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Abstract: We introduce a version of the DICE-2007 model designed for uncertainty
analysis. DICE is a wide-spread deterministic integrated assessment model of cli-
mate change. However, climate change, long-term economic development, and their
interactions are highly uncertain. A thorough empirical analysis of the effects of
uncertainty requires a recursive dynamic programming implementation of integrated
assessment models. Such implementations are subject to the curse of dimensional-
ity. Every increase in the dimension of the state space is paid for by a combination
of (exponentially) increasing processor time, lower quality of the value function and
control rules approximations, and reductions of the uncertainty domain. The paper
promotes a four stated recursive dynamic programming implementation of the DICE
model. Our implementation solves the infinite planning horizon problem for an arbi-
trary time step. Moreover, we present a closed form continuous time approximation
to the exogenous (discretely and inductively defined) processes in DICE and present
a Bellman equation for DICE that disentangles risk attitude from the propensity to
smooth consumption over time.
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A 4-stated DICE: Quantitatively addressing uncertainty effects in climate change

1 Introduction

To evaluate optimal climate policy, we have to integrate the endogenous evolution of
climate into economic growth models. These so-called integrated assessment models
(IAMs) are generally too complex to permit a proper incorporation of uncertainty.
This limitation weighs strongly because optimal policy today depends on how a model
forecasts the climate, the global economy, and their interactions over at least a couple
of centuries. The present model makes a comprehensive assessment of the effects
of uncertainty in the integrated assessment of climate change more accessible to a
broader audience of environmental and resource economists. In contrast to Monte-
Carlo approaches, our model solves for the optimal policy under uncertainty. In
contrast to papers analyzing a small number of discrete probabilistic events, our
model incorporates uncertainty in every period and the decision maker optimally
reacts to the anticipated future resolution of uncertainty.

The DICE model by Nordhaus (2008) combines a Ramsey-Cass-Koopmans growth
economy with a simple model of the carbon cycle and the climate. DICE is the most
wide-spread integrated assessment model, likely so for two reasons. First, the model
balances parsimony with realism. The modeler can generate realistic quantitative
estimates of the optimal carbon tax without sacrificing an analytic understanding
of the mechanisms driving the results. Second, DICE is an open access model that
solves on an EXCEL spread sheet. We use DICE as a point of departure because its
parsimony makes the effects of uncertainty more accessible to analytic introspection,
and because it has the largest audience of modelers familiar with the basic model. Its
parsimony implies a state space that, for replicating the full model, can be reduced
to six state variables (plus time). Given the curse of dimensionality in dynamic
programming, an implementation with six (or seven) state variables comes at the
cost of very long processor time and significant sacrifices in the approximation to the
true solution. Moreover, most economic questions introduce further state variables
to capture persistence in shocks or learning. Using analytic approximations in the
climate module, we cut the dimension of the state space to three, plus a time state.
This reduction cuts run-time of the model by a factor of 10-100, even if we increase
the number of approximating basis functions on the reduced state space tenfold.1

Our model differs from the original DICE-2007 model in five ways. First, we
replace the difference equations describing exogenous parameters by their approxi-
mate continuous time solutions. This change makes the exogenous drivers in DICE
even more accessible to introspection, and enables us to run DICE in an arbitrary

1The order of magnitude of processor time is hours. The precise runtime depends on the efficiency
in implementing the value function iteration algorithm, the evaluation of the approximating basis
functions, and the optimization software employed in the maximization step. Our cited applications
of the model have run-times in the order of hours, unless we have a good initial guess. In order
to avoid significantly longer run-times, implementations of the full DICE model usually employ
approximations to the value function of significantly lower precision, or restrict the domain excluding
rich implementations of uncertainty.
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time step without recalibrating the exogenous processes. In particular, we suggest
running the model in a yearly rather than decadal time step when analyzing eco-
nomic fluctuations and shocks, and when modeling learning over the climate system.
Second, a simplification of different heat capacity and feedback related delays approx-
imates the evolution of atmospheric temperature in a single delay equation. Third,
we approximates the carbon cycle by means of a time varying decay rate of atmo-
spheric carbon.2 These two approximations are crucial in reducing the state space
of the model. Fourth, we normalize the model to reduce the node density required
to achieve a given precision in the approximation. For this purpose, we express con-
sumption, capital, the value function, and the Bellman equation in effective labor
units. The normalization also helps the numerical model to convergence in applica-
tions to growth uncertainty. Fifth, we incorporate Epstein-Zin preferences into the
welfare evaluation of uncertain scenarios. As is well-known from the finance litera-
ture, the discounted expected utility model overestimates the risk-free discount rate
(risk-free rate puzzle) and underestimates risk premia (equity premium puzzle). Tun-
ing the discounted expected utility model to get either of the discount rate or the
risk premium right increases the error on the other one. Epstein-Zin preferences dis-
entangle Arrow-Pratt risk aversion from the propensity to smooth consumption over
time. They are fully rational and result in a better calibration of DICE to observed
market data. In Crost & Traeger (2010) we demonstrate the relevance of Epstein-Zin
preferences when evaluating climate policies with DICE.

Kelly & Kolstad (1999, 2001) and Leach (2007) implement the full DICE model
as a recursive dynamic programming model, analyzing uncertainty and learning over
the sensitivity of temperatures with respect to carbon emissions. These papers are
impressive, careful, and efficient implementations of older versions of DICE. Apart
from running at a smaller than decadal time step, our reduction of the state space
increases both, speed of convergence and precision of the derived optimal policies.
In particular, our accompanying applications have the necessary precision to analyze
the differences that future stochasticity, or the anticipation of learning, have on to-
day’s optimal policy. These questions were likely not addressed in the earlier papers,
because they require a significantly higher precision in the solution than the analysis
of different learning trajectories and the statistical analysis of uncertainty resolution.
A different set of papers introduces uncertainty into non-recursive implementations
of integrated assessment models. Closest to our implementation, Keller, Bolker &
Bradford (2004) introduce uncertainty and learning into an earlier version of DICE.
Even with their highly efficient, parallized implementation on a cluster, the employed
non-recursive methodology only allows for a few discrete uncertain events, or exoge-
nous learning over three discrete state of the world realizations at one given time. For
many applications, such individual uncertain events deliver interesting insights. How-
ever, these studies cannot replace comprehensive uncertainty evaluations using state

2We also suggest a more elaborate time and state dependent approximation that we implement
in an application to tipping point uncertainty (Lemoine & Traeger 2011).
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of the are stochastic dynamic programming methods. Finally, Monte-Carlo methods
are the most common approach to addressing uncertainty in the integrated assess-
ment literature. However, Monte-Carlo methods, as implemented in this strand of
literature, do not model decision making under uncertainty. They present a sensitiv-
ity analysis that averages over deterministic simulations. In particular, these models
cannot derive optimal policies (Crost & Traeger 2010).

Section 2 presents the continuous time approximation to the exogenous processes
in DICE, the endogenous equations of motion for a freely chosen time step, and
the approximations to warming delay and the carbon cycle. Section 3 derives the
normalized Bellman equation, the solution algorithm, and an extension to Epstein-
Zin preferences. Following a brief conclusion, the appendix discusses the calibration
of the model.

2 The equations of motion

First, we introduce the exogenous processes in DICE. Our (approximate) continu-
ous time solution to the iteratively defined processes in DICE make them even more
amenable to introspection. Second, we introduce the heart of our DICE implemen-
tation, the endogenous equations of motions. These equations define the state tran-
sitions and take a user defined time step. Third, we explain the approximations that
enable us to reduce the state space. We number (only) those equations needed for
the numerical implementation.

2.1 Exogenous processes

Six exogenous processes derive straight from DICE-2007. We graph the recursively
generated, decadal values from the original DICE model and our continuous time
approximations in Figure 1. In particular, exogenous technological progress and the
exogenously falling cost of abatement are main drivers of the so-called “ramp” struc-
ture of optimal abatement in DICE, i.e., the finding that abatement effort starts
moderately and slowly increases over time. Two additional exogenous processes re-
late to our analytic approximation to the carbon cycle and the warming delay. We
abbreviate growth rates by g and rates of decay by δ.3

The exogenous processes in the economy determine population growth, techno-
logical progress, the carbon intensity of production, and an abatement cost coefficient.
Population Lt simultaneously represents labor. We denote the annual growth rate of
labor in period t by gL,t. The difference equations defining annual population growth

3A subindex indicates the growing or decaying variable. We use δA instead of δgA to denote the
rate of decrease of the growth rate gA of the technology level. A “∗” marks a “rate” that parametrizes
a speed of convergence from an initial to a final growth rate.
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Figure 1 shows the time paths of the DICE model’s exogenous parameters. The graph on the
left shows our continuous time interpolations (solid) and the original, recursively defined values in
the DICE model (crossed) for population (L), carbon intensity of production (σ), abatement cost
coefficient (Ψ), emissions from land-use change and forestry (B), and exogenous forcing (EF). The
graph on the right shows the labor productivity (A) in DICE (crossed), the cited labor productivity
(dash-dotted), and our chosen interpolation (solid). The “t+10 rate” curves grow productivity with
the growth rate prevailing at the end of the according decade, while “t rate” curves grow labor
productivity with the growth rate prevailing at the end of the according decade. Together, they
bound a corresponding continuous model.

in DICE have the continuous time approximation4

gL,t =
g∗L

L∞

L∞−L0
exp[g∗L t]− 1

, (1′)

corresponding to the analytic continuous time solution characterizing period t popu-
lation

Lt = L0 + (L∞−L0)(1− exp[−g∗L t]) . (2)

Here, L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L
characterizes the speed of convergence from initial to asymptotic population.

The technology level At in the economy grows at an exponentially declining rate

gA,t = gA,0 exp[−δAt] , (3′)

leading to the analytic continuous time solution

At = A0 exp

[

gA,0
1− exp[−δA t]

δA

]

. (4)

4We mark two equations below with a prime (1′ and 3′). These are not needed to evaluate the
exogenous processes; they can be used to evaluate the discount factor βt in the renormalized Bellman
equation as we explain in section 3.
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The parameter gA,0 denotes the initial growth rate and δA its constant rate of decline.
While the original DICE model employs a Hicks-neutral formulation of technologi-
cal change, we use labor augmenting technological progress. The two are equivalent
under the given Cobb-Douglas production. However, the more wide-spread labor aug-
menting formulation simplifies the reformulation of the model in effective labor units,
which increases the implied node density for capital. This reformulation improves the
numerical approximation for a given number of nodes in the capital dimension.5

The original DICE model calculates the technology level as ADICE
t+10 =

ADICE
t

1−10gA,t
,

using 10 year time steps and the approximation 1
1−g

≈ 1 + g. However, the approx-

imation 1
1−10gA,t

is significantly larger than 1 + 10gA,t or exp(10gAt
). Therefore the

effective growth rate employed in the DICE model is significantly larger than gA,t.
The dash-dotted line in Figure 1 depicts the continuous time productivity path that
actually replicates the initial decadal growth rate gDICE

A,0 stated as the DICE reference.
The crossed decadal values correspond to the technology levels created in DICE be-
cause of the growth rate approximation. We decided to use gDICE

A,0 /10 as the annual
growth rate in our continuous time model, which generates the solid line between
the original DICE path (crossed) and the growth path matching the referenced value
gDICE
A,0 (dash-dotted). The additional lines discuss consequences of the decadal time
step.6

The DICE model assumes an exogenous decrease of the carbon intensity of pro-
duction. The decarbonization factor of production grows at the (decreasing) rate
gσ,t = gσ,0 exp[−δσ t], leading to the continuous time representation

σt = σ0 exp

[

gσ,0
1− exp[−δσ t]

δσ

]

. (5)

In addition, the economy can pay for abating emissions. The abatement cost coeffi-

5This reformulation also increases the numerical stability when modeling growth uncertainty.
Finally, labor augmenting technological progress implies a balanced growth for a broader class of
production functions in the Ramsey-Cass-Koopmans model.

6The growth rate in DICE falls over time. In the original DICE model, the growth rate at the
beginning of a decade generates growth throughout the decade, which generates more technological
progress then with a smaller (or continuous) time step. The triangles bound this second, techno-
logical progress increasing effect by showing DICE’s evolution of the technology level if we used
the growth rate at the end of a given decade to generate growth. Similarly, the dots just above
and just below the dash-dotted calibration line show the effects of using a decadal time step. The
dots just above (below) the line use the growth rate at the beginning (end) of a decade, instead of
a continuous model. Together, the additional lines point out that this discretization effect is very
minor with respect to the approximation effect of the growth rate, which generates the difference
between the calibration line and the original DICE line.
Note that we depict the technology level in terms of labor augmenting technological progress. The
equivalent growth rates in terms of total factor productivity, employed in the original DICE model,
are lower by the factor 1 − κ. Hence, the rounding error is slightly lower when using total factor
productivity growth rates, an effect that our triangled curve (and the original DICE curve) take into
account.
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cient Ψt falls exogenously over time and is given by

Ψt =
σt

a2
a0

(

1−
(1− exp[g∗Ψ t])

a1

)

. (6)

The parameter a0 denotes the initial cost of the backstop (in 2005), a1 denotes the
ratio of initial over final backstop,7 and a2 denotes the cost exponent (see also equation
13 below). The rate g∗Ψ captures the speed of convergence from the initial to the final
cost of the backstop.

The exogenous processes on the climate side of DICE govern non-industrial CO2

emissions and radiative forcing8 from non-CO2 greenhouse gases. In addition, our
state space reduction introduces an exogenous process governing the removal of excess
carbon from the atmosphere and the cooling due to the ocean’s heat capacity. DICE
assumes an exponential decline of CO2 emissions from land use change an forestry

Bt = B0 exp[−δB t] . (7)

Non-CO2 greenhouse gases are exogenous to the model and cause the radiative forcing

EFt = EF0 + 0.01(EF100 − EF0)×min{t, 100} . (8)

Note that exogenous forcing starts out slightly negatively.
Our approximation of DICE’s carbon cycle uses an exogenous removal rate δM,t

of atmospheric CO2 that is in excess of preindustrial levels

δM,t = δM,∞ + (δM,0 − δM,∞) exp[−δ∗M t] . (10)

Moreover, we use an exogenous estimate of the atmosphere-ocean temperature differ-
ential

∆Tt = max{0.7 + 0.02t− 0.00007t2, 0} , (12)

which governs transient cooling of the atmosphere caused by the oceans’ heat capacity.

2.2 Endogenous equations of motion

Apart from time, the model features three state variables: produced capital Kt,
the stock of atmospheric carbon Mt, and temperature Tt. Temperature is a state
variable because atmospheric warming happens with a delay: the heat capacity of the
ocean and various feedback processes delay the temperature increase. Therefore, next

7The general interpretation is more precisely that a1 is the ratio
initial cost of backstop

initial cost of backstop− final cost of backstop
. However, for the employed value of 2 both ratios are

the same, so we stick with Nordhaus’s interpretation.
8Radiative forcing is a measure for the change in the atmospheric energy balance. The reader

may think of it as the flame that greenhouse gases turn on to slowly warm the planet over time.
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period’s temperature depends not only on the atmospheric carbon concentrations,
but also on current temperature. We follow Kelly & Kolstad (1999) in incorporating
time as a state variable, which makes it possible to contract the Bellman equation
to an arbitrary precision despite the intrinsic non-stationarity of the DICE model.
Moreover, the time state enables us to solve the model for an infinite time horizon
with an arbitrary time step. Here, we present the deterministic equations of motions
replicating DICE-2007. Applications, cited in the introduction, introduce uncertainty
into the equations of motion. In addition, persistent shocks or learning will introduce
additional equations of motion governing informational states.

CapitalKt, labor Lt, and labor augmenting technology At enter the Cobb-Douglas
production function, turning into gross (or potential) output Y gross

t = (AtLt)
1−κKκ

t .
The parameter κ is the income share of capital. Driven by technological progress and
population growth, capital grows by an order of magnitude over the next century.
Approximating Kt on a time constant grid would either require an excessive amount
of nodes, or imply a crude approximation. We therefore follow the macroeconomic
tradition expressing consumption and capital in per effective labor units ct =

Ct

AtLt

and kt =
Kt

AtLt
. Then, gross production in effective labor units is ygrosst =

Y
gross
t

AtLt
= kκ

t .
We introduce a flexible time step ∆t, keeping our flow variables, including consump-
tion and production, defined in units per year. Then, production during the period
[t, t+∆t] is kκ

t ∆t. The model calibration in the appendix uses ∆t = 1.
The transformation of gross output into net output defines the interface between

the Ramsey-Cass-Koopmans economy and the climate system. Net production follows
from gross production by subtracting abatement expenditure and climate damages

yt =
1− Λ(µt)

1 +D(Tt)
kκ
t =

1−Ψtµ
a2
t

(

1 + b1T
b2
t

) kκ
t . (13)

The function

Λ(µt) = Ψtµ
a2
t

characterizes abatement expenditure as a fraction of gross output. It is a function of
the emission control rate µt ∈ [0, 1] (abatement rate). This abatement rate charac-
terizes the percentage of emissions avoided under a climate policy, as compared to a
laissez-faire world.

As a fraction of gross output, the damage function

D(Tt) = b1T
b2
t

reduces net production as a consequence of the temperature increase Tt over tem-
peratures in 1900. Net production not consumed is invested in capital, implying the
equation of motion

kt+∆t = [(1− δk∆t) kt + yt∆t− ct∆t] exp[−(gA,t + gL,t)∆t] , (15)
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where δK is the annual rate of capital depreciation. The exponential function is a con-
sequence of expressing capital in effective labor units; it reflects that the normalizing
effective labor units grow by gA,t + gL,t from one year to the next.

Anthropogenic emissions are the sum of industrial emissions and emissions from
land use change an forestry Bt

Et = (1− µt) σtAtLtk
κ
t + Bt . (16)

Industrial emissions are proportional to gross production AtLtk
κ
t , and the emission

intensity of production σ, and they are reduced by the emission control rate µt. The
flow of CO2 emissions accumulates in the atmosphere. Atmospheric carbon in the
next period is the sum of preindustrial carbon Mpre, current excess carbon in the
atmosphere Mt−Mpre net of its (natural) removal, and anthropogenic CO2 emissions

Mt+∆t = Mpre + (Mt −Mpre) (1− δM,t∆t) + Et∆t . (17)

The pre-industrial emission stock Mpre is the steady state level in the absence of
anthropogenic emissions. Equation (17) is our approximation to the carbon cycle in
DICE-2007.

The atmospheric temperature change is a delayed response to radiative forcing

Ft+∆t = ηforc
ln Mt+∆t

Mpreind

ln 2
+ EFt ,

which is the sum of the forcing caused by atmospheric CO2 and the non-CO2 forcing
that follows the exogenous process EFt. Note that the forcing parameter ηforc con-
tains the climate sensitivity parameter, which characterizes the equilibrium warming
response to a doubling of preindustrial CO2 concentrations. The temperature state’s
equation of motion is

Tt+∆t = (1− σforc)Tt ∆t+ σforc

Ft+∆t

λ
∆t− σocean ∆Tt ∆t . (18)

The last term replaces the oceanic temperature state in DICE-2007.
The appendix calibrates the model to reproduce the original policies of DICE-2007

with a one year time step. Running the model with time steps between a few months
and a few years will result in only minor differences in the optimal policy. A word of
caution about scaling the time step to arbitrary levels without re-calibrating the model
is in place. Reducing the time step in the endogenous equations of motions implies
what best can be summarized as a “compound interest” effect. Cutting the time
step into half, cuts production (and carbon decay) per period into half. Production
grows over time, and capital enters the production function. Therefore, the economy
will have slightly more capital available at the end of the two “half periods” than
under a full time step. Similarly, carbon decay will not be exactly the same.9 Our

9Our exogenous rate of removal of excess carbon seems to be a bit more robust than scaling the
time step in the actual carbon cycle.
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formulation of the model fixes the evolution of all exogenous processes to a continuous
time approximation to DICE-2007. Thus, as opposed to the original formulation of
these processes as difference equations, we avoid that changes in the time step change
the exogenous input of our model. The time step dependence of the endogenous
equations of motions, however, cannot be avoided. DICE-2007 itself is calibrated to
a decadal time steps. Thus, when downscaling DICE-2007 from its decadal step to
an annual or even monthly time step, we have to recalibrate the model if we want to
match the same calibration data.10

2.3 Discussion of the state reducing approximations

Our model replaces the carbon cycle by a time-dependent rate of carbon removal
from the atmosphere. Appendix B calibrates this rate of carbon removal to the full
(deterministic) DICE model. Our approximation matches the deterministic baseline
well, and we discuss how it performs when the optimal response to uncertainty implies
a deviation from the deterministic policies.

Our formulation in terms of a rate of a removal of excess carbon is particularly
stable across different carbon trajectories. Atmospheric carbon does not decay chem-
ically, but it eventually moves to reservoirs other than the atmosphere. Along a path
of increased emissions, reservoirs would fill up slightly faster. However, partially off-
setting the consequences of the faster “saturation” is that, at the same time, a higher
emission trajectory implies a higher partial pressure of carbon in the atmosphere,
pushing more carbon into the reservoirs. Simulations with the full DICE model show
that even largely different abatement scenarios imply almost the same effective decay
rate of excess carbon for at least the first century. The effective decay rates only start
to differ more notably when we approach peak carbon concentrations, under optimal
policy one to two centuries in the future.

We argue that the policy impact of approximating the carbon cycle is of third
order. Uncertainty causes a first order deviation of the policy. This first order devi-
ation slowly changes the stock of carbon in the atmosphere and in other reservoirs.
The evolving change in the difference of carbon concentrations between atmosphere
and other carbon reservoirs causes a change of the rate of carbon removal, which is
a second order effect. This second order effect is what we observed to be very small
for the first century, even in the case of very large first order policy changes. The
second order change in the decay rate has a flow effect and, only over time, grows
into a notable stock (concentration) effect that will impact warming. The relation be-

10In addition to these “compound interest” effects, the finer time step permits a more finely
tuned policy. This additional freedom in setting policy will lower the social cost of carbon slightly.
We discuss the effect in the appendix to Lemoine & Traeger (2011). Quantitatively, this fine tuning
effect on policy is smaller than the “compound interest” effect. In order to make our policies directly
comparable to DICE-2007, we decided to calibrate our optimal policies directly to DICE-2007. See
Lemoine & Traeger (2011) how the modeler can alternatively fix the policy step to 10 years, when
calibrating the model for an arbitrary time step.

9
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tween carbon concentration and temperature is again governed by a delay equation,
delaying warming and economic impact once more in the order of decades. Thus,
our approximation of the carbon cycle causes a rather moderate approximation error
in far future impacts. Under the usual economic discounting regimes, these have a
very minor impact on welfare and, thus, optimal policy. We argue that this small
approximation error is usually much more than offset by gains in numerical precision
when enlarging the basis for the value function approximation. Our carbon cycle
approximation drops two state variables. For each dropped state we can approxi-
mately triple the number of basis functions in the remaining state space and still cut
processor time by half. We will generally obtain a much more accurate solution in
less time. Moreover, in difference to the numerical approximation error when using a
small set of basis functions, our approximation is analytic and more easily amenable
to introspection.

In addition, our model replaces a set of temperature delay equations in DICE
by a single approximate delay equation. This step drops ocean temperature as a state
variable, and approximates ocean cooling by a time dependent cooling process. We
can merge the system of delay equations in DICE-2007 into the two equations

Tt+10 = Tt + C1
[

Ft+10 − λTt + C3(TOcean
t − Tt)

]

TOcean
t+10 = TOcean

t + C4(Tt − TOcean
t ) = (1− C4)TOcean

t + C4Tt ,

which govern atmospheric and oceanic temperatures. We find that an exogenous
estimate of the difference between oceanic temperatures and atmospheric temperature
gives a reasonable approximation for the evolution of atmospheric temperatures and
a very good approximation of the evolution of optimal policies. For this purpose, we
rewrite the first equation as

Tt+10 = (1−σdec
forc)Tt + σdec

forc

Ft+10

λ
− σdec

ocean∆Tt ,

where ∆Tt = Tt − TOcean
t is the ocean-atmosphere temperature difference. The pa-

rameters σdec
forc = C1 ∗ λ and σdec

ocean = C1 ∗ C3 are decadal lag parameters, governing
how atmospheric temperatures adjust to radiative forcing and to oceanic tempera-
ture. To obtain equation (18), we downscale the equation to a one year time step. A
one to one mapping to our finer time resolution is not possible because the model is
non-stationary. Thus, we calibrate the parameters σforc and σocean in equation (18)
to obtain the best fit to the deterministic DICE model (Figure 4).11

11Assuming constant forcing and feedbacks, we find an equation of the form Tt+10 = (1−σdec
forc)Tt+

Γ (for some Γ ∈ IR), and downscaling of the decadal delay parameters to the one year time step

would result in σforc = 1−(1−σdec
forc)

1

10 ≈ 0.032. For σforc, this theoretically derived approximation
indeed returns the best calibration.
Note as well that, by merit of the equation governing oceanic temperatures, our exogenous approx-

imation of the ocean-atmosphere temperature gradient is equivalent to an exogenous approximation
of the temperature difference TOcean

t − TOcean
t+10 in the oceans between two subsequent periods.

10
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Instead of the endogenous equation for oceanic temperature, we use the exoge-
nous process for ∆Tt stated in equation (12) and depicted in Figure 5. The simple
quadratic-max interpolation in equation (12) captures ∆Tt in the baseline run almost
perfectly for the first 150 years. Later, it deviates notably until both the true temper-
ature difference and its approximation converge to zero in equilibrium. Our model
calibrations in the appendix (e.g. Figure 2) reflect a small deviation of our atmo-
spheric temperature path from the one in the original DICE model during the second
150 years. This deviation is an immediate consequence of this simple to implement,
but for the distant future slightly crude approximation. The impact on optimal poli-
cies is minimal. We briefly comment on a more sophisticated approximation below.
The relevant question is how the approximation reacts to policy changes caused by
introducing uncertainty. First order policy changes imply a change in the emission
flow that builds up into a change of the emission stock, which changes radiative forc-
ing. The change in radiative forcing will warm both atmosphere and ocean, but the
atmosphere slightly more quickly, temporarily resulting in a second order difference
in ∆T . Even when doubling the abatement effort, simulations show that ∆T only
starts to differ notably more than half a century in the future. Then, this differ-
ence starts affecting atmospheric temperature, proportional to the delay parameter
σdec
ocean ≈ 0.007, which keeps the effects on atmospheric temperatures small and de-

layed. Given the usual discounting, the policy feedback of these differences will be
second if not third order.

The modeler may want to selectively employ only the carbon cycle approximation,
or only the temperature delay equation approximation. When eliminating approxi-
mations, our recommendation is to adopt the carbon cycle approximation, but im-
plement ocean temperature endogenously. The latter approximation is slightly more
crude and less easy to evaluate. However, we think that the full implementation of
ocean temperature evolution generally does not warrant an additional state at the ex-
pense of reducing the order of the approximating basis functions. A way of improving
the warming delay model without reintroducing a state variable replaces the simple
quadratic approximation in equation (12) by a more complex numerical interpolation
of the actual DICE output for the closest deterministic scenario.12

Finally, note that we can further improve the approximations of the carbon cycle
and the warming delay by employing multivariate interpolations. Using e.g. a multi-
dimensional Chebychev basis, we can interpolate the decay rate and the temperature
difference between atmosphere and ocean as a function not only of time, but also
the other state variables. The current carbon stock and the current temperature

12We tried a large set of simple closed form approximations, and for the first 150 years our
linear-quadratic approximation combined with the minimum clearly performed best. However, a
simple spline or higher order Chebychev interpolation will obviously produces better overall results.
Implementing such a higher order interpolation, we recommend that the modeler pays attention to
the interpolation converging to zero, e.g. by using exponential damping. Our intention here is to
write down an easy to implement model and we leave a fitting to arbitrary accuracy of the exogenous
process with basis functions of his choice to the reader.
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carry information on the historic emission path and, thus, the changes induced for
the effective carbon removal rate and ocean cooling when deviating from the baseline.
For that purpose, we generate a set of deterministic DICE-2007 paths with different
emission policies in the neighborhood of the baseline. Then, we interpolate not only
the baseline policy, but also the effects induced by deviating from the deterministically
optimal policy. See Lemoine & Traeger (2011) for an application.

3 Welfare and Bellman equation

We first explain the dynamic programming problem using standard preferences. Then,
we discuss the solution algorithm. Finally, we present the comprehensive Bellman
equation for Epstein-Zin-Weil preferences that disentangle risk aversion from the
propensity to smooth consumption over time.

3.1 Bellman equation for standard preferences

An optimal decision under uncertainty has to anticipate all possible future realizations
of the random variables together with the corresponding optimal future responses.
The Bellman equation reduces the complexity of the decision tree by breaking it up
into a trade-off between current consumption utility and future welfare, where future
welfare is a function of the climatic and economic states in the next period. This
so-called value function V (Kt,Mt, Tt, t) characterizes the maximal expected welfare
a decision maker can derive over the infinite time horizon, given a particular state
of the economy. The optimization problem is essentially solved once we find an
approximation to V .

The welfare flow in a period is the population Lt weighted utility from per capita
consumption Ct

Lt
. DICE uses a constant intertemporal elasticity of substitution, and

we denote its inverse, the coefficient of aversion to intertemporal change, by η. We
denote the rate of pure time preference, also called utility discount rate, by δu. The
Bellman equation for standard (entangled) preferences is

V (Kt,Mt, Tt, t) = max
Ct,µt

Lt

(Ct/Lt)
1−η

1− η
∆t +

exp[−δu∆t] E V(Kt+∆t,Mt+∆t, Tt+∆t, t+∆t),

where E takes expectations over uncertainty in the equations of motion governing
period t+∆t states (introduced in the stochastic applications of the model). The
right-hand side of the Bellman equation describes the optimization problem in pe-
riod t. The optimal decision maximizes the sum of immediate consumption utility
and the discounted expected value of future welfare. This maximization is subject
to the equations of motions (15), (17), and (18), or their modifications including

12
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uncertainty, and the constraints

0 ≤ µt ≤ 1 and 0 ≤ Ct ≤ Yt .

As we pointed out in section 2.2, approximating the value function over Kt would
be computationally inefficient, because capital levels change significantly over time.
Using effective labor units for measuring consumption, capital, and production, we
also define a new value function measuring the value of the optimal program in units
closely resembling effective labor

V ∗(kt,Mt, Tt, t) =
V (Kt,Mt, Tt, t)

A1−η
t Lt

∣

∣

∣

∣

Kt=ktAtLt

.

Then, Appendix A transforms the Bellman equation into the dynamic programming
equation

V ∗(kt,Mt, Tt, t) = max
ct,µt

c1−η
t

1− η
∆t+

βt,∆t

1− η
E [V ∗(kt+∆t,Mt+∆t, Tt+∆t, t+∆t)].(19)

The parameter βt,∆t defines the growth adjusted discount factor

βt,∆t = exp [(−δu + gA,τ (1− η) + gL,τ )∆t] . (20)

Its time dependence arises because of the non-constant growth rates in DICE. The
factor determines the contraction of the Bellman equation.13 We can either use the
exact, time-step dependent formulas for the growth rates

gA,τ = [ln(At+∆t)− ln(At)]/∆t and (1∗)

gL,τ = [ln(Lt+∆t)− ln(Lt)]/∆t , (3∗)

or their continuous time approximations (1′) and (3′) at the expense of a small error.14

We derive the normalized Bellman equation (19) in Appendix A for the general
case of Epstein-Zin preferences. A useful “side-effect” of solving for the value function,

13For too low a time preference relative to growth and intertemporal substitutability, the Bellman
equation will not contract. Practical convergence problems can already arise before expected welfare
diverges and makes the maximization problem theoretically ill-posed. Note that the time dependence
of βt,∆t is entirely a consequence of the non-constant growth rates and does not imply a time
inconsistent objective function.

14The error is bounded by the change of the growth rate. A more precise evaluation of the
differences results in a truly negligible error for gA,τ , changing the discount factor in the order 10−6

for an annual time step. However, the initially quickly growing labor can imply an approximation
error in the continuous time formula of up to a percent of the discount factor, i.e., of the order 10−4

in the discount factor. That error is still small as opposed to any knowledge we have with respect
to the true discount factor, but we can avoid it using equation (3∗) instead.
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rather than just an optimal path, is that we obtain the social cost of carbon directly
as

SCCt = −
∂Mt

V

∂Kt
V

= −
∂Mt

V ∗

∂ktV
∗
At Lt .

With this formula, we can calculate the social cost of carbon even when full abate-
ment is achieved, i.e., we can calculate the value of carbon sequestration from the
atmosphere also after the abatement rate hits the constraint.15

3.2 Solving the model

For the numerical implementation, it is usually more efficient to maximize over the
abatement cost Λ rather than over the abatement rate µ. The two are strictly mono-
tonic transformation of each other and (only) the constraints on Λ are linear





1
kκ
t

1 + b1T
b2
t

0 1





(

c

Λ

)

≤





kκ
t

1 + b1T
b2
t

Ψt



 and c,Λ ≥ 0 . (21)

Apart from the physical states, we have to approximate the value function over state
variable t on the interval [0,∞). Its natural unboundedness is inconvenient when
generating the approximation grid. It is helpful to introduce a strictly monotonic
transformation that maps t ∈ [0,∞) to

τ = 1− exp[−ζt] ∈ [0, 1) .

We refer to τ as artificial time. We then generate the grid on the time axis using
e.g. Chebychev nodes on [0, 1].16 A larger choice of the numerical parameter ζ moves
the nodes closer to the early (real-time) periods.17 After generating the nodes, we

transform them back to real time using the inverse transformation t = − ln[1−τ ]
ζ

.

15DICE-2007 obtains the social cost of carbon indirectly from the condition that it has to equal
the optimal abatement cost. Once full abatement is achieved, usually some time during the next
century, such an approach can no longer track the actual social cost of carbon.

16Chebychev nodes do not lie on the boundary of the interval.
17The logarithmic transformation clusters nodes densely in early as opposed to late periods. Such

a clustering is useful for the DICE model, where most of the action happens relatively early in
the time horizon, when the exogenous processes exhibit the highest rates of change, and when the
economy transitions from a high emission to a low emissions path. However, a simple logarithmic
transformation would exaggerate such clustering. A low parameter ζ is necessary to moderate the
clustering at early times and spread the support to a sufficient range in real time. The parameter ζ is
a purely numeric parameter and we chose ζ = 0.02 for the runs depicted in the appendix. In general,
we suggest smaller values rather than increasing the parameter. Sometimes it will be worthwhile
playing with the parameter spreading nodes differently in order to improve the value function fit or
even convergence properties.
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The challenge is to find a reasonable approximation to the true value function. The
solution technique relies on Bellman’s observation that, in our infinite horizon setting,
the value function on the left and on the right of equation (19) coincide. We obtain
a solution to equation (19) by function iteration, approximating the value function
V by a set of basis functions. We use and recommend Chebychev polynomials. A
frequently used alternative are cubic splines. The compecon toolbox provided by
Miranda & Fackler (2002) provides convenient tools for the function approximation
step, requiring little to no knowledge of the underlying theory. The following steps
outline the algorithm.

1) Setting up the problem:

1. Choose the intervals on which to approximate the value functions. We suggest
such intervals in the appendix. In general, a reasonable interval choice depends
on the type and magnitude of the modeled uncertainty.

2. Choose an approximation method for the value function V . Our calibration of
the model uses Chebychev polynomials.

3. Generate a grid on the product space of the approximation intervals. When
using Chebychev polynomials, use Chebychev nodes.18

4. Start with an arbitrary guess for the value function or the coefficients charac-
terizing its approximation.

2) The function iteration:

1. Solve the right hand side optimization problem of the Bellman equation (19)
for every point i on the grid. Save the optimal control variables c(i), µ(i) (or
Λ(i)), and the maximized objective v(i) for every point on the grid.

2. Fit a new value function approximation using the newly generated values v(i).
This new fit generates new basis coefficients g(i).

3. Check whether the change in coefficients or values satisfies a given tolerance
criterion. If yes, stop. If not, use the new coefficients g(i) returning to step 1,
employing the optimized controls from the previous iteration as initial guesses
for the maximization problem.

Given the (approximate) value function, we can analyze the control rules and simulate
different representations of the optimal policy over time. For the simulation, we either
fit a continuous control rule, or we forward-solve the Bellman equation, knowing the
value function, starting from the initial state. Under uncertainty, we can quickly
simulate a large set of runs and depict statistical properties. After a first solution, we
recommend checking whether changes in tolerance, number of approximating basis

18A simple an efficient basis for a multi-dimensional state space is the tensor basis. It contains the
tensor product of all combinations of basis functions in the different dimensions. The corresponding
grid and basis is automatically generated when using the compecon toolbox. Sometimes, it is
suggested to drop higher order cross terms as a way of saving basis functions or nodes. The loss in
approximation quality of this approach strongly depends on the precise form of the value function.
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functions, and changes in the interval bounds still affect our results. Plotting of the
control rules, more precisely their two or three dimensional cuts, often gives a good
idea of the approximation quality. Using Chebychev polynomials, a low order of the
basis generally results in major wave patterns in the control rules. These patterns
are entirely of numeric origin. Various modifications of the basic function iteration
algorithm described above can be used to speed up convergence. The most important
“trick” to speed up the algorithm is known as Howard’s method, or modified policy
iteration: after every value function iteration, Howard’s method iterates the Bellman
equation several times without without re-optimizing the controls. We emphasize,
first, that the algorithm solves the problem on the continuous state and control space.
Second, by making time a state variable, our approach contracts to the true solution
without depending on the initial guess.

We can reduce the state space to only 3 dimensions, if we are willing to step back
discretely in time from a finite planning horizon. The solution algorithm is similar to
the one described above. However, it becomes more important to start with a good
initial guess, because this guess directly determines optimal policies close to the end of
the planning horizon. The time horizon should therefore be at least several centuries.
The modeler should test different initial guesses and compare the solutions. As long
as the result stays sensitive to the initial guess, he should push the time horizon
further out.19

3.3 Epstein-Zin preferences

The Bellman equation in section 3.1 reflects the discounted expected utility model.
A serious short-coming of this model is its inability to correctly capture the risk-
free discount rate and risk premia. Basal & Yaron (2004) show how Epstein-Zin
preferences explain the corresponding equity premium and the risk-free rate puzzles
in finance. Their approach builds on a model by Epstein & Zin (1989) and Weil
(1990) that disentangles risk aversion from a decision maker’s propensity to smooth
consumption over time. Note that these preferences are fully rational (Traeger 2010),
in particular they obey the von Neumann & Morgenstern (1944) axioms and time
consistency. Traeger (2012) and Crost & Traeger (2010) argue in more detail why
Epstein-Zin preferences are relevant to climate change evaluation.

We denote the measure of relative Arrow Pratt risk aversion by RRA, and the
measure of aversion to intertemporal substitution, or the propensity for consump-
tion smoothing, by η. In an intergenerational interpretation, the parameter η can

19If we have a solution to the 4 state model for a related scenario, we obtain a very good initial guess
for the 3 state problem by evaluating the 4 state value function at the final year of the planning
horizon of the 3 state problem. Other guesses merely sum utility over a few centuries fixing the
investment rate to a reasonable value and the abatement rate to 100%, independent of the initial
state. A similar method iterates the stationary Bellman equation fixing exogenous parameters to
their values at the end of the planning horizon (again replacing the processor intensive maximization
step by merely guessing an optimal policy).
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also be interpreted as the parameter of intergenerational consumption smoothing.
Appendix A derives the Bellman equation disentangling risk aversion from intertem-
poral substitution

V ∗(kt,Mt, Tt, t) = max
ct,µt

c1−η
t

1− η
∆t+ (22)

βt,∆t

1− η

(

E [(1− η)V ∗(kt+∆t,Mt+∆t, Tt+∆t, t+∆t)]
1−RRA

1−η

)
1−η

1−RRA

.

We solve the generalized Bellman equation (22) the same way as the original Bellman
equation (19), and V ∗ has the same normalization. Equation (22) uses a transforma-
tion explained in Traeger (2009) making the Bellman equation linear in the time step
(as opposed to the original formulation of Epstein-Zin preferences). Under certainty,
the non-linear exponents in equation (19) vanish and we are back in the setting of
equation (19). The same observation holds if RRA = η, i.e., when risk preference
happens to coincide with the decision maker’s propensity to smooth consumption
over time.

Vissing-Jørgensen & Attanasio (2003), Basal & Yaron (2004), Basal, Kiku & Yaron
(2010), and Nakamura, Steinsson, Barro & Ursua (2010) provide preference estimates
for Epstein-Zin preferences, explaining observed asset market behavior. These papers
either estimate the preferences based on Campbell’s (1996) approach of log-linearizing
the Euler equation in the asset pricing context, or calibrate asset pricing models to
the financial market data. A somewhat representative estimate is η = 2

3
and a risk

aversion coefficient around 10. Note that also the original DICE model picks η based
on observed market interest. With a single entangled parameter, or in a deterministic
setting, however, the original DICE model cannot match both the risk-free interest (or
discount) rate and the risk premia. The application of the model by Crost & Traeger
(2010) analyzes the effects of preference disentanglement under damage uncertainty in
detail, and Jensen & Traeger (n.d.) analyze the effects of preference disentanglement
in the context of growth uncertainty.

4 Conclusions

We presented a stochastic dynamic programming model for analyzing uncertainty in
the integrated assessment of climate change. In difference to Monte-Carlo studies,
linearized models, or discretized models, we solve the full non-linear problem of finding
optimal policies under uncertainty. The model fills the gap between highly stylized
models treating uncertainty correctly, highly complex models that replace decision
making under uncertainty by sensitivity studies, and a few state of the art high-
dimensional stochastic integrated assessment models that require extremely powerful
computer resources and/or pay the price of limiting the approximation quality and
the uncertainty domain. The present model is a close relative to the wide-spread
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DICE model, running in shorter time steps with an infinite planning horizon. We
introduce Epstein-Zin preferences, which permit the modeler to distinguish between
effects deriving from intertemporal consumption smoothing, and those stemming from
risk and risk aversion.

We interpolated a complex set of exogenous difference equations in DICE by their
continuous time solutions. We hope that our presentation of the slightly simplified
DICE model makes this integrated assessment model even more accessible to the
introspection of a large audience of environmental economists. Our model offers a
low dimensional state space, without sacrificing much realism as compared to the full
DICE model. The low dimensional state space has several important advantages when
assessing optimal policies under uncertainty. First, the model solves on a regular PC
in reasonable time. Second, it permits a significantly better approximation of the true
value function solving the dynamic programming problem. Third, with given com-
puter resources, we can increase the domain of the value function approximation and,
thus, of the type and magnitude of uncertainty amenable to examination. Fourth, we
can introduce (more) additional state variables that capture persistence in stochastic
shocks, information and learning, and simultaneous uncertainties. We hope that the
present model assists the community in pushing a more comprehensive, theoretically
sound analysis of uncertainty in the integrated assessment of climate change.
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Appendix

A Normalizing the Bellman equation

The general Bellman equation expressed in terms of the original value function V is

V (Kt,Mt, Tt, t) = max
Ct,µt

Lt

(Ct/Lt)
1−η

1− η
∆t +

exp[−δu∆t]

1− η
×

(

E [(1− η)V(Kt+∆t,Mt+∆t, Tt+∆t, t+∆t)]
1−RRA

1−η

)
1−η

1−RRA

.

Using effective labor units, i.e., the definitions ct =
Ct

AtLt
and kt =

Kt

AtLt
, we bring this

equation to the form

V (ktAtLt,Mt, TT , t) = max
ct,µt

c1−η
t

1− η
A1−η

t Lt∆t+
exp[−δu∆t]

1− η
exp[(1− η)gA,t∆t]×

A1−η
t exp[gL,t∆t]Lt



E

[

(1− η)
V (Kt+1,Mt+1, Tt+1, t+ 1)

A1−η
t+1Lt+1

]
1−RRA

1−η





1−η
1−RRA

.

The second line inserted A1−η
t+1Lt+1 in the denominator of the inner bracket, which can-

cels with the term A1−η
t+1Lt+1 = exp[(1− η)gA,t∆t]A1−η

t exp[gL,t∆t]Lt inserted outside

of the brackets. We use the definition V (Kt,Mt, t)|Kt=ktAtLt
= V ∗(kτ ,Mτ , τ)A

1−η
t Lt

and cancel A1−η
t Lt on both sides of the equation (and inside the square brackets for

t+ 1), which delivers

V ∗(kt,Mt, Tt, t) = max
ct,µt

c1−η
t

1− η
+

exp[−δu + gA,t(1− η) + gL,t]

1− η
×

(

E [(1− η)V ∗(kt+∆t,Mt+∆t, Tt+∆t, t+∆t)]
1−RRA

1−η

)
1−η

1−RRA

.

and, thus, equation (22) and its special case equation (19).

B Calibration

Table B summarizes the model parameters. We calibrate our model such that the
optimal time paths of four variables are similar to those predicted by the DICE-2007
model: CO2 concentration, temperature, abatement rate, and social cost of carbon.20

20We used the EXCEL version downloadable from http://nordhaus.econ.yale.edu/DICE2007.htm
to generate the optimal time paths of DICE-2007. It generates a longer time series than depicted
for example in Nordhaus (2008). Note that the EXCEL model assumes a constant savings rate. We
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Figures 2 and 3 show our calibration of equation (10) approximating the carbon cycle.
Our carbon removal rate decreases from the initial value δM,0 to the asymptotic value
δM,∞, where the rate of decline is characterized by δ∗M . Figure 4 shows the calibration
of the heat capacity and feedback related delay parameter σforc, and for the parameter
σocean capturing ocean temperature related feedbacks (equation 18). Any individual
parameter change improving the fit in one dimension worsens the fit in at least one
of the other variables. Finally, Figure 5 depicts the difference between oceanic and
atmospheric temperatures in DICE-2007, and compares it to our simple quadratic
approximation stated in equation (12).

We solve the Bellman equations (19) or (22) by help of the function iteration
algorithm described in section 3.2. For this purpose, we approximate the value func-
tion V ∗ by Chebyshev polynomials. We update the coefficients by collocation at the
Chebychef nodes spelled out in Table 2 (rectangular grid). To arrive at this final node
grid, we sequentially increased the number of nodes in each dimension, until a further
increase in the number of basis function no longer affected the solution. Figure 6
shows that a further increase of the node number beyond our 18× 6× 10× 6 = 6480
nodes has no observable effect on increasing the accuracy of our simulation. Our
convergence criterion was a coefficient change of less than 10−4. The corresponding
maximal relative change in the value function was less than 10−10. Figure 7 shows
that a further reduction of the convergence tolerance by an order of magnitude had
no effect on the optimal time paths of the variables of interest.

did find an almost constant savings rate in our optimizing model as well, and the EXCEL version
of DICE seems to be a close fit to the fully optimizing GAMS version as well for the time span for
which we have both data series.
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Figure 2 shows the calibration of the rate governing CO2 removal from the atmosphere. We calibrate
the initial rate δM,0 and asymptotic rate δM,∞. The first line in the legend displays the parameter
values chosen in our calibration. The other lines show the value of the parameter that was changed
with respect to our chosen calibration.
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Figure 3 shows the calibration of the rate governing CO2 removal from the atmosphere. We calibrate
the parameter δ∗M governing the speed of convergence from the initial to the asymptotic rate of CO2

removal.
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Figure 4 shows the calibration of the warming delay parameter σforc and the parameter σocean

connecting atmospheric and oceanic temperatures. The first line in the legend displays the parameter
values chosen in our calibration. The other lines show the value of the parameter that was changed
with respect to our chosen calibration.
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Table 1 Parameters of the model

Economic Parameters
η 2 intertemporal consumption smoothing preference
RRA 2 coefficient of relative Arrow-Pratt risk aversion
b1 0.284% damage coefficient
b2 2 damage exponent
δu 1.5% pure rate of time preference
L0 6514 in millions, population in 2005
L∞ 8600 in millions, asymptotic population
g∗L 3.5 rate of convergence to asymptotic population
K0 137 in trillion 2005-USD, initial global capital stock
δK 10% depreciation rate of capital
κ 0.3 capital elasticity in production
A0 0.0058 initial labor productivity; corresponds to total factor productivity

of 0.02722 used in DICE
gA,0 1.31% initial growth rate of labor productivity; corresponds to total factor

productivity of 0.9% used in DICE
δA 0.1% rate of decline of productivity growth rate
σ0 0.1342 CO2 emissions per unit of output in 2005
gσ,0 −0.73% initial rate of decarbonization
δσ 0.3% rate of decline of the rate of decarbonization
a0 1.17 cost of backstop in 2005
a1 2 ratio of initial over final backstop cost
a2 2.8 cost exponent
g∗Ψ −0.5% rate of convergence from initial to final backstop cost

Climatic Parameters
T0 0.76 in ◦C, temperature increase of preindustrial in 2005
Mpreind 596 in GtC, preindustiral stock of CO2 in the atmosphere
M0 808.9 in GtC, stock of atmospheric CO2 in 2005
δM,0 1.4% initial rate of decay of CO2 in atmosphere
δM,∞ 0.4% asymptotic rate of decay of CO2 in atmosphere
δ∗M 1% rate of convergence to asymptotic decay rate of CO2
B0 1.1 in GtC, initial CO2 emissions from LUCF
δB 1.05% growth rate of CO2 emisison from LUCF
s 3.08 climate sensitivity (equilibrium temperature response to doubling

of atmospheric CO2 concentration w.r.t. preindustrial)
ηforc 3.8 forcing of CO2-doubling
λ ηforc/s ≈ 1.23 ratio of forcing to temperature increase under CO2-doubling
EF0 −0.06 external forcing in year 2000
EF100 0.3 external forcing in year 2100 and beyond
σforc 3.2% warming delay, heat capacity atmosphere
σ̃ocean 0.7% parameter governing oceanic temperature feedback
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Figure 5 compares our simple quadratic approximation of the temperature difference between oceans
and atmosphere in equation (12) to the actual difference resulting from the DICE-2007 model. The
noticeable difference emerging two centuries into the future causes also the slightly more pronounced
difference between our and DICE’s atmospheric temperature observed after the year 200 in the earlier
calibration plots. Section 2.3 notes a less simplistic approximation using a Chebychev interpolation,
if desired.

Table 2 Location of Collocation Nodes

Node Effective Capital (k) Carbon Stock (M) Transformed Time (τ) Temperature (T)
1 0.53 575 0.006 0.07
2 0.75 762 0.054 0.59
3 1.18 1087 0.146 1.48
4 1.81 1463 0.273 2.52
5 2.62 1788 0.422 3.41
6 3.59 1975 0.578 3.93
7 4.69 0.727
8 5.87 0.854
9 7.12 0.946
10 8.38 0.994
11 9.63
12 10.81
13 11.91
14 12.88
15 13.69
16 14.32
17 14.75
18 14.97
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Figure 6 shows robustness of the results to variations of the number of basis functions (and corre-
sponding collocation nodes). We use a tensor basis, i.e./ the basis containing all combinations of
the first 18 Chebychev polynomials in the (effective) capital dimension, the first 6 Chebychev poly-
nomials in the carbon stock dimension, the first 10 Chebychev polynomials in the time dimension,
and the first 6 Chebychev polynomials in the temperature dimension.
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Figure 7 shows robustness of the results to a decrease in the convergence tolerance.
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