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A Dynamic Model of Oligopoly in the Coffee Export Market,

Larry S. Karp and Jeffrey M. Perloff

A linear-quadratic, dynamic feedback oligopoly model that nests various market structures is used
to estimate the degree of competitiv:ness and the adjustment paths of the two largest coffee
exporters, Brazil and Colombia. Their estimated behavior is relatively competitive. This subgame
perfect dynamic model is compared 1o a standdrd static oligopoly model and the open-loop model
(the dynamic generalization of the standard static model). Both classical and Bayesian tests of

open-loop and feedback dynamic models are. reported.
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A DYNAMIC MODEL OF OLIGOPOLY IN THE COFFEE EXPORT MARKET

Are the two largest coffee exporters, Brazil and Colombia, price takers, oligopolists, or in
collusion? Casual evidence suggests that major coffee exporters behave noncompetitively and that
dynamics play an important role in determining the outcome (Marshall). Since 1959, most
exporting and importing countries have participated in a series of International Coffee Agreements
(ICAs), which set export quotas (Fischer and Bates and Lien). It is alleged, however, that many
countries regularly violate these quotas. In his survey of various ICAs, Gilbert (p. 602) quotes
critics who claim that the agreements "are no more than an internationally sanctioned producer’s
cartel.” He concludes that the agreements resulted in higher prices rather than simply more stable
prices (p. 604). Greenstone also asserts that the large coffee producers behaved as a cartel.
Based on econometric models, de Vries, Akiyama and Duncan, Palm and Vogelvang, and
Herrmann argue that the ICAs have resulted in higher prices for member importing countries but
lower prices for nonmember importing countries.

We view Brazil and Colombia as a dynamic coffee duopoly facing a fringe with exoge-
nous exports. During the sample period, Brazil and Colombia’s share of total world exports
averaged 43 percent. Brazil and Colombia act like large "firms"” in that each centrally controls
exports. The Brazilian Coffee Institute (IBC) controls supply and price; supervises grading, pack-
ing, and weighing; and sets quotas within the country. The Colombian Federation of Coffee
Growers (FNCC) buys from small farmers, evaluates, blends, grades, cleans, and manages the
market through prices and taxes. In the absence of an ICA in 1974, Brazil and Colombia
attempted to form an explicit producers” cartel and were later joined by other (smaller) producers.
At various times, particularly during the extended ICA negotiations from 1978-1980, the Brazilian

and Colombian goveraments appeared to intervene in the market 1o maintain stability.
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The institutional arrangements in the coffee market constitute circumstantial evidence of an
intent by large producers to exert market power. The difficulties of negotiating these agreements
and the allegations that many exporting countries fail to comply fully with them suggest that
producers dQ not behave as a perfect cartel. Thus, the hypothesis that the market structure lieg
between monopoly and competition is plausible. The complexity and inconstancy of coffee
marketing institutions and paucity of data make it unreasonable to attempt to estimate the explicit
game that producers play. Instead, we estimate a fairly general set of relations that include, as
special cases, the equilibrivim conditions associated with perfectly competitive, collusive, and
Nash-Cournot behavior. Thus, we are able to determine whether the observed outcome is
consistent with any of these equilibria.

The standard static assumption is inappropriate where there are large adjustment costs in
training, storage, or in capital accumulation. There are two reasons to use a dynamic model for
coffee. First, changes in production involve nonlinear costs. A lag of 2 to § years exists between
planting and first harvest; a tree produces its maximum output between 5 to 10 years of age and
bears for up to 30 years. This pattern suggests that average adjustment costs increase with the
size of adjustment. Second, Brazil and Colombia maintain large stockpiles. In standard inventory
models {(e. g., Blinder), the costs of inventory adjustunent are assumed to be reasonably approxi-
mated by a quadratic function. Costs of adjusting exports, therefore, stem from costly adjustment

of production or inventories.!

The Model
Our dynamic medel is flexible enough to allow for the possibility that Brazil {(Firm 1) and

Colombia (Firm 2) act like price takers, collude, or export oligopolistic levels between those two



3
extremes. For simplicity, other countries’ exports are ignored in this section but are accounted for
in the estimates. In period ¢, firms face the inverse residual linear demand curve
(1) : p, = attj - bQ,
where p, is the real price in period t, Q, is the combined export of Brazil (¢,,) and Colombia {(g,,),
a(t) includes effects of exogenous variables such as exports of other countries, and b is a positive
coefficient.

Each Firm i has constant marginal costs 8, with respect to contemporaneous exports g;, and

H
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a quadratic adjustment cost 6,q, + Ly. + “zz)“sz , where u; = g, - ¢;,.; s the change in a
/
firm’s export level from period t-1 to period t. In contrast, a static model sets vy, and & equal to

Zero.

Static Model

In most empirical static models of oligopoly, aggregate or firm level data are used to
estimate a parameter, which we call v, that reflects the markup of price over marginal cost. Given
demand equation (1) for a homogereous product, Firm s effective marginal revenue curve {the
marginal revenue given the degree of market power actually exercised) is MR(v) = p + (1
+v)p'q; = p, - (1 +vbg,

If all firms have a common v and common marginal cost, MC = MC, = 8, we can rewrile
the equilibrium equations for each firm, MR,(v) = MC = 6, as:
{) po= 8+ (1 + viby,.
Estimating (1) and (2), dividing the coefficient on the g, term in (2) by the estimate of b from (1),

and subtracting one gives an estimate of v. The gap between price and marginal cost, p - MC =
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(1 + v)bg,, depends on v. If v = -1, marginal revenue equals price [MR = p] and there is no
markup. If v = 1, marginal revenue is less than price [MR = p + p'(2g,) = p + p’Q] and the
monopoly markup is observed. Intermediate solutions, such as the Nash-Cournot where v = 0, are
also possibi¢ (Carlton and Perloff).

Some authors interpret v as a firm’s constant conjectural variation about its rival: v =
dq}/dqi. We prefer the neutral interpretation that v is a measure of market power — the gap
between marginal cost and price — so that we do not need to make the behavior assumptions of
conjectural variations models. Morcover, the conjectural variation interpretation cannot be used in

the feedback dynamic model we now describe.

The Linear-Quadratic Dynamic Model

The game-theoretic literature abounds with very general dynamic models of oligopoly that
do not lend themselves to estimation. To make the estimation problem tractable, we restrict our
model to a specific family of equilibria indexed by a parameter v as in the static model. We
estimate the family of equilibria under the assumption that firms use subgame perfect, Markov
(feedback) strategies. That is, firms choose strategies (rules) that determine their exports as a
function of the state variables.”

For comparison, we also estimate the same family of equilibria under the assumption that
firms use open-loop strategies. That is, firms choose, at the initial time, a path that they intend to
follow thereafter — they do not expect to revise their decisions after an unexpected shock (such
as bad weather) affects production. This failure (o anticipate revision is irrvational, so the open-
loop equilibrium is not subgame pertect. The open-foep model is the dynamic generalization of

the static model as explained below,
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The open-loop and Markov adjustment paths are identical if firms collude (v = 1 and firms
are of equal size) or act as price takers (v = -1}, as shown in Karp and Perloff (1991). In
oligopolistic models, such as where firms play Nash within a period, the two models imply
different adjps{'ment paths and steady-state export levels, Given sufficient cost information to fest
overidentifying restrictions, one can émpiz‘icall.y discriminate between the two types of behavior
(Karp and Perloff 1989). Lacking that information, we estimate both models to determine the
sensitivity of the measure of market structure to maintained hypotheses regarding behavior. The
two assumptions lead to similar results for coffee.

We estimate the Markov model using 2 variant of the linear-quadratic game solution (Starr
and Ho). A general open-loop model can be estimated (Roberts and Samuelson), but using a
linear-quadratic specification enables us to compare easily the open-loop and Markov equilibria
and to estimate a market structure parameter.

Our feedback and open-loop models include four common models: collusion, price taking,
open-loop Nash-Cournot, and Markov Nash-Cournot.  Other export paths lying between collusion
and price-taking could be produced by other dynamic oligopolistic games. For example, Brazil
and Colombia might imperfectly collude. Another possibility is that export levels are chosen
subject to political pressures (one group wants 10 maximize export revenues and another wants to
increase labor demand), which causes a deviation from Nash-Cournot or collusive {-:qui}ibria.3
Rather than try to model explicitly each of these games, we use an index v that allows for
intermediate paths and steady-state exports. This index is the dynamic analog of the price-
marginal cost wedge used in static models of eligopoly.

In each period of the dynamic model, Firm 1's revenues K| equal pg,. Given a discount

factor 3, Firm i’s objective is to maximize its discounted stream of profits,
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3 E BM[(])! - 91-)41!-f - %f'yi + %“”}u”}’
re=1 ‘ i
where (p, - 8,)g;, is the contemporaneous profit and the last term is the adjustment cost. With
Markov strategies, Firm i chooses changes in exports u;, as a function of the current information:
its own and its rival’s lagged export.
If we define Ji(q,; vv) as the present discrountcd value of Firm i’s program, given the state
vector g, = (g, g5,) and an index v of market power, Firm i’s dynamic programming equation is

 r

Gy Jg,_iv) = max (p, - 8,)q,; - (Ys + —2“1':]“51 + BJi(qI;v)‘

That is, the present discounted value of the stream of future profits as of last period equals the
present discounted value of future profits as of this period plus the profits from this period.
The first-order condition corresponding o (4) is

dlilg,; vy dl(g,;v)
+ v

dg; qu

a

(5) P =9+ (1 +0bg, + +du;, - f

where p - (1 + v)bp, is marginal revenue and the term in hrackets.is the discounted shadow value
of an extra unit of current exports. Terms in this equation are arranged to emphasize its similarity
to the static equilibrium condition (23, The gap between marginal cost and price is the same
function of v as in the static model, so v can be interpreted as a market power nﬁeasam or index

of the family of market structures.
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Estimation of Dynamic Models

Our objective is to obtain a consistent estimate of the index v of market structure in the
subgame perfect, dynamic model. We also estimate 8, the quadratic adjustment parameter. We
can allow parameters ;, 8, and (1) to be firm specific and nonstationary to reflect quality
differences, transportation costs, or other lirm-specific costs. If v = O (adjustment costs are mini-
mized when there is no adjustment), th_c open-loop steady-state exports in the collusive, noncoop-
erative Nash-Cournot and price-taking equilibria are identical to the corresponding static equilib-
ria. Because the open-loop and static models have the same equilibria for general cost and
revenue functions and not simply quadratic ones, the open-loop equilibrium is the dynamic analog
of the static model. The static, open-loop, and feedback models are increasingly complex: the
open loop is the dynamic version of the static model and the feedback model replaces the naive
strategies of the open loop (and implicitly the static) model with sophisticated Markov strategies.

We now describe the basic estimation approaches (see Appendix). The value of Firm i's
program, J{g, ; v}, in (4) is a quadratic function. The equilibrium Markov control rules are
linear, and the open-loop strategies can be written as linear functions of lagged export:
(6) q, = g(t) + Gg, 4,
where g(1) is a column vector and & 15 a 2 X 2 mairix with elements Gij (i,j=1 24 In
estimating adjustment equation (6), we make no assumptions regarding whether firms have
rational expectations about the exogenous variabies nor do we impose assumptions about whether
the inverse demand intercepts and linear costs are constant over time or geross firms, Elements of
G are used to infer v, A major advantage of our estimation strategy is its simplicity: market

structure is logically distinct from the rational expectations hypothesis, One could test rational
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expectations by including the exogenous information in the state vector (Chow). If that hypothe-

sis is true, there is a loss of efficiency from ignoring it but our estimate is still consistent.

Resuits

We estimate both dynamic models of the coffee export market from the 1961-62 crop vear
to the 1983-84 crop year. During that period, Brazil and Colombia’s share of total world exports
ranged from 32 to 50 per&ent and averaged 437percr:nt, Brazil’s share was, on average, twice that
of Colombia. The share of the rest of South America was 4 percent; the rest of Latin America,
17 percent; Asia, 6 percent; and Africa, 29 percent. Shares of the two largest exporters in Africa
were 7 percent (Ivory Coast) and 5 percent (Uganda).

We assume that Brazil and Colombia engage in a dynamic game in which they treat the
rest of the world as a fringe with exogenous exports. Most Latin American and some African
countries produce Arabica coflee (70 percent of all coffee produced). Most African and Asian
countries produce Robustas, which are used mainly in instant coffees. A linear demand curve
treating Arabica and Robustas from various countries as imperfect substitutes produced results
similar to those reported below.

Quantity data are from Coffee: World Coffee Situation (various years) published by the
U. S. Department of Agricuitare, Foreign Agriculture Service. Coffee price is an average of
prices of all coffee traded in New York, the major coffee market. Price data for coffee (New
York) and tea (Londomn), the world commodity wholesale price index, and world gross domestic
product at constant prices are {from the International Monetary Fund, Jnternational Financial

Statistics (various years), In the following, we use real prices, obtained by deflating nominal

prices by the world commodity wholesale price index.




Classical Estimates
We estimate inverse demand curve (1) using an instrumental variables technique:”

Real Price of Coffee = 4401 - .000123 World Coffee Exports + .0169 World GDP
(2.25) (4.1 (0.53)

+ 559 London Price of Tea + .206 ¢ - .00380 2,
(1.53) (1.78) (-2.59)

where t is a time trend (E; 2, ..) and terms in f)a.l‘enthcses are t-statistics against the null hypothe-

sis that the coefficient equals zero. The correlation between observed and predicted price is 0.69

and the Durbin-Watson statistic is 1.96. The demand curve plays only a minor role because b, the
coefficient on exports, affects only & and not v.

We estimate the G matrix in adjustinent equation (6) using Zellner’s seemingly unrelated
equations method (table 1). Each country’s exports are regressed on its own lagged exports, the
other country’s lagged exports, a time trend, and a dummy for the 1977-78 freeze in Brazil ©
Cross-equation symmetry constraints are imposed in table 1: the coefficients on the own lagged
exports are equal [G|; = Gy, = G{] across equations as are the coefficients on the other country’s
lagged exports [Gy, = G5 = G,]. Based on vnrestricted estimates, the F-statistic on these
restrictions is 0.64 with 2 and 34 degrees of freedom, so we ca&mﬁt reject the restrictions. The
hypothesis that the coefficients on the lagged exports are zero independently or collectively is
rejected by t-tests, F-tests, and likelihood ratio tests.

Based on these estimates of G and assuming B = 0.95, v2 = ¢,(G) = -0.84 and vg = O{G)
= -(.80 fwhere §,(G) is a nonlinear function of G, superscripts o or {indicate open-loop or
feedback, and subscript ¢ indicates the classical estimate]. Standard errors of ‘*S and 13 based on

a Taylor expansion, are 0.27 and .31 (table 2). Thus, we cannot reject the price-taking (v = -1}
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hypothesis, but we can reject the Nash-Cournot (v = 0} and less competitive models at the 0.05
level. Adjustment coefficients are the same under both models: 53 =y (G, D) = 0.000037 = &% =
yl{G, b).

1

For ;he estimated dynamical system to "make sense,” it must have three properties:
« The system is stable: -1 < Gy + Gy < land -1 <Gy - G, < 1.
* The market structure lies between collusion and price taking:
>V = 0 (G)>-1, k=0 orf
* The adjustment parameter in each of the models is positive:
8K WG >0 k=0orf

Qur classical point estimates of the elements of G and our estimates of * and 8° are consistent

with these restrictions.

Bavesian Estimates

Rather than estimate the unconstrained system and hope the point estimates lie in the
desired range, we can impose the above three sets of restrictions. Although it would be extremely
difficult, if not impossible, to impose such inequalities using a classical approach or to test them,
Geweke (1986, 1989) and Chalfant, Gray, and White show how 1o impose and test inequality
restrictions with Bavesian techniques.

Our Bayesian prior is the product of a conventional uninformative distribution and an
indicator function that equals | where the inequalily constraints are satisfied and 0 elsewhere.
The posterior distribution is calculated using Monte Carlo numerical integration with importance

sampling. Given a quadratic (absolute difference) loss function, estimates of the parameters

consisient with the restrictions are obtained by calculating the mean (mmedian) of the coefficient
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estimates for all replications in which the constraints are satisfied. Indeed, we obtain the full
posterior distributions of v2 and v{.

Table 2 summarizes resulis of the classical and Bayesian estimates. The vi; based on an
absolute differeﬁce loss function {medians) are close to the classical point estimates. The vlé hased
on a quadratic loss function (means} .are about 0.2 higher than the classical estimates. Standard
deviations on vg are slightly greater than the Taylor approximations for the classical estimates.

To estimate the probability that the restrictions hold, we calculate the (importance
weighted) proportion of Monte Carlo replications satisfying the restrictions. Stability conditions
are virtually always met (table 2). All three sets of conditions hold in approximately three-
quarters of the replications, so imposing the restrictions seems reasonable {(table 2). Because the
restriction that 8 is positive holds in three-quarters of the cases (the odds in favor of a positive &
are 3 to 1), the data indicate there is dynamic adjustment.?

The assumption in this Bayesian approach that the original error terms are normal can be
relaxed by using a bootstrapping approach as reported in table 23 The bootstrap estimates show
slightly higher standard deviations corresponding to the mean 13; gstimates (0.43 and 0.44), a
tower probability of rejecting due (o 1'}: < -1 (19 percent), and a higher probability of rejecting due

to !}; < 1 (11 percent).

Market Structure

Bayesian estimates provide an entire posterior distribution of market parameter W Some
of the information from the importance sampling histograms is summarized in table 3, which
shows the probability that W Hes within certain ranges. The probahility that ;'i lies between -1

{price taking) and 0 (Nash-Courpot) 18 greater than 90 percent. There is a slightly higher
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probability (nearly 50 percent) that 1@ lies between the classical estimate and O than between -1
and the classical estimate (over 40 percent). Two-thirds of the distribution lies below v, In the
feedback model, the posterior odds ratio that the market structure lies between price taking and
Nash{?oumpt rather than between Nash-Cournot and collusive is 12.9.

Resulis for the bootstrap model are similar; however, the bootstrap distribution has thicker
tails. The bootstrap posterior odds ratip that the market structure is more competitive than Nash-
Cournot versus the opposite is 8.3 — less than the odds using the importance sampling estimates
but still very high. Based on either the classical or Bayesian approaches, the Brazil-Colombia

exports are close to price taking. The probability that they are at least as noncompetitive as

Nash-Cournot 1s no greater than 11 percent according to all our estimating approaches.

Simulations

7 Fora

We can simulate adjustment paths and steady states based on the above estimates.
given v, the open-loop steady-state export and the corresponding static export are equal. For a
constant v € (-1, 1), the feedback games are more competitive than open-loop games in the sense
that steady-state exports are greater for a given y {see Reynolds for the intuition for the Nash-
Cournot model). Based on simulations, differences in steady stat‘eé between the open-loop and
feedback models is maximized at values close to those estimated, -0.8. In absolute terms, howev-
er, these differences are small,

In the feedback model based on the unconstrained classical estimator v, .stcadyustatc
gxports are 6 percent lower than in the corresponding price-taker model (table 4). In the open-
loop and static models based on the classicul estimator v, steady-state exports are 7 percent

below those of the price-taker model. Thus, the feedback model is closer to price taking than is
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the open-loop model. This quantity difference leads to large price effects because the demand
elasticity evaluated at the mean price and quantity is about 0.2.

The dynamic models based on unconstrained classic estimates deviate from the price-taker
level by only about half that of those based on the Bayesian constrained estimates. Using the
constrained importance-sanipling Bayesian quadratic loss estimates (bootstrapping), the feedback
steady-state export is 13 (12) percentage points below the price-taker level and the open-loop
steady-state export is 15 (14) percentage points below (1able 4).

The steady states vary in the two estimated dynamic models for two reasons. First, for
either model, the lower the estimated v, the closer its steady-state export is to price taking. As

table 4 shows, the steady state of either the feedback or apen-loop model based on v{ is 2 percent

H

ot

higher than that based on v.. The open-loop model’s v = -0.84 is slightly closer to price taking
than is the feedback model’s v{ = -0.80.

Second, and more than offsetting the first effect, in the open-loop model there is more
collusive behavior for any given v. As table 4 shows, the feedback model (vi) predicts a steady
state 6 percentage points below price taking, whereas the open-loop model predicts a steady state
9 percentage points below. As a result, the less competitive open-loop model must have a lower
estimated v to be consistent with the data.

Adjustment paths vary across models. As figure 1 {(where exports of both countries are set
to zero in year zero) shows for the classical estimates, the combined exports of the two countries
in the feedback medel reaches a higher steady-state fevel than in the open-loop model; but, in
both models, exports reach their steady state level alter only three years.,

To illustrate a more realistic adjustinent path, we solved the dynamic game using estimated

v and & and marginal costs obtained by model calibration (assuming the steady-state exports equal
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the average exports in the sample period). In each period, we added the residuals plus the
coefficient (from the estimated adjustment equation) times the Brazilian freeze dummies to the
simulated ¢,. These simulations exclude demand-side shocks and also ignore the upward trend in
the deman-d'curve, which may explain why the simulations shown in figure 2 are low toward the
end of the period. Even ignoring the demand trend, though, figure 2 shows the model is capable

of emulating reality reasonably well.

Summary and Conclusions

Based on both classical and Baycesian estimates of a dynamic Markov model, Brazil and
Colombia compete vigorousiy with each other in the coffee export market. Steady-state exports
based on the classical (Bayesian) estimate are 6 (12 or 13) percent less than if both Brazil and
Colombia were price takers. From the Bavesian analysis, we are reasonably confident that the
behavior of Brazil and Colombia is closer to price taking than to collusion,

Our results from a subgame perfect dynamic oligopoly model differ only slightly from
those based on the much simpler open-loop dynamic model. If these results can be replicated
with other data sets, open-loop estimates can be used to approximate Markov strategies without

major bias.
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Appendix: Estimating the Dynamic Model
The equilibrium conditions of the dynamic games can be written in matrix notation. Let ¢
be the i™ unit vector, e equal the column vector of 178, S; = e;e}d, and K; = Dlee] + e€’). The

dynamic programming equation for the linear-quadratic model is

Ji{g,13v) = max Haeiq! - ..i..q/fKiq, - %u{,Siu,J + ﬁji(qr;v)},
LY. -

where J(+) is a quadratic function, ¥, = 0 for simplicity, and the equilibrium Markov control rules

are linear as shown in (6). If the open-loop equilibrium sequence is expressed as a function of

the current state, the open-loop equilibrium can be written in "feedback form” as in (6). Firms

revise their plans if something unexpected happens, but these revisions are unanticipated. Define

v, as a 2 x 1 column vector with I in the ith position and v in the other position. Given B, an

estimated matrix G, and an estimated demand slope b, the open-loop v and & satisfy

/
(A.D Ky =6 W -ad -6 es,

where K, is of rank 2 so that the solution (o (A1) is unique. The derivation of (A.1) does not
require an assumption of symunetry.

To estimate v and 8 in the {eedback case, we define the vectors
11
W, = 1-pe' @6’ 6! ®6 (vee (K ).

-1 1
x; = [1 pGT®GH [G '®GH -UQGC) (G @I 1| {vecle €],
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where vec(Z) is a vector of the stacked columas of the matrix Z. The inverse vec operation is
then used to "rematricize™ w; and x; to obtain the 2 x 2 matrices W; and X;. W, is linear in Firm
i’s demand coefficients and X; depends only on B and G. If agents use feedback strategies, v and

& must satisfy
b _ *
(A2) K, +BW,+(e, e +BX)8v, =G e s =y8.

Given symmetry, the left side of (A.2) is of rank 2 and the estimate of v is independent of
b. Defining matrix A' such that bA' = K, + BW, and matrix B'= ee; + PBX;, Al and B depend

only on B and G. To recover v and 8, rewrite the i and the k™ (k # {) equation of (A.2) as

J#i J#i

(A3) ’I}(AM + v z AU} + {Bii + v Z B‘J}S =y;.6,

(A4) b(Aki vy Aig\? + [Bki vy, Bkj}a =y 8.
L J#i j j#i
where subscripts designate the element of A, Bl and v, and the superscript 1 is suppressed.
Equation (A.4) can be solved for & as a linear function of b and a nonlinear function of v,
Substituting this function into {(A.3) gives a quadratic in v that is independent of . Hence a
symmetric v can be estimated with knowledge of only § and G. Although there are two solutions
to (A.3), extensive simulation experiments show that one value is close to the open-leop value and

that the other is infeasible (v < -1, v > 1, or & < 0}, Therefore, in practice it is easy to choose the

correct root.
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Footnotes

1. Qur technique could be generalized to allow for adjustment costs in production and invento-
ries. However, because :’cli.able inventory data are not available, we assume the estimated
adjustment cost is a proxy for both the cost of adjusting output and the cost of inventories.

2. A combination of strategies is a subgame perfect Nash equilibriom if it is a Nash equilibrium
for the game and the relevant strategies are a Nash equilibrium for every subgame (subperiod
within the game).

3. Further, the game-theoretic folk theorem (Fudenberg and Maskin) justifies any outcome that is
less competitive than Nash.

4. Infinite horizon games may have many subgame perfect ¢quilibria. We obtain a unique
equilibrium by taking the equilibrium strategies that result from the game with a finite horizon T
and letting T — oo,

5. Instrumental variables are time; time squared; time cubed; the freeze dummy; the London price
of tea; the world gross domestic product; and Brazilian and Colombian rain, temperatures, gross
domestic products, and populations.

6. To test the effects of the ICA agreements we tried the following experiments: 1) Dununies for
the time of ICA meetings were included; 2) a one-year lag or lead of these meeting dummies
were {ried; and 3) a continuous variable measuring time from the previous meeting was used.
Estimated coefficients were not statistically different from zero at the 0.05 level individually or
collectively. We also divided the period in half and estimated separate adjustment equations for
the two subperiods (to capture a fundamental structural change, possibly due to changes in the

ICA). Based on a Chow (est, we could not reject the hypothesis of no stractural change.
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7. We also estimated the corresponding static model where marginal cost is a function of the
freeze and a time trend (but not of dynamic adjustments). In the static optimization equation, the
real price was regressed on quantity, a dummy for the 1977-78 Brazilian freeze, and a time trend.
The estimat_ed v < -1 is outside the plausible range.

§. With lagged endogenous variables but no autocorrelation {(as indicated by a Durbin’s h test),
we can bootstrap by choosing rows {lc_ft— and right-hand-side variables) of the original data
(Freedman and Peters).

8. In the simulations, we choose marginal cost parameters for Brazil and Colombia so the steady-
state export under the classically estimated feedback model equals the average export for the
sample period. Because the constant marginal costs are not identified in our estimation procedure,
we set the marginal cost of Brazil to zere and searched for the marginal cost of Colombia and the
residual demand intercept producing the average steady-state cuiputs for the two countries.
Subtracting b times the average output of the rest of the world’s producers from the estimated

demand curve intercept approximately equals the resulting residual demand intercept.



Table 1, Adjustment Equations: Regression of Exports on Lagged Exports
Brazil Colombia
Constant 12,986.0 6,9679
(4.99) {4.28)
Brazilian freeze 1977-78 -9.980.7 843.7
(-4.66) 0.74)
Time (1, 2, ..) 22.4 124.8
(0.30) (2.59)
Lagged Brazil exports (0.302 -0.192
(2.27) (-2.42)
Lagged Colombia exports -0.192 0.302
(-2.42) (2.27)
R? 0.57 0.74
Durbin-Watson 223 1.57
Durbin’s h -0.72 1.34

* Figures in parentheses are t-statistics against the nuil hypothesis that the coeflicient equals zero.
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Table 2. Classical and Bayesian Inequality-Constrained Estimates

v v
Classical estimates
V}é (unrestricted) -0.84 -0.80
o (Taylor approximation) 0.27 (.31
Bayesian inequality Importance sampling (T = 5.000)  Bootstrapping (T = 2,000)
constrained estimates VY v v° vf
Quadratic loss
v (mean) -0.65 -0.62 -0.68 -0.63
o] 0.35 0.36 0.43 0.44
Precision of mean of vk (@NT)  0.0059 0.0060 0.0096 0.0097
Absolute loss
vl; (median) -0.76 -0.73 -0.86 -0.81
c 0.37 0.37 0.46 0.47
Reject because (%)
Unstable 0.002 0.002 0.0 0.0
§<0 252 23.6 18.7 18.7
vE <l 24.9 25.4 18.7 18.7
v > L7 12 10 110
Total rejections {1 - p) 26.5 26.5 29.7 297

Asymptotic standard error

of p (Jp(1 - puT ) 0.0073 0.0073 0.6169 0.0109



Table 3. Distribution of v¥ Based on Bayvesian Estimates

Proportion of Importance Sampling Bootstrap

weight between® | v° vi v v
-1 0 93.5% 92.8% 90.3% 89.2%
0 12 42 4.8 5.8 6.3
172 1 23 2.4 38 4.4
-1 v 34.0 35.1 53.7 51.7
vk 0 59.5 57.7 36.6 37.6
-1 vE 67.2 65.5 72.9 711
v 0 26.3 27.3 17.5 18.2

® The classic estimate is v}: and vl}_‘; is the Bayesian estimate based on a quadratic loss function

(k = o or f).
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Table 4. Simulated Exports under Various Models

Brarzilian and

Colombian Exports Percentage of
Model (Static or Steady-State) Price-Taker Qutput
Static and Dynamic Price-Taking (v = -1) 25789 100
Feedback (v) 24665 96
Feedback (v)) | 24308 94
Open Loop and Static Models (v2) 23868 93
Open Loop and Static Models (vg) 23469 91
Feeback (v]) 22601 88
Feedback (v{) 22504 87
Open Loop and Static Models (v‘;) 22232 86
Open Loop and Static Models (v ' 21948 85
Feedback Cournot (v = () 17557 | 68
Open-Loop and Static Cournot {v = () 17192 67
Static and Dynamic Collusion (v = 1) 12894 50

Note: Exports are in thousands of 60 kilogram bags. The estimated dynamic models are shown in
bold. The v§ are the Bayesian quadratic loss estimates and the x‘: are the bootstrap estimates {(k =

o or fl.
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Figure 1
Exports under Various Models
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