Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Crustal and Uppermost Mantle Structure beneath the Western United States from USArray Regional Phase Analysis

Abstract

The aim of this dissertation is to improve our understanding of the crust and uppermost mantle structure in the western United States, profiting from the wealth of regional phase data recorded at USArray stations. USArray, a transportable seismic array of ̃400 seismometers, has greatly increased seismic data coverage across the United States in the past few years, and allows imaging of the lithosphere of the North American continent with better resolution and new methods. The regional phases are often challenging to analyze, especially in a tectonically- active region like the western United States, because of their sensitivities to the heterogeneities of the crust and uppermost mantle. However, knowledge of the seismic structure of the lithosphere is not only essential in order to accurately image the velocity structure at greater depths, but also for constraining geodynamic models that reconstruct the tectonic evolution of the continent, and hence the information that is carried by the regional phases is very valuable. The data set used in this study consists mostly of the regional seismic phases Pn and Sn, which propagate horizontally along the Moho in the mantle lid and constrain the seismic velocity structure at a confined depth. We applied traditional tomographic methods that profit from the improved ray coverage through USArray, but also employed array-based techniques that take advantage of the regular station spacing of the transportable array and don't depend on regularization. In addition, we used stacking methods to image the propagation efficiency of the Sn phase, which is often highly attenuated in tectonically active regions, on a regional scale. The results complement other seismic studies that average over greater depth intervals, such as surface- and body-wave tomographies and anisotropy analysis from shear-wave splitting, to provide information on temperature, composition, and tectonic processes at depth. Comparisons between Pn azimuthal anisotropy and fast polarization direction from shear wave splitting suggest significant vertical changes in anisotropy in several regions of the upper mantle beneath the western United States. Sn can in theory further constrain the nature of anisotropy in the mantle lid. However, we have so far been unable to resolve shear-wave splitting directly in the Sn waveforms as the phase is often attenuated and difficult to detect. Still, we obtained evidence for Sn propagation in several regions of the western United States such as the central Great Basin and the northeastern part of the Colorado Plateau. We found that there are enough quality Sn picks for joint Pn-Sn tomography and identified prominent Vp/Vs anomalies, such as large high Vp/Vs regions --- typically associated with partial melt --- below the Snake River Plain and the Colorado Plateau

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View