- Main
Learning to Represent Exact Numbers
Abstract
This article focuses on how young children acquire concepts for exact, cardinal numbers (e.g., three, seven, two hundred, etc.). I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey (2009). In this framework, the counting list (‘one,’ ‘two,’ ‘three,’ etc.) and the counting routine (i.e., reciting the list and pointing to objects, one at a time) form a placeholder structure. Over time, the placeholder structure is gradually filled in with meaning to become a conceptual structure that allows the child to represent exact numbers (e.g., There are 24 children in my class, so I need to bring 24 cupcakes for the party.) A number system is a socially shared, structured set of symbols that pose a learning challenge for children. But once children have acquired a number system, it allows them to represent information (i.e., large, exact cardinal values) that they had no way of representing before.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-