Skip to main content
eScholarship
Open Access Publications from the University of California

Nucleon-nucleon correlations and the single-particle strength in atomic nuclei

Abstract

We propose a phenomenological approach to examine the role of short- and long-range nucleon-nucleon correlations in the quenching of single-particle strength in atomic nuclei and their evolution in asymmetric nuclei and neutron matter. These correlations are thought to be the reason for the quenching of spectroscopic factors observed in (e,e′p), (p,2p) and transfer reactions. We show that the recently observed increase of the high-momentum component of the protons in neutron-rich nuclei is consistent with the reduced proton spectroscopic factors. Our approach connects recent results on short-range correlations from high-energy electron scattering experiments with the quenching of spectroscopic factors and addresses for the first time quantitatively this intriguing question in nuclear physics, in particular regarding its isospin dependence. We also speculate about the nature of a quasi-proton (nuclear polaron) in neutron matter and its kinetic energy, an important quantity for the properties of neutron stars.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View