Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Correlations between flow resistance and geometry in a model of the human nose

Published Web Location

http://jap.physiology.org/content/jap/75/4/1767.full.pdf
No data is associated with this publication.
Abstract

The relationship between the pressure losses within the nasal airways and nasal geometry were studied in a 3:1 scale model. The geometry of the model was based on magnetic resonance images of the skull of a healthy male subject. Pressure measurements, flow visualization, and hot-wire anemometry studies were performed at flow rates that, in vivo, corresponded to flows of between 0.05 and 1.50 l/s. The influence of nasal congestion and the collapse of the external nares were examined by using modeling clay to simulate local constrictions in the cross section. A dimensionless analysis of the pressure losses within three sections of the airway revealed the influence of various anatomic dimensions on nasal resistance. The region of the exterior nose behaves as a contraction-expansion nozzle in which the pressure losses are a function of the smallest cross-sectional area. Losses in the interior nose resemble those associated with channel flow. The nasopharynx is modeled as a sharp bend in a circular duct. Good correspondence was found between the predicted and actual pressure losses in the model under conditions that stimulated local obstructions and congestion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item