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Abstract

Add an opening stage of signal acquisition to a canonical portfolio choice
model and let investors have rational expectations about the ensuing Wal-
rasian equilibrium. The expected marginal utility of a signal (its action
value) falls in the number of signals and turns strictly negative at a fi-
nite number because signals diminish the asset’s excess return. There is
a natural transparency limit at which rational investors pay to inhibit
information disclosure. Prior to the limit, financial information is a pub-
lic good and justifies intervention. To instill more transparency, cutting
costs of information acquisition is superior to disclosure because disclo-
sure crowds out private information acquisition and risks a violation of
the transparency limit.
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Recent financial crises and corporate scandals have prompted calls for more trans-
parency. Morris and Shin (2002) show in a stylized model of the financial market
that more public information may reduce welfare. Their result has been widely
interpreted as counsel against transparency and been challenged within the orig-
inal setting (Svensson 2005) as well as in a series of extensions (Angeletos and
Pavan 2004, Heinemann and Cornand 2004, Hellwig 2004). The model of this
paper removes the role of higher-order expectations from the game and instead
precedes portfolio choice with an experimentation game of signal acquisition.
The results provide common ground for both proponents and sceptics of financial
transparency: the underprovision of information in private markets calls for pub-
lic intervention, but public disclosure is harmful beyond a natural transparency
limit.

When rational investors anticipate the effect of information and their ac-
tions on equilibrium price, the resulting action value of information rises with
investors’ risk aversion, rises with asset market volume, and rises with the vari-
ance of the asset return—as it should be. Most important, however, the action
value of information is not bound to be positive. At the natural transparency
limit, investors pay to prevent further disclosure.

Through revealing asset price, one investor’s action permits other investors to
update beliefs so that information becomes a public commodity. Private investors
do not internalize the benefit to others and acquire too little information when
information is a public good.1 This basic mechanism—cast aside in stylized
game-theoretic models—provides a rationale for governmental intervention. But
information turns into a public bad at the natural transparency limit. The reason
is that, by removing risk, information diminishes the excess return. Investors are
compensated for the risk of an asset’s lacking information with a payoff beyond
the safe return. The utility loss from diminished excess returns—omitted from
abstract experimentation models—outweighs information benefits if the variance
of the asset return is low, if the market volume is small, or if a large amount of
information is already available. To take an example, risk averse investors are
compensated for Argentina’s default risk with returns that exceed the expected
losses under default. That is why they lend. More information strictly diminishes
this excess return. At the transparency limit, rational lenders reject further
information to keep the excess return.

Information and transparency are matters of degree. Beyond binary infor-
mation acquisition as in Grossman and Stiglitz (1980) or Hellwig (1980), the
present paper gives investors a choice of a number of signals in the spirit of

1Asset price is fully revealing in this paper. Under partially revealing price, information has
public-goods character nonetheless because price continues to permit belief updating (Admati
1985).
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experimentation. To make public and private information comparable in price
impact, the present paper considers a finite number of investors whose individual
actions affect price. Verrecchia (1982) and Kim and Verrecchia (1991) consider
the complementary case of infinitely many investors with no price impact.

Recent theoretical models address the value of information and welfare ef-
fects of transparency in two different ways. A game-theoretic and a general-
equilibrium literature, on the one hand, model the real side of the economy and
investigate conditions for welfare improving public disclosure. This research often
stops short of giving investors a rational choice of information (e.g. Morris and
Shin 2002, Angeletos and Pavan 2004; Krebs 2005). The literature on experimen-
tation, on the other hand, shows that there are decreasing but strictly positive
marginal benefits to information and that the public-goods character of informa-
tion induces free-riding (e.g. Moscarini and Smith 2001, Cripps, Keller and Rady
2005). The abstract experimentation framework does not tie the value of infor-
mation to economic primitives.2 The present paper attempts to bridge these
strands of literature and gives investors a rational information choice through
costly experimentation in a canonical model of portfolio choice.

In practice, evidence on the social value of information is scarce and offers
little guidance to judge how strongly the market outcome differs from the trans-
parency optimum. This uncertainty notwithstanding, the present analysis of
rational information choice provides indications of suitable policies.

Better abstain from public provision of private information. It is because
hedge funds and startup companies are not transparent that they generate ex-
cess returns. Public disclosure of private information can disrupt the market
and push it beyond the transparency limit, where rational investors pay to pre-
vent disclosure. With the enforcement of New Zealand’s compulsory disclosure
rules in 1996, for instance, the country’s banks no longer receive on-sight visits
under prudential supervision but undergo frequent external audits and credit-
rating disclosures (Vishwanath and Kaufmann 2001). New Zealand’s extensive
disclosure rules may have resulted in a welfare improvement for investors, or not.

Reduce, instead, the costs of information acquisition to achieve more trans-
parency. The analysis of rational information choice suggests that lower access
costs remedy the need for financial information but cannot result in a violation of
the transparency limit. Private investors will gather no more information than up
to the desirable limit. Examples of such information cost reducing policies are:
the timely dissemination of disclosed information, the equitable dissemination
of information beyond financial intermediaries to ultimate investors, the assess-
ment of rating agencies’ and auditors’ standards to facilitate interpretation of

2The literature on information transmission in oligopolistic product markets shows that the
value of information is closely linked to market conditions (Raith 1996).
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disclosed information, the use of lucid language instead of subdued suggestions
in disclosed official reports, and the promotion of internationally accepted ac-
counting standards.3

Detrimental effects of disclosure are not confined to financial markets. Hirsh-
leifer (1971) demonstrates how public information can erode risk-sharing oppor-
tunities and reduce ex ante welfare. Within financial markets, Maŕın and Rahi
(2000) show that market completeness and the ensuing information revelation
may reduce welfare because of a Hirshleifer effect. The diminishing-excess-return
effect, more generally, inflicts utility losses even on investors with a safe endow-
ment and no risk-sharing appetite, beyond a Hirshleifer effect.

Insufficient public information and a high degree of asymmetric information,
on the other hand, can also hamper financial markets—similar to markets for
lemons (Akerlof 1970). In the extreme, less informed traders refuse to trade
and cause a financial market breakdown (Bhattacharya, Reny and Spiegel 1995).
This adverse selection problem prompts issuers to design securities with payoffs
that are independent of private information (Rahi 1996, DeMarzo and Duffie
1999). The concern with financial crises and corporate scandals, however, is
not that investors refuse to hold the risky asset before the crisis or scandal;
it is that investors strongly demand the asset in the absence of transparency.
Fully revealing price is a device to check, in individual utility terms, the value
of public information. For these reasons, the present paper removes asymmetric
information and adopts a fully revealing financial market equilibrium. Fully
revealing asset price heightens the diminishing-excess-return effect, a key source
for informational welfare losses, but information under partially revealing price
also exhibits the effect (Admati 1985).

Public disclosure crowds out private information gathering in the present
model. Tong (2005) finds this in a coordination game too, whereas Kim and
Verrecchia (1991) present conditions when announced public disclosure induces
investors to buy more precise private information. Tong provides empirical ev-
idence from panel data of analysts’ forecasts on stocks in thirty countries: dis-
closure standards promote accuracy but crowd out the number of analysts per
stock.

Easley and O’Hara (2004) show that less asymmetric information about an
asset diminishes its excess return. In the present model with no asymmetric in-
formation, it is publicly inferrable information that diminishes the excess return.
Easley, Hvidkjaer and O’Hara (2002) provide evidence for a diminishing-excess-
return effect when information becomes more uniform across investors: as the
probability that trades are based on insider information drops by ten percentage

3The International Monetary Fund (1999) champions such cost reducing policies but also
proposes to publicly provide so-far undisclosed information.
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points, the expected return of a NYSE stock diminishes by 2.5 percentage points
a year. This diminishing-return effect is consistent with both less private and
more public information.

Drawing on Raiffa and Schlaifer’s (1961) decision theory, this paper adds an
experimentation stage to standard portfolio choice. The paper considers Poisson
distributed signals and gamma distributed asset returns. With the Poisson-
gamma pair, Wall Street equilibrium has a closed form so that the information
market equilibrium is tractable. The existence of a transparency limit is not
specific to the Poisson-gamma pair. In fact, for the common normal-normal
distribution pair, the natural transparency limit under fully revealing price is no
information (Muendler 2002, ch. 4).

The Poisson signal distribution reflects the discreteness of financial informa-
tion such as Standard & Poor’s or Moody’s investment grades, and is a statistical
approximation to many binomial thumbs-up, thumbs-down signals. Public infor-
mation, if superior to private information, arrives in bundles of multiple Poisson
signals rather than in single signals. To be informative, public and private sig-
nals must depend on the same financial fundamentals. The success of Nelson’s
(1991) exponential ARCH model in empirical finance suggests that the gamma
distribution represents a particularly relevant family of return distributions.4 Re-
alistically, gamma distributed payoffs cannot be negative so that investors can
never lose more than their principal.

The action value of information is the expected utility benefit of a signal
under the condition that no strategic action can be taken at Wall Street. An
extension of the action value to strategic interaction in the asset market remains
for future research. The natural transparency limit, I conjecture, will shift but
not disappear.

The following section 1 presents the rational information choice model and
discusses its assumptions. There is a unique and fully revealing equilibrium at
Wall Street, derived in section 2. Moving backward in time, section 3 establishes
equilibrium in the preceding information market and shows how financial primi-
tives determine the value of information. Section 4 investigates the welfare prop-
erties of the information market equilibrium and discusses transparency policies.
Section 5 concludes with final remarks.
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Figure 1: Timing of decisions and information revelation

1 Portfolio and Information Choice

Consider a canonical expected utility model of portfolio choice. There are two
periods, today and tomorrow, and there are two assets: One riskless bond b and
one risky stock x. Assets are perfectly divisible. The riskless bond sells at a
price of unity today and pays a real interest rate r ∈ (−1,∞) tomorrow so that
the gross interest factor is R≡1+r ∈ (0,∞). The risky asset sells at a price P
today and pays a gross return θ tomorrow.

Add to this model an opening stage of signal acquisition. Investors hold
prior beliefs about the distribution of the risky asset return and can hire spy
robots (acquire signals) to receive reports (get signal realizations and update
beliefs). Markets for spy robots (signals) Si

n open at 9am today. Robot n, hired
by investor i, reports back exclusively to investor i with a signal realization si

n

before 10am. How many different spy robots N i should investor i hire?
Each investor knows that she will base her portfolio decision, to be taken at

10am today, on the information that she is about to receive from her N i spy
robots. Signals are independent, conditional on the asset return. Moreover, the
asset price at 10am will also contain information. The reason is that each investor
chooses her portfolio given her observations of signal realizations ({si

n}N i

n=1), and
the Walrasian auctioneer at Wall Street clears the market by calling an equi-
librium price. In the benchmark case of a fully revealing equilibrium, the asset

4Special cases of the gamma distribution are the exponential, the chi-squared, and the
Erlang distribution, for instance. Davis (1993) presents an earlier model in finance that employs
the gamma distribution.
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price is invertible in a sufficient statistic of all investors’ posterior beliefs and
hence permits the rational extraction of all relevant market information. This is
the case in the present paper.

The timing is illustrated in Figure 1. Every investor i is endowed with certain
initial wealth W i

0. At 9am, investors choose the number of signals (spy robots)
N i. To do so, they maximize ante notitias expected utility based on their prior
beliefs before signal realizations become known (ante notitias). Investors then
receive the realizations {si

1, ..., s
i
N i} of these N i signals (they get to know the

content of the spy robots’ reports) and update their beliefs. When Wall Street
opens at 10am today, investors choose consumption today and tomorrow, Ci

0 and
C i

1, and decide how much of the risky asset to hold. At this stage, they maximize
post notitias expected utility based on their posterior beliefs.5 The Walrasian
auctioneer in the financial market sets the price P for the risky asset such that
the stock market clears. The bond market clears given the interest factor R so
that RP is the opportunity cost of holding a risky asset rather than a bond.

The acquisition of signals changes the expected asset price P ante notitias.
So, investors can affect the expected value of their endowments W i

0 = bi
0 + Pxi

0

by buying signals. This purely distributional incentive to acquire information
complicates the analysis but does not change basic insights about the action
value of information or the transparency limit. Appendix E provides a general
proof of the key proposition of this paper and accounts for the wealth effect of
information. To focus the analysis, consider homogeneous investors with xi

0 = 0.
There is a sole (foreign) issuer of the risky asset, and this initial asset owner
is considered irrelevant for information acquisition. Appendix E shows that the
sole owner of the risky asset may indeed not want to acquire any signal.

1.1 Conjugate updating

Financial information often comes in discrete levels such as Standard & Poor’s or
Moody’s investment grades, or on a three-level buy-hold-sell scale. It therefore
appears not only convenient but realistic to consider discrete signals. Poisson
distributed signals in particular exhibit several useful statistical properties. For
a large number of repetitions, Poisson probabilities approximate binomial (good
news, bad news) signal distributions (Casella and Berger 1990, Example 2.3.6).
The sum of N i conditionally independent Poisson signals is itself Poisson dis-
tributed with mean and variance N iθ (appendix A).

5To clarify the timing of signal realizations, I distinguish between ante notitias and post
notitias expected utility. Ante notitias expected utility is different from prior expected utility
in that the arrival of N i signals is rationally incorporated in ante notitias expected utility.
Raiffa and Schlaifer (1961) favored the terms “prior analysis,” “pre-posterior analysis” and
“posterior analysis.” Laffont (1985) used ex ante, interim, and ex post.
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Assumption 1 (Poisson distributed signals and conjugate updating). Signals
are Poisson distributed and update the prior distribution of the asset return θ to
a posterior distribution from the same family.

A gamma distribution of the asset return, θ ∼ G(αi, βi), uniquely satisfies as-
sumption 1 (Robert 1994, Proposition 3.3). The parameters {αi, βi} are part of
investor i’s information set. The parameter αi is sometimes referred to as the
shape parameter and 1/βi as the scale parameter.

A gamma distributed asset return has the advantage that its support is
strictly positive so that, realistically, negative returns cannot occur. In con-
trast, a normal asset return would imply that stock holders must cover losses
beyond the principal (θ < −P ) with a strictly positive probability. Moreover,
the Poisson-gamma pair makes sure that signals have positive value even for in-
vestors with no risky asset endowment. A normal-normal pair of signal-return
distributions would result in zero information acquisition in the present model
(Muendler 2002, ch. 4).

The mean of a gamma distributed return θ is αi/βi, and its variance αi/(βi)2.
Thus, the mean-variance ratio is βi. It will play a key role. An important
property of the Poisson-gamma pair relates to the updating of beliefs (Robert
1994, Proposition 3.3):

Fact 1 (Conjugate updating). Suppose the prior distribution of θ is a gamma
distribution with parameters ᾱ > 0 and β̄ > 0. Signals Si

1, ..., S
i
N i are indepen-

dently drawn from a Poisson distribution with the realization of θ as parameter.
Then the post notitias distribution of θ, given realizations si

1, ..., s
i
N i of the sig-

nals, is a gamma distribution with parameters αi = ᾱ+
∑N i

n=1 si
n and βi = β̄+N i.

Derivations in this paper draw on some further useful properties of the Poisson-
gamma distribution pair. Those are reported in appendix A.

It is instructive to consider investors who are identical in beliefs and risk
aversion. This homogeneity is necessary for price to become fully revealing. If
investors also know market size, asset price will become fully revealing.

Assumption 2 (Common priors and risk aversion). Investors have common
prior beliefs about the joint signal-return distribution, and the same risk aversion.

Assumption 3 (Known market size). The average supply of the risky asset x̄
and the total number of investors I are certain.

So, investor i’s information set is {αi, βi; x̄, I; RP}.
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1.2 Portfolio choice

A signal costs c. The intertemporal budget constraint of investor i is

bi + Pxi = bi
0 − Ci

0 − cN i (1)

today, and
Ci

1 = Rbi + θxi (2)

will be available for consumption tomorrow.

Assumption 4 (Expected utility). Investors i = 1, . . . , I evaluate consumption
with additively separable CARA utility U i at individual discount rates ρi:

U i = E
[
u(Ci

0) + ρiu(Ci
1)

∣∣ αi, βi; x̄, I; RP
]
, (3)

where u(C) = − exp{−AC} < 0.

After having received the realizations of her N i signals {si
j}N i

j=1 and up-
dated beliefs to post notitias beliefs, every investor i maximizes expected util-
ity (3) with respect to consumption Ci

0 today and Ci
1 tomorrow given (1) and

(2). For ease of notation, abbreviate investor i’s conditional expectations with
Ei [·] ≡ E [· |αi, βi; x̄, I; RP ] when they are based on post notitias beliefs, and
with Eante [·] ≡ E [·

∣∣ᾱ, β̄; x̄, I; RP
]

for ante notitias beliefs in anticipation of N i

signal receipts. Post notitias expectations coincide for all investors under fully
revealing price.

For a gamma distributed asset return, demand for the risky asset becomes
(see appendix B)

xi∗ =
βi

A

Ei [θ]−RP

RP
≡ βi

A
· ξi. (4)

Demand for the risky asset decreases in price and the riskless asset’s return;
demand is the higher the less risk averse investors become (lower A) or the
higher the expected mean-variance ratio βi of the asset is. Investors go short
in the risky asset whenever their return expectations fall short of opportunity
cost, Ei [θ] < RP , and go long otherwise. Under CARA, demand for the risky
asset is independent of wealth W i

0. Bond demand bi varies to satisfy the wealth
constraint.

The factor Ei [θ −RP ] /RP is an individual investor i’s expected relative ex-
cess return over opportunity cost. Risk averse investors demand this premium.
For later reference, define

ξi ≡ Ei [θ]−RP

RP
. (5)

The expected relative excess return ξi has important informational properties
that crucially affect incentives for information acquisition.
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1.3 Rational information choice equilibrium

At the outset, every investor chooses the number of signals she wants to receive.
She does this by maximizing ante notitias utility given her beliefs before the
realizations of the signals arrive. At this time she does not know more than the
prior parameters of the respective distributions, but she builds her ante notitias
beliefs by taking into account how signals will likely change beliefs at 10am.
Ante notitias utility is Eante [U i∗] = Eante [u(Ci∗

0 )] + ρiEante [u(Ci∗
1 )] by iterated

expectations. The optimal number of signals N i∗ ≥ 0 maximizes ante notitias
utility Eante [U i∗].

In the spirit of competitive equilibrium, a rational expectations equilibrium
(REE) that clears both the asset market and the market for signals can be defined
as a Walrasian equilibrium at Wall Street preceded by a Bayesian public-goods
equilibrium in the market for detective services. I call this REE extension a
Rational Information Choice Equilibrium, or RICE.

Rational Bayesian investors choose signals given the expected asset market
REE at Wall Street under anticipated information revelation. The equilibrium
in the market for signals is a benchmark public-goods equilibrium similar to
Samuelson’s (1954) definition. Agents mutually respond to other agents’ ra-
tional demand for signals in the Nash equilibrium. Most important, investors
know all other investors’ signal choices

∑
k 6=i N

k,∗ when taking their portfolio
decision at Wall Street. In practice, international lenders know the frequency of
a sovereign debtor’s reports and the number of rating agencies who classify the
country’s solvency. Stock market investors know the annual number of corporate
statements and can obtain published head counts of financial analysts who track
a given stock.

Definition 1 (RICE). A rational information choice equilibrium (RICE) is an
allocation of xi∗ risky assets, bi∗ riskless bonds, and N i∗ signals to investors
i = 1, ..., I and an asset price P along with consistent beliefs such that

• the portfolio (xi∗, bi∗) is optimal given RP and investors’ post notitias be-
liefs for i = 1, ..., I,

• the market for the risky asset clears,
∑I

i=1 xi∗ = Ix̄, and

• the choice of signals N i∗ is optimal for investors i = 1, ..., I given the sum
of all other investors’ signal choices

∑
k 6=i N

k,∗ and marginal signal cost c.

Investors evaluate ante notitias expected utility for their signal choice. Ante
notitias expected utility has no closed form, however, unless R is constant. As-
sumption 5 assures this.
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Assumption 5 (Single-price responses to signal realizations). The equilibrium
price of an asset only responds to signal realizations on its own return.

The assumption is equivalent to the limiting case where markets for individual
risky assets are small relative to the overall market for riskless bonds so that
single signal realizations alter R negligibly little (see appendix C for a formal
derivation). Economies with large safe forms of debt such as government debt
and small open economies are examples.

2 Financial Market Equilibrium

To solve for RICE, we can work backward. For now, restrict attention to the par-
tial REE at Wall Street, given any market equilibrium for spy robots. Investors
i = 1, ..., I have received the spy robots’ reports (realizations of their condition-
ally independent N i signals). It is 10am, and investors choose portfolios (xi∗, bi∗)
given their post notitias information sets.

In REE, rational investors consider their own signal realizations and also

extract information from price. RP and
∑N i

n=1 si
n are correlated in equilibrium.

So, the post notitias distribution of the asset return, based on this information
set, can be complicated. If price P is fully revealing, however, the information
sets of all investors coincide. This gives the rational beliefs in REE a closed and
linear form analogous to fact 1.

Proposition 1 (Unique asset market REE). Under assumptions 1 through 4,
the asset market REE in RICE is unique and symmetric, conditional on the

number of signals Nk and their total realizations
∑I

k=1

∑Nk

n=1 sk
n, with

αi = ᾱ +
I∑

k=1

Nk∑
n=1

sk
n ≡ α, (6)

βi = β̄ +
I∑

k=1

Nk ≡ β, (7)

RP =
α

β

1

1 + ξ
, (8)

where xi∗ = x̄ and ξi = ξ ≡ Ax̄/β.

Proof. By (4) and for beliefs (6) and (7), xi∗ = α/(ARP ) − β/A for all i. So,
market clearing xi∗ = x̄ under definition 1 of RICE implies (8).
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Uniqueness of beliefs (6) and (7) follows by construction. By (4) and market
clearing, RP can always be written as an affine function of all signal realiza-

tions
∑I

k=1

∑Nk

n=1 sk
n so that every investor i can infer everyone else’s signal re-

alizations from her knowledge of own signal realizations. Everyone else’s signals∑
k 6=i

∑Nk

n=1 sk
n and own signals

∑N i

n=1 si
n are Poisson distributed by fact 3 but con-

ditionally independent. So, a rational investor applies Bayesian updating follow-

ing fact 1. Hence, αi = ᾱ+
∑N i

n=1 si
n +

∑I
k 6=i

∑Nk

n=1 sk
n and βi = β̄+N i +

∑I
k 6=i N

k.∑I
k 6=i N

k is known by definition 1 of RICE.
No less than all signals can get revealed in REE. Otherwise at least one

investor would not base demand on her signal, which is ruled out in an REE.

The equilibrium price P fully reveals aggregate information of all market
participants. Formally, aggregate information is the total of all signals received:∑I

i=1

∑N i

n=1 si
n. This is a sufficient statistic for every moment of θ given

∑I
i=1 N i

(which is known by definition 1 of RICE). It can be shown that the equilibrium
price is fully revealing if and only if assumptions 1 through 4 are satisfied.

In fully revealing REE, investors’ information sets coincide by (6) and (7).
Consequently, the expected relative excess return ξi = ξ (5) coincides. It becomes

ξ =
E [θ]−RP

RP
=

Ax̄

β
=

Ax̄

β̄ +
∑I

k=1 Nk
∈ (0, ξ] where ξ ≡ Ax̄

β̄
. (9)

The limit ξ is the elementary excess return: the maximal expected excess return
absent information acquisition.

The expected relative excess return Ei [θ−RP ] /RP will be crucial for indi-
vidual incentives to buy information: information diminishes the expected excess
return. Equilibrium price P reveals signal realizations. So, private information
becomes publicly known to investors through informative price and risk averse
investors value the risky asset more, thus bidding up price. Therefore, investors
expect higher opportunity cost of the risky asset Eante [RP ] in the face of reduced
uncertainty.

Proposition 2 (Diminishing expected excess return). Under assumptions 1
through 4, the expected relative excess return ξ in asset market REE strictly
falls in the number of signals, while the expected opportunity cost of the risky
asset Eante [RP ] strictly increases in the number of signals ante notitiam.

Proof. Note that ξ = Eante [ξ] by (9). The number of signals N̄ =
∑I

k=1 Nk

strictly diminishes ξ by (9). The number of signals strictly raises Eante [RP ] =
(ᾱ + ᾱN̄/β̄)/(Ax̄ + β) since ∂Eante [RP ] /∂N̄ = ξ/β2(1 + ξ)2 > 0.
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To choose the number of spy robots, investors evaluate the utility benefit
in expected asset market equilibrium. Post notitias expected utility Ei [U i] =
E [U i|αi, βi; x̄, I; RP ], given signal realizations, is

Ei [U i] = −δi exp{−AR(bi
0 − cN i)} 1

1+R

× exp
{−ARP (xi

0 − xi∗)
} 1

1+R
[
βi/(βi+Axi∗)

] αi

1+R ,

using (4) in utility (3), where δi ≡ 1+R
R

(ρiR)
1

1+R . In asset market equilibrium
with (6), (7) and (8), post notitias expected utility becomes

Ei [U i] = −δi exp{−AR(bi
0 − cN i)} 1

1+R exp {ξ/(1 + ξ)} α
1+R (1 + ξ)−

α
1+R , (10)

where ξ = Ax̄/β is the expected excess return.

3 The Action Value of Information

Given the expected financial market equilibrium, how many spy robots do in-
vestors hire in RICE? Investors dislike the diminishing effect of information on
the expected relative excess return ξ but anticipate a more educated portfolio
choice if they can receive spy robots’ reports. In their ante notitias choice of
the optimal number signals, risk averse investors weigh the diminishing excess
return and the marginal cost of a signal against the benefit of a more informed
intertemporal consumption allocation. The net marginal utility benefit is the
net action value of information.

Taking prior expectations of (10) yields ante notitias expected utility

Eante

[
Ei

[
U i

]]
= −δi exp

{−A R
1+R

(W i
0 − cN i)

}
(11)

×
[
1 +

([
(1 + ξ) exp

{
− ξ

1 + ξ

}] 1
1+R

− 1

)
ξ

ξ

]−ᾱ

(see appendix D). The cost of signals cN i enters (11) in the form of an initial
wealth reduction. The last factor in (11) captures the effect of the relative excess
return ξ ∈ (0, ξ] on utility. The term (1 + ξ) exp (−ξ/(1 + ξ)) strictly exceeds
unity since ξ > 0 for finitely many spy robots by (9). Hence, the last factor
in (11) is well defined.

Although the number of signals is discrete, one can take the derivative of
ante notitias utility with respect to N i to describe optimal signal choice. Strict
monotonicity of the first-order condition in the relevant range will prove this to
be admissible.
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Financial primitives: A = 2, ᾱ = 1.3, β̄ = 1, R = 1.1, x̄ = 7, c = .1.
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Figure 2: Action value of information and the transparency limit

Differentiate (11) with respect to N i, and divide by −Eante [U i∗] > 0 for
clarity, to find the marginal net action value of information

− 1

Eante [U i∗]
∂Eante [U

i∗]
∂N i

= −A R
1+R

c (12)

+
ᾱ

β̄

[
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R

(
1− 1

1+R
ξ2

(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R − 1

)
ξ
ξ

.

The first term on the right hand side of (12) is negative and represents the
marginal cost of a signal (MC ) in expected utility terms. The second term
expresses the marginal action value of a signal (MAV ) and can be positive or
negative. The incentive for information acquisition does not depend on an in-
vestor’s patience.

Figure 2 depicts the marginal action value MAV of a signal and its marginal
cost, and shows the optimal information choice N∗ if spy robots were divisi-
ble. The optimal discrete number of spy robots lies in an open neighborhood
around N∗. An additional spy robot can diminish the expected excess return
ξ so strongly that this negative effect more than outweighs the benefits. Then
the marginal action value of information turns negative. Figure 2 depicts this
turnaround point: the natural transparency limit. Investors in a market close
to the transparency limit suffer a strict utility loss if public disclosure pushes
information beyond the transparency limit.

14



How can the action value of information turn negative? Recall that the
action value answers the investor’s question how an additional signal changes
her utility ex ante if she takes into consideration everyone else’s response at Wall
Street to her action upon the signal realization. A negative action value means
that an investor strictly prefers not to receive information because she expects
her and, through revealing price, everyone else’s signal-induced actions to reduce
her welfare. An investor rationally stops acquiring signals before the action value
turns negative. At zero action value, the investor accepts a signal for free. At
negative action value, the investor pays to prevent public disclosure because an
additional signal updates everyone’s beliefs and diminishes excess return below
the minimally desirable level.

The marginal action value of information (12) is not invertible in the num-
ber of signals in closed form. Buying signals Nk, however, is just the converse
of choosing the expected relative excess return ξ because ξ strictly falls in Nk

(proposition 2). So, information acquisition is equivalent to choosing the remain-
ing excess return.

Proposition 3 (Action value of information). Under assumptions 1 through 5,
the following is true for the marginal action value MAV(ξ) of a signal.

• The marginal action value MAV(ξ) is strictly positive iff ξ > ξ, where the
expected excess return at the transparency limit ξ ∈ (0,∞) uniquely solves
MAV(ξ) = 0.

• The marginal action value of information MAV(ξ) strictly increases in ξ
in the range ξ ∈ [ξ, ξ], provided the elementary excess return ξ exceeds the
expected excess return ξ at the transparency limit.

Proof. See appendix E for the general case and set xi
0 = 0.

Figures 3 through 5 depict the marginal signal cost (MC ) and marginal action
value of a signal (MAV ) under varying financial primitives. (By assumption 5
we can consider R a primitive instead of average initial wealth b̄.)

For a strictly positive interest factor R, MAV turns positive at one unique
point ξ > 0 and subsequently increases unboundedly in ξ. The unique zero

point ξ solves MAV (ξ) = 0 and is independent of the elementary excess return ξ

(and ᾱ, β̄). In contrast to cases of non-convexities (e.g. Chade and Schlee 2002)
but in line with findings from the experimentation literature (e.g. Moscarini and
Smith 2001), the value of information is well behaved in our rational Bayesian
model of portfolio choice. In the range where signals have positive utility value,
the marginal action value MAV of an additional signal strictly monotonically
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Figure 3: Action value of information and expected excess return

falls. Ante notitias expected utility is thus strictly concave in signals in the
relevant range.

Under what conditions do investors buy information? Figure 3 shows a case
(for the same parameters as in Figure 2). When investors acquire signals, they
move ξ away from the elementary excess return ξ and to the west. The MAV
curve has a long arm in the positive range that slopes strictly upward by propo-
sition 3. So, as long as the elementary excess return ξ is large enough, there is
a strictly positive expected excess return ξ∗ at which the marginal action value
MAV of a signal equals marginal cost MC. Although the relative excess return
could attain any real value in principle, signals are not perfectly divisible. As a
consequence, the precise optimal number of signals yields an expected relative
excess return in an open interval around ξ∗.

An interior equilibrium can only occur if the elementary excess return ξ is
large. So, investors will acquire a strictly positive amount of information only if
the financial primitives meet the following two conditions. First, supply of the
risky assets needs to be strong so that x̄ is high. Then investors anticipate that
they will hold a relatively large portion of their savings in the risky asset, and
information about the risky asset return becomes important to them. Second,
investors need to be sufficiently risk averse relative to prior beliefs about the
mean-variance ratio β̄ so that A/β̄ is high. Because the benefit of information
stems from lowering the prior variance of the portfolio, information matters more
for investors who are more risk averse.

In short, financial primitives determine whether information is valuable. In-
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Figure 4: No information acquisition at high cost

formation is not a good in itself. When the elementary excess return ξ drops too
low, the marginal action value MAV of a signal cannot reach or exceed marginal
cost, and nobody will acquire a signal so that ξ∗ = ξ. This case is depicted
in Figure 4 (risky asset supply is reduced by more than half compared to Fig-
ure 3). The elementary excess return ξ is low if relatively few risky assets are
in the market (low x̄), or if investors are little risk averse (low A), or when the
prior mean-variance ratio of the asset return is relatively high (high β̄) so that
risk matters little compared to payoff. Then investors do not value information
enough to buy it.

What if signal cost drops to zero? Even then, there are market conditions
where information has no or negative value. Figure 5 depicts a case in which the
price of a signal c is zero but information will not be acquired (risky asset supply
is reduced to a seventh of the level in Figure 3). When the amount of available
information is large already, the price externality that diminishes expected excess
return ξ weighs more heavily than the benefits of resolving uncertainty. The
marginal action value MAV is strictly negative and investors find additional
disclosure undesirable even at zero signal cost.

The marginal action value MAV vanishes as the excess return ξ goes to zero.
In this limit, no investor wants to purchase a costly signal. But every investor
would accept signals for free. The economy tends to ξ → 0 when no risky assets
are supplied to the market (x̄ → 0). Similarly, when investors become risk neutral
(A → 0), or when the prior variance tends to zero (β̄ → ∞), then there is no
benefit of holding information but also no harm done. Finally, if investors were
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Figure 5: Rejection of information beyond transparency limit

given infinitely many signals for free, all uncertainty would be resolved. Then
ξ would also reach zero but the return realization θ would become known with
certainty and the previously risky asset would turn into a perfect substitute to
the bond. The common cause for information to lose its value in all these cases is
that the relative excess return ξ is driven down to zero so that no investor chooses
to hold any risky asset. In this limit, information does not have a negative value
either. Investors are simply unaffected. If investors don’t think at 9am that they
will be holding a risky asset at 10am, they know they will never need to act upon
information. An infinite amount of information makes investors indifferent to it
in the presence of a safe bond.

The following proposition summarizes these insights.

Proposition 4 (RICE). Under assumptions 1 through 5, information acquisi-
tion occurs in RICE under the following conditions.

• Investors acquire a strictly positive and finite number of signals in signal
market equilibrium if and only if the elementary excess return ξ strictly ex-
ceeds the excess return ξ at the transparency limit, where ξ solves MAV(ξ) =
0.

• If the cost of a signal is zero but R > 0, then there are two signal mar-
ket equilibria, one of which involves an infinite amount of freely received
signals.
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Figure 6: Socially desirable information choice

RICE does not determine how many signals a single investor holds. In equi-
librium, one investor may acquire all

∑
i N

i signals while nobody else buys any
signal, or all investors may hold the same number of signals. Signals are pub-
lic commodities and therefore perfect strategic substitutes under fully revealing
price because any fellow investors’ signal is as useful (or detrimental) as one’s
own signal.

4 Welfare and the Transparency Limit

Consider an omniscient social planner who uses a Pareto criterion to judge in-
formation allocation in the private market.

Definition 2 (Informational Pareto efficiency) An allocation of xi∗∗ risky assets,
bi∗∗ riskless bonds, and N i∗∗ signals to investors i = 1, ..., I is called information-
ally Pareto efficient under given financial primitives (ξ, R) if there is no other
allocation such that all investors are at least as well off and at least one investor
is strictly better off.

It does not matter for this Pareto criterion that information can change from a
public good into a public bad. The criterion is conditional on financial primitives.
To investigate whether the RICE in section 3 is Pareto efficient, imagine a benev-
olent social planner who can order every consumer j to buy exactly N j∗∗ signals.
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The social planner maximizes
∑I

j=1 Eante [U j] with respect to {N1, ..., N I}. Thus,
similar to Samuelson’s (1954) condition for public good provision, a benevolent
social planner’s first-order conditions for information allocation are not (12) but
instead

− 1

Eante [U j∗∗]

∂
∑I

k=1 Eante

[
Uk∗∗]

∂Nk
= −A R

1+R
c (13)

+
ᾱ

β̄

[
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R

(
1− 1

1+R
ξ2

(1+ξ)2

)
−1

1 +

([
(1 + ξ) exp

{
−ξ
1+ξ

}] 1
1+R − 1

)
ξ
ξ

(
1 +

I∑

k 6=j

Eante

[
Uk∗∗]

Eante [U j∗∗]

)

for any j ∈ 1, ..., I, written in terms of that investor j’s utility. Thus, compared
to the privately perceived benefits, the potential social benefits SB that a social
planner considers boost the private action value of information MAV by a factor
of 1 + (1/Eante [U j∗∗]) · ∑I

k 6=j Eante

[
Uk∗∗] > 1. Therefore, if information is a

public bad, a benevolent social planner wants to implement an even smaller
amount of information than the private market. Because private investors buy
no information when information is a public bad, the market equilibrium provides
maximal welfare.

On the other hand, if information is a public good under given market con-
ditions, a social planner wants more information to be allocated than markets
provide. So, there is a cause for governmental intervention to achieve more
transparency. Individual investors do not take into account that their signal
acquisition also benefits other investors through revealing price. When informa-
tion is valuable under given financial primitives, markets allocate (weakly) less
information than desirable. In Figure 6, a social planner wants to allocate infor-
mation so that relative excess return is brought down from around ξ∗ to around
ξ∗∗. Signals are not divisible, however, and one cannot infer from condition (13)
that a social planner wants to implement strictly more information.6

Two equilibria exist when information is free. They are Pareto ranked: the
equilibrium with finite information yields strictly higher utility for all investors
than the equilibrium with infinite information since investors incur utility losses
as the excess return ξ moves west from the transparency limit ξ. Even if signal
costs are zero, only the market outcome with finite information is efficient but

6An additional signal can diminish relative excess return ξ so strongly that all investors are
worse and not better off. So, discreteness of the number of signals only permits a conditional
efficiency statement up to discrete tolerance. In Figure 6, a social planner wants to allocate
information so that relative excess return is brought down from around ξ∗ to around ξ∗∗.
However, if an additional signal makes the implementable level of ξ drop far below ξ∗∗, investors
are better off if relative excess return ξ remains at the market equilibrium level around ξ∗.
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not the one with infinite information. So, the natural transparency limit stands
on firm Pareto efficiency grounds even in the extreme. As long as the bond is
valuable (R > 0), neither markets nor the social planner want to completely
resolve uncertainty. Risk-averse investors want to enjoy a positive excess return
ξ over opportunity cost. Investors in incomplete markets want a second asset
that is not a perfect substitute to the safe bond.

Proposition 5 summarizes the arguments.

Proposition 5 Under assumptions 1 through 5, the following is true in a RICE.

• If ξ ≤ ξ, then the equilibrium is informationally Pareto efficient.

• If c > 0 and at least one signal is acquired in equilibrium, then the equi-
librium is not informationally Pareto efficient up to discrete tolerance and
results in too little signal provision.

• If c = 0, then the equilibrium with infinitely much information is not Pareto
efficient for R>0, whereas the equilibrium with finite information is infor-
mationally Pareto efficient.

Government cannot dictate information gathering. Aware of the social plan-
ner’s objective, rational investors will reduce their information acquisition in
response to anticipated public disclosure. In the present framework, public dis-
closure fully crowds out private activity. No matter how many signals private
investors would acquire, they know a benevolent social planner will fill in the
difference up to xi∗∗ (Figure 6). Anticipating this public intervention, rational
investors acquire no information.

Government is not omniscient. The Pareto criterion is at best suggestive to
judge optimal transparency and public disclosure of information. There is sim-
ply no evidence how far the social optimum differs from private market outcomes
and how far, or whether at all, the market outcome differs from the transparency
limit. Proposition 5 implies, however, that when investors seek information, fi-
nancial primitives must be such that information is a public good and underpro-
vided. This justifies governmental intervention to improve transparency. Public
disclosure of private information—about a project’s state, a company’s prospects,
or a sovereign debtor’s internal revenues—may nevertheless be harmful. Pub-
lic disclosure can push the asset market beyond the transparency limit, where
rational investors pay to prevent further information. Reducing the costs of in-
formation acquisition, on the other hand, will also result in more transparency
but no violation of the transparency limit. So, not only practicability but welfare
concerns too suggest that reducing costs of information acquisition is a superior
strategy to achieve adequate financial transparency.
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5 Concluding Remarks

Information is a tertiary commodity in financial markets. Investors care for the
primary good, consumption. Assets are means to the end of consumption and
therefore secondary. Information, in turn, is valuable only if it helps investors
improve their asset holdings. This makes information a tertiary commodity. Not
surprisingly, the action value of information changes with financial primitives.
Giving rational investors a choice of information before they decide on their
portfolios shows that there is a natural transparency limit. Public disclosure
of information may violate the transparency limit. Therefore, to instill trans-
parency, cutting down costs of information acquisition appears more adequate
than disclosure.

Financial information is a public commodity because investors use revealing
asset price to update beliefs. This constitutes a rationale for intervention to in-
still transparency. The paper considered the benchmark of a fully revealing asset
price. A partially revealing price does not uproot the basic transmission mecha-
nism of private information through price; partial revelation just makes price less
informative. Under partially revealing price, the transparency limit conceivably
moves to a higher number of signals. In fact, partially revealing price makes
it rational for investors to acquire duplicates of identical signals. This paper
considered the benchmark of Walrasian equilibrium and did not admit strategic
investors to Wall Street. Strategic investors could manipulate asset demands to
prevent perfect revelation of their information. The natural transparency limit,
I conjecture, will shift even farther but not fade away.
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Appendix

This appendix lists properties of Poisson and gamma distributions, and uses them
for proofs to propositions and statements in the text. Derivations are based on
moment generating functions (MGF).

A Properties of the Poisson-gamma distribu-

tion

Fact 1 in the text states how Poisson signals update beliefs about gamma dis-
tributed returns. Several further properties are useful.

A.1 Poisson signals

Poisson distributed signals Si
n|θ i.i.d.∼ P(θ) have a density

f
(
si

n |θ
)

=

{
exp{−θ} θsi

n/si
n! for si

n > 0
0 for si

n ≤ 0

Fact 2 (Poisson MGF). The MGF of a Poisson signal is

MS|θ(t) = exp{θ(exp{t} − 1)}.
Proof. Casella and Berger (1990).

Fact 3 (Sum of Poisson signals). The sum of N independently Poisson dis-
tributed signals with a common mean and variance θ, S1 + ...+SN , has a Poisson
distribution with parameter Nθ.

Proof. The distribution of the sum of N independent Poisson variables is the
product ΠN

n=1f (si
n |θ ) = exp{−Nθ} θ

∑N
n=1 si

n/
∑N

n=1 si
n!, a Poisson distribution

with parameter Nθ.

A.2 Gamma returns

Given an individual investor i’s information set {αi, βi}, the risky asset return
is distributed θ ∼ G(αi, βi) so that its density is

π
(
θ
∣∣αi, βi

)
=

{
(βi)αi

θαi−1 exp{−βiθ}/Γ(αi) for θ > 0
0 otherwise

where the gamma function is given by Γ(αi) ≡ ∫∞
0

zαi−1e−z dz. The two param-
eters αi and βi must be positive.
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Fact 4 (Gamma MGF). The MGF of a gamma distributed return is

Mθ|αi,βi(t) =

(
βi

βi − t

)αi

.

Proof. Casella and Berger (1990).

A.3 Poisson-gamma signal-return distribution

The following property of the Poisson-gamma distribution pair proves useful for
the derivation of ante notitias expected indirect utility.

Fact 5 (Expected signal effect on utility). For two arbitrary constants B and ξ,
N̄ Poisson distributed signals S1, ..., SN̄ and a conjugate prior gamma distribution
of their common mean θ, the following is true:

Eante


(1 + ξ)

−B·
N̄∑

n=1
sn · exp

{
− ξ(ωi−1)

1+ξ
B ·

N̄∑
n=1

sn

}


= (1 + ξ)ᾱB exp
{

ᾱ ξ(ωi−1)
1+ξ

B
}(

1 +
[
(1 + ξ)B exp

{
ξ(ωi−1)

1+ξ
B

}
− 1

]
β
β̄

)−ᾱ

,

where ᾱ and β̄ are the parameters of the prior gamma distribution of θ, and
β = β̄ + N̄ is the according parameter of the post notitias distribution.

Proof. By iterated expectations Eante [·] = Eθ [E [· |θ ]]. The ‘inner’ expectation
E [· |θ ] is equal to

E [· |θ ] =
∑∞

(
∑N̄

n=1sn)= 0
(1 + ξ)

−B
N̄∑

n=1
sn

exp

{
− ξ(ωi−1)

1+ξ
B

N̄∑
n=1

sn

}
f

(∑N̄
n=1 sn

)

= exp
{
−N̄θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})}
,

because the sum
∑N̄

n=1 sn is Poisson distributed with mean N̄θ (fact 3). Thus,
by the MGF of a gamma distribution (fact 4),

Eante [·] = Eθ

[
exp

{
−θ

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

}]

= (β̄)ᾱ
(
β̄ +

(
1− (1 + ξ)−B exp

{
− ξ(ωi−1)

1+ξ
B

})
(β − β̄)

)−ᾱ

.

since N̄ = β − β̄ (fact 1). Simplifying the last term and factoring out (1 +

ξ)B exp{ ξ(ωi−1)
1+ξ

B} proves fact 5.
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B Optimality conditions and portfolio value

Define t ≡ −Axi ∈ (−∞, 0) for the moment generating function (MGF) Mθ|Fi(t),
where the information set F i ≡ {αi, βi; x̄, I; RP}. Maximizing (3) over xi and bi

for CARA (assumption 4 and 2) yields the first-order conditions

P

ρi
= H i M ′

θ|Fi(t) and
1

ρiR
= H i Mθ|Fi(t), (B.1)

where H i ≡ exp{−A[(1+R)bi + Pxi −W i
0 − cN i]}. Note that H i, W i

0, Ci
1 and

C i
0 are functions of F i since RP depends on F i.

With the definition of H i, the optimal portfolio value can be written

bi + Pxi = 1
1+R

(
W i

0 − cN i + RP xi − 1
A

ln H i
)

(B.2)

= 1
1+R

[
bi
0 + RP (xi

0/R + xi) + 1
A

ln ρiRMθ|Fi(−Axi)− cN i
]
,

where the second line follows from the bond first-order condition in (B.1).
The matrix of cross-derivatives for the two assets bi and xi reflects the second-

order conditions:

B = −A2ρi exp{−ARbi}
∣∣∣∣
R(1+R)Mθ|Fi(t) ·
(1+R)M ′

θ|Fi(t) PM ′
θ|Fi(t) + M ′′

θ|Fi(t)

∣∣∣∣ (B.3)

by (B.1). It is negative definite for the gamma distribution (fact 4).
Using the MGF of the gamma distribution (fact 4) in first-order condi-

tion (B.1) yields risky asset demand (4) in the text.

C Bond return response to stock information

Taking logs of both sides of the bond first-order condition in (B.1) yields

A(1+R)bi − Abi
0 + AP (xi − xi

0) = ln[ρiRMθ|Fi(−A xi)] + AcN i,

a permissible operation since ρi, R,Mθ|Fi(·) > 0 by their definitions. Summing
up both sides over investors i and dividing by their total number yields

ARb̄− ln ρiR− ln Mθ|Fi(t)− Ac
∑I

k=1 Nk/I = 0 (C.1)

where b̄ ≡ ∑I
i=1 bi

0/I is the average initial bond endowment per investor and t ≡
−Ax. Equation (C.1) implicitly determines the gross bond return R. Post noti-

tias, Mθ|Fi(t) and R respond to the signal realization. Define s̄ ≡ ∑I
k=1

∑Nk

n=1 sk
n.
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Applying the implicit function theorem to (C.1) for the MGF of the gamma
distribution Mθ|α,β(t) = [β/(β − t)]α yields

dR

ds̄
= − ln(1 + ξ)

Ab̄− 1/R

for α = ᾱ + s̄, β = β̄ +
∑I

k=1 Nk by (6) and ξ = Ax̄/β given
∑I

k=1 Nk. The
bond return falls in response to a favorable signal realization s̄ iff b̄ > 1/(AR).
So, in principle, R too is a function of the signal realization s̄. For large bond
endowments b̄, however,

lim
b→∞

dR/ds̄ = 0.

Similarly, dR/ds̄ = 0 for ξ = x̄ = 0.

D Ante notitias expected indirect utility

For a gamma distributed asset return, post notitias expected indirect utility (10)
becomes

Ei [U i∗] = −δi exp
{−A R

1+R
(W i

0 − cN i)
}

exp
{

ξ(ωi−1)
1+ξ

}− αi

1+R
(1 + ξ)−

αi

1+R (D.1)

where ωi ≡ xi
0/x̄ ∈ [0, I] is the relative endowment of investors with the risky

asset, and ξ ≡ Ax̄/β. With fact 5 at hand, one can set B ≡ 1/(1 + R) (by
assumption 5) and obtains ante notitias expected utility (11) for ωi = 0.

E Monotonic action value of information

Define the relative endowment of investors with the risky asset as ωi ≡ xi
0/x̄ ∈

[0, I]. The expected relative excess return ξ is bounded by ξ ∈ (0, ξ]. Under
assumptions 1 through 5, the marginal action value MAV(ξ, ωi) of a signal is
MAV (ξ, ωi) = g(ξ, ωi)/h(ξ, ωi) with

m(ξ, ωi) ≡
[
(1 + ξ) exp

{
ξ(ωi−1)

1 + ξ

}] 1
1+R

, (E.1)

h(ξ, ωi) ≡ 1 +
[
m(ξ, ωi)− 1

] ξ

ξ
, (E.2)

g(ξ, ωi) ≡ −ξ2

ξ

∂h(ξ, ωi)

∂ξ
= m(ξ, ωi)

(
1− 1

1+R

ξ(ξ+ωi)

(1 + ξ)2

)
−1. (E.3)
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Proposition 3 is a special case for ωi = 0. The general proof for ωi ∈ R+

proceeds in four steps.
First, claim 1 sates useful properties of m(ξ, ωi) for the discussion of g(ξ, ωi)

and h(ξ, ωi). Second, claim 2 establishes that the numerator g(ξ, ωi) strictly
increases in ξ for ξ > |ωi−1|

√
1 + 1/R−ωi and that it is not bounded above. So,

the numerator boosts the marginal action value of information MAV(ξ, ωi) higher
and higher as ξ rises. Third, claim 3 establishes that the denominator h(ξ, ωi) is
bounded below and above in the positive range, and that it strictly decreases in
ξ iff the numerator is strictly positive. So, the denominator cannot explode and
boosts the marginal action value MAV(ξ, ωi) higher where the marginal action
value MAV(ξ, ωi) is positive. The latter two claims imply that MAV(ξ, ωi) strictly
increases in ξ for ξ > |ωi−1|

√
1 + 1/R − ωi and that MAV(ξ, ωi) is unbounded

for arbitrarily large ξ. So, fourth and last, MAV(ξ, ωi) ultimately attains strictly
positive values and continues to strictly increase in that positive range.

Claim 1 m(ξ, ωi) strictly increases in ωi; m(0, ωi) = 1; and m(ξ, ωi) > 1 for
any ξ > 0, ωi ≥ 0 and R∈(0,∞).

Proof. By (E.1), ∂m(ξ, ωi)/∂ξ = m(ξ, ωi)ξ/(1 + ξ) > 0, which establishes the
first part of the claim.

Taking natural logs of both sides of (E.1) is permissible since m(ξ, ωi) > 0
and shows that m(ξ, ωi) ≥ 1 iff ln(1 + ξ) ≥ −ξ(ωi−1)/(1 + ξ). Since m(ξ, ωi)
strictly increases in ωi, consider ωi = 0. So, m(ξ, 0) ≥ 1 iff ln(1+ ξ) ≥ ξ/(1 + ξ).
Note that equality holds at ξ = 0 but ln(1 + ξ) increases strictly faster in ξ than
ξ/(1 + ξ) increases in ξ for any ξ > 0. So, m(ξ, 0) ≥ 1. Since m(ξ, ωi) strictly
increases in ωi, m(ξ, ωi) ≥ 1.

Claim 2 g(ξ, ωi) strictly increases in ξ iff ξ > |ωi−1|
√

1 + 1/R−ωi. In addition,
limξ→0 g(ξ, ωi) = 0 and limξ→∞ g(ξ, ωi) = +∞.

Proof. The first derivative of g(ξ, ωi) with respect to ξ is

∂g(ξ, ωi)

∂ξ
=

ξ

(1+R)2(1+ξ)4
m(ξ, ωi)

[
R(ξ + ωi)2 − (1+R)(ωi − 1)2

]
.

So, ∂g(ξ, ωi)/∂ξ = 0 at ξ = 0 and at ξ = |ωi−1|
√

1 + 1/R − ωi (the negative
root is ruled out by ξ ≥ 0). Evaluating ∂g(ξ, ωi)/∂ξ = 0 around the zero points
shows that g(ξ, ωi) strictly decreases in ξ if ξ ∈ (0, |ωi−1|

√
1 + 1/R − ωi) and

strictly increases if ξ ∈ (|ωi−1|
√

1 + 1/R− ωi,∞).
limξ→0 g(ξ, ωi) = m(0, ωi) − 1 = 0 by claim 1. limξ→∞ g(ξ, ωi) = −1 +

limξ→∞ exp{ξ/(1 + R)} = +∞ since R∈(0,∞).
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Claim 2 implies that there must be a ξi > |ωi− 1|
√

1 + 1/R − ωi that

uniquely solves g(ξi, ωi) = 0 because g(ξ, ωi) strictly decreases as long as ξ <

|ωi−1|
√

1 + 1/R− ωi) but subsequently strictly increases in ξ.

Claim 3 h(ξ, ωi) strictly decreases in ξ iff g(ξ, ωi) > 0. h(ξ, ωi) is bounded in
h(ξ, ωi) ∈ (1, h(ξi, ωi)] for ξ ∈ (0, ξ] and R ∈ (0,∞), where h(ξi, ωi) > 1, ξ is

given by (9) and ξi solves g(ξi, ωi) = 0.

Proof. By (E.3), ∂h(ξ, ωi)/∂ξ < 0 iff g(ξ, ωi) > 0. So, h(ξ, ωi) attains its
global maximum at ξi, which solves g(ξi, ωi) = 0, and h(ξ, ωi) attains its global
minimum either for ξ → 0 or for ξ →∞. By L’Hôpital’s rule, limξ→0 m(ξ, ωi)/ξ−
1/ξ = 0 so limξ→0 h(ξ, ωi) = 1. Similarly, for R ∈ (0,∞), limξ→∞ h(ξ, ωi) = 1
while limξ→∞ h(ξ, ωi) = 1 + ξ exp{ωi − 1} for R → 0. This establishes that
h(ξ, ωi) ∈ (1, h(ξi, ωi)] for ξ ∈ (0, ξ].

Claims 2 and 3 imply that MAV(ξ, ωi) strictly increases in ξ for ξ > |ωi−
1|

√
1 + 1/R − ωi and that MAV(ξ, ωi) is unbounded for arbitrarily large ξ. So,

MAV(ξ, ωi) attains strictly positive values if and only if ξ > ξi, where ξi >

|ωi−1|
√

1 + 1/R − ωi solves g(ξi, ωi) = 0, and ξi ∈ (0,∞) is independent of ξ
and unique given R∈(0,∞).

The paper considered a sole owner j of the risky project with ωj = I and
argued that her incentives for information acquisition can be ignored. Claim 4
confirms that a sole owner may not value signals: the marginal action value of
information approaches negative infinity as the relative risky asset endowment
ωj (the project size Ix̄) increases for a given average endowment x̄.

Claim 4 g(ξ, ωi) strictly decreases in ωi iff ωi > 1 + R(1 + ξ). In addition,
limξ→∞ g(ξ, ωi) = −∞.

Proof. The first derivative of g(ξ, ωi) with respect to ωi is

∂g(ξ, ωi)

∂ωi
=

1

1+R

ξ2

(1+ξ)2
m(ξ, ωi)

[
R(1 + ξ)− (ωi − 1)

]
,

where m(ξ, ωi) is given by (E.1). So, ∂g(ξ, ωi)/∂ωi = 0 at ωi = 1 + R(1 + ξ).
Evaluating ∂g(ξ, ωi)/∂ξ = 0 around this unique zero point shows that g(ξ, ωi)
strictly increases in ωi if ωi ∈ [0, 1 + R(1 + ξ)) and strictly increases if ωi ∈
(1 + R(1 + ξ), I]. So, limωi→∞ g(ξ, ωi) = −∞ for R∈(0,∞) and ξ∈(, ξ].
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