- Main
Speciation and Health Risks of Atmospheric Nanoparticulates
- Nguyen, Kennedy Dai
- Advisor(s): Leppert, Valerie J
Abstract
Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease.
The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts.
Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated industrial emissions of air particulate matter. Samples were analyzed using electron microscopy for elemental composition and size distribution, and found to contain fine metal particulates (lead and iron) that can lead to lung inflammation.
From characterization data, in order to create a simplified proxy particle system for cell culture studies, amorphous silica particles were synthesized using a modified Stöber Synthesis and coated with iron hydroxide. A range of iron hydroxide concentrations (0.06 to 1.63 mmol of iron per gram of silica) were used to test the effect of iron contamination on THP-1 cells, and higher concentrations of iron with silica (0.43 and 1.63 mmol of iron per gram of silica) were found to increase production of pro-inflammatory mediators compared to silica alone. Iron alone did not induce an effect relative to the control, demonstrating a synergistic effect when iron is combined with silica at low doses. It was found that crystalline silica was more toxic than amorphous silica (70% vs 80% respectively at 100 µg/ml). In addition, mesoporous silica was found to be more toxic than solid silica (73% vs 82% respectively at 100 µg/ml), likely due to a higher surface area (60.2 m^2/g for mesoporous external surface area without internal pores vs 1.72 m^2/g for solid 2 µm silica and 54.5 m^2/g for 50 nm silica) and increased particle loading at the same dose. Finally, a preliminary investigation of Printex 90 as a proxy material for soot, with and without the addition of iron and quinones, was conducted.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-