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Abstract

VisIt is a popular open source tool for visualizing and analyzing data. It owes its success
to its foci of increasing data understanding, large data support, and providing a robust and
usable product, as well as its underlying design that fits today’s supercomputing landscape.
This report, which draws heavily from a publication at the SciDAC Conference in 2011 by
Childs et al. [3], describes the VisIt project and its accomplishments.

Preface

The material in this technical report is a chapter from the book entitled High Performance
Visualization—Enabling Extreme Scale Scientific Insight [1], published by Taylor & Francis,
and part of the CRC Computational Science series.
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1 Introduction

A dozen years ago, when the VisIt project started, a new high performance computing envi-
ronment was emerging. Ever increasing numbers of end users were running simulations and
generating large data. This rapidly growing number of large data sets prevented visualization
experts from being intimately involved in the visualization process; it was necessary to put tools
in the end users’ hands. Almost all end users were sitting in front of high-end desktop machines
with powerful graphics cards. But their simulations were being run on remote, parallel machines
and generating data sets too large to be transferred back to these desktops. Worse, these data
sets were too large to even process on their (serial) machines anyways. The types of visual-
ization and analysis users wanted to perform varied greatly; users needed many techniques for
understanding diverse types of data, with use cases ranging from confirming that a simulation
was running smoothly to communicating the results of a simulation to a larger audience, to
gaining insight via data exploration.

VisIt was developed in response to these emerging needs. It was (and is) an open source
project for visualizing and analyzing extremely large data sets. The project has evolved around
three focal points: (1) enabling data understanding, (2) scalable support for extremely large
data, and (3) providing a robust and usable product for end users.

In turn, these focal points have made VisIt a very popular tool for visualizing and analyzing
the data sets generated on the world’s largest supercomputers. VisIt received a 2005 R&D
100 award for the tool’s capabilities in understanding large data sets. It has been downloaded
hundreds of thousands of times, and it is used all over the world.

2 Focal Points

2.1 Enable Data Understanding

In many ways, “VisIt” is a misnomer, as the name implies the tool is strictly about visualization
and making pretty pictures. The prospect of lost name recognition makes renaming the tool
unpalatable, but it is worthwhile to emphasize that VisIt focuses on five primary use cases:

1. Visual exploration: users apply a variety of visualization algorithms to “see” what is in
their data.

2. Debugging: users apply algorithms to find a “needle in a haystack,” for example, such as
hot spots in a scalar field or cells that have become twisted over time. The user then asks
for debugging information in a representation that is recognizable to their simulation (e.g.,
cell X in computation domain D has a NaN).

3. Quantitative analysis: users apply quantitative capabilities ranging from simple opera-
tions, such as integrating densities over a region to find its mass, to highly sophisticated
operations, such as adding a synthetic diagnostic to compare to experimental data.

4. Comparative analysis: users compare two related simulations, two time slices from a single
simulation, simulation and experiment, etc. The taxonomy of comparative analysis has
three major branches, each of which is available in VisIt: image-level comparisons place
things side-by-side and has the user detect differences visually. Data-level comparisons put
multiple fields onto the same mesh, for example, to create a new field for further analysis
that contains the difference in temperature between two simulations. Topological-level
comparisons detect features in the data sets and then allow those features to be compared.

5. Communication: users communicate properties of their data to a large audience. This
may be via movies, via images that are inserted into a PowerPoint presentation, or via
line plots or histograms that are placed into a journal article.
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2.2 Support for Large Data

Twelve years ago, “large data” meant several hundred million cells. Today, “large” means several
hundred billion cells. In both cases, the definition of “large” was relative to the resources for
processing the data. And this is the target for the VisIt project: data whose full resolution
cannot fit into primary memory of a desktop machine. Of course, the amount of data to load
varies by situation. Can time slices be processed one at a time? How many variables are needed
in a given analysis? Is it necessary to load multiple members of an ensemble simultaneously?
For VisIt, the goal was to provide an infrastructure that could support any of these use cases,
and it primarily uses parallelism to achieve this goal.

2.3 Provide a Robust and Usable Product for End Users

Enabling data understanding for large data is a daunting task requiring a substantial investment.
To amortize this cost, the project needed to be delivered to many user communities, across both
application areas and funding groups.

The “one big tool” strategy provides benefits to both users and developers. Compared to a
smaller, tailored effort, users have access to more functionality and better underlying algorithms
for processing data. For developers, the core infrastructure undergoes an economy of scale, where
many developers can collectively develop a superior core infrastructure than they would be able
to do independently.

But the “one big tool” approach has negative aspects as well. Their user interface tends to
provide an overly rich interface where users find many features to be meaningless and simply
view them as clutter. Further, developers must deal with a less nimble code base where making
functionality changes sometimes leads to unexpectedly large coding efforts.

Further, delivering a product to a large end user community incurs significant cost in and
of itself: the VisIt project has almost a thousand pages of manuals, several thousand regression
tests that run every night, a sophisticated build process, and a variety of courses designed
to teach people to how to use the tool. It requires multiinstitutional coordination for release
management, for responses to user requests, and for software development. And, of course, the
source code itself must be well documented to reduce barriers to entry for new developers.

The developers of the VisIt project decided to “go big”: to pay the costs associated with
large user and developer bases in the hopes of writing a tool that would be usable by many and
developed by many.

3 Design

This section describes several facets of VisIt’s design, including VisIt’s architecture, its paral-
lelism approach, and its user interface concepts.

3.1 Architecture

VisIt employs a client-server design, where both client and server are composed of multiple
programs (see Fig. 1). Client-side programs, typically run on the user’s local desktop, are
responsible for both user interface and rendering, since interactivity is paramount for these
activities. The client-side programs are:

• gui: A graphical user interface built using the Qt widget set.

• cli: A command line user interface built using the Python language.

• viewer: A program responsible for the visual display of data.

• Custom, streamlined user interfaces can also be added to VisIt. The interfaces can either
complement the gui and cli or replace them altogether.

Server-side programs, typically run on a remote supercomputer that can access the user’s data
in a parallel fashion, are responsible for processing data. The server-side programs are:
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Parallel ComputeParallel Compute
EngineEngine

Figure 1: Diagram of VisIt programs and their communication. Image source: Childs et al., 2011 [3].

• engine: The program that applies visualization and analysis algorithms to large data sets
using parallel processing.

• mdserver: A program that browses remote file systems and reads meta-data.

• vcl: VisIt Component Launcher, a program whose sole job is to launch other server-side
programs. Without this program, the user would have to issue credentials for the launch
of each program on the remote machine.

While the configuration in Figure 1 is the most common, other variants are also used:

• Data is located on the local machine, so all programs, including the server-side programs,
run on the local machine.

• The client-side programs run on a remote machine. This mode occurs most often in
conjunction with graphical desktop sharing, such as VNC.

• Multiple servers are run simultaneously to access data on multiple remote machines.

• VisIt is run entirely in “batch mode.” The gui program is not used and the viewer program
runs in a windowless mode.

• VisIt’s client-side programs are coupled with a simulation code and data is processed in
situ. In this case, the simulation embeds a copy of the engine program.

3.2 Parallelism

VisIt has multiple processing modes—multiresolution processing, in situ processing, and out-of-
core processing—but its most frequent mode is pure parallelism, where the data is partitioned
over its MPI tasks and is processed at its native resolution. Most visualization and analysis
algorithms are embarrassingly parallel, meaning that portions of the data set can be processed
in any order and without coordination and communication. For this case, VisIt’s core infrastruc-
ture manages the partitioning of the data and all parallelism. For non-embarrassingly parallel
cases like streamline calculation or volume rendering, algorithms are able to manage parallelism
themselves and can opt to perform collective communication if necessary.

In VisIt’s most typical visualization use case, a user loads a large data set, applies operations
to reduce the data size, and then transfers the resulting data set to the local client for interactive
rendering, using the local graphics card. However, some data sets are so large that their reduced
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forms are too large for a desktop machine. This case requires a backup plan. VisIt’s backup
plan is to switch to a parallel rendering mode: data is left on the parallel server, each MPI task
renders its own piece, and the resulting subimages are composited together. The final image is
then brought back to the viewer and placed in the visualization window, as if it was rendered
with the graphics card. Although this process sounds cumbersome, the switch to the parallel
rendering mode is transparent to end users and frame rates approaching ten frames per second
can be achieved.

VisIt was designed for many scales of concurrency. Many users run serial or modestly parallel
versions on their desktop machines. When users utilize parallel resources on a supercomputer,
they typically run with 32 to 512 tasks. But, for the largest data sets, VisIt servers with
thousands or even tens of thousands of tasks are used (see Section 4.1). VisIt demonstrates
excellent scalability and performance at each of these scales.

3.3 User Interface Concepts and Extensibility

Type Description # of instances

Database How to read from a file ˜115

Operator How to manipulate data ˜60

Plot How to render data ˜20

Expression How to derive new quantities ˜190

Queries How to extract quantitative ˜90
and debugging information

Table 1: VisIt’s five primary user interface concepts.

Table 1 shows the five primary user interface concepts in VisIt. A strength of these concepts
is their interoperability. Each plot can work on data directly from a file (databases) or from
derived data (expressions), and can have an arbitrary number of data transformations or subs-
elections applied (operators). Once the key information is extracted, quantitative or debugging
information can be extracted (queries) or the data can be rendered (plots). Consider an ex-
ample: a user reads from a file (database), calculates the λ-2 metric for finding high vorticity
(expressions), isolates out the regions of highest vorticity operators, renders it (plots), then
calculates the number of connected components and statistics about them (queries).

VisIt makes it easy to add new types of databases, operators, and plots. The base infras-
tructure deals with these concepts as abstract types; it only discovers the concrete databases,
operators, and plots instances at start-up, by loading them as plug-ins. Thus, adding new func-
tionality to VisIt translates to developing a new plug-in. Further, VisIt facilitates the plug-in
development process. It provides an environment for defining a plug-in and also performs code
generation. The developer starts by setting up options for the plug-ins, and then VisIt generates
attributes for storing the options, user interface components (Python, Qt, and Java), the plug-in
bindings, and C++ methods with “dummy” implementations. The developer then replaces the
dummy implementations with their intended algorithm, file reading code, etc.

3.4 The Size and Breadth of VisIt

Although only briefly discussed in this report, VisIt has an extensive list of features. Its ˜115
file format readers include support for many HDF5- and NetCDF-based formats, CGNS, and
others, including generic readers for some types of binary and ASCII files. Its ˜60 operators
include transformations (such as projections, scaling, rotation, and translation), data subsetting
(such as thresholding and contouring), and spatial thresholding (such as limiting to a box or
a plane), among many others. Its ˜90 queries allow users to get customizable reports about
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specific cells or points, integrate quantities, calculate surface areas and volumes, insert synthetic
diagnostics/virtual detectors, and much more. Its ˜190 expressions go well beyond simple math.
For example, the user can create derived quantities like, “if the magnitude of the gradient of
density is greater than this, then do this, else do that.”

And many features do not fit into the five primary user interface concepts. There is support
for positioning light sources, making movies (including MPEG encoding), eliminating data based
on known categorizations (e.g., “show me only this refinement level” from an AMR mesh),
and rendering effects like shadows and specular highlights, to name a few. In total, VisIt is
approximately one and a half million lines of code.

Finally, VisIt makes heavy use of the Visualization ToolKit (VTK) [18]. This library con-
tains an execution model, a data model, and many algorithms for transforming data. VisIt
implements its own execution model, but the other two pieces form the foundation of VisIt’s
data processing. VTK’s data model forms the basis of VisIt’s data model, although VisIt pro-
vides support for mixed material cells, metadata for faster processing, and other concepts not
natively supported by VTK. Further, VisIt uses the native VTK algorithm for many embarrass-
ingly parallel visualization algorithms. In short, VTK has provided an important leverage to
the VisIt project, allowing VisIt developers to direct their attention to the project’s three main
focal points.

4 Successes

The VisIt project has succeeded in multiple ways: by providing a scalable infrastructure for
visualization and analysis, by populating that infrastructure with cutting-edge algorithms, by
informing the limits of new hardware architectures, and, most importantly, by enabling successes
for the tool’s end users. A few noteworthy highlights are summarized in the subsections below.

4.1 Scalability Successes

A pair of studies were run in 2009 to demonstrate VisIt’s capabilities for scalability and large
data (see Fig. 2). In the first study, VisIt’s infrastructure and some of its key visualization
algorithms were demonstrated to support weak scaling. This demonstration led to be VisIt
being selected as a “Joule code,” a formal certification process by the US Office of Management
and Budget to ensure that programs running on high-end supercomputers are capable of using
the machine efficiently. In the second study, VisIt was scaled up to tens of thousands of cores
and used to visualize data sets with trillions of cells per time slice. This study found VisIt itself
to perform quite well, although overall performance was limited by the supercomputer’s I/O
bandwidth. Both studies are further described by Childs et al. [7].

4.2 A Repository for Large Data Algorithms

Many advanced algorithms for visualizing and analyzing large data have been implemented
inside of VisIt, making them directly available to end users. Notable algorithms include:

• A novel streamline algorithm that melds two different parallelization strategies (“over
data” and “over seeds”) to retain their positive effects while minimizing their negative
ones [14];

• A volume rendering algorithm that handles the compositing complexities inherent to un-
structured meshes while still delivering scalable performance [5];

• An algorithm for identifying connected components in unstructured meshes in a distributed-
memory parallel setting on very large data sets [10];

• An algorithm for creating crack-free isosurfaces for adaptive mesh refinement data, a com-
mon mesh type for very large data [19];
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Figure 2: The two left images show a contouring and a volume rendering from a Denovo radiation
transport simulation. They were produced by VisIt using 12,270 cores of JaguarPF as part of the
“Joule code” certification, which showed that VisIt is weakly scalable. The two right images show
a contouring and a volume rendering of a two trillion cell data set produced by VisIt using 32,000
cores of JaguarPF as part of a study on scalability at high levels of concurrency and on large data
sets. The volume rendering was reproduced in 2011 on a one trillion cell version of the data set
using only 800 cores of the TACC Longhorn machine. Image source: Childs et al., 2010 [7].

• A well-performing material interface reconstruction algorithm for distributed-memory par-
allel environments that balances concerns for both visualization and analysis [13]; and

• A method for repeated interpolations of velocity fields in unstructured meshes, to accelerate
streamlines [9].

Further, VisIt has been the subject of much systems research, including papers on the base
VisIt architecture [6], VisIt’s “contract” system which allows it to detect the processing re-
quirements for the current operations and adaptively apply the best optimizations [4], and a
description of the adapter layer that allows VisIt to couple with a simulation and run in situ [20].

4.3 Supercomputing Research Performed with VisIt

As the landscape for parallel computers changes, VisIt has been used to test the benefits of
emerging algorithms and hardware features, including:

• Studying modifications to collective communication patterns for ghost data generation, to
be suitable for out-of-core processing, thereby improving cache coherency and reducing
memory footprint [11];

• Studying the viability of hardware-accelerated volume rendering on distributed-memory
parallel visualization clusters powered by GPUs [8];

• Studying the benefits of hybrid parallelism for streamline algorithms [2]; and

• Studying the issues and strategies for porting to new operating systems [15].

4.4 User Successes

Of course, the most important measure for the project is helping users better understand their
data. Unfortunately, metrics of success in this space are difficult:

• Some national laboratories keep statistics on their user communities: the United States’
Lawrence Livermore Lab has approximately 300 regular users, the United Kingdom’s
Atomic Weapons Establishment (AWE) has approximately 100 regular users, and France’s
Atomic Energy Commission (CEA) at CESTA has approximately 50 regular users. Other
institutions, like Oak Ridge and Lawrence Berkeley, view VisIt as their primary visualiza-
tion and analysis tool, but do not keep user statistics.
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• In terms of monetary support for developing VisIt, the U.S. Department of Energy funds
VisIt development through its Office of Science, National Nuclear Security Agency, and
Office of Nuclear Energy. Both of the US National Science Foundation (NSF) XD centers
on visualization actively deploy and support VisIt as well.

• Another method for measuring usage is studying affiliations of users who ask questions
on the mailing list. The majority of these inquiries come from none of the previously
mentioned institutions, indicating that usage goes beyond these sites.

Figure 3: Recent covers of the SciDAC Review Journal created using VisIt.

Tracking individual user successes is difficult, although there is clear evidence with certain
types of usage. VisIt is used regularly to make images for journal covers, a high-profile activity
(see Fig. 3). Further, there have been several notable instances of publications using VisIt to
perform novel analysis:

• Analysis of laser wakefield simulations often amounts to finding key particles [16], and
query-driven visualization techniques were used to search through terabytes of data to
locate these key particles in as little as two seconds.

• Simulations often deal with idealized meshes. VisIt’s comparative capabilities were used to
quantify the importance of engineering defects when differencing as-built and as-designed
models [12].

• VisIt’s streamline code was used to find the toroidal magnetic fields found in tokamaks by
analyzing the fieldlines through a cross-sectional slice and the topological “islands” they
trace out [17].

5 Future Challenges

Although VisIt is well suited for today’s supercomputing environment, the project will face
many challenges in the future. In the short term, I/O limitations will force visualization and
analysis activities to de-emphasize I/O. The VisIt development team has invested in pertinent
techniques, such as multiresolution processing and in situ, but these techniques will need to
be further hardened to support production use. In the longer term, power limits will constrain
data movement, forcing much processing to occur in situ on novel architectures, such as GPU
accelerators. Unfortunately, VisIt’s existing in situ implementation may be mismatched for this
many-core future, for two reasons. First, although VisIt can be easily multithreaded, using a
pthreads or OpenMP-type approach to further understand the benefits of hybrid parallelism),
this approach may not be able to take advantage of these architectures. The many-core future
may require CUDA- or OpenCL-type languages; migrating the VisIt code base to this setting
would be a substantial undertaking. Second, although VisIt has been demonstrated to work well
at high levels of concurrency, some of its algorithms involve large data exchanges. Although these
algorithms perform well on current machines, they would violate the data movement constraints
on future machines and would need to be redesigned.
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6 Conclusion

The VisIt project’s three focal points—understanding data, large data, and delivering a product—
together form a powerful environment for analyzing data from HPC simulations. It is used in
a variety of ways: it enables visualization scientists, computational code developers, and the
physicists that run these codes to perform a broad range of data understanding activities, in-
cluding debugging, making movies, and exploring data. The user interface portion of its design
provides a powerful paradigm for analyzing data while the data processing portion of its design
is well suited for big data. This, in turn, has led to many successes: in scaling up to high
levels of concurrency and large data sizes, in providing a “home” for large data algorithms, in
understanding how to best use supercomputers, and, most importantly, in helping users under-
stand their data. Further, despite significant upcoming changes in supercomputing architecture,
VisIt’s future appears bright, as it enjoys vibrant user and developer communities.
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