Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Increased biofilm formation due to high-temperature adaptation in marine Roseobacter

Abstract

Ocean temperatures will increase significantly over the next 100 years due to global climate change1. As temperatures increase beyond current ranges, it is unclear how adaptation will impact the distribution and ecological role of marine microorganisms2. To address this major unknown, we imposed a stressful high-temperature regime for 500 generations on a strain from the abundant marine Roseobacter clade. High-temperature-adapted isolates significantly improved their fitness but also increased biofilm formation at the air-liquid interface. Furthermore, this altered lifestyle was coupled with genomic changes linked to biofilm formation in individual isolates, and was also dominant in evolved populations. We hypothesize that the increasing biofilm formation was driven by lower oxygen availability at elevated temperature, and we observe a relative fitness increase at lower oxygen. The response is uniquely different from that of Escherichia coli adapted to high temperature3 (only 3% of mutated genes were shared in both studies). Thus, future increased temperatures could have a direct effect on organismal physiology and an indirect effect via a decrease in ocean oxygen solubility, leading to an alteration in microbial lifestyle.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View