Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

White-Opaque Switching in Natural MTLa/α Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex

Abstract

Phenotypic transitions play critical roles in host adaptation, virulence, and sexual reproduction in pathogenic fungi. A minority of natural isolates of Candida albicans, which are homozygous at the mating type locus (MTL, a/a or α/α), are known to be able to switch between two distinct cell types: white and opaque. It is puzzling that white-opaque switching has never been observed in the majority of natural C. albicans strains that have heterozygous MTL genotypes (a/α), given that they contain all of the opaque-specific genes essential for switching. Here we report the discovery of white-opaque switching in a number of natural a/α strains of C. albicans under a condition mimicking aspects of the host environment. The optimal condition for white-to-opaque switching in a/α strains of C. albicans is to use N-acetylglucosamine (GlcNAc) as the sole carbon source and to incubate the cells in 5% CO2. Although the induction of white-to-opaque switching in a/α strains of C. albicans is not as robust as in MTL homozygotes in response to GlcNAc and CO2, opaque cells of a/α strains exhibit similar features of cellular and colony morphology to their MTL homozygous counterparts. Like MTL homozygotes, white and opaque cells of a/α strains differ in their behavior in different mouse infection models. We have further demonstrated that the transcriptional regulators Rfg1, Brg1, and Efg1 are involved in the regulation of white-to-opaque switching in a/α strains. We propose that the integration of multiple environmental cues and the activation and inactivation of a set of transcriptional regulators controls the expression of the master switching regulator WOR1, which determines the final fate of the cell type in C. albicans. Our discovery of white-opaque switching in the majority of natural a/α strains of C. albicans emphasizes its widespread nature and importance in host adaptation, pathogenesis, and parasexual reproduction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View