Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Optimization of superconducting flux qubit readout using near-quantum-limited amplifiers

Abstract

Though superconducting qubits offer the potential for a scalable quantum computing architecture, the high-fidelity readout necessary to execute practical algorithms has thus far remained elusive. Moreover, achievements toward high fidelity have been accompanied by either long measurement times or demolition of the quantum state. In this dissertation, we address these issues with the novel integration of two ultralow-noise, superconducting amplifiers into separate dispersive flux qubit measurements. We first demonstrate a flux qubit inductively coupled to a 1.294-GHz nonlinear oscillator formed by a capacitively shunted DC SQUID. The frequency of the oscillator is modulated by the state of the qubit and is detected via microwave reflectometry. A microstrip SQUID (Superconducting QUantum Interference Device) amplifier (MSA) is used to increase the sensitivity of the measurement over that of a semiconductor amplifier. In the second experiment, we report measurements of a flux qubit coupled via a shared inductance to a quasi-lumped element 5.78-GHz readout resonator formed by the parallel combination of an interdigitated capacitor and a meander line inductor. The system noise is substantially reduced by a near-quantum-limited Josephson parametric amplifier (paramp).

We present measurements of increased fidelity and reduced measurement backaction using the MSA at readout excitation levels as low as one hundredth of a photon in the readout resonator, observing a 4.5-fold increase in the readout visibility. Furthermore, at low readout excitation levels below one tenth of a photon in the readout resonator, no reduction in T1 is observed, potentially enabling continuous monitoring of the qubit state. Using the paramp, we demonstrate a continuous, high-fidelity readout with sufficient bandwidth and signal-to-noise ratio to resolve quantum jumps in the flux qubit. This is enabled by a readout which discriminates between the readout pointer state distributions to an error below one part in 1000. This, along with the ability to make many successive readouts in a time T1, permits the use of heralding to ensure initialization to a fiducial state, such as the ground state. This method enables us to eliminate errors due to spurious thermal population, increasing the fidelity to 93.9%. Finally, we use heralding to introduce a simple, fast qubit reset protocol without changing the system parameters to induce Purcell relaxation.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View