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Generalized Rational Random Errors 

1. Introduction 

More than a quarter of a century ago, Henri Theil developed an economic theory for the 

second moments of disturbances in behavioral models, which he called rational random 

errors (Theil 1971, 1975, 1976). In models of consumer choice, the main result of this 

theory is that the covariance matrix of the error terms is proportional to the Slutsky ma-

trix. Although this result has received little attention over the past two decades, it is 

known to be a sufficient condition for total expenditure to be strictly exogenous (Engle, 

Hendry, and Richard, 1983) in demand models (Deaton 1975, 1986; Theil 1976). In this 

paper, I show that a generalization of the theory of rational random errors, which I call 

generalized rational random errors, is necessary and sufficient for strict exogeneity of 

group expenditure in separable demand models. I derive a simple, robust, and asymptoti-

cally normal t-test for this hypothesis based on the generalized methods of moments prin-

ciple. An application to per capita annual U.S. food demand in the 20th century strongly 

rejects the exogeneity of food expenditure in a model that in all other respects appears to 

be highly compatible with the data set and with economic theory. 

2. The Econometric Model  

Consider the demand equations  

(1) ( , , , ) , 1,..., ,x
t xt yt t t tm t T= + =x h p p s ε  

where xn
t +∈x  is an nx−vector of quantities demanded for the goods of interest, yn

t +∈y  

is an ny−vector of quantities demanded for all other goods, xn
xt +∈p is an nx−vector of 

market prices for the goods xt, yn
yt +∈p  is an ny−vector of market prices for the other 
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goods, t xt t yt tm ′ ′≡ +p x p y  is total expenditure (income for brevity), k
t ∈s is a k−vector 

of demographic variables and other demand shifters, and tε  is a vector of stochastic error 

terms independently distributed across t with ( )tE = 0ε  and ( ) .t t tE ′ =ε ε Σ  The mean 

demands for the goods x given market prices, income, and demographic variables are 

(2) ( | , , , ) ( , , , ),x
t xt yt t t xt yt t tE m m=x p p s h p p s  

Although tΣ  may well be time varying and dependent on prices, income, and/or the 

demographic variables, the budget identity does not imply that 0t xt =pΣ ; that is, the er-

ror covariance matrix is not singular. 

Weak separability of x from y in the consumer’s preference function is equivalent 

to the demands for x having the structure 

(3) ( , ( , , , ), ) ,x
t xt x xt yt t t t tm= µ +x h p p p s s ε  

where ( , , , ) ( , , , ) ( | , , , )x
xt yt t t t xt yt t t xt t xt yt t tm m E m′ ′µ ≡ ≡x xp p s p h p p s p x p p s  is the mean to-

tal expenditure on the separable goods given all prices, income, and demographic vari-

ables (Gorman, 1970; Blackorby, Primont, and Russell, 1978). Therefore, assuming x is 

weakly separable from y, and defining total expenditures on x by t t tm ′≡x xp x , we have 

(4) ( , , , ) ,xt x xt yt t t tm m= µ + υp p s  

where ~ (0, )t xt t xt t xt′ ′υ ≡ p p pε Σ , independent across t.  

Standard empirical practice is estimate the complete system of conditional de-

mands for the separable goods with observed group expenditure on the right-hand-side,  

(5) ( , , ) ,x
t xt xt t tm= +x h p s ε  
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where ( , ( , , , ), ) ( , , )x x
t t xt x xt yt t t t xt xt tm m≡ + µ −h p p p s s h p sε ε  is the vector of conditional 

demand residuals. A first step in understanding the empirical implications of this practice 

is lemma 1, which follows directly from Jensen’s inequality and the adding up condition. 

Lemma 1. ( )| , , , 0t xt yt t tE mυ =p p s  and ( )| , , ,t xt yt t tE m =p p s 0ε  if and only if 

( ), ,
( , ) x x

x
n nxt xt t k

xt t
x

m
m

∂
≡ ∃ × →

∂
h p s

p sβ β :  satisfying ( , ) 1t t t′ ≡x xp p sβ . 

The upshot is that a consistent stochastic specification between the conditional demands 

and group expenditure – equivalently, between conditional and unconditional demands – 

restricts the structure of the conditional demand model for precisely the same reason that 

exact aggregation in income does (Gorman, 1953, 1961).1  

A consequence of lemma 1 is that the relationship between conditional and un-

conditional demand residuals can be written as 

(6) [ ]( , ) .t xt t xt t′≡ − p s pIε β ε  

It follows from this and the definition of the group expenditure residual that group ex-

penditure and the conditional demand residuals are generically correlated, 

(7) ( ) [ ]| , , , ( , ) .t t xt yt t t r t xt t xtE m ′υ = − xp p s p s p pIε β Σ  

This leads us directly to the following result. 

Lemma 2. If t xt ≠p 0Σ  then ( )| , , ,t t xt yt t tE mυ =p p s 0ε  if and only if 

                                                 

1 It is always possible to modify the stochastic specification to have a model with, say, budget shares on the 
left-hand-side and nonlinear functions of expenditure on the right-hand-side. However, a result analogous 
to Lemma 1 also applies to such cases, and a coherent statistical model restricts our attention to at most 
rank two demand systems that are linear in a single nonlinear function of expenditure (Edgerton, 1993). 
Our focus is on conditional demand models linear in group expenditure. 
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( ) ( ) 1, ( , , , ),
( , )

x
xt x xt yt t t t

xt t xt t xt t xt
x

m
m

−∂ µ
′= =

∂
h p p p s s

p s p p pβ Σ Σ . 

We call this restriction the generalized rational random errors hypothesis.  

Given weak separability and lemma 1, the conditional covariance matrix satisfies 

(8) [ ] [ ]( , ) ( , )t xt t xt t xt xt t′ ′= − −p s p p p sI IΣ β Σ β . 

The adding up condition for the group of separable goods implies, 

(9) ( , ( , , , ), ) ( , , , )x
xt xt x xt yt t t t x xt yt t tm m′ µ ≡ µp h p p p s s p p s , 

which when combined with (8) and lemma 1 implies that the conditional covariance ma-

trix is singular, 

(10) [ ]( , )t xt xt xt t xt xt xt′≡ − ≡ − ≡p p p s p p pI 0Σ β . 

The unconditional Slutsky matrix for x is defined by 

(11) 
( , , , ) ( , , , )

( , , , ) ,t t t t t t t t
t t t t t

m m
m

m
∂ ∂

′= +
′∂ ∂

x x
x y x y x

x y
x

h p p s h p p s
S h p p s

p
 

while the conditional Slutsky matrix for x is defined by 

(12) 
( , ( , , , ), )x

xt x xt yt t t t
t

x

m∂ µ
=

′∂
h p p p s s

S
p

 

 
( , ( , , , ), )

( , ( , , , ), )
x

xt x xt yt t t t x
xt x xt yt t t t

x

m
m

m
∂ µ

′+ µ
∂

h p p p s s
h p p p s s . 

The connection between the conditional and unconditional Slutsky matrices for the sepa-

rable goods can be established with the following identities: 

(13) 
( , , , ) ( , ( , , , ), )x x

xt yt t t xt xt xt yt t t t

x x

m m∂ ∂ µ
≡

′ ′∂ ∂
h p p s h p p p s s

p p
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( , ( , , , ), ) ( , , , )x

xt x xt yt t t t x xt yt t t

x x

m m
m

∂ µ ∂µ
+

′∂ ∂
h p p p s s p p s

p
; 

(14) 
( , , , ) ( , ( , , , ), ) ( , , , )

;
x x

xt yt t t xt x xt yt t t t x xt yt t t

x

m m m
m m m

∂ ∂ µ ∂µ
≡

∂ ∂ ∂
h p p s h p p p s s p p s

 

(15) 
( , , , ) ( , , , )

( , , , )
x

xt xt yt t t xt yt t tx
xt yt t t xt

xt xt

m m
m

′∂µ ∂
≡ +

∂ ∂
p p s h p p s

h p p s p
p p

; 

(16) 
( , , , ) ( , , , )x

x xt yt t t xt yt t t
xt

m m
m m

∂µ ∂
′≡

∂ ∂
p p s h p p s

p ; 

(17) 
( , ( , , , ), )

1
x

xt x xt yt t t t
xt

x

m
m

∂ µ
′ ≡

∂
h p p p s s

p ;  

and 

(18) ( , , , ) ( , ( , , , ), )x x
xt yt t t xt x xt yt t t tm m≡ µh p p s h p p p s s . 

We make the following sequence of substitutions, 

(19) ( )
x x

x
t

x m
∂ ∂ ′≡ +

′∂ ∂
h hS h
p

 

 ( )
x x x

xx x

x x x xm m m
 ∂µ ∂µ∂ ∂ ∂   ′≡ + +   ′ ′∂ ∂ ∂ ∂ ∂  

h h h h
p p

 

 ( ) ( )
x x x x x

x x
xt xt

x x x x

+
m m m

   ∂ ∂ ∂ ∂ ∂′ ′ ′ ′≡ + +   ′ ′∂ ∂ ∂ ∂ ∂  

h h h h hh p p h
p p

 

 
x

t xt t
xm

 ∂ ′≡ + ∂ 

hS p S . 

and then solve for tS  to obtain 

(20) [ ]( , )t t t xt t′≡ − xS I p s p Sβ . 
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Since t xt ≡S p 0 , equivalently, ( 1xt t t′ , ) ≡xp p sβ , this implies  

(21) [ ] [ ]( (t t t xt t x t t′ ′≡ − , ) − , )x xS I p s p S I p p sβ β . 

Note that , )t t(Σ Σ  and ( , )t tS S  share precisely the same structural connection 

from the unconditional to the conditional level of the demand model. Moreover, note 

from (19) and t xt ≡S p 0  that, as long as t xt ≠S p 0 , we have the identity 

(22) ( ) 1( , ( , , , ), )x
xt x xt yt t t t

xt t xt t xt
x

m
m

−∂ µ
′≡

∂
h p p p s s

p S p S p . 

Therefore, defining the positive-valued function,  

(23) ( ) ( )1( , , , )xt yt t t xt t xt xt t xtm −′ ′ϕ ≡ −p p s p p p S pΣ , 

we can restate the GRREH in the following way. 

Lemma 3. If ,t xt ≠p 0Σ  then ( )| , , ,t t xt yt t tE mυ =p p s 0ε  if and only if  

t xt t t xt≡ −ϕp S pΣ . 

Lemma 3 establishes the relationship between generalized rational random errors and 

rational random errors. In particular, the rational random errors hypothesis implies that 

the unconditional covariance matrix and the Slutsky matrix are related by t t t≡ −ϕ SΣ  for 

some function 1: n k
t

+ +
+ +ϕ → , where x yn n n= + . Rational random errors is sufficient, 

but not necessary for the generalized rational random errors hypothesis. As a counterex-

ample to necessity, let tΩ  be the Hessian matrix for any function ( , , , )xt yt t tg mp p s  that is 

1° homogeneous and convex in pxt, and let t t t≡ −ϕSΣ Ω . 
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3. The Hypothesis and Test Statistic 

In principle, the generalized rational random errors hypothesis is testable. The 

remainder of this section presents a derivation of a simple, consistent t−test for this pur-

pose. Suppose that the generalized rational random errors hypothesis is true. Then 

(24) ,t t xt t t t t xt t′ = υ = −ϕ +p S p uε ε ε  

where ( )tE =u 0 , ( )t t tE ′ =u u Φ , say, and the tu  are independently distributed across t. 

Therefore, let t t t= υz ε , 
1

x

j

n
it ijt x tj

w s p
=

=∑ , and 1[ ]
xt n tw w ′=tw . An unbiased esti-

mator for ϕ t is obtained by ordinary least squares (OLS), 

(25) ( ) 1ˆ t t t t t
−′ ′ϕ = − w w w z . 

In practice, zt and wt are not observed, but consistent estimates can be readily obtained. 

This does not alter any of the asymptotic results that follow, and for notational brevity 

this minor issue is ignored. For each t the OLS errors are  

(26) ( ) 1ˆt t t t t t t t
− ′ ′= − = u I w w w w u u , 

with ( )ˆ ˆt t t t tE ′ =u u Φ . The average OLS residual within each time period is defined by 

1 ˆˆ
xxt n tnu⋅ ′= uι , where [1 1]

xn ′=ι , with variance 

(27) ( ) 2
2 1ˆ

x xx
t n t t ntn

E u⋅ ′= ι Φ ι .  

The overall average residual is 1
1[ ]ˆ ˆ ˆ T TTu u u⋅ ⋅= ι , with variance 

(28) ( ) ( )22 1
1

ˆ
x xx

T
n t t ntTn t

E u
=

′= ∑ ι Φ ι . 

Under standard assumptions for the error terms uit, a robust heterscedasticity-consistent 
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estimator for the variance term in (20) is (Hansen, 1982; White, 1980) 

(29) ( )22 1
ˆ 1

ˆ ˆˆ
x xx

T
n t t ntTu n t=
′ ′σ = ∑ tu uι ι . 

However, since ˆt t t=u u  and ,t t t t'= =  this estimator simplifies to 

(30) ( )22 1
ˆ 1

ˆ ˆˆ
x xx

T
n t nTu n t=
′ ′σ = ∑ tu uι ι  

 ( )2

21 1

1

ˆ
xx

T

n tnT
t=

′= ∑ uι  

 2
1

1 2ˆ( )
T

t
tT

u
=

⋅= ∑  

Therefore, restating the generalized rational random errors hypothesis as 

 o : ( ) 0 1,..., , 1,...,it xH E u i n t T= ∀ = ∀ = , 

 : ,  such that ( ) 0A itH i t E u∃ ≠ , 

a simple t−statistic that has a standard normal asymptotic distribution is 

(31) 
( )2

1

ˆ

ˆT
t t

Tut
u= ⋅

=
∑

. ¦ 

3. An Application to U.S. Food Demand 

Let y be a scalar representing nonfood expenditures, let ( )π yp  be an increasing, 1° ho-

mogeneous, concave function of nonfood prices, and assume a quadratic (quasi-)utility 

function (LaFrance and Hanemann) for foods and nonfood expenditures, 

(32) 2( , , ) ( ( )) ( ( )) ( ( ))yy yu y y′= − − +β − αx xx xx s x s B x s sα α  

 2 ( ( )) ( ( ))yy′+ − − αx xyx s sα β . 

Maximizing ( , , )u yx s  with respect to (x, y) subject to ( )y m′ + π ≤x yp x p , gives the un-
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conditional demands for x as 

(33) ( , ( ), , ) ( )mπ =x
x y xh p p s sα  

 ( )2

( ) ( ) ( )
( )

2 ( ) ( )
y

y
y yy

m ′− − α π
+ ⋅ + π  ′ ′+ π + γ π 

x x y
xx x x y

x xx x x x y y

s p s p
C p p

p C p p p p
α

γ
γ

, 

where 
1

y y

y yy y yy

−
   

= =   ′ ′γ β   

xx x xx x

x x

C B
C

γ β
γ β

. 

Our empirical model specifies deflated expenditures, rather than quantities, as dependent 

variables (Brown and Walker, 1989), 

(34) ( )( ) ( )
( )

2
x x y

x x x x x xx x xy x
x xx x xy x yy

m ′− − α
≡ = + + +  ′ ′+ + γ 

p s
e P x P P C p

p C p p
s

s
α

α γ ε
γ

, 

where m and px are deflated by π and diag( )x xip≡P . Adding up implies 0x y′ + ε ≡ι ε , 

where ι  is an nx-vector of ones and εy is the residual for nonfood expenditure. The estima-

tion method is nonlinear seemingly unrelated regression equations (SURE) with one it-

eration on the residual covariance matrix. This produces consistent, efficient, and asymp-

totically normal parameter estimates under standard conditions (Malinvaud; Rothenberg 

and Leenders), while avoiding a spurious over fit of a subset of equations, which can re-

sult from iterative SURE methods.2 

                                                 

2 The reason for this can be seen by writing the estimated covariance matrix, say Σ , at a given iteration in 
factored form as Σ  = Q∆Q′, where QQ′ = Q′Q = I, and ∆ = diag(δi) is the diagonal matrix of eigen values. 
If any of the δi is small relative to all others, then while Σ−1  is held fixed during the next iteration on the 
structural parameters, the linear combination of the εt’s associated with that eigen value carries a large rela-
tive weight in the sum of squares criterion. This linear combination of residuals can approach a perfect fit, 
leading to singularity of the estimated covariance matrix. 
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Weak separability of foods from nonfood expenditures, which is necessary and 

sufficient for separability of foods from all other goods (LaFrance and Hanemann), im-

plies γxy = 0. The Slutsky matrix for food is 

(35) 2 2

( ) ( ) ( )( )
2 2

x x y xx x xy x xx xy
xx

x xx x y x x xx x y x

m     ′ ′ ′− − α π + π + π
′= −       ′ ′ ′ ′+ π + π + π + π     

xx
x x x

p s C p p C
S C

p C p p p C p p
sα γ γ

γ γ
. 

Symmetry is accommodated by ½nx(nx-1) linear parameter restrictions on Cxx. Quasi-

concavity of preferences in (x, y) implies that at least nx Eigen values of C must be posi-

tive (Lau, 1978). In this model, however, weak separability implies that preferences are 

additively separable in x and y. Quasi-concavity then requires concavity either in x or in 

y (Gorman 1995b).3 Treating foods and other goods symmetrically implies that all Eigen 

values of Cxx must be positive. Hence, let Cxx = LL′, L lower triangular. These parameter 

restrictions ensure global weak integrability (LaFrance and Hanemann, 1989). 

L can have reduced rank unless the symmetric estimate of Cxx is positive definite. 

In such a case, curvature is not binding. In the alternative situation where L has a reduced 

rank, say nx-g, 0 ≤ g ≤ nx, all elements on and below the last g diagonal elements will 

vanish. This gives the greatest number of independent parameters associated with a 

symmetric, positive semidefinite matrix Cxx that has rank nx-g (Diewert and Wales, 

                                                 

3 This can be demonstrated as follows. Quasi-concavity requires 

 [ ] 0
yy

u d
d dy

u dy
′ ≤

′
   
     

xx x
x

0

0
 [ ] 0

0 y

ud
d dy

udy
′∀ ≠ ∋ =    

         
xx

x
0

. 

Setting dy = 0 implies that 0 0d u d d u′ ′≤ ∀ =xx xx x x , so that the sectoral utility function for foods must 
be quasi-concave. But if uxx is indefinite (has a positive eigen value) and uyy > 0, the sign condition fails for 
joint quasi-concavity of u in (x, y). 
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1993), and ½g(g+1) restrictions for curvature and ½nx(nx−1) symmetry restrictions. 

The food consumption data consist of 21 equations and 76 annual time series 

observations over the period 1918-1994. 4 The sample period is 1919-41 and 1947-94, 

with 1942-1946 excluded to account for World War II. The unrestricted model has 615 

parameters; there are 210 parameter restrictions associated with symmetry of Cxx; and 

238 restrictions associated with symmetry and positive semidefiniteness of Cxx.5 Per 

capita consumption of twenty-one food items and corresponding average retail prices for 

those items were constructed several USDA and Bureau of Labor Statistics sources. The 

consumer price index for all nonfood items is used for the “price” of nonfood 

expenditures. Income is measured as per capita disposable personal income. Demo-

graphics include the first three moments (mean, variance, and skewness) of the age distri-

bution for the U.S. population and proportions of the population that are Black and nei-

ther White nor Black. Habit formation is incorporated through including lagged food 

quantities elements of s (Pollak and Wales, 1981). 

A summary of model specification tests is reported in Table 1. A test of separabil-

ity in the unrestricted model falls right on the margin of rejection at a 5 percent signifi-

cance level. Although this warrants further consideration, separability of foods from non-

foods is maintained. No model version shows significant evidence of misspecification us-

ing either systemwide or single equation stability tests. The unrestricted model fails to re-

                                                 

4 Detailed descriptions of the data, its sources and construction methods, and data set are available from the 
author on request. 
5 The bottom 7 rows of L equal zero, the number of negative Eigen values of Cxx in the symmetric model, 
generating 28 parameter restrictions for curvature. 
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ject at the 5 percent significance level, while the symmetric and quasi-concave models 

fail to reject at the 10 percent level.6  

Symmetry is not rejected at the 5 percent level of significance, while symmetry 

and quasi-concavity is not rejected at the 10 percent level. Neither the symmetric nor the 

quasi-concave model shows evidence of autocorrelation, while the unrestricted model 

suggests a low level of negative serial correlation (ρ = -.15). It is noteworthy that high 

levels of serial correlation are common in time series demand models, especially in those 

that are been restricted to satisfy Slutsky symmetry. This model shows little evidence of 

serial correlation and even less as economic restrictions are imposed. There also is little 

evidence of skewness in the residuals. All three versions of the model show evidence of 

leptokurtosis. Since the estimation and inference methods employed here are robust to 

thick tails as long as the fourth moments exist, this is not a serious concern. In addition, 

neither restricted model shows evidence of thicker tails than the unrestricted model.7 

Tests of generalized rational random errors, equivalently, of strict exogeneity of 

food expenditure (Engle, Hendry, and Richard, 1983; Hendry, 1995), are rejected at any 

reasonable level of significance in all models. The implication is that food expenditure is 

correlated with the conditional error terms in all three versions of the model. The stan-

                                                 

6 The systemwide test statistics denoted by ( )TB z  in table 1 are asymptotically distributed as Brownian 

bridges, and are constructed from partial sums of the transformed regression errors, ˆ ˆ t
−1/2Σ ε . See LaFrance 

(1999) for derivation and a discussion. Also, see Ploberger and Krämer (1992) for the derivation of linear 
single equation versions of the conditional means tests. 
7 The point estimate for the coefficient of excess kurtosis in the unrestricted model falls well within a 95 
percent confidence interval of the corresponding estimate for the quasi-concave model. In other words, the 
parameter restrictions associated with symmetry and jointly with symmetry and quasi-concavity do not ap-
pear to create spurious outliers in the data. 
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dard practice of using observed group expenditure on the right-hand-side of a system of 

conditional demands is clearly inappropriate for this model and data set. LaFrance (1991) 

has shown that group expenditure can never be weak, strong, or super exogenous (see 

Engle, Hendry and Richard (1983) for derivation and discussion). Thus, no concept of 

exogeneity can rationalize food expenditure as an exogenous right-hand-side variable in a 

conditional demand model of U.S. per capita food consumption. 

Table 2 reports equation summary statistics for the incomplete demand system 

form of the symmetric, quasi-concave, separable model (see LaFrance (1985) or La-

France and Hanemann (1989) for derivation and discussion). Table 3 presents the esti-

mated parameters associated with the constant terms, demographics, and lagged quanti-

ties consumed, with estimated asymptotic standard errors in parentheses below the pa-

rameter estimates. Table 4 presents the parameter estimates for the food sector’s negative 

inverse Hessian, with estimated asymptotic standard errors in parentheses below the coef-

ficient estimates. It is worth emphasizing that this model globally satisfies the restrictions 

implied by economic theory.  

4. Implications 

The rational random errors hypothesis is sufficient for strict exogeneity of group expendi-

ture in separable demand models. This paper derives the generalized rational random er-

rors hypothesis as a necessary and sufficient condition for strict exogeneity of group ex-

penditure in separable demand models. A simple, robust, asymptotically normal t-test of 

this hypothesis is derived based on the generalized method of moments.  

An empirical application is made with per capita annual U.S. food demand in the 

20th century. An incomplete demand systems approach is used, which does not rely on 
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any form of exogeneity of group expenditure to obtain consistent, asymptotically effi-

cient parameter estimates. Extensive destructive testing a la Hendry (1995) suggests that, 

in all respects, the empirical model is compatible with the data and economic theory.  

Tests of generalized rational random errors, however, are rejected at all reason-

able levels of significance in all versions of the empirical model. The implication is that 

food expenditure is correlated with the error terms in a conditional demand model for 

U.S. food demand. Using group expenditure on the right-hand-side of a system of condi-

tional demands, for this model and data set at least, would lead to biased and inconsistent 

parameter estimates and invalid statistical inferences. Food expenditure cannot be 

weakly, strongly, super or strictly exogenous, exhausting the logical possibilities. Treat-

ing group expenditure as exogenous in separable demand models is a flawed empirical 

practice. 
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Table 1. Model Diagnostics; Sample Period 1919-41 and 1947-94. 

 Unrestricted Symmetric Quasiconcave  

Trace 1415.7 1228.1 1249.3 

ρ -.135 -.039 -.027 
σρ .027 .029 .029 
tρ 5.02 1.35 0.94 

η3 .147 .045 .066 
ση3

 .063 .063 .063 
t η3

 2.31 0.71 1.05 

η4 .451 .675 .628 
ση4

 .127 .127 .127 
t η4

 3.55 5.32 4.94 

Jarque-Bera 17.96 28.80 25.51 
P-value 1.3×10-4 5.6×10-7 2.9×10-6 

GRREH Tests 

u  1.624 5.150 5.061 
σu  .343 1.364 1.332 
t u  4.739 3.776 3.800 
P-value 1.1×10-5 8.0×10-5 7.2×10-5 

F-Tests 

Separability 1.56 
P-value .05 

Theory - 1.18 1.12 
P-value - .06 .12 

Systemwide Specification Tests 

1st  Moment 
max|BT(z)| .41 .42 .47 
P-value .996 .995 .98 

2nd  Moment 
max|BT(z)| 1.36 1.22 1.06 
P-value .05 .10 .22 
  

ρ is the common first order autocorrelation coefficient; η3 is the coefficient of skewness; 
η4 is the coefficient of excess kurtosis; and Jarque-Bera the χ2(2) test for normality. 
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Table 2. Single Equation Statistics; Symmetric, Quasi-Concave Model. 

 R2 T i iε σ  max ( )
0 1≤ ≤z iTB z  

  

Milk & Cream .9973 .122 .326 

Butter .9965 -.164 .463 

Cheese .9983 -.026 .529 

Frozen Dairy Products .9877 -.190 .402 

Other Dairy Products .9867 .073 .507 

Beef & Veal .9951 -.058 .438 

Pork .9747 .043 .561 

Other Meat .9590 .032 .380 

Fish .9949 .148 .447 

Poultry .9893 .171 .607 

Fresh Citrus Fruit .6717 .301 .728 

Fresh Noncitrus Fruit .9487 -.297 .560 

Fresh Vegetables .9882 -.137 .346 

Potatoes .9648 .240 .807 

Processed Fruit .9882 -.020 .518 

Processed Vegetables .9891 -.124 .426 

Fats & Oils .9737 -.124 .394 

Eggs .9989 -.240 .473 

Cereal Products .9889 -.082 .413 

Sugar .9878 -.243 .478 

Coffee, Tea, & Cocoa .9803 -.242 .493 
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Table 3. Demographics and Habits; Symmetric, Quasi-Concave Model. 

  Age Distribution   Ethnicity  Habits 

 Constant Mean Variance Skewness Black Others xt-1 
  

Milk & 374.1 -2.277 3.334 -.7492 -20.42 -3.503 .3680 
Cream (79.38) (2.419) (0.673) (.7256) (13.43) (9.101) (.0577) 

Butter 4.975 .0268 -.2941 -.0263 1.222 -2.2417 .7394 
 (13.61) (.2576) (.0917) (.0785) (1.922) (1.160) (.0840) 

Cheese -16.21 .6015 -.1178 .0795 .2766 3.090 .5023 
 (11.65) (.3331) (.0798) (.0846) (1.883) (1.322) (.1090) 

Frozen Dairy -39.11 .0238 .8168 .0291 1.036 .7565 .3924 
 (27.78) (.7482) (.2791) (.1956) (4.214) (2.674) (.1204) 

Other Dairy 34.47 -.2323 1.097 -.4906 -3.843 .8026 .3123 
 (24.15) (.7751) (.2870) (.1816) (4.511) (2.492) (.1345) 

Beef & Veal -377.7 1.801 1.859 -.0224 31.75 -21.30 .0206 
 (29.42) (.8655) (.2144) (.2424) (5.089) (3.395) (.0471) 

Pork 151.0 .9419 .9444 .1261 -16.34 5.227 .0758 
 (27.13) (.8654) (.2288) (.2402) (4.947) (3.285) (.0396) 

Other Meat 27.33 .1009 -.0149 .0907 -1.812 -.0203 .0727 
 (13.13) (.4196) (.1134) (.1117) (2.419) (1.563) (.1251) 

Fish 42.94 .2894 -.1963 .1513 -4.272 5.653 .2578 
 (12.23) (.3341) (.0812) (.0904) (1.988) (1.348) (.0856) 

Poultry 31.00 .0496 .2493 .0662 -3.797 12.92 .5027 
 (20.66) (.5240) (.1646) (.1441) (3.321) (2.863) (.0753) 

Fresh Citrus 69.05 6.657 -.3189 .1289 -22.90 6.247 -.0509 
 (40.34) (1.444) (.3063) (.3339) (7.486) (4.749) (.0933) 

Fresh Non- 1060.5 -4.393 -4.086 .5838 -67.74 59.81 -.4825 
citrus (97.33) (2.474) (.6862) (.6709) (15.08) (10.52) (.0756) 

Fresh 221.1 7.054 .3274 1.508 -45.84 34.11 .1745 
Veges (50.57) (1.554) (.3485) (.3852) (8.965) (5.937) (.0929) 

Potatoes 575.1 -9.599 -2.288 .0084 -5.856 18.17 -.0283 
 (99.17) (2.806) (.6742) (.7207) (15.78) (9.994) (.0943) 
  

Numbers in parentheses are estimated asymptotic standard errors. 
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Table 3. Continued. 
  Age Distribution   Ethnicity  Habits 

 Constant Mean Variance Skewness Black Others xt-1 
  

Processed -210.4 3.128 1.248 .2809 7.200 2.189 .2783 
Fruit (41.89) (1.062) (.2697) (.2948) (6.499) (4.287) (.0753) 

Processed 41.94 7.004 -.3176 1.803 -28.89 20.99 .3156 
Veges (44.17) (1.455) (.3406) (.3598) (7.324) (4.813) (.0677) 

Fats & Oils 22.08 3.297 -.2674 .9019 -12.80 15.66 .2192 
 (23.39) (.7035) (.1852) (.1940) (4.065) (2.999) (.0790) 

Eggs 54.11 -.7929 .3898 -.1679 -2.399 -.4565 .7207 
 (16.58) (.4156) (.1562) (.1098) (2.652) (1.757) (.0631) 

Flour & 1074.9 -9.290 -4.503 .1861 -47.94 51.32 .2835 
Cereals (125.8) (2.631) (.7121) (.6382) (13.74) (9.412) (.0881) 

Sugar & 186.8 6.610 -2.381 1.791 -26.13 24.17 .0388 
Sweeteners (53.46) (1.738) (.3701) (.4986) (10.19) (6.890) (.0589) 

Coffee, Tea 22.33 .7490 .2174 -.0055 -4.127 1.595 .2142 
& Cocoa (9.056) (.3007) (.0716) (.0781) (1.662) (1.109) (.0600) 

Nonfood -4017.5 317.5 14.67 88.94 -907.7 1273.5 --- 
 (1238.0) (38.21) (11.42) (9.828) (185.4) (139.8) --- 
  

Numbers in parentheses are estimated asymptotic standard errors. 
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