more stars around 0.5M¯.

temperature is no longer a constant and is described by L = 4πσr2T 4 where σ is the Stephan-
Boltzman constant and r is the distance to a protostar. If the T dependance in λJ is replaced
by

T 4 =
L

4πσλ2
J

, (4.23)

a new Jeans length and Jeans mass can be found. This new Jeans mass, derived in Bate
(2009), is

Meff ≈ 0.5

(
ρ

10−19g cm−3

)−1/5 (
L

150L¯

)3/10

M¯. (4.24)

This Meff has a weak dependence on ρ and L. This weak dependence is appealing because
one can pick fiducial values of density and luminosity and the fiducial mass from those
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values does not depend strongly on your assumptions. For a density typical of observed
cores ρ = 10−19 g cm−3 and a luminosity of L = 150 L¯, the fiducial mass is 0.5 M¯.
This suggests that radiative feedback prevents fragmentation below 0.5 M¯. Bate (2009)
used L = 150 L¯, which is very large for regions of low-mass star formation. If we use the
median luminosity of 1.5 L¯ observed in Enoch et al. (2009), Meff moves to 0.12 M¯. When
protostellar outflows are allowed to reduce mass by a factor of 3, Meff is now only 0.04 M¯.
This is well below the characteristic mass of the IMF (0.2 M¯) and even below our criteria
for merger suppression due to second collapse (0.05 M¯).

Even though 0.04 M¯ is much less than the characteristic mass of the IMF, it is no-
tably higher than the Jeans mass from dust self-opacity, 0.004 M¯. This means that the
protostellar radiation will raise the smallest expected fragment mass by a factor of ten. Sim-
ulations that do not include radiation will continue to fragment down to either 0.004 M¯
or the resolution limit, while radiative simulations will fragment at scales more agreeable
with observations. In addition, as star formation progresses in a cloud, there will be stars
with luminosities comparable to 150 L¯, which will effectively reduce fragmentation. At late
times in star formation, fragmentation may be suppressed in the entire cloud (Krumholz
et al. 2011). Fragmentation suppression by radiation is even more important in the pres-
ence of high-mass stars, which do not rely on accretion luminosity (Krumholz et al. 2007a;
Cunningham et al. 2011).

4.4.5 Fragmentation in Rho Ophiuchus

Our cloud fragments around the Jeans length (0.2 pc), but then continues to fragment
below this point. Fragmentation at the Jeans length is common observationally (Blitz &
Williams 1997; Enoch et al. 2008). In instances where observers have the resolution and
sensitivity to resolve fragmentation at scales below the Jeans length, however, even more
fragmentation is found at those scales (Motte et al. 1998; Johnstone et al. 2000; Teixeira
et al. 2007; Chen & Arce 2010; Bontemps et al. 2010). Fragmentation can be quantified as
a function of scale, r. Given a set of clump locations in a cloud, one can calculate a set
of clump pair separations Let the differential number of pairs separated by distance r be
dNpair = H(r)d ln r. The number of clump pair separations for randomly distributed clumps
is Hran(r). The two point correlation function, w can be calculated from these quantities
(Johnstone et al. 2000),

w(r) =
H(r)

Hran(r)
− 1. (4.25)

The two-point correlation function has been measured for the central parsec of ρ Ophiuchus
by Johnstone et al. (2000). In this measurement, excess fragmentation (w > 0) is found
below r ∼ 3 × 104 AU, similar to the Jeans length of the cloud. There is a power law fit,
w(r) ∝ r−0.75, in this regime. Larson (1995) also measured clustering of stars in Taurus
and found a power law fit with a break at 8000 AU. The separation between stars has had
time to evolve since the initial fragmentation, so we narrow our focus to comparisons with
Johnstone et al. (2000).
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To compare our simulations to the observed w, we first created optically thin column
density maps of our simulations and convolved them with a Gaussian with a FWHM of 1600
AU. The resolution was chosen to be similar to that from Johnstone et al. (2000). We used
the Clumpfind algorithm from Williams et al. (1994) on the convolved column density map
to obtain a list of clumps and their positions. To investigate the possibility of time evolution
of w, this is performed at an early time in the simulation and then again at a late time,
t ∼ 0.4tff and t ∼ 0.75tff , respectively. The results are shown in figure 4.17. As expected,
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Figure 4.17 Two point correlation function, w, for clumps in simulation RW convolved with
a 1600 AU Gaussian beam. The correlation function is calculated at an early time, t ∼ 0.4tff
and a late time, t ∼ 0.75tff . The correlation is similar at early and late times, except for
the smallest scales, where fragmentation increases over time. For comparison, the fit to
r < 3× 104 AU measurements from ρ Ophiuchus is also included.

the correlation function drops off above r ∼ 4× 104 AU, about 2/3 the Jeans length at ρ̄ for
our simulation. More remarkably, the correlation function in our simulation matches that
measured in ρ Ophiuchus quite well at all scales below this drop off. The early and late time
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simulations also generally agree with each other, suggesting there is not much time evolution
in w. There is a discrepancy between the two times at r ∼ 5 × 103 AU. At these small
scales, fragmentation does increase in time, as high density regions have more time to form
and fragment. This is a possible explanation for the non-detection of small scale structure
in Perseus (Schnee et al. 2010).

It should be noted that at t ∼ 0.4tff , our stars have not provided very much feedback,
and the simulation can be considered solely gravito-hydrodynamic. Simulations with just
hydrodynamics and gravity are scale-free. The exact match with ρ Ophiuchus is partially
due to our choice of cloud parameters to mimic ρ Ophiuchus. The scale free results are the
break in w(r) at the Jeans length the w(r) ∝ r−0.75 functional form.

4.4.6 Observed Core Mass Functions

There is a wealth of observations cataloguing masses of cores in star-forming regions
(Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000, 2001; Motte et al. 2001;
Beuther & Schilke 2004; Stanke et al. 2006; Alves et al. 2007; Enoch et al. 2008; Sadavoy et al.
2010). Most of these observations are unable to resolve the small scale fragmentation seen in
ρ Ophiuchus, but still provide valuable information. Any simulation of fragmentation leading
to star formation must be able to recreate these observations. To recreate the observations,
we produced optically thin column density maps of our simulations in all three directions and
convolved them with Gaussian beams chosen to match the observations. We then applied
Clumpfind to the convolved column density, similar to our comparison to ρ Ophiuchus.

The observations have a wide range of beam sizes due to the range in distances to star-
forming regions, so we also used a range of beam sizes for comparison. We find that the CMF
derived from our simulated observations is highly sensitive to the beam size used. As the
beam size increases, the smallest cores are no longer detectable and drop out of the CMF.
In addition, tight clusters of cores become unresolved and look like new, much larger cores.
Both effects increase the median clump mass. The effect of overlapping cores is explored
further in Kainulainen et al. (2009b). This sensitivity of the CMF to resolution is seen also
in the observations, and shown in Figure 4.18. To gather the median mass of a range of
CMFs, we used the data tabulated in Reid & Wilson (2006). All cores from Reid & Wilson
(2006) are detected using Clumpfind. To supplement that data, we also used the three clouds
(Serpens, Perseus and ρ Ophiuchus) from Enoch et al. (2008). Enoch et al. (2008) do not
rely solely on Clumpfind, but use a method that returns similar results for them. Clumpfind
has many limitations (Pineda et al. 2009; Goodman et al. 2009), but is still useful for the
purposes of comparison. When compared to these observational data, our simulated CMFs
match quite well. The simulated CMF with 3200 AU and 6400 AU beams are interesting in
particular, as this is the usual range of telescope beams for nearby clouds. The extent of our
simulation domain (130,000 AU) prevents useful comparisons to more distant observations.
In addition, our base grid resolution, 512 AU, limits observations of cores at small beam
sizes. Physically meaningful cores will trigger adaptive refinement and can go to smaller
scales, but smaller, ephemeral, observed cores are lost. This means the simulated median
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Figure 4.18 Median mass of the CMF found in a cloud as a function of resolution of the
observation. The CMFs from synthetic observations of RW are green triangles. For compar-
ison, CMFs tabulated in Reid & Wilson (2006) are included as well as 3 CMFs from Enoch
et al. (2008). The two lowest points from Reid & Wilson (2006) are ρ Ophiuchus at different
wavelengths.

masses at 800 AU and 1600 AU are too high. This is most apparent when comparing to the
observations of ρ Ophiuchus with beam sizes 1600 AU.

Figure 4.18 does not include the CMF from the Pipe Nebula (Alves et al. 2007). The
resolution is comparable to the best observations of ρ Ophiuchus, but the median mass is
near 1 M¯. This makes it stand apart from the other observations. This region is low
density and not actively forming stars. In addition, the observed cores are largely unbound
(Lada et al. 2008). The Pipe Nebula should perhaps be considered a pre-star-forming region,
closer in nature to the Polaris Flare than to Serpens or ρ Ophiuchus. These pre-star-forming
regions have much higher Jeans lengths and masses and have fundamentally different column
density distribution functions (Kainulainen et al. 2009a).
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4.4.7 CMF to IMF relation

Given that we have identified clumps at the beginning of star formation and have stars
at the end of the simulation, a natural question is how the initial clumps relate to the final
stars. For this question, it is best to use stars from B. This excludes winds, which remove
mass from clumps. This also excludes radiation, which suppresses fragmentation and can
effectively merge smaller clumps onto large clumps with luminous stars. The initial CMF
and the final IMF for B are shown in Figure 4.19. For proper comparison, the mass functions
are not normalized, and total counts at each mass are shown. To avoid triple counting cores
in CMF, the synthetic observations are taken in only one line-of-sight direction instead of
all three. Otherwise these CMFs are the same as those in previous sections. When focusing
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Figure 4.19 Mass functions for both the initial cores found using clumpfind and the final
masses in stars. The y axis represents total counts and is not normalized. Top panel: cores
found using a 1600 AU beam size. Bottom panel: cores found using an 800 AU beam size.

on the CMF found with the 1600 AU beam size, the initial CMF and final IMF are well
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correlated. The typical mass and total number of objects match well between cores and
stars. There are more stars with masses above 1 M¯ than cores, but this can be explained
by merging cores. There are too many lower mass cores, so merging cores would also address
this. Unfortunately, this comparison only holds for the 1600 AU beam size. The CMF is
highly sensitive to beam size, as shown in Figure 4.18. When a slightly smaller, 800 AU,
beam size is used, the clumps are too small and too numerous to all correlate with stars.

All of this demonstrates that cores observed in star-forming regions may not predict the
stellar outcome of that region. We do not need to limit ourselves to synthetic observations of
our simulations and can identify cores from the full 6 dimensional phase space. This is done
using the ‘find clumps’ routine in the yt analysis toolkit (Turk et al. 2011). The algorithm is
described in more detail in Smith et al. (2009). It uses density contours to return a hierarchy
of clumps, where each clump can contain smaller child clumps. Our simulations have hun-
dreds of local maxima in density large enough to be considered clumps. At t = 0.3tff , only
40 of these are bound, defined as |potential energy| > (thermal energy + kinetic energy).
We will only consider the bound clumps in this analysis. The bound clumps cover a large
range of sizes with the largest clump filling almost the entire box (181 M¯). This clump
contains five child clumps. Each of these clumps contain children and grandchildren down to
masses of 10−4 M¯. When comparing to the IMF, one should ignore clumps with multiple
child clumps, and count the children instead. Throwing out clumps with masses less than
0.05M¯, there are only 5 bound childless clumps at t = 0.3tff , for a total mass of 2.5 M¯. At
t = 0.4tff , some of the parent clumps split into more children, resulting in 16 bound childless
clumps, though the total mass is largely unchanged, at 2.6 M¯. These clumps are notably
smaller than the primary turbulent cores described in §3.1 and will be called ‘sub-cores’.
These sub-cores lead to the burst of star formation at t = 0.5tff and their mass function is
shown in Figure 4.20. The median mass of these sub-cores is 0.13 M¯. Even if each sub-core
forms exactly 1 star, they do not explain the stellar mass function of the simulation, which
eventually has a median mass of 0.3 M¯ when winds and radiation are not included. This
discrepancy can be explained by the 20, 000 AU turbulent cores. These objects are bound,
but they cannot be detected with density contours due to their supersonic turbulence. Each
core has multiple pockets of high density gas. When using density contours, you see many
smaller unrelated, unbound clumps instead of a few larger bound clumps that correspond
to the physical cores. The cores are visible by eye and should be indentifiable with a more
advanced density search. We identify them by stellar clustering. The central stellar systems
(usually binary systems) in these cores are all much more massive than the sub-cores. If
these central stellar systems are ignored, the median mass of stars moves from 0.3 M¯ to
0.16 M¯, much closer to the median sub-core mass. The median mass of non-central stars
for the case with winds is 0.07 M¯. The turbulent core and central star properties are
summarized in table 4.3. The cores are bound at late times even when only the stars are
considered, with the kinetic energy in stars approximately half the potential energy of stars
in each core. In addition, the core-to-core velocity dispersion is typically 0.4-0.5 km/s. This
is notably lower than the cloud velocity dispersion, which starts at 1.2 km/s. There is a
strong anti-correlation between velocity and density, as the densest gas occurs at stagnation
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Figure 4.20 Histogram of masses of bound childless sub-cores at t = 0.4tff .

points in a turbulent flow. This means that the core-to-core velocity dispersion will naturally
be much lower than the gas (Offner et al. 2009a).

Once the cores have formed, each core is carved out by the outflows of its own protostellar
system. This yields the core to star efficiency factor, 0.2 < εcore < 1.0. The amount of mass
lost from a spheroidal core can be calculated from the total momentum output and opening
angle of the winds (Matzner & McKee 2000), but the cores in our simulations are more
complicated.

The best way to calculate εcore is to compare the mass of stars in simulations with and
without winds. In the simulations with the barotropic equation of state (B and BW), the
total, the mean, and the median mass of stars are all approximately 3:1 comparing the non-
wind simulation to the wind simulation at any point in time. This means εcore = 1/3. In
the radiative simulations (R and RW), the total mass of stars is also 3:1 comparing the two
simulations. The mean and median masses are closer to 10:1, but this is due to fragmentation
suppression in simulation R.
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Without Winds With Winds
Mgas Initial Mgas Final M∗,total M∗,central Mgas Final M∗,total M∗,central

3.4 3.6 5.6 4.7 2.3 1.9 1.3
7.0 3.1 16.8 9.4 2.0 9.6 5.9
3.8 2.5 5.0 3.4 1.2 1.5 1.4
5.0 2.7 5.1 3.9 1.6 2.9 2.2
2.9 - - 1.0 - - 0.04
3.3 - - 2.7 - - 0.3

Table 4.3 Turbulent Core Properties. The last two cores eventually merge with the largest
core, making it impossible to measure the final gas and total stellar properties. The final
properties of the largest core are necessarily a sum over the last two cores in addition to the
largest core.

4.4.8 Turbulent Core and Competitive Accretion

It is useful to place the stellar accretion in our simulations in the context of existing
star formation models. Two popular models currently are turbulent core and competitive
accretion. In the turbulent core model, (Padoan & Nordlund 2002; McKee & Tan 2003;
Padoan et al. 2007; Hennebelle & Chabrier 2008, 2009), supersonic turbulence in molecular
clouds creates many cores. Each bound core then collapses into a single stellar system. In
this scenario, the mass from each star is accreted almost entirely from its natal core. In
the competitive accretion model (Zinnecker 1982; Bonnell et al. 1997, 2001; Bate & Bonnell
2005; Bonnell et al. 2006), the bound cores are ∼ 0.1 M¯. The molecular cloud undergoes
a global collapse and all stars accrete from the entire cloud. Protostars exhaust their cores
at low-masses and then grow by Bondi-Hoyle accretion. The protostars compete with each
other for mass from the host cloud and the dynamics of this competition lead to the IMF.
Roughly speaking, the virial parameter of the cloud decides which model is correct (Krumholz
et al. 2005; Bonnell & Bate 2006; Offner et al. 2008). In clouds with sufficiently sub-virial
turbulence, global collapse is possible and competitive accretion prevails. In virial clouds,
core accretion dominates. Most simulations of star formation start with virialized clouds, but
turbulence quickly dissipates and simulations that do not regenerate turbulence become sub-
virial and demonstrate competitive accretion. Turbulence can be regenerated by protostellar
outflows, HII regions, or a cascade from larger scales; in simulations, the cascade can be
generated by large scale driving.

Our simulations largely agree with turbulent core models, while introducing a hierarchi-
cal aspect of sub-cores within turbulent cores. We form turbulent cores on the cloud Jeans
length and each of those cores forms a central binary or single star with mass roughly equal
to the core mass. Even the smaller stars are formed in their own sub-cores and do not accrete
from the cloud at large. Our turbulent cores do accrete from the larger cloud (increasing
their initial mass by ∼ 75% over the course of the simulations), which was not originally
part of the core accretion theory, but recent turbulence simulations suggest turbulent cores
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do accrete from their host cloud (Falceta-Gonçalves & Lazarian 2011).
The accretion from the larger cloud onto our cores is possibly caused by the fact that

there is no turbulent driving from large scales. Turbulence is regenerated to some extent
by protostellar outflows, but this is relatively ineffective in denser gas. Our simulations are
then similar to the undriven simulations in Offner et al. (2008), which also show accretion
onto cores. The simulations in Offner et al. (2008) with external driving produce cores that
do not accrete much from the cloud. If magnetic fields were included in our simulations, the
outflows would couple to much more of the gas (Wang et al. 2010), which would move our
simulations closer to those with large-scale driving.

4.4.9 The Role of Stellar Mergers

The stellar mass functions in our simulations are influenced by the details of our sink
particle merger process. Mergers are necessary because all codes will introduce numerical
fragmentation once they can no longer resolve the Jeans length on the finest scale (Truelove
et al. 1997). More stringent sink particle conditions can reduce the number of unwanted
sink particles (Federrath et al. 2010), but numerical fragmentation is unavoidable. These
methods allow the density to build up where sink particles would be, which leads to even
more numerical fragmentation. If sink particles are not allowed to merge, these numerical
fragments will steal mass from real fragments and masquerade as real stars, artificially low-
ering the IMF. On the other hand, allowing sink particles to merge has a similar effect on
the IMF as suppressing gas fragmentation. If all sink particles that pass near each other are
merged together, the particles will consolidate over time. Eventually, all IMFs look similar
to the heavy IMF from R, where radiation suppressed most fragmentation. Our decision to
only merge pre-second-collapse stars is a physically motivated compromise between the two
extremes of no mergers and all mergers.

This fragmentation suppression of mergers is seen comparing the IMFs of RW and BW.
The radiative simulation should suppress some fragmentation while the barotropic simulation
fragments all the way down to the Jeans mass at the self-opacity limit, m ∼ 0.004M¯.
Nevertheless, they have the same IMF. The barotropic simulation does fragment much more
than the radiative simulation near the resolution limit. This is seen in the total number of
sink particles created, where the barotropic simulation creates 7 times more particles than
the radiative simulation. These particles are nearly all very small in mass and immediately
merged. The net effect of the extra mergers is to suppress fragmentation by combining
fragments below the merger radius (128 AU). The two simulations are nearly identical above
this scale and therefore produce the same IMF.

Our choice of merger mass (mmerge = 0.05 M¯) is based on calculations of first collapse
(Masunaga et al. 1998; Masunaga & Inutsuka 2000), but the correct mass is not certain.
In addition, the mass of second collapse should depend on the accretion history of each
protostar. To investigate the effect of our mass choice, we repeated RW with a merger mass
of 0.01 M¯ out to t = 0.55 tff . At this point in the simulations, the total mass in stars is
2 M¯. In the simulation with mmerge = 0.05 M¯, there are 17 total sink particles; whereas
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in the simulation with mmerge = 0.01 M¯, there are 30 total sink particles, even though the
total mass in particles is the same. Given that the final IMF for mmerge = 0.05 M¯ is at
slightly lower masses than the observed IMF, nearly doubling the number of sink particles
with mmerge = 0.01 M¯ would skew to masses much lower than observed. This suggests the
particles with masses 0.01 M¯ < m < 0.05 M¯ should be merged. It is unclear whether
these particles are purely numerical (implying they would never have fragmented in the first
place with infinite resolution) or whether real star formation involves many mergers of pre-
second-collapse cores. If this type of merger is common, it is possible this significantly affects
the low-mass part of the IMF and warrant further investigation.

As an additional effect, our stellar merger mass provides a distinct mass scale to the sim-
ulations. For most isothermal simulations, there is no mass scale and one is free to arbitrarily
scale the mass, M , density, ρ, or temperature T , while maintaining all of the same dimension-
less parameters α, M, and MJ/M . The only restriction is that MR−1T−1 ∝ M2/3ρ1/3T−1

remain constant. Our barotropic simulations are isothermal except for small deviations at
the very highest resolved densities. This means we could not scale the to densities more than
an order of magnitude higher, but we are free to scale to lower densities and higher masses.
When the merger mass is included, mmerge also scales with M . Now if we scale the simulation
to a higher mass, we are also increasing mmerge. There is some uncertainty in mmerge, but it
would be difficult to justify increasing it much more than our current level. Even increasing
mmerge by a factor of 2 would bring it to uncomfortably close to the characteristic IMF mass
of 0.2 M¯. This means the mass scales of our simulation are relatively stationary. When
protostellar winds are included, they introduce a new fixed dimensionless number, the Mach
number of the winds Mwind. Since the speed of the winds is proportional to the escape
velocity from the stellar surface (i.e., ∝ M1/2 (McKee & Ostriker 2007)), Mwind sets the
quantity M/T . In practice, this is not a very tight constraint because the wind speed itself
is quite uncertain (Downes & Cabrit 2007). When radiation is important, the luminosity
of each star is set by complicated stellar models that depend on M as well as the accretion
history. The time scale, which goes into the accretion rate, is set by tff and therefore ρ. In
addition, the resulting radiation-hydrodynamics depends on the temperature. This uniquely
sets M , T , ρ. Even when radiation is not dynamically important, we do match the observed
protostellar luminosities and cannot change our masses without jeopardizing the agreement.
Using the approximation L ∝ M2, our cloud mass is constrained to 165 M¯ < M < 198 M¯
before it no longer falls in the error bars of the observed luminosities. Looser constraints
are also applied by our general match to the IMF, which sets M and our match to observed
fragmentation in ρ Ophiuchus, which sets M/ρ.

4.5 Conclusions

We report the results of several simulations of the formation of a low-mass star-forming
cluster, comparable to ρ Ophiuchus. Our simulations achieve 32 AU resolution using adap-
tive mesh refinement. We also include radiation-hydrodynamics and stellar feedback. The
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stellar feedback represents both protostellar radiation and bipolar outflows. To isolate the
individual effects of radiation and outflow feedback, we perform a suite of 4 simulations: a
base simulation with no feedback, a radiative simulation with no outflows, an outflow simu-
lation with no radiation and a simulation with both outflows and radiation. This is the first
simulation of a star-forming cluster with both radiation and protostellar outflows.

The simulation with radiation and outflows matches the observed protostellar luminosi-
ties of nearby star-forming regions. Outflows reduce the stellar mass and accretion rate,
thereby lowering accretion luminosities. The protostellar luminosity function also depends
on the adopted accretion rate and the fraction of FU Ori type high accretion rate events.
We find the accretion rate is scales with mass as predicted from turbulent core accretion
models. We also find only 0.3% of our stars are in high accretion rate events at any given
time. These results generally agree with predictions from Offner & McKee (2011).

The simulation with radiation and without outflows confirms the finding of Offner et al.
(2009b) and Krumholz et al. (2011) that protostars can heat their host cloud enough to
suppress fragmentation. When outflows are included, however, the total luminosity of stars
drops by a factor of 10, and radiation is far less effective at suppressing fragmentation. The
simulation with radiation and winds has over twice as many stars as the simulation with
radiation without winds. When fragmentation is additionally suppressed by merging low-
mass stars at 128 AU, radiation has almost no effect on the resulting mass function. Thus,
radiation is necessary to capture fragmentation on the order of hundreds of AU, but it does
not significantly effect the gas dynamics above those scales. The situation might change at
late times, when most of the gas has been converted into stars (Krumholz et al. 2011) or in
the presence of high-mass stars, in which nuclear luminosity dominates accretion luminosity.

To investigate the conversion of the observed core mass function (CMF) to the stellar
IMF, we create simulated dust maps and find cores using Clumpfind. We are able to recreate
the observed core mass functions, though we find that they depend sensitively on telescope
resolution. At resolutions typical of observations of nearby star-forming regions, the CMF
and the IMF overlap when outflows are not included (outflows lower the IMF). We are
additionally able to recreate the clustering properties of the cores found in ρ Ophiuchus.
This implies our simulation of fragmentation is accurate down to at least 2,000 AU, set by
the resolution of the observations. When we search the simulation data for bound cores,
as opposed to using Clumpfind on 2D datasets, we find two types of bound objects. There
are turbulent, bound cores on 20,000 AU scales that each contain a central star or binary
with most of the mass. Each of the turbulent cores also contains ∼ 10 sub-cores on 1,000
AU scales with a median mass of 0.13 M¯. These sub-cores explain the low end of the IMF
while the large cores explain the upper end.

Additionally, we find the primary effect of protostellar outflows is to remove 2/3 of the
mass that would go into stars. The final mass in stars without outflows is three times the
mass in stars with outflows. This creates a core efficiency parameter εcore = 1/3 similar to
predictions from Matzner (2002). This should be a warning for simulations that produce the
‘correct’ IMF when outflows are not included (e.g. Bate (2009); Price & Bate (2009)). The
outflows do not significantly affect the overall cloud dynamics, as they have small opening
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angles and do not couple well to the dense gas in the cores. It is likely magnetic fields would
change that conclusion (Wang et al. 2010).
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