
UC Berkeley
Research Reports

Title
Address Resolution in One Lane Automated Highway Systems

Permalink
https://escholarship.org/uc/item/6jw2n9m8

Authors
Bana, Soheila V.
Varaiya, Pravin

Publication Date
1999-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jw2n9m8
https://escholarship.org
http://www.cdlib.org/


ISSN 1055-1425

July 1999

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 318

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Address Resolution in One Lane
Automated Highway Systems

UCB-ITS-PRR-99-22
California PATH Research Report

Soheila V. Bana, Pravin Varaiya
University of California, Berkeley

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS



Address Resolution in One Lane Automated Highway

Systems

University of California at Berkeley
Soheila V. Bana and Pravin Varaiya

February 1999

1



Contents

1 Introduction 3

2 Background 4

2.1 Mobile IP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.2 Cellular Telephony and Personal Communication Networks : : : : : : : : : : : : : : : 6

2.3 Ad-hoc Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.4 Network of Automated Vehicles : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3 Modeling 9

3.1 Local Neighborhood of A System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.2 Model Simpli�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.3 Model Accuracy Awareness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3.4 Modeling the Transition Periods (Maneuvers) : : : : : : : : : : : : : : : : : : : : : : : 11

3.5 Addresser and Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.6 Updating Condition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

4 Address Resolution 12

4.1 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

4.2 The Initialization Infrastructure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.3 The Initialization Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.4 Initialization by Platoon Leaders : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.5 The Updating Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5 Address Resolution Protocols 17

5.1 Absolute Position and ARP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

6 Simulation and Veri�cation 20

6.1 PROMELA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

6.2 SPIN : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

6.3 Simulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

6.3.1 Safety Statements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

6.3.2 Temporal Claims : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

6.4 Veri�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

7 Conclusion and Future Work 26

2



Abstract

Address Resolution Protocols (ARP) are used in Automated Highway Systems (AHS) to es-
tablish communication among vehicles. The purpose of the ARP is to determine the network
address of neighboring vehicles. We are proposing an innovative solution that takes advantage
of the automated road infrastructure For providing addresses initially and uses the communica-
tion network itself for updating the network communication addresses in a one lane automated
highway system.

The protocol has been modeled using PROMELA [1], and simulated and veri�ed by SPIN
[2]. SPIN is a tool for analyzing the logical consistency of concurrent systems, speci�cally of
data communication protocols. The veri�cation results show that automated vehicles in a single
lane remain accurately informed about the communication addresses of their neighbors despite
maneuvers (dynamics) on the road.

1 Introduction

An important problem in the design of vehicle-vehicle and vehicle-roadway data communication
systems for the Automated Highway Systems (AHS) is the protocol design for address resolution
in the communication network.

In any communication network, a user has a logical identi�er (its IP address or social security
number) and a physical location. The mapping between the logical identi�er of a user and its
physical location is called binding.

An Address Resolution Protocol (ARP) is a distributed algorithm that de�nes the binding and
maps the logical identi�er of a user to its physical location. In AHS applications, one of the
addresses is determined by relative position, e.g., the vehicle that is immediately in front of my
vehicle, and the other address is determined by an \absolute" address, e.g., the vehicle's license
plate number.

In an Automated Vehicle Control System(AVCS), the coordination layer is responsible for
the planning and supervision of maneuvers. Address resolution is especially important for the
coordination layer because maneuver coordination among automated vehicles requires a local area
network for communication. The di�culty is that such a local area network of vehicles is not only
mobile, i.e., vehicles are moving and their distances are changing, but is also dynamic, i.e., vehicles
are performing maneuvers and changing their relative positions with respect to each other. Thus
the mobile local area network is continuously changing its con�guration.

We are proposing an innovative solution that takes advantage of the high-tech road infrastructure1

for providing addresses initially and uses the communication network itself for updating the net-
work communication addresses.

The problem of address resolution for coordination layer communication has been divided
into two parts: initialization and updating. Initialization refers to assigning each vehicle a net-
work communication address and informing it of its neighborhood con�guration as it enters the
automated road. The lane number that the vehicle is in is also given.

Knowing the address information and relevant positions of its immediate neighbors, a vehicle
is initially prepared, i.e., initialized, to network with other vehicles.

Once a network of vehicles is formed, this network itself can be utilized for the updating process
of the address resolution. Since vehicles are initially aware of their neighborhood con�guration and
network communication addresses, each vehicle can contact the neighboring vehicles and inform
them of the changes that it makes in the local area network con�guration. This is what we call the
updating process of address resolution. Protocols are designed so that updating is done by both
informing other vehicles when one maneuvers and periodically con�rming the current information
with relative vehicles (con�rm). In case some information is missing or not con�rmed, there are
protocols (query) to obtain the desired information.

1This infrastructure has been standardized by Title 21 of California Code and is currently being implemented for

road pricing and toll collection in California.

3



This paper is organized as follows: section 2 overviews the research background in address
resolution for mobile networks, section 3 discusses the abstract model of the information set that
a vehicle in the coordination layer needs, section 4 explains our approach to address resolution for
a single lane automated road while section 5 discusses the protocols and notes the shortcomings
of the proposed address resolution scheme for a multi-lane automated road. Section 6 details the
simulation and veri�cation tool that was used and provides veri�cation results for the proposed
protocols, and section 7 concludes with an outline of our future work.

2 Background

The rapid growth of wireless communications systems along with the widespread use of networks
has created the issue of mobile networking. Mobility should be distinguished from portability.
Portability means the system (computer) can operate at any of a set of points of attachments;
mobility is referring to operation during the move as well as operating at the attachment points.
One of the most fundamental problems facing mobile networking today is location management:
How does the network know where the intended recipient of a message is currently located? Who
should be responsible for determining the user's location? The need for location management
arises when the binding between the logical identi�er and the physical location of a user is not
�xed and changes over time[3].

The issue of binding is being discussed in di�erent communities: the Internet community and
cellular telephony.

The Internet protocol (IP) that is in charge of addressing and routing assumes that there is
a close relationship between a computer's IP address and its physical location, i.e., the binding
is �xed over time[4]. Moreover, IP and other inter-networking protocols are designed based on a
hierarchical scheme to support scalability. The hierarchy that is seen in the logical identi�er of a
user in general re
ects the physical connection of that user to the network. For example, in IP,
the network address or logical identi�er of a host is divided into two levels of hierarchy: a network
number identifying the network to which the host is connected, and a host number identifying
the particular host within that network. Routers within the Internet know (and care) only how
to route packets based on the network number of the destination address in each packet; once the
packet reaches that network, it is then delivered to the correct individual host on that network.

Source routing, the insertion of routing information into a datagram by the node from which
it originates, is a proposal to overcome the problem of hierarchical routing based on physical
location. A source that is aware of mobility of another user will specify the mobile's current
physical address each time it sends a message and will not rely on its logical address, hence
the term source routing. Strict source routing speci�es the route hop-by-hop while loose source
routing speci�es the end user.

Considerable work has been done concerning mobile IP; however, there is not a standard
set as of the time of this writing. One of the fundamental problems that faces the designers
is compatibility of the proposed standard with the existing infrastructure. It is important for a
mobile IP proposal to support addressing and routing to mobile hosts from existing correspondent
hosts that have not been modi�ed to support mobility and seem likely to remain so for some time.

The issues facing cellular telephony are similar to the problems of mobile IP and they in
fact both use similar solutions to overcome the location management problem. For example, in
most mobile addressing scenarios a mobile user has a home agent that maintains current location
information for the mobile user and receives packets for it and tunnels them to the mobile user at
its current location. We can draw an analogy between cellular telephony and mobile IP. A mobile
terminal has permanent association with a home location register (HLR) and uses the service
of a visitor location register (VLR) as it moves. HLR and VLR are analogous to home agent
and foreign agent for a mobile terminal. There is also call forwarding by HLR that is similar
to tunneling since it is HLR that has to �nd the current location of the mobile terminal. Both
protocols are explained in more details shortly.

There are yet di�erences between the two technologies. For example, real-time ubiquitous

4



binding and bandwidth are basic issues for cellular telephony with its increasing number of users.
However, the bu�ers in communicationnetworks can store packets until a valid binding is achieved.
For similar reasons the bandwidth is assumed to be able to accommodate all potential users and
not to be an issue in the near future.

We shall brie
y discuss some of the prominent projects and proposals regarding mobile IP and
cellular telephony and then will explain why address resolution methodologies in mobile IP and
cellular telephony cannot be applied to a mobile network of automated vehicles.

2.1 Mobile IP

Sony's virtual IP proposal considers a virtual address and a physical address (V N;PN ) for every
mobile user. The virtual address, indicated by the V N part of the binding, is the permanent
address (IP) of the user. The physical address, the PN part of the binding, is a temporary IP
address acquired by the mobile host when it moves to a new network. The two addresses are
identical if the user is at home or if the physical address is unknown. Binding is updated by the
mobile user whenever it obtains a new physical address and is maintained at its home gateway.
The home location is responsible for redirecting the incoming messages for the mobile user. In
this scheme, senders and intermediate gateways can cache binding information and send packets
directly to the current address of the mobile user.

The IBM proposal [3] de�nes an IP address for the mobile user plus a physical location that is
the address of its current Mobile Support Station (MSS). The binding is the mapping between the
permanent IP address of the user and the IP address of the current MSS. Unlike Sony's proposal,
there is no need to acquire a temporary IP address for a mobile user.

The Columbia project is similar to the IBM proposal in de�ning the physical address as the
address of the current MSS. However, there is no concept of a home location directory. The
location directory is maintained at several MSSs that cover the mobile subnet within a campus.
If binding information is not valid, a search is used by the MSSs to �nd the up-to-date binding.
Finally, the logical identity of the mobile user is local only to his campus and changes for inter-
campus, wide area moves.

The Internet Engineering Task Force (IETF) proposal also assumes a home host for a mobile
user. When a mobile user moves, either it registers with a new foreign agent or obtains a care-
of address. The home host is updated by the mobile user of its care-of address and redirects
the incoming messages to the mobile user at its new care-of address. For routing optimization
purposes, the home host can alternatively inform the sender of the new address and the messages
are able to be sent directly to the mobile user.

2.2 Cellular Telephony and Personal Communication Networks

For location management in cellular telephony there are several schemes that have been used
in practice for a while. In AMPS, which is very similar to GSM, a mobile user roams, i.e.,
registers with the Mobile Telephone Switching O�ce (MTSO) of its area that covers several base
stations. In order to �nd the location of the callee, base stations within the MTSO are paged for
the terminal equipment number. The appropriate cell then responds, completing the connection
establishment. Thus, the initial set up is based on a search that may involve potentially a large
number of base stations as the mobile user moves from one cell to another and active connection
is automatically handed over to the new base station.

In CDPD, the mobile unit has a unique IP address and registers with the Mobile Data In-
termediate System (MDIS) of its area. When it moves to another cell, it has to re-register with
the new MDIS and the appropriate forwarding of packets from the old MDIS to the new one is
provided.

Both AMPS and CDPD use a general concept of a \home agent". Location management for
the future PCN is expected to face complex di�culties because of the high number of users that
results in a high volume of database tra�c due to location updates. It is desired to use a set of
databases that are distributed in a hierarchical network. A user will have two addresses similar

5



Figure 1: A general host (GH) sends a message for the mobile agent to the mobile home (MH). The
mobile home tunnels the message to the mobile agent via its foreign host (FH).

to mobile IP proposals, and its home plays a role similar to that of the home agent in mobile
IP. Instead of updating location information about its care-of address of the mobile station, the
updating is deliberately limited to the region covered by several mobile stations. The imprecision
is eventually eliminated by di�erent types of locating algorithms or search strategies[3].

Hierarchical Topology and Support Stations

Mobile IP and cellular telephony have a couple of major similarities. One, they both use a
hierarchical topology for network and addressing. Two, they both assume existence of at least
some stationary stations such as a home agent, mobile support stations, and routers.

The above assumptions are not true for the type of mobile networks that we are interested
in. In a mobile network of automated vehicles, there is no hierarchical topology of network; the
network is 
at. More importantly, there is no support station of any kind that its services of
routing or redirecting could be assumed.

2.3 Ad-hoc Networks

An example of a 
at network with no mobile support station is an ad-hoc network. It is the
cooperative engagement of a collection of mobile hosts without the required intervention of any
centralized access point[3].

From a graph theoretical point of view, an ad-hoc network is a graph, G(N;E(t)), which is
formed by denoting each mobile host by a node and drawing an edge between two nodes if they
are in direct communication range of each other. The set of edges, E(t), so formed, is a function of
time, and it keeps changing as nodes in the ad-hoc network move around. The topology de�ned
by such a network can be very arbitrary since there are no constraints on where mobiles could be
located with respect to each other.

6



Routing protocols for existing networks have not been designed speci�cally to provide the kind
of self-starting behavior needed for ad-hoc networks. There have been routing methods proposed
for ad-hoc networks that take an approach similar to the shortest path computation method[3].
Each node maintains a view of the network topology with a cost for each link. To keep these views
consistent, each node periodically broadcasts the costs of its outgoing links to all other nodes using
a multi-cast protocol such as 
ooding. As a node receives this information, it updates its view
of the network topology and applies a shortest path algorithm to choose its next hop for each
destination. Each node has routing table that lists all available destinations and the number of
hops to each.

Each route table entry is tagged with a sequence number which is originated by the destina-
tion station. To maintain the consistency of routing tables in a dynamically varying topology,
each station periodically transmits updates, as well as immediately transmitting updates when
signi�cant new information is available. However, there is no notion of synchronization and no
assumption about the update periods between the mobile hosts. These packets indicate which
stations are accessible from each station and the number of hops necessary to reach these acces-
sible stations. The packets may be transmitted containing either MAC layer or network layer
addresses. However, some of the link costs in a node's view can be incorrect because of long
propagation delays, the partitioned network, etc. that might lead to formation of routing loops.

2.4 Network of Automated Vehicles

The address resolution protocol in conventional networks assumes that a computer is aware of its
own binding, i.e., it knows its own network address and absolute address or identity. Hence, if
one can address a computer by its absolute address, then one can ask for its network address and
vice versa.

In the AHS context, each vehicle knows its absolute address, e.g., license plate number. Sup-
pose now that vehicle A wishes to learn the network address of the vehicle in front of it. If it
knows the latter's absolute address or identity (say, it is B) it can broadcast a message, \What is
vehicle B's network address?" and then B could reply with its network address. Unfortunately,
if all that A knows is that it wishes to send a message to the \vehicle in front of A", it cannot
do so. Note that \vehicle in front of A" uniquely identi�es B, but neither A nor B know that B
is that vehicle. Indeed, if A broadcasts the message \who is in front of A?", all vehicles in A's
neighborhood will hear this message, but will not be able to �gure out which one of them is in
front of A.

This is because the binding information that is important for every vehicle in the coordina-
tion layer is the mapping between the relative position of a vehicle and its logical identi�er, i.e.,
< relative position; ID >. Focusing on one lane automated highway, the relative position means
either immediately in front or immediately behind, called front and behind, respectively, for ab-
breviation. The ID could be the IP address or license plate number. More speci�cally, in a one
lane automated highway a vehicle needs to know < front; ID > and < behind; ID > since the
only other vehicles that matter to it from the coordination point of view are its front and behind

vehicles. Even though a vehicle network, like an ad-hoc network, is 
at and has no central sup-
port station for addressing, unlike ad-hoc networks, the amount of information for every vehicle
is very limited. Besides, the binding database of one vehicle is not useful for another and every
vehicle should have its own special database that re
ects the relative position of other vehicles
with respect to it.

Importance of Position and Relative Position

The most distinguishing characteristic of address resolution in automated highways is the im-
portance of the location in binding. All other mobile schemes start with the logical identi�er
and address resolution is to �nd the binding map to the location. In an automated highway, the
address resolution protocols shall start with the (relative) location of a vehicle and map it to a

7



logical identi�er to provide binding. Hence, tunneling and message forwarding are of no use in
this scheme.

Puri et al.[5] considers the question of what information is needed to build an address reso-
lution protocol for vehicles in automated highways. It is shown that inter-vehicle distances are
insu�cient, but relative coordinates by absolute locations are su�cient. Furthermore, it is shown
that relative coordinates with local communication are insu�cient. Assuming that each vehicle
has the relative x- and y- coordinates of vehicles in a circle around it, and the communication
is local and is not biased in any direction, it is shown that the problem of �nding the vehicle in
front becomes unsolvable under these conditions.

Puri et al. suggests the use of absolute position. However, we will show that in a one lane
automated highway, absolute position is not necessary to resolve the relative position. An external
point of reference, as we will see later, is su�cient to provide the information about relative
position. The binding information can then be obtained using the network and implementing our
proposed protocols.

It should be mentioned that address resolution is an important component of the coordination
layer communication. Our research has bene�ted from the work that has already been done on
the coordination layer, speci�cally, the design of controller by Varaiya[6], Hsu et al.[7], Eska�[8],
and Godbole[9]. The work on controller design for coordination layer, however, assumes that
communication address is not a problem and builds on the assumption that address resolution
protocols are available.

3 Modeling

We de�ne some terminology for the purpose of modeling. The term agent refers to an automated
vehicle that may be a single vehicle or a platoon leader; only single vehicles and platoon leaders
are active in the coordination layer of AVCS. A follower in a platoon has to �rst become a leader
or free agent in order to individually perform or participate in a maneuver. In the context of
modeling, a follower is invisible in the coordination layer and only contributes to the \length"
characteristic of its leader agent.

The implicit model of an agent in the coordination layer [8] is a system with a controller that
is responsible for performing maneuvers. We add to this model an addresser which is in charge
of address resolution for the agent.

We start with the system (agent) and its exosystem(road and other agents) and then modify
the model according to some practical requirements. We show that the model we develop is
necessary and su�cient for an agent to function and perform safely in the coordination layer.

3.1 Local Neighborhood of A System

An agent, say A, is a system that interacts with its exosystem which we call its neighborhood.
We are interested in a speci�c segment of the neighborhood that is important for A in terms of
the coordination layer, which we call the local neighborhood. The local neighborhood for A in
the coordination layer consists of all the agents that can potentially perform a maneuver with A.
Considering one-lane maneuvers only, the local neighborhood is reduced to A's front and behind

agents. So a local neighbor of A is any neighboring agent of A who can potentially get involved
in a maneuver with A. The set of the local neighbors make up the local neighborhood. Note that
local neighborhoods are not the same for any two agents. Besides, a local neighborhood changes
in time. Also note that the local neighborhood is all that an agent needs to be aware of in
the coordination layer, i.e., having the network communication addresses of the local neighbors is
necessary and su�cient for an agent to performmaneuvers in the coordination layer. It can request
a local neighbor for a maneuver or can grant a request for a maneuver by a local neighbor. The
addresser's job would then be de�ned as updating the addresses of the local neighbors. Once we
see how the addresser takes care of address resolution, it becomes clear that the local neighborhood
can be extended to n number of agents in front/behind if desired.

8



If we consider sA the state of the local neighborhood of A, we see that the changes that happen
to the network con�guration over time make it a parameter of time and it becomes sAt . State s

A
t

is speci�ed by the local neighbors:

sAt = (Front;Behind)

\Front" and \Behind" are vectors that carry information about the the front and behind agents.
An exact model of the reality would include the ID of every local neighbor and its distances

from A.
sA
t
= (Front(distance; ID);Behind(distance; ID))

\ID" contains the the communication address of the immediate neighbor and can either take the
value of an address or \unknown".

For example, knowing that at time t = 1 agent B is 250 meters in front of A and agent C at
130 meters behind A, then the local neighborhood of A is uniquely speci�ed by

sA
t
= (Front(250m;B);Behind(130m;C)):

Note that there always exist some front and behind agents, even though the distance from A may
be in�nity.

3.2 Model Simpli�cation

The model of the local neighborhood of A, represented by sA
t
, uniquely represents the local

neighbors of A. However, there is information in this model that is not of any use for the
coordination layer. The distance of the local neighbors to A is not useful information to the
coordination layer, but is used by the regulation layer which has its own means of �nding the
accurate distance and will not be discussed here. So we can justi�ably discard the distance from
our model and replace it with a binary symbol that presents the existence of a local neighbor
within a certain distance. The certain distance is determined by the hardware that is used for
communication in the coordination layer and has a limited range. Based on this fact, we limit
the model of the local neighborhood to the reliable range of communication hardware. This is
because only the agents that can communicate can coordinate maneuvers, and, by de�nition of
a local neighbor, if an agent is out of communication range of A, it is not considered A's local
neighbor anymore.

The model then is simpli�ed as:

sA
t
= (Front(Exists; ID);Behind(Exists; ID)):

The parameter \Exists" for \Front" and \Behind" agents takes binary value 1 when there is an
agent within the communication range, and 0 otherwise. As a result, if there is an agent B behind
A that is too far to communicate with A, it will not be included in the model.

Notice that this model is not continuous because it does not keep track of the actual distance
of the agents. It is discrete because in practice the distance between agents is not a concern
of the coordination layer, but of the regulation layer. What is important to an agent in the
coordination layer is the existence and relative position of the local neighbors. So, we have
simpli�ed a continuous model of the local neighborhood into a discrete model. Next we see that
this discrete model has to be valid in continuous time. A relatively continuous parameter is
introduced that veri�es the accuracy of the model in real time.

3.3 Model Accuracy Awareness

The proposed address resolution scheme relies on protocol exchange among agents, and communi-
cation failure is a possibility that should be seriously considered. A communication problem could
result in incorrect modeling of the local neighborhood which is absolutely undesired. While we
present no solution to overcome such problems, we propose a solution for awareness of such cases.

9



Before performing a maneuver, agents should verify their models with each other, and an agent
who is aware of a possible inaccurate model of the local neighborhood by itself or a local neighbor
will not attempt to perform or grant a request for a maneuver. Awareness of the accuracy of the
model of the local neighborhood is an important factor that is represented by a 
ag. Flag is a
binary parameter that shows whether the model is accurate or not. Since the information about
the front of the vehicle is independent from the information about the rear of the agent, there are
two 
ags which are independent of each other:

sA
t
= (Front(F lag;Exists; ID);Behind(F lag;Exists; ID))

Notice that the 
ag has to be continuous. This is because the prompt request by a controller for
a maneuver is not synchronized with the addresser and could be at any point in the continuous
time. This means that the discrete parameter of \existence" of a local neighbor has to be updated
continuously. The solution that we o�er is relatively continuous updates of the information.
The coordination layer moves are mechanical motions by the agents, while the communication
of protocols is electronic and propagated by electro-magnetic waves, i.e., orders of magnitudes
faster than mechanical motion of the vehicles. The addresser updates the model of the local
neighborhood at such a high frequency that it seems \continuous" to the coordination layer while
it is actually a very high frequency discrete event; hence the term \relatively continuous".

3.4 Modeling the Transition Periods (Maneuvers)

During a maneuver, the \ID" parameter update could take as long as a maneuver takes to change.
The solution to this is to re
ect the maneuver process in the modeling information. So the model
adopts one more binary parameter to represent the status of the local neighbors, i.e., busy or not:

sAt = (Front(F lag;Exists; ID; busy);Behind(F lag;Exists; ID; busy))

3.5 Addresser and Modeling

It should be mentioned that each agent supposedly has similar information about itself. An
addresser must be aware of such information about its own agent in order to communicate it with
local neighbors. The model that addresser must be updating then is extended to include self ID
and status:

sA
t
= (Self(ID; busy);Front(F lag;Exists; ID; busy);Behind(F lag;Exists; ID; busy))

The above model represents the status of A and its local neighbors. This model is maintained
by the addresser such that its parameter values re
ect the real time status of the agents. Addresser
of A communicates with other agents on the road and updates the above modeling parameters. In
the coordination layer, only agents, leaders and single vehicles, need to have an updated model.
A follower does not need to have an addresser; it would be a waste of bandwidth to have it.

The only maneuver a follower performs is split, which is in cooperation with its leader and can
be done via intra-platoon communication. When the maneuver is done, it will become an agent
itself and its addresser will be activated.

3.6 Updating Condition

To make the model complete, the model should include one more parameter, leader.

sAt = (Self(ID; leader; busy);Front(F lag;Exists; ID; busy);Behind(F lag;Exists; ID; busy))(1)

The binary parameter leader is added to the model so that when it is set to 1, it re
ects the status
of a vehicle as an agent (platoon leader or single vehicle). A follower could split from a platoon
and become an agent, in which case its leader parameter becomes 1. Similarly, it becomes 0 after
a join.

10



The model is only updated by addresser when leader = 1, i.e., the vehicle is a leader in the
coordination layer and has both access to the communication channel and the need to update the
model. The addresser is active for agents only; a follower does not have an addresser.

When B splits from A, the initializing of B and providing initial network con�guration of its
local neighborhood is done by A. As it is shown in the protocols in upcoming sections, A asks
B to set its front ID to A, and its behind ID to C, while itself switches its behind ID from C
to B, and also informs C to switch the front ID from A to B. The simulation Figure (9) is an
illustration of this process.

4 Address Resolution

As it can be observed in modeling, the important component of the binding map is the relative
position (front/behind) and address resolution is required to �nd the logical identi�er (ID or IP
address) for each relative position.

Breaking up the problem of address resolution into initialization and updating is the important
principle of this design. Initialization is done externally, while updating is an internal task of the
network itself. The attractive feature of this design is that after initialization, the network itself
becomes responsible for maintaining its address resolution, i.e., updating protocols are designed
such that each node is constantly aware of its local area network con�guration and relative network
addresses. Furthermore, the network itself becomes in charge of initializing a new node after a
split. As Puri et al. proves, without an external reference (initialization) it is impossible to resolve
the logical address in the binding.

In this section, address resolution algorithm, initialization and updating will be explained. In
the following sections, after presenting the protocols and their simulation and veri�cation, we will
discuss theoretical generalization of the external initialization and internal updating of dynamic
networks.

4.1 The Algorithm

The proposed address resolution has a very simple algorithm. It takes advantage of Zermelo's
well-ordering theorem[10] which states that every set may be well-ordered. We choose the order
of the position of agents, A, in one lane to order the agents (A;�). We then de�ne a one-to-
one mapping between this well-ordered set and a well-ordered set of integers (Z;�) where the
mapping preserves the order.

The algorithm to �nd the relative position of agents with respect to each other uses the
ordering of their maps to compare the integers. Suppose we choose their position from front to
back of the line of agents for ordering them such that an agent A in front of agent B is smaller
than B, A � B. This well-ordered set is mapped into a set of integers. For example, the agents
in Figure (3) will be mapped: A 7�! 1, B 7�! 2, C 7�! 3.

The integers correspond to the ID numbers of the agents. In practice, every agent is assigned
a number which is greater than the number assigned to the vehicle in front of it and smaller
than the number assigned to the vehicle behind it. This becomes the absolute ID of the agent on
the road. It is a unique serial number that speci�es where this vehicle is with respect to other
agents. The algorithm is a comparison of ID numbers. Two agents compare their ID numbers,
and the agent with a larger serial number is in front of the other one. Similarly, a set of agents can
compare their serial numbers and each would �nd the same exact order of agents. This provides
a simple means of picturing their positions from front to back according to their ID numbers.

Theorem 1 Address resolution of agents through local communication is possible by well-ordering

them according to their position in one lane.

Proof:Assume that an agent, say A, wants to �nd out who is its front neighbor. It asks all
its front agents for their ID numbers and receives some responses and compares them. In a
non-empty, well-ordered set of its front agents it can identify its immediate predecessor, because

11



\there is a least number greater than"[11] its own ID number. So it can �nd its front neighbor.
Similarly, an agent can �nd its behind neighbor.

When agents A and B compare their ID numbers, they �nd out either A � B or B � A. Both
cases cannot be true simultaneously unless A = B. For every two agents there is only one way of
ordering the IDs in � relation. By induction, the models carried by single agents resemble pieces
of a jigsaw puzzle that when put together provide an accurate model of their position ordering.
Well-ordering of the agents and communicating the ID numbers among agents make �guring out
the correct position order of agents possible for all of them. ]

It should be emphasized that assigning ID numbers to the leaders in a linear order is the most
important job of the road station. It is the core of initialization. The updating protocols as we
will see are capable of realizing and updating other parameter values in the state model by a
simple algorithm using these ID numbers.

4.2 The Initialization Infrastructure

The infrastructure for initialization is special hardware on the side or top of the road that estab-
lishes short-range back-scattering communication with vehicles.

The short-range communicationbetween the vehicle and the reader provides a means of reliable
individual communication between the automated vehicle and the road. The actual physical
device that is used for this purpose is a small card-key-size tag [12] that is installed on the front
windshield and is connected to the vehicle's computer and to the reader that is installed on the
road. The reader generates either modulated signals that provide reader-to-tag communication
or un-modulated sine waves to be modulated by the tag and re
ected back to the reader which
becomes the tag-to-reader communication ,back-scattering. This scheme uses CRC-162 for high
accuracy and is economical since the vehicle does not generate any signals and does not need
any energy source3. The tag and the reader are capable of reading and writing to each other
while the vehicle is moving at freeway speed. Consequently, the reader can provide every vehicle
information about its front vehicle(s) that just passed by the reader. Similarly, if one more reader
is employed with appropriate distance prior to the �rst one, it can provide information regarding
its following vehicle(s). In a similar manner, more readers can be employed in the adjacent lanes
in order to provide information about the vehicles in other lanes. It is assumed that the readers
are locally connected to each other and can exchange data.

4.3 The Initialization Process

The information required to initialize a vehicle consist of the parameter values for its state model
as in equation (1):

sAt = (Self(ID; leader; busy);Front(F lag;Exists; ID; busy);Behind(F lag;Exists; ID; busy))

Before we explain how the infrastructure can assign proper values to the state model parameters,
we need to explain some assumptions about the road station and how it measures the distance
between vehicles. The initialization road station in addition to the reader has some sensors and a
simple computer that can analyze the data received from the sensors, the reader, and other road
stations.

The assumption is that during initialization, no maneuvers are allowed until vehicles �nd their
place in the coordination layer as leaders, receive their communication IDs, and become able to
network and communicate together. The vehicles are then moving at a relatively constant velocity.
Located next to the vehicle-detector, there would be a speed-sensor on the road that could relay
the average speed of a vehicle to the computer. The computer, equipped with a timer, knows of

2This is according to Title 21 of California Code that requires error detection code with a generator polynomial of

X
16 +X12 +X5 + 1
3There is a small battery in the tag that lasts a few years.

12



the time lapse between the passage of two consecutive vehicles and can calculate their distance:

d = v:t

. The accuracy of v is not crucial to realize whether two consecutive vehicles belong to the same
platoon or not.The large di�erence between distances in the two cases make it easy to verify
whether a vehicle is following the previous one even if v is not very accurate. For example, if
the sensor has a one second or more lapse between sensing two vehicles with speeds of 20m=s to
30m=s, it can assert that the two vehicles do not belong to the same platoon because their distance
would be more than 20m. On the other hand, the sensor's time lapse must be shorter than 0:2
second for vehicles in the same platoon. The sensor information then enables the computer to
assign the leader value to vehicles and to assign serial numbers to the leaders, which we assume
to be their communication IDs.

The information about the front neighbor similarly can be given to a leader. For instance, if
the passage of a leader has been within v=R seconds prior to passage of A, then that leader would
be identi�ed as A's front agent and its information will be given to A, where v is the average
speed, and R is marginally greater than the range of communication hardware. Note that the
computer could be conservative and overestimate R for leaders. Its error in any case is not crucial
as long as the leaders are assigned unique consecutive serial numbers as their IDs.

Assuming that there are two sets of readers and sensors that are connected to the computer
within v=R distance, and that by the time agent A is passing through the second set another
agent is passing by the �rst set, the computer would inform A via the second reader about its
behind agent. Again, this is a possibility and is not necessary.

Initialization provides the essential addressing that is necessary for the agents to �gure out
their relative position with respect to each other and establish communication with their local
neighbors. Initialization could provide addresses of local neighbors such that agents can im-
mediately start maneuvering. However, maneuvers change the network con�guration and the
communication addresses need to be updated with respect to the new positioning of vehicles after
each maneuver.

Before we explain how addressers resolve the communication addressing issue using the ini-
tialization assignment, we present a simple algorithm for initialization of a follower by a platoon
leader.

4.4 Initialization by Platoon Leaders

The main purpose of initialization is to provide binding information, i.e., to map an agent's
position to a serial number or communication ID. Later, we will explain how the information
about local neighbors is provided.

A vehicle that passes the initialization road station as a follower is not initialized, i.e., it does
not have a serial number and does not know of its local neighbors. Once this vehicle decides to
split from its platoon leader and become an agent itself, it needs to have a serial number that is
unique and in a linear order with respect to other agents' IDs, and that re
ects its position in
the line of agents on the road. Furthermore, initialization of other vehicles that split from the
original platoon leader must be consistent with the �rst one. Also, the �rst vehicle that splits may
have followers who in turn may want to split. The serial numbers that will be assigned to these
vehicles must re
ect their relative positions on the road with no ambiguity. While we use integers
for road initialization, we consider using real numbers for future initialization due to splits and
changing lanes. The use of real numbers assures an unlimited possibility of split and change-lane
maneuvers.

An example would be useful in presenting the algorithm that we suggest for initialization by
platoon leaders. Consider vehicle B in Figure (2) which is about to split from agent A. A is to
provide a proper serial number for B. Assume that the serial number assigned for agent A by
road initialization is 5. Agent A would add nine decimal points to its own serial number and
assign 5:9 to B if B is the �rst follower to split. To the next follower that splits, A would assign
5:8, and to next one 5:7 and so forth. This way, A can only assign 9 serial numbers, i.e., it can

13



have a maximum of 9 splits. However, if we change the base for our numbering, we can increase
it to any desired number.

Figure 2: Platoon leaders initialize splitting vehicles.

If a follower is to split from B, it would be assigned 5:99 if it is the �rst one, 5:98 if it is
the second one, and so forth. The agent number 5:99 would assign numbers from 5:999 to 5:991
to its splitting followers. Such an assignment algorithm keeps the serial number maps of the
well-ordered agents appropriately unique with respect to their relative position on the road.

Note that the agent behind A would assign 6:9 to 6:1 to its splitting followers, and they in
turn would be assigning numbers in the range of 6:99 to 6:11. This way, the initializations by
di�erent platoon leaders do not interfere with each other. Serial numbers remain to be maps
of well-ordered agents that preserve their position order. Hence, comparison of serial numbers
remains a reliable algorithm for �nding agents' relative position with respect to each other.

The total number of digits that would be used in such assignments may be limited by the
memory of the vehicle's computer, communication packet's length, etc. Consequently, the number
of splits from an original platoon leader may be limited.

4.5 The Updating Process

We discuss the updating process with the assumption that initialization has already provided all
the parameter values for the state model. It will be shown later that providing serial IDs for agents
is necessary and su�cient for con�guration of the network and updating process. Assuming the
initial network is established, this network itself can be utilized to update the network addresses
of agents.

There are three types of maneuvers: join, split and lane-change. The �rst two, join and split
maneuvers, do not change the relative position of vehicles with respect to each other, but only
change the grouping of vehicles into di�erent platoons. In the case of these two maneuvers, there
is no need to know the absolute position of vehicles, since the relative position is constant. For
example, if agent A is immediately in front of B and B is in front of C and so forth, it will always
be so as long as there is no lane-change maneuver performed. Enter and exit are also special cases
of lane-change maneuver that will not be considered here. Address resolution updating is simply
done by keeping track of the maneuvers performed by the agents as they change their platoon
groupings. The designed communication protocols relay the information about the maneuvers
and relative position of agents.

In every agent, the maneuvers are controlled by a controller[6]. We propose an addresser

for every agent to be in charge of the address protocol exchange and address resolution. Note
that while in practice controller and addresser could be combined, they are di�erent in abstract.

14



The controller is in charge of controlling the maneuver, while the addresser provides the network
communications addresses to the controller. The controller's communication range is limited to
the front and behind agents for maneuver purposes, while the addresser can contact many agents
in a wide range of communication that is limited only by hardware capability and power and
interference problems. Finally, the controller is in the coordination layer, while the addresser can
have a range of services that go beyond the coordination layer. The interaction between the two
is important: the controller provides the addresser with information about maneuver status such
as being requested, performing, done, etc., while the addresser provides the controller with the
updated networking addresses. In summary, the addresser is di�erent from the controller in its
functionality and range of communication access.

The implementation of the updating process is done by two types of communications.

� Rendezvous communication between the addresser and the controller of every agent.

� Periodic communication among addressers of local neighbors in a local area network.

Rendezvous communication between the addresser and the controller can be illustrated by
an example. Assume agent B is behind A and wants to join it. The maneuver is controlled by
the controllers of the two agents. B's controller obtains A's address from its own addresser and
requests for maneuver fromA. A's controller, upon granting the request, informs its own addresser
of its busy status. Similarly, B's controller, upon receiving acknowledge from A, informs its own
addresser of its busy status. Both controllers update their own addressers when the maneuver
is done. Meanwhile, A's and B's addressers cooperatively inform the addresser of the agent
immediately behind B about the maneuver so that agent, say C, is aware of the maneuver,
realizes when its front agent is busy, and updates its front address appropriately. So, when an
agent is engaged in a maneuver, its immediate neighbors' addressers are aware of its busy status
and update their address book accordingly.

As a result of the communication between the addresser and the controller of each agent during
maneuver, all the involved agents are aware of it and update any changes to the network addresses
and con�guration.

5 Address Resolution Protocols

The proposed protocols work based on the assumption that there is an initialization provided by
the road infrastructure to all the vehicles. The initialization mainly provides the essential basis
of information for the protocols to work. It would also provide initial information regarding the
network con�guration to the vehicles, though later we will see that in theory it is not essential,
and the agents can �gure it out by protocols. Every agent is initially equipped with an accurate
model of its local neighborhood in the coordination layer4. There is one important factor that is
provided by initialization that makes the updating process possible, and that is a unique serial
number that is assigned to every agent. The unique linear order of the numbers re
ects the unique
order of positioning of the agents on the road in a single lane. The serial numbers then resemble
the absolute ID for agents. Any set of agents can compare their serial numbers and conclude the
same unique ordering of their positions on the road. This is speci�cally used in case of query
protocols which will be explained shortly.

The protocols are of two types:

� con�rm.

� query.

A con�rm protocol is exchanged between any two agents who are already aware of each other
as local neighbors. To con�rm that their information about each other is current, they update
it periodically. Each agent performs its own con�rm protocols, even though it responds to the

4Initialization could potentially provide more information for other layers as well.

15



con�rm protocols of its local neighbor. This is double checking of information by agents. The
con�rm message would contain the following information.

confirm j receiverID j front j sender ID

and its response, ack�rm (or acknowledge to con�rm), would contain:

ackfirm j receiverID j front j sender ID:

Con�rm is a uni-cast protocol.
In case an agent, say A, has no local neighbor in front of it, it cannot use communication to

con�rm not having a local neighbor. Instead, it is actively searching for a local neighbor as it
travels along the road. Disregarding possibilities of communication failure, if it comes close enough
to an agent, i.e., within the communication range, that agent will respond and A will recognize
that agent as its front neighbor by comparing their serial numbers. Lack of any responses would
mean lack of any potential neighbors.

In case there are multiple responses to A's request, A will compare the serial numbers and �nd
out which one is immediately in front of it. A will repeat its query and save the responses until
there are no more responses. It waits long enough to make sure it is not missing any responses
to its query and then goes through a serial number comparison.

The content of a query message would be as the following:

query j front j senderID

and a response to it would be:

query response j receiver ID j front j sender ID:

Note that if there is no communication failure, A will receive responses from all the agents in
front of it and within its communication range, and there is no possibility of missing the correct
answer (agent ID) for the front neighbor of A.

Query is a multi-cast which implies that the coordination layer has multi-cast channels avail-
able to the agents in addition to the one-to-one channels.

Having presented the format of the messages, we now view the protocols' diagrams as seen in
Figures (3) to (6). As the protocols reveal, the addresser and the controller can be combined in
practice for practical purposes.

The addresser updates its information about the local neighborhood periodically by con�rm

protocols. While addressers are exchanging con�rm protocols, controllers can start performing
a maneuver using the same communication channel that the addressers use for con�rm. There
could be a segment dedicated to the controller message in each period of con�rm message.

The 
ow diagram for protocols of a join maneuver of agents A and B in Figure (3) is presented
in Figures (4), (5), and (6). The 
ow diagrams for split maneuvers are similar. The protocols are
designed such that at any moment any agent is aware of the communication address and status
of its front and behind agents. While B is performing a join, C is aware of it and sets the status
of its front agent to busy.

Once the maneuver is over, A and C will update the related information of local neighbor IDs.
The fact that after the join maneuver the agent B is only a follower of A and plays no role in

the coordination layer is re
ected by the binary 
ag leader that becomes zero.

5.1 Absolute Position and ARP

The lane-change maneuver, however, changes the relative ordering of the agents. The periodic
updating of the relative position of agents is very important in this case. Agents cannot rely on
initialization even after a very short period of time. This is because di�erent velocities in two
lanes changes the relative positioning of agents. Unlike the �rst two types of maneuver, a lane-
change maneuver demands the knowledge of absolute positions for updating the communication
addresses with respect to relevant positions. Once agents know their absolute positions, they can
compare it with each other and, knowing their lane number, can �nd out their precise relative
positioning.

16



Figure 3: Agent B wants to JOIN agent A, C is behind B, and its Front ID is a�ected by the JOIN
maneuver.

6 Simulation and Veri�cation

The protocols are simulated and veri�ed without worries about the problems regarding the com-
munication channels; the end-to-end error-free communication has been assumed between any
two addressers within the communication range.

Since the focus is on studying the structure of the protocols and verifying their completeness
and logical consistency, an overall description of the protocols has been expressed in a modeling
language, and some issues in protocol design, such as the message format, encoding, etc., have

Figure 4: Agent B wants to JOIN agent A, B requests a JOIN with A.

17



been ignored. Also, simplifying assumptions have been made such as the serial numbers assigned
to the agents by initialization are equivalent to their communication addresses. This allows for
concentration on the design and veri�cation of the rules that govern the interactions among
addressers of di�erent agents.

The protocols then have been simulated and veri�ed for safety and temporal claims which will
be discussed shortly.

6.1 PROMELA

PROMELA is a modeling language that is used to express the address resolution protocols. It is
a set of notations for the speci�cation and veri�cation of procedure rules[1].

The model of the local neighborhood that was suggested for every addresser is modeled by
values that are kept track of in the PROMELA model. Initialization of the addresser is modeled
by setting the initial values in the PROMELA model.

The reason for using PROMELA is that it is very simple, yet su�ciently powerful to represent
our communicationmodel. It allows for concurrent processes, such as rendezvous communications
between di�erent addressers or between the addresser and the controller of the same agent.

A brief description of PROMELA is useful for understanding the protocols. There are three
speci�c types of objects in the language[1]:

� Processes.

� Message Channels.

� State Variables.

Figure 5: Agent B wants to JOIN agent A, A responds to a JOIN request by B.

18



We have used a process (de�ned by a proctype) to describe an agent's addresser. Message
channels could be de�ned locally or globally and could store messages. In rendezvous communi-
cation that is used here, there are no stored messages in the channels. There are di�erent types
of variables and data-types from a single bit to a 32-bit integer.

What is important in PROMELA is the executability of statements. It is best de�ned by the
PROMELA designer, G.J. Holzmann[1].

There is no di�erence between conditions and statements. The execution of a statement
is conditional on its executability. Executability is the basic means of synchronization.
A process can wait for an event to happen by waiting for a statement to become
executable.

There is a special command for running concurrent processes in PROMELA, the atomic command,
that forces the addressers to be able to interleave and execute their statements together. For
example, every addresser is modeled by a proctype and an addresser is sending a con�rm message
to its local neighbor and waiting to receive an acknowledge. The next executable step will be
receiving the acknowledge, and, if it is not received, its process will not be executable and would
stop if receiving the acknowledge is its only option to proceed. In our protocols there is another
option, query, which, in the case of losing a local neighbor to the far distance, allows the addresser
to query for its local neighbor.

Absolute time is not de�ned in PROMELA. Time is not an issue since the main point is the
relevant timing of steps, not their absolute time of happening. Statements are executed one at a
time. There is no parallel execution of separate processes and even using a counter for counting
the units of time is not meaningful because, while it is counting, no other statement is being
executed. For example, in the actual protocol an agent would re-transmit the con�rm message a
few times before it assumes that its neighbor is out of range and then start a query. This would
be to rule out any channel problems. But in PROMELA it does not make sense to re-transmit a
message because the focus in on the essential function of the protocols away from worries about
the channel. Repeating messages are not modeled. That is why some wait periods that will be
in the actual protocols have been omitted in the modeling by PROMELA. However, the time
sequence of execution steps by di�erent addressers can be traced as interleaved steps.

Figure 6: Agent B wants to JOIN agent A, C is behind B, and its Front FID is a�ected by the
JOIN maneuver.

19



6.2 SPIN

Veri�cation of the proposed address resolution protocols have been done by SPIN which is short for
simple PROMELA interpreter[1]. Spin is a tool for analyzing the logical consistency of concurrent
systems, speci�cally of data communication protocols[2]. It takes a model system speci�ed in
PROMELA and can either perform random simulations (Figures (7) to (10)) or verify the system's
correctness properties as speci�ed by the protocol designer. It is capable of searching for the
absence of deadlocks, unspeci�ed receptions, unexucutable codes, unreachable states, and non-
progress cycles or live-locks. The veri�cation results can be viewed in an output �le, as in Figure
(11) and Figure (12). Also, a state diagram of each process can be generated which shows the
directed graph of �nite states for each addresser. Spin can be run with di�erent options depending
on the desired type of simulation or veri�cation. Xspin is the window-based interactive version
of spin and its version 2.9.7 has been used for this project.

6.3 Simulation

Simulation has been used in preliminary debugging of the protocols. Also, the simulation output
provides an illustration of the protocols function as depicted in Figure (7) to Figure (10). The
address resolution protocol exchange between agent A of Figure (3) and its local neighbors is
simulated as their relative positions to each other change. It should be mentioned that the protocol
exchange with the front neighbor is independent of the communication with behind neighbors and
vise versa. This simulation is about the address resolution protocols forA and its behind neighbors.
In practice such ARP could similarly be applied to its front neighbors simultaneously without
one ARP communication a�ecting another. The exception is, of course, when A is engaged in
a maneuver with its front neighbor and, at the same time, its behind neighbor is requesting a
maneuver. To take care of such a possibility in simulation, the busy 
ag has been modeled as a
random bit that could be arbitrarily \0" or \1".

Figure (7) is a depiction of the con�rm protocol transmitted by A to its local neighbor, B,
who in turn acknowledges the con�rm by transmitting ackfrim. At some point, B decides to join
A and asks if A is busy. A may or may not be busy, depending on whether it has just engaged
in the maneuver with its front agent or not, and answers B accordingly while transmitting the
con�rm protocol. Note that A would inform B about its busy status as soon as it grants a request
for maneuver. The busy 
ag is to avoid granting two requests for maneuver from front and behind

agents at the same time. Once B receives a not-busy response from A, it request a join which
again may or may not be acknowledged because of the platoon size restriction.

Figure (8) illustrates the join process between A and B, while C is being informed of the change
in its front neighbor's address. The neighborhood state model of addressers then is updated.

B becomes a follower after the maneuver and its leader binary 
ag turns 0. However, before
it loses its access to the communication channel in the coordination layer, it informs C about its
maneuver so that C's addresser can update its model of the local network con�guration.

As shown in Figure (9), a follower like vehicle B can request from its leader, agent A, a split. If
A is not busy, it would acknowledge the request and inform its behind agent about the maneuver
to be performed. The behind agent, C, then updates its model of the front neighbor to busy
status. Note that this protocol is focusing on the protocol exchange between addressers, and not
the controllers'. Recall that real time makes no sense in this kind of simulation and veri�cation;
so, the sequence of the steps take equal amount of time, not re
ecting the maneuver time. As
soon as A acknowledges the request, it provides the communication ID of C for splitting B, and
informs C about the maneuver and similarly provides the communication ID of B for C. This
protocol exchange is happening while the controllers are performing the maneuver. When the
maneuver is done, the controller of the agent informs its addresser, and the addresser informs
other addressers. In this case, A informs B that the maneuver is done and starts exchanging
con�rm protocols with B, while B engages in a similar protocol exchange with C.

As shown in Figure (9), vehicle B as a follower is out of the picture in the coordination layer
until its request for split is granted. It then is initialized by its leader, agent A, and its addresser

20



Figure 7: Agent A, left, is exchanging con�rm protocol with agent B, right, when B asks for join.

is given the proper model of local neighborhood.
Note that address resolution protocol exchange is happening simultaneously with the con-

troller's communication. In practice such simultaneous communications could refer to using dif-
ferent segments of the same communication packets. Since the real time is not meaningful for such
simulation and veri�cation, the time that the maneuver takes is not sensible in the addressers'
communication. It is important that upon every maneuver, the involved agents update their local
neighbors about the changes in the con�guration. In this case, A not only initializes B, but also
informs C about splitting B and provides its communication ID to C as its future front agent.

When an agent's model of its local neighborhood implies that it does not have a behind

neighbor, it will transmit a query to �nd out about its current local neighbor. As in Figure (10),
it will be sending its communication address along with the question about who is behind it in
the lane. An agent who hears A and does not have a front agent would respond to the query. A
would wait for some time to make sure it has already collected all the responses. Then it would
compare the received serial numbers and �nd out the nearest agent. In order to make sure that A
receives all the possible responses, other agents keep transmitting until A acknowledges receiving
their responses. It would also notify each respondent whether that agent is its behind neighbor.
Once it �nds its behind neighbor, it would start a con�rm protocol exchange with it.

6.3.1 Safety Statements

Informally, safety refers to avoiding bad states that should never happen. In other words, it
refers to the correctness of the protocol. Simple propositions can make correctness claims for
PROMELA models. Such propositions can make a claim about all the elements of a system state:
local and global variables, control-
ow points of arbitrary execution processes, and the contents
of message channels. The propositions implicitly de�ne a labeling of states with assert label.

21



Figure 8: Agent A, left, performs a join with B, center, and agent C, right, is informed by both A
and B about their maneuver.

We have used assert label to claim that once a maneuver happens, the addressers of all local

neighbors, including self, are aware of the change in the network con�guration and re
ect it in

the models that they have. Speci�cally, the assertion is that a change in the network con�guration

is correctly re
ected by the parameters in the addresser's model.

6.3.2 Temporal Claims

Temporal claims are to specify an ordering of propositions. Within one process, the order of
statements shows the order of their executions, while in concurrent processes there is no guarantee
about the relative speed of di�erent processes. However, rendezvous communication is what
makes the communication among two addressers synchronous, and we can verify ordering of
propositions in di�erent addressers. Again, since we are not allowed to make any assumptions
about the absolute time and relative speeds of concurrently executing processes, the only valid
interpretation of the word \after" in PROMELA is eventually after.

We have used temporal claims to verify the functionality or fairness of the protocols, e.g., once
an agent asks for join, its request will eventually be granted. Similarly, when a follower asks for
split, it will eventually receive an acknowledge. This veri�cation along with no error result of the
safety statements shows that changes do happen and are re
ected in the models by the addressers.

6.4 Veri�cation

Figures (11) and (12) show the result of the safety claim and the temporal claim veri�cation,
respectively. The correctness assertion claims and the temporal claims can be viewed in the
appendix.

22



Figure 9: B, center, asks for split from A, left.

7 Conclusion and Future Work

A network of automated vehicles requires communication for coordination. Address resolution
is essential for communication of automated vehicles. This speci�cation application demands a
speci�c binding for address resolution, i.e.,

< relative position; communication address > :

The particular binding along with the non-hierarchical and dynamic characteristic topology of
the network distinguish this network from other mobile networks such as Internet and cellular
telephony in a manner that their address resolution schemes cannot be applicable for our appli-
cation.

The same characteristics of the network that distinguish it from other mobile and dynamic
networks have been exploited in the design of address resolution protocols for one-lane automated
highways. The proposed design takes advantage of the infrastructure of automated highways to
provide an initial binding to the vehicles. Once a network of automated vehicles is initialized, the
designed protocols are used to maintain and update the addresses.

In a one-lane highway, the relative position of vehicles does not change due to maneuvers.
Therefore, the network that is formed by initialization allows for a correct updating process.
However, this is not the case in a multi-lane automated highway where the relative position of
vehicles in di�erent lanes would change due to maneuvers. In this case, knowledge of vehicles
absolute position is necessary for performing the updating process in multi-lane automated high-
ways.

Our future work is focused on designing address resolution protocols in multi-lane automated
highways. The problem of determining a vehicle's position must be resolved. Next, we plan to

23



consider a set of design schemes for multi-lane address resolution based on bandwidth require-
ments, e�ciency, latency, and the possible impact on the overall design of the communication
architecture for automated highways.

24



Figure 10: Agent A, left, loses B, second from left, as its neighbor and queries around. B, C, and D,
on the right, respond. A successfully �nds the nearest neighbor, B.

25



Figure 11: Veri�cation Output: Safety Claims

Figure 12: Veri�cation Output: Temporal Claims

26



References

[1] G. J. Holzmann,Design and Validation of Computer Protocols. Prentice Hall Software Series,
1991.

[2] G. J. Holzmann, Basic Spin Manual. Bell Laboratories, Murray Hill, NJ 07974,
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html.

[3] T. Imielnski and H. F. Korth, Mobile Computing. Kluwer Academic Publishers, 1996.

[4] C. E. Perkins, Mibile IP Design Principles and Practices. Addison-Wesley Wireless Commu-
nications Series, 1998.

[5] A. Puri and P. Varaiya, \Simple results on communication with neighbors," 1996.

[6] P. Varaiya, \Smart cars on smart roads: Problems of control," IEEE Transactions on Auto-

matic Control, vol. 38, Feb 1993.

[7] A. Hsu, F. Eska�, S. Sachs, and P. Varaiya, Protocol Design for an Automated Highway

System. Kluwer Academic Publishers, Boston, 1993.

[8] F. Eska�, Hierarchical Hybrid Control of Automated Highway System s. California PATH
Research Report, UCB-ITS-PRR-95-8, 1995.

[9] D. N. Datta, Hierarchical Hybrid Control of Automated Highway Systems. California PATH
Research Report, UCB-ITS-PRR-95-8, 1995.

[10] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory. John Wiley and
Sons, 1988.

[11] P. Cherno�, Berkeley Mathematics Lecture Notes, Volume 4, Lectures on Topology and Anal-

ysis. Berkeley Mathematics, 1993.

[12] L. d. A. Tip, \Re
ecting tomorrow's highways today, rf backscatter re
ection in avi systems,"
1996.



Appendix

27



/***********************************************************/
/*There are 3 vehicles on the road in the following order, */
/*moving to the right:    */
/*    */
/*       --->            ---->           ----->    */
/*       C               B                A    */
/*    */
/*The protocol is for A when it does confirm with its back */
/*agent(B or C), and when it looses its back agent and does*/
/*a query (multi-cast) and B and C respond. Also when B    */
/*JOINs A and then SPLITs, it models A and C that respond  */
/*to its request and ARP update.    */
/*    */
/*The vehicles have their serial numbers at initialization,*/
/*CID,BID,AID, (where the corresponding numbers are such   */
/*that (CID > BID > AID) plus ftID(front ID) and bkID      */
/*(back ID) that are also provided at the initialization.  */
/*    */
/*Information such as myLDR(am I a LEADER?) and their      */
/*communication channels are set. For example, at the      */
/*initialization the channels are set as Bout==Ain         */
/*(uni-cast channels), because B and A know of their       */
/*relative positions, and so forth.     */
/*    */
/*The comments along the file are to explain the           */
/*protocol and the verification claims in PROMELA.         */
/*    */
/*    */
/***********************************************************/

mtype {confirm, ackfirm, gotu, nack, ack,  whosbak, /* message types */
answer,  done, ubz,yesbz,notbz, bz, sreq,
splitob, joinob, sack, snack, jreq, jack,
jnack, mnvrd,null, CID, BID, AID};

int  dist,distnc; /* integers */
bit distbit,dist2,Aimbz,Abkbz,Aftbz,   /*bits  that represent flags*/

Bimbz,Bbkbz,Bftbz,   /* Aimbz == A: I'm busy, a flag of A */
Cimbz,Cbkbz,Cftbz;     /* that shows A is busy */

      /*similarly for B & C */

        chan Bin = [0] of {mtype, mtype};  /* communication channels */
        chan Bout = [0] of {mtype, mtype}; /* in and out of each vehicle */
        chan Qin = [0] of {mtype,mtype};   /* note that B has two sets: */
        chan Qout = [0] of {mtype,mtype};  /* one set in coordination layer*/
        chan Cin= [0] of {mtype, mtype};  /* another when B is follower */
        chan Cout= [0] of {mtype, mtype};
        chan Bfin= [0] of {mtype, mtype};
        chan Bfout= [0] of {mtype, mtype};
        chan Afin= [0] of {mtype, mtype};
        chan Afout= [0] of {mtype, mtype};

proctype ABK( bit  myLDR)       /* only ARP for BACK of A is considered */
 /* ABK is ARP of A with is BACK agents */

/*Cin,Cout,Bin,Bout are for confirm
communication(uni-cast),



while Qout, Qin is
for inquiry(multi-cast).  */
/*Bfin and Bfout are for B when
it becomes a follower of A*/

{ int count;
mtype myID=AID,

bkID=BID,
ftID=null;

chan dummy=[5] of {byte};
chan inbk;
chan outbk;
byte var,adr1,var1,maybk,dumb,adr[5];
bit bkex;
Aimbz=0;
Aftbz=0;
Abkbz=0;
inbk=Bout;
outbk=Bin;

START: if
::bkID == 0 -> bkex =0; goto INQBK
::bkID != 0 ->

if
::inbk?confirm,var -> outbk!ackfirm,myID;goto START
::timeout -> goto S1BK
fi;

fi;
S1BK: skip;
endA: outbk!confirm, myID;

distbit =1- distbit ;
if /* randomizing maneuvers (if chooses one */
::distnc=1 /* option randomly)                     */
::distnc=2
::distnc=3
::distnc=4
fi;
if
:: (dist< 4) -> dist=dist+1
:: (dist== 4) -> dist=0
fi;

CHKBK: if
::inbk?ackfirm,var -> goto S1BK
::inbk?ubz,var-> if

::Bin!yesbz,myID ; goto S1BK
::Bin!notbz,myID ; if

::Bout?jreq,var;goto JOINBK
fi

fi;
::Bfout?ubz,var->if

::Aimbz==1-> Bfin!yesbz,myID; goto S1BK
::Aimbz==0-> Bfin!notbz,myID; goto SPLIT
fi

:: timeout -> goto INQBK
fi;

INQBK: Qout!whosbak,myID;
if
::(count<3) ->count= count+1;goto ANYBK
::(count==3) -> count=0; goto NEXTBK



fi;
ANYBK: skip;

do
:: Qin?answer,adr1 -> dummy!adr1;

Qout!gotu,adr1;
if
::adr1>myID &&maybk==0 -> maybk= adr1 ;
:: adr1> myID && adr1<maybk -> maybk =adr1;
:: adr1> maybk && maybk!=0 -> skip
fi;

::Qout!whosbak,myID
:: timeout -> goto NEXTBK
od;
skip;

NEXTBK: if
::maybk==0 -> goto INQBK
:: maybk!=0 -> bkex=1; bkID=maybk;

if
::maybk==BID-> inbk=Bout;outbk=Bin; Qout!ack,BID;
::maybk==CID-> inbk=Cout;outbk=Cin; Qout!ack,CID;
fi; maybk=0

fi;
do
::dummy?dumb-> if /* sending nack to wrong responders */

::dumb!=bkID && dumb != 0 -> Qout!nack,dumb
:: dumb==bkID||dumb==0 -> skip
fi

::timeout -> break
od;
goto S1BK;

JOINBK: if /* this is JOIN protocol */
:: Aimbz=1; /* A could be busy or not (random "if")*/
Abkbz=1; /* it also sets its flag of back-agent to busy */

outbk!jack,myID;     /* then send acknowledge for join (jack) */
inbk?mnvrd,var;
outbk!ack,myID;
inbk?var1,var; bkID=var1;
outbk!ack,myID;
inbk?done,var;
Aimbz=0;
Abkbz=0;
outbk=Cin;
inbk=Cout; goto S1BK

:: outbk!jnack,myID; goto S1BK
fi;

SPLIT: skip; /* similarly, this is the split protocol */
P: Bfout?sreq,var; /* A receives B's request for split and randomly */

if /*acknowledge or rejects it. */
:: Aimbz=1;

Abkbz=1;
slet: Bfin!sack,myID;

Bfin!CID,myID;
Bfout?ack,var;
inbk?ackfirm, var;outbk!splitob,myID;
inbk?ack,var;
outbk!BID,myID;
inbk?ack,var;



Bfin!done,myID;
Aimbz=0;
Abkbz=0;
outbk=Bin;inbk=Bout; goto S1BK

:: outbk! snack,myID; goto S1BK
fi;

edBK: skip

}

/* B only replies to CONFIRM and INQUIRE from A, its own ARP is not modeled here
because parallel processing in PROMELA does not happen */

proctype BFT( bit myLDR     /* this process type represents B */
{ int num,

    count,
m4,m5,m6,m7,m10;

byte var,adr;
bit ftex,

bkex;
mtype myID=BID,

ftID=AID,
bkID=CID;

chan inft;
chan outft;
chan inbk;
chan outbk;
Bimbz=0;
Bftbz=0;
Bbkbz=0;
inft=Bin;
outft=Bout;
inbk=Cout;
outbk=Cin;
if
::bkID==0 -> bkex=0
::bkID!=0 -> bkex=1
fi;

STFT: if
::ftID==0 -> ftex=0
::ftID != 0 -> ftex =1
fi;

S1FT:   skip;
endB: if

::Qout?whosbak,adr-> if
::ftex==1 && bkex==1 -> goto S1FT
::ftex==0 /* || bkex==0 */ -> goto ANSFT
fi

::inft?confirm, var -> goto S2FT
::distnc==1&& myLDR==0 ->goto SPLIT
fi;

S2FT:  if
 ::distnc==1 && dist<=1 ->

ftex=0;goto S1FT
 ::distnc==2 || distnc==3 /* && dist>=3*/ -> outft!ubz,myID;

    if



    ::inft?notbz,var -> goto JOINFT
    ::inft?yesbz,var-> goto S1FT
    fi

::outft!ackfirm,myID; goto S1FT
/* note: else really does not mean else, it means just another option! */

 fi;
ANSFT: Qin!answer,myID;

Qout?gotu,var;
WAITFT: if

::Qout?ack,var  -> ftex=1; ftID=adr; goto S1FT
::Qout?nack,var -> goto S1FT
/* num=num+1; */ /* not needed in SPIN, but needed to count

number of periods in real protocol. */
/* if

:: num <= 5 -> goto WAITFT
:: num==5 -> goto edFT
fi */

fi;
JOINFT: outft!jreq,myID;

if
::inft?jack,var ->
Bimbz=1;

assert(Abkbz == 1); /* ASSERT statement: asserts that*/
Bftbz=1; /* when B is busy, A has set its flag*/

assert(Aimbz == 1); /*of back-agent to busy. Also, when */
/*B sets its front-agent flag to busy, */

 /*A is really busy, i.e., has set its */
/*busy flag to 1. */

outbk!bz,myID;
inbk?ack,var;

 if
:: bkex == 1 -> outft!mnvrd,myID;
inft?ack,var;
outft!bkID,myID;
inft?ack,var;
outbk!mnvrd,myID;
inbk?ack,var;
outbk!ftID,myID;
inbk?ack,var;
outft!done,myID;
myLDR=0;
goto S1FT

:: bkex ==0 -> outft!0;
 myLDR==0;
 goto edFT

fi
::inft?jnack,var -> goto S1FT
fi;

SPLIT:
Bfout!ubz,myID; if

::Bfin?yesbz,var ->goto S1FT
::Bfin?notbz,var ->goto ASKS
fi;

ASKS: Bfout!sreq,myID;
if



::Bfin?nack,var -> goto S1FT
::Bfin?sack,var ->

myLDR=1;
Bfin?adr,var; bkID=adr;ftID=var;
Bfout!ack,myID;
Bfin?done,var;
ftex=1;
inft=Bin;
outft=Bout;
goto S1FT;

fi;
edFT: skip;
}

/* C  OBserves the maneuver between A and B and updates its info and comes
into contact with A via B */

proctype COB ( bit  myLDR /* this process type represents C */
{ int num;

byte var,adr;
bit ftex;
mtype myID=CID,
     ftID=BID,

bkID=null;
chan in, out;
Cimbz=0;
Cftbz=0;
Cbkbz=0;
in = Cin;
out= Cout;

STFT:   skip;
endC: if

::in?confirm,var->
out!ackfirm,myID;
goto STFT

::in?mnvrd,var ->goto S1
::Qout?whosbak,adr -> goto S0FT
::in?splitob,var ->

out!ack,myID;
in?adr,var; ftID=adr;
out!ack,myID;
goto STFT;

::in?bz,var ->
Cftbz=1; /*when C sets its front-agent flag to busy,*/

assert(Bimbz==1); /* its front agent is really busy,*/
out!ack,myID;
goto STFT
fi;

S1: out!ack,myID;
S2: in?adr,var;

ftID= adr;
out!ack,myID;
goto STFT;

S0FT:   Qin!answer,myID;
Qout?gotu,myID;



WAITFT:
if
::Qout?ack,CID -> ftex=1; ftID=adr; goto STFT
::Qout?nack,CID-> goto STFT
/*:: timeout -> goto WAITFT*/ /* num=num+1;*/;
fi;

/* if
:: num <= 5 -> goto WAITFT
:: num>5 -> goto STFT
fi; */

edFT: skip;
}
init {  /* This command runs the processes and

atomic command forces them to run
simultaneously. */

atomic{
run ABK(1);
run BFT(1 );
run COB(1 );

};
}

never { /* Temporal claims: never is used
to state what is undesired and make sure
it does not happen. */

do
::skip
::Bfout?[sreq,BID]-> goto accept0   /* B as a follower asks for split */
::Bout?[jreq,BID]->  goto accept1   /* B asks for join */
od;

accept0:
do
::!Bfin?[sack,AID] /* ! negates the statement==> it is

never the case that B asks for a maneuver
and its request is not acknowledges */

od;
accept1:

do
::!Bin[1]?[jack,AID]
od

}




