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A STUDY OF THE LOT–SIZING POLYTOPE

ALPER ATAMTÜRK AND JUAN CARLOS MUÑOZ

Abstract. The lot–sizing polytope is a fundamental structure contained in many
practical production planning problems. Here we study this polytope and identify
facet–defining inequalities that cut off all fractional extreme points of its linear
programming relaxation, as well as liftings from those facets. We give a polynomial–
time combinatorial separation algorithm for the inequalities when capacities are
constant. We also report on an extensive computational study on solving the lot–
sizing problem for instances up to 365 time periods with varying cost and capacity
characteristics.

September 2002

1. Introduction

Given the demand, production cost, and inventory holding cost for a product and
production capacities and production setup cost for each time period over a finite
discrete–time horizon, the lot–sizing problem is to determine how much to produce
and hold as inventory in each time period so that the sum of production, inventory
holding, and setup costs over the horizon is minimized. The lot–sizing problem (LSP)
is NP–hard [8]. Several special cases, including the uncapacitated and constant–
capacity cases, of the problem are solved in polynomial time; see [5, 6, 7, 17, 18, 19].

Many practical multi–item, multi–stage production planning problems over a fi-
nite discrete–time horizon contain the lot–sizing problem as a substructure. Strong
inequalities and reformulations for the lot–sizing problem often form the basis of
branch–and–cut algorithms and good models for those more complicated production
planning problems; see for instance [3, 4, 15, 21]. Therefore, a good understanding
of the lot–sizing polytope has immediate implications for many practical production
problems. Here we investigate this basic polytope.
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J.C. Muñoz: Department of Civil and Environmental Engineering, 416G McLaughlin Hall, University
of California, Berkeley 94720–1720. juanca@uclink4.berkeley.edu. Instructor at the Pontificia
Universidad Católica de Chile.
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The uncapacitated lot–sizing polytope is described completely by Barany et al.
[2]. The constant–capacity lot–sizing polytope is studied by Leung et al. [10] and
Pochet and Wolsey [16]. When there are no restrictions on the capacity Pochet
[14] gives valid inequalities for LSP based on single node flow relaxations, Miller et
al. [12] describe inequalities from its continuous knapsack relaxations. Loparic et
al. [11] study a dynamic knapsack set relaxation of LSP. Here we study the lot–
sizing polytope directly, and identify facet–defining inequalities that cut–off all of the
fractional vertices of its linear programming relaxation as well as liftings from those
facets.

Let pt, ht, and st denote the production, holding, and setup costs in period t, and
it, wt, and zt denote the incoming inventory, production, and setup variables in period
t, t ∈ {1, 2, . . . , n}, respectively. Then LSP can be formulated as

min

{
n∑

i=1

(htit + ptwt + stzt) : (w, i, z) ∈ E

}

where

E :=
{
z∈{0, 1}n, w ∈ IRn

+, i ∈ IRn+1
+ : it + wt − it+1= dt, wt ≤ ctzt, t∈ [1, n], in+1 = 0

}
,

dt is the demand and ct is the production capacity in period t.
Eliminating the inventory variables, by substituting it = dt − wt + it+1 in it ≥ 0

and reindexing the variables in the reverse order, gives the following equivalent model
of the feasible solutions of LSP:

F :=





x ∈ {0, 1}n, y ∈ IRn
+ :

y1 ≤ u1

y1 + y2 ≤ u2
...

y1 + y2 + · · ·+ yn ≤ un

y1 ≤ a1x1, · · · , yn ≤ anxn





where ui =
∑n

j=i dn−j+1 and ai = cn−i+1 for i ∈ [1, n], that is u1 = dn, u2 = dn+dn−1,
and so on. We refer to F as the bottleneck flow model of LSP. The full–dimensional
bottleneck flow model reveals more of the structure of the lot–sizing problem than
the standard formulation E; therefore, in the rest of the paper we will work on F .
Throughout we let [i, k] := {j ∈ ZZ : i ≤ j ≤ k}, a+ := max{a, 0}, and ei denote the
ith unit vector.

Section 2 is devoted to the analysis of the lot–sizing polytope. The inequalities
given in Section 2 are specialized for the uncapacitated and constant–capacity cases
in Section 3. The computational studies with the new inequalities when used as
cutting planes are described in Section 4. We conclude with Section 5.
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2. Polyhedral Analysis

Throughout the paper we assume that the data of the bottleneck flow model F
consists of rational numbers and without loss of generality satisfy the following:

Assumptions.
(A1) 0 < ai ≤ ui for all i ∈ [1, n],
(A2) 0 ≤ ui − ui−1 ≤ ai for all i ∈ [1, n], where u0 = 0.

If ai ≤ 0, then (xi, yi) can be dropped. If ui < ai, then ai can be reduced as ui without
changing F . If ui < ui−1, then ui−1 can be reduced to ui, and if ui > ui−1 + ai, then
ui can be reduced to ui−1 + ai without changing F .

Proposition 1. Dimension & trivial facets.
1. Conv(F ) is full–dimensional,
2. yi ≥ 0, xi ≤ 1, yi ≤ aixi, i ∈ [1, n], define facets of conv(F ),
3. y1 + · · ·+ yi ≤ ui, i ∈ [2, n], defines a facet of conv(F ) if and only if

ui ≤ uk−1 +
∑i

j=k+1 aj for all k ∈ [1, i] and ui < ui+1, where un+1 = ∞.

Proof. Parts 1 and 2 follow from (A1) immediately. We prove part 3. If ui >

uk−1 +
∑i

j=k+1 aj for some k ∈ [1, i], then inequality (2), introduced in Section 2.2,
dominates y1 + · · · + yi ≤ ui. Else, y1 + · · · + yi + yi+1 ≤ ui dominates it whenever
ui = ui+1. For sufficiency, we give 2n affinely independent points (xk, yk) of F
satisfying y1+ · · ·+yi = ui. The first 2i points are: yk

j > 0 and xk
j = 1 for j ∈ [1, k−1]

such that
∑k−1

j=1 yk
j = uk−1; yk

k = 0 and xk
k ∈ {0, 1}; and yk

j > 0 and xk
j = 1 such that∑i

j=k+1 yk
j = ui−uk−1; and yk

j = xk
j = 0 for j ∈ [i+1, n] and k ∈ [1, i]. The remaining

2(n− i) points are (yi, ek) and (yi + min{ak, ui+1 − ui}ek, ek) for k ∈ [i + 1, n]. ¤

2.1. A min–max relationship. Let S = {s1, s2, . . . , sp} be a subset of [1, n] indexed
in increasing order of si, and, for simplicity of notation, let s0 = 0. The following
min–max relationship, which follows from the lower–triangular structure of the first
set of constraints of F , is key for understanding the structure of conv(F ):

(1) ζ(S) := max

{∑

i∈S

yi : (x, y) ∈ F

}
= min

0≤i≤p

{
usi +

p∑

k=i+1

ask

}
.

Definition 1. The smallest minimizer in (1) is called the bottleneck of the set S and
is denoted as bS(∈ [0, p]). Let Si := {s1, s2, . . . si} for i ∈ [1, p]. BS := {bSi : i ∈ [1, p]}
is called the bottleneck set of S. For a given S and i ∈ [1, p], we say that the bottleneck
of the ith element, denoted as bi, is the bottleneck of the set Si−1.
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Example 1. Consider an instance of F with u = (5, 8, 11, 13) and a = (5, 9, 7, 12). For
S = {s1, s2} = {3, 4}, we have BS = {0, 2} and b1 = b2 = 0, since us0 + as1 = 0 + 7 ≤
us1 = 11. On the other hand, for S = {s1, s2, s3, s4}, we have BS = {0, 2, 3, 4} and
b1 = b2 = 0, whereas b3 = 2 and b4 = 3. ¤

Observation 1. If p is the bottleneck of S = {s1, s2, . . . , sp}; i.e., bS = p, then

1. ζ(S \ {sk}) = min
{

usp , usbk
+

∑p
i=bk+1 asi − ask

}
,

2. ζ(S ∪ {k}) =
{

usp if k ≤ sp,
min{usp + ak, uk} if k > sp.

Observation 1 is a consequence of the min–max relationship (1) and will be useful in
proving validity of the inequalities in Sections 2.2 and 2.3.

2.2. Bottleneck covers.

Definition 2. Given S = {s1, s2, . . . , sp} ⊆ [1, n], let λi :=
∑p

j=bi+1 asj − (usp −usbi
)

for i ∈ [1, p]. S is called a bottleneck cover if λi > 0 for some i ∈ [1, p].

Observation 2. For any S = {s1, s2, . . . , sp} ⊆ [1, n] the following statements are true:
1. λi ≥ λk for i, k ∈ [1, p] with i ≤ k,
2. λi = λk if and only if bi = bk for i, k ∈ [1, p],
3. λi > λi+1 if and only if bi+1 = i for i ∈ [1, p− 1],
4. λp > 0 if and only if bS = p.

For a bottleneck cover S, we define the bottleneck cover inequality as

(2)
p∑

i=1

min{asi , (asi − λi)+}(1− xsi) +
p∑

i=1

ysi ≤ usp .

Example 1 (cont.) For S = {s1, s2, s3, s4} = {1, 2, 3, 4}, we have λ1 = λ2 = 20,
λ3 = 14, and λ4 = 10, and thus inequality (2) is

2(1− x4) + y1 + y2 + y3 + y4 ≤ 13.

For S = {s1, s2} = {2, 3}, λ1 = 5 and λ2 = 4, and inequality (2) becomes

4(1− x2) + 3(1− x3) + y2 + y3 ≤ 11.

¤

Remark 1. Observe that if usi = usp for all i ∈ [1, p], then bi = 0 and λi = λp for
all i ∈ [1, p]; consequently, the bottleneck cover inequality reduces to the flow cover
inequality [13] for constraint y1 + y2 + · · · + ysp ≤ usp . Otherwise, bottleneck cover
inequalities dominate all flow cover inequalities from this constraint.
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Proposition 2. Let LF denote the linear programming relaxation of F.
1. Every fractional extreme point of LF is defined by a bottleneck cover.
2. Bottleneck cover inequalities (2) cut off all fractional extreme points of LF .

Proof. 1. Let (x, y) be an extreme point of LF . Observe that xi equals either 1
or yi/ai; and 0 < xi < 1 implies that 0 < yi < ai and yi = ui −

∑i−1
j=1 yj . Now

let S = {s1, s2, . . . , sp} = {i ∈ [1, n] : yi > 0} such that 0 < xsp < 1 and let
k = max{i ∈ [0, p − 1] : xsi < 1}. Because either k = 0, or k ≥ 1 and ysk

=
usk

− ∑k−1
i=1 ysi , we have ysp = usp − usk

− ∑p−1
i=k+1 asi . Since ysp < asp , we have

usp < usk
+

∑p
i=k+1 asi , and since (x, y) is feasible, we have usk

+
∑j

i=k+1 asi ≤ usj

for all j ∈ [k + 1, p − 1]. Then, by induction, S is a bottleneck cover and k is the
bottleneck of p. Hence, {i ∈ [1, p] : 0 < xsi < 1} is precisely the bottleneck set
of S, BS . 2. Since ysp > 0, we have λp = usk

+
∑p

i=k+1 asi − usp < asp . Then
inequality (2) defined by S = {i ∈ [1, n] : yi > 0} cuts off (x, y) as

∑p
i=1 ysi = usp and

0 < xsp < 1. ¤
Proposition 3. The bottleneck cover inequality (2) is valid for F .

Proof. The statement holds trivially if asi ≤ λi for all i ∈ [1, p]. Otherwise, for
(x, y) ∈ F let {z1, z2, . . . , z`} := {i ∈ [1, p] : xsi = 0}, indexed in increasing order of i,
and let k = min{j ∈ [1, `] : aszj

> λzj}. Then

p∑

i=1

min{asi , (asi − λi)+}(1− xsi) =
∑̀

j=k

min{aszj
, (aszj

− λzj )
+}

≤ aszk
− λzk

+
∑̀

i=k+1

aszi
≤ max

j∈[1,`]



(

∑̀

i=j

aszi
− λzj )

+



 .(3)

On the other hand, we also have
p∑

i=1

ysi ≤ min



usp , min

j∈[1,`]
{usbzj

+
p∑

k=bzj +1

ask
−

∑̀

k=j

aszk
}




= usp − max
j∈[1,`]



(usp − usbzj

−
p∑

k=bzj +1

ask
+

∑̀

k=j

aszk
)+





= usp − max
j∈[1,`]



(

∑̀

k=j

aszk
− λzj )

+



 .(4)

Adding (3) and (4) shows that inequality (2) is satisfied by (x, y) ∈ F . ¤
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Theorem 4. The bottleneck cover inequality (2) defines a facet of conv(F ) if and
only if λp > 0, maxi∈[1,p]{asi − λi} > 0, [1, sbr ] ⊂ S, usbr

< usbr+1, where r =
min{i ∈ [1, p] : λi < asi}, and K = {k ∈ [1, n] \ S : ubr ≤ uk ≤ ut} = ∅, where
t = max{i ∈ [br, r − 1] : usbr

+
∑i

k=br+1 ask
= usi}.

Proof. Necessity. Let q ∈ [1, p] be the highest index such that λq > 0. Since S
is a bottleneck cover, q exists. Then by updating S as {s1, s2, . . . , sq}, we get an
inequality dominating (2), since

∑p
i=q+1(asi(1−xsi) + ysi) ≤

∑p
i=q+1 asi ≤ usp −usq .

If maxi∈[1,p]{asi − λi} ≤ 0, then y1 + · · ·+ ysp ≤ usp dominates (2). If k ∈ [1, sbr ] \ S,
since br is the bottleneck of [1, sbr ], by Observation 1, augmenting S with k, does not
change λi for i ∈ [br +1, p] and cannot decrease λi for i ∈ [1, br]. Since the coefficients
of all xsi with i ∈ [1, r− 1] are zero, the inequality with S equal to {s1, . . . , sp} ∪ {k}
dominates (2). If usbr

= usbr+1, then the inequality obtained by augmenting S with
sbr + 1 dominates (2). Finally, note that if t > br, then t is an alternative minimizer
in (1), achieving the value ζ({s1, . . . , sr−1}). Thus, S can be augmented with k ∈ K
without changing λi for i ∈ [r, p] to get an inequality stronger than (2).

Sufficiency. The following 2n points (xk, yk) are affinely independent points of the
face of conv(F ) generated by inequality (2). For k ∈ [1, p] such that 0 < λk < ask

,
let ysk

si
> 0 and xk

si
= 1 for i ∈ [1, bk] such that

∑bk
i=1 ysi = usbk

, ysk
sk

= 0 and xsk
sk

= 0,
and ysk

si
= asj and xsk

si
= 1 for i ∈ [bk + 1, p] \ {k}; and ysk

i = xsk
i = 0 for i ∈ [1, n] \S;

and let ysk
si

> 0 and xk
si

= 1 for i ∈ [1, bk] such that
∑bk

i=1 ysi = usbk
, ysk

sk
= ask

− λk

and xsk
sk

= 1, and ysk
si

= asi and xsk
si

= 1 for i ∈ [bk + 1, p] \ {k}; and ysk
i = xsk

i = 0 for
i ∈ [1, n] \ S.

For k ∈ [1, p] such that λk ≥ ask
, let ysk

si
> 0 and xk

si
= 1 for i ∈ [1, bk] such

that
∑bk

i=1 ysi = usbk
, ysk

sk
= 0 and xsk

sk
∈ {0, 1}, and ysk

si
> 0 and xsk

si
= 1 for

i ∈ [bk + 1, p] \ {k} such that
∑p

i=bk+1 ysi = usp − usbk
and ysk

i = xsk
i = 0 for

i ∈ [1, n] \ S.
Let ȳ =

∑br
i=1 εiesi +

∑p
i=br+1 asiesi − asresr and x̄ =

∑p
i=1 esi − esr such that

ai ≥ εi > 0 and
∑br

i=1 εi = ubr . We see that ȳ has a positive slack for constraints
y1+· · ·+yi ≤ ui with sbr +1 ≤ i < sbr+1 since usbr

< usbr+1; with sbr+1 ≤ i < sr since
K = ∅; with i ≥ sr since ȳ has a slack of asr − λr for constraint y1 + · · ·+ ysp ≤ usp

and p is the bottleneck of S. Then the remaining 2(n− p) points are (ȳ, x̄ + ek) and
(ȳ + εek, x̄ + ek) for k ∈ [sbr + 1, n] \ S with small ε > 0. ¤

Remark 2. The necessity part of the proof of Theorem 4 shows that if any of the
facet conditions is not satisfied by a bottleneck flow cover inequality (2), then a
stronger inequality is immediately available. Observe that both of the inequalities in
Example 1 satisfy the conditions of Theorem 4.
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As pointed out to us by L. A. Wolsey, the bottleneck cover inequalities are part
of the much general submodular inequalities for fixed charge networks [20]. The
min–max relationship (1) allows us to characterize these inequalities explicitly for the
lot–sizing problem and lift them to derive further strong inequalities.

2.3. Lifting bottleneck covers. In this section we generalize bottleneck cover in-
equalities (2) by introducing pairs of variables (xi, yi), i ⊆ [1, n] \ S to them. Let
T ⊂ [1, n] and consider the restriction FT := {(x, y) ∈ F : xi = yi = 0 for i ∈ T} of F
and a facet–defining bottleneck inequality

(5)
p∑

i=1

((asi − λi)+(1− xsi) + ysi) ≤ usp

defined by some S = {s1, s2, . . . , sp} ⊆ [1, n] \ T for conv(FT ). We will derive a new
inequality of the form

(6)
p∑

i=1

((asi − λi)+(1− xsi) + ysi) +
∑

i∈T

(πixi + µiyi) ≤ usp

starting from (5).
Let FT (u) be the set FT as a function of the right hand side vector u ∈ IRn. Let

Φ : IRn
+ 7→ IR ∪ {+∞} be defined as

Φ(v) = usp −max

{
p∑

i=1

((asi − λi)+(1− xsi) + ysi) : (x, y) ∈ FT (u− v)

}
.

By definition of Φ, inequality (6) is valid for F if and only if

(7)
∑

i∈T

(πixi + µiyi) ≤ Φ(
∑

i∈T

yigi)

for all (x, y) ∈ F , where gi =
∑n

k=i ek, i ∈ [1, n] and ek is the kth unit vector in IRn.
Rather than characterizing Φ(

∑
i∈T yigi) for all (x, y) ∈ F , we will describe a lower

bound on Φ(ag`) for 0 ≤ a ≤ u` and ` ∈ T , which suffices to prove the validity of the
inequalities introduced in this section. For some ` ∈ T let PΦ(ag`) denote the problem
of computing Φ(ag`). Since (xi, yi), i ∈ [1, n] \ S do not appear in inequality (5), we
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may ignore them when computing Φ(ag`). Thus, PΦ(ag`) can be stated as

Φ(ag`) = usp −max
p∑

i=1

((asi − λi)+(1− xsi) + ysi)

s.t.: ys1 ≤ us1

ys1 + ys2 ≤ us2

...

ys1 + ys2 + · · ·+ ysp ≤ usp(8)
...

ys1 + ys2 + · · ·+ ysp ≤ u` − a

...
ys1 + ys2 + · · ·+ ysp ≤ un − a

ysi ≤ asixsi , ysi ∈ IR+, xsi ∈ {0, 1} i ∈ [1, p].

Proposition 5. Problem PΦ(ag`) has an optimal solution (x, y) such that
1. xsi = 1 for all i ∈ [1, p] with asi ≤ λi,
2. ask

> ysk
> (ask

− λk)+ for at most one k ∈ [1, p],
3. ysi ∈ {0, asi} for all i ∈ [1, p] \ {k} with asi > λi, and
4. if

∑h
i=1 ysi = ush

for h ∈ [1, p], then ysi > 0 for all i ∈ [1, h] with asi > λi.

Proof. Part 1 is immediate. For part 2, suppose asi > ysi > (asi − λi)+ and asj >

ysj > (asj − λj)+ for i < j. Increasing ysj and decreasing ysi by the same amount
sufficiently we satisfy either ysj = asj or ysi = (asi − λi)+ and do not degrade the
objective function value. To see part 3, observe that if ysi ≤ asi − λi, then the
objective function improves by asi − λi − ysi by setting ysi = xsi = 0.

Part 4 is a consequence of feasibility. By definition of bh, ush
+

∑p
i=h+1 asi ≥

ubh
+

∑p
i=bh+1 asi = usp +λh. Since for any j ∈ [1, h], we also have usbj

+
∑p

i=bj+1 asi =

usp + λj , it follows that ush
≥ usbj

+
∑h

i=bj+1 asi − (λj − λh) for j ≤ h. Therefore,
if asj > λj , since λh ≥ 0 (as (5) is facet–defining for conv(FT )), we have ush

>

usbj
+

∑h
i=bj+1 asi − asj and ysj = 0, which contradicts

∑h
i=1 ysi = ush

. ¤

First suppose that ` > sp; we will remove this restriction later. Since (5) is facet–
defining for conv(FT ), we have Φ(0) = 0; consequently, Φ(ag`) ≥ 0 for a ≥ 0. From
Observation 1, we see that Φ(0) = 0 is achieved by (x, y) such that xsi = 1 for
all i ∈ [1, p] \ {k} and xsk

= 0 for any k ∈ [1, p] with ask
> λk, and

∑p
i=1 ysi =

usp−(ask
−λk). Since (8) has a slack of ask

−λk for this solution for all a ≤ δ`+ask
−λk,



A STUDY OF THE LOT–SIZING POLYTOPE 9

where δ` := (u` − usp)+, we have Φ(ag`) = 0 for 0 ≤ a ≤ δ` + ash
− λh, where

h = argmaxi∈[1,p]{asi − λi}.
Then for a = δ` + ash

− λh, problem PΦ(ag`) has an optimal solution (x̄, ȳ) such
that

∑bh
i=1 ȳsi = usbh

, ȳsi = asi for all i ∈ [bh + 1, p] \ {h}, and ȳsh
= 0, so that∑p

i=1 ȳsi = usp − ash
+ λh. Since constraint (8) is tight at this point, given that

x̄sh
= 0, increasing a beyond δ`+ash

−λh requires reduction in some ȳsi , i ∈ [1, p]\{h},
which will increase Φ(ag`) at the same rate.

If asi ≤ λi for all i ∈ [1, p]\{h}, then Φ(ag`) = a−(δ` +ash
−λh) for δ` +ash

−λh <
a ≤ u` by reducing ȳsi , i ∈ [1, p] \ {h} in increasing order of i; and we are done with
characterizing Φ(ag`). Otherwise, since when ȳsi reduces to asi − λi(> 0), we can set
ysi = xsi = 0 without changing the objective function, and introduce a slack of asi−λi

to constraint (8), the variable to reduce is ysd
, where d = argmini∈[1,p]\{h}: asi>λi

{ȳsi−
asi +λi} (ties broken by selecting one with the largest asi). Thus, Φ(ag`) will increase
by ȳsd

− asd
+ λd at the rate of one and then stay constant for asd

− λd as a increases
further. The following Lemma, which is slightly more general than what is needed at
this point, shows, by letting Q = {h}, that ȳsd

− asd
+ λd equals λp.

Lemma 6. Let PΦ(ag`)|Q be the restriction of PΦ(ag`) with xi = yi = 0 for all i ∈ Q

for some Q ⊆ {i ∈ [1, p] : asi > λi} with k ∈ Q and with a = δ` +
∑

i∈Q asi − λk.
Then PΦ(ag`)|Q has an optimal solution (x, y) such that

min
i∈[1,p]

{yi−asi +λi : ysi > asi−λi > 0} = min
{

λk, min
i∈[k+1,p]

{λi : ysi > asi − λi > 0}
}

and Φ(ag`)|Q =
∑

i∈Q\{k} λi.

Proof. Since usbk
+

∑p
i=bk+1 asi = usp + λk, we have ysi = asi for all i ∈ [bk + 1, p] \Q

and
∑bk

i=1 ysi = usbk
. Suppose bk ≥ 1. Then, from Proposition 5, we may assume

that asi > ysi > ai − λi > 0 for at most one i ∈ [1, bk].
Suppose asj > ysj > asj−λj > 0 for some j ∈ [1, bk]. Without loss of generality, we

may assume that
∑bj

i=1 ysi = usbj
, since if

∑bj

i=1 ysi < usbj
, we can increase

∑bj

i=1 ysi

(as from Proposition 5.1 and 5.4, xi = 1 for all i ≤ k and Q ⊆ [k + 1, p]) and
decrease ysj by the same amount until either

∑bj

i=1 ysi = usbj
holds or ysj = asj − λj

without changing the objective value. Then, since λk = usbk
+

∑p
i=bk+1 asi − usp and

λj = usbj
+

∑p
i=bj+1 asi −usp , and

∑bk
i=1 ysi = usbk

as well, we see that
∑bk

i=bj+1 ysi =

λk − λj +
∑bk

i=bj+1 asi . Therefore, ysi = asi for i ∈ [bj + 1, bk] \ {j} and ysj =
asj − (λj − λk). Also since ysi ∈ {0, asi} for all i 6= j such that asi > λi and λi ≥ λk

for all i ∈ [1, k − 1], the result follows. Furthermore, since λj > λk, j exists; and we
are done when bk ≥ 1. Finally, if bk = 0, then λi = λk for all i ∈ [1, k − 1], which
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completes the proof of the claim on (x, y). Evaluating the objective function for this
point gives Φ(ag`)|Q =

∑
i∈Q\{k} λi. ¤

From Lemma 6, for a > δ` + ash
− λh, Φ(ag`) increases at the rate of one by

reducing ysd
from ȳsd

to ȳsd
− λp and then reaches to a flat region again because

of the slack asd
− λd introduced in constraint (8) by setting ysd

= xsd
= 0. Let

α1 := maxi∈[1,p]{asi − λi} = ash
− λh and β1 := mini∈[1,p]{λi} = λp. Hence

Φ(ag`) =





0 if 0 ≤ a ≤ δ` + α1,
a− δ` − α1 if δ` + α1 ≤ a ≤ δ` + α1 + β1,
β1 if δ` + α1 + β1 ≤ a ≤ δ` + α1 + β1 + asd

− λd.

Example 2. Let u = (4, 8, 11, 12, 13) and a = (4, 4, 4, 2, 8). For S = {s1, s2, s3, s4} =
{1, 2, 3, 4}, we have λ1 = λ2 = λ3 = 2 and λ4 = 1 and the corresponding bottleneck
cover inequality

2(1− x1) + 2(1− x2) + 2(1− x3) + 1(1− x4) + y1 + y2 + y3 + y4 ≤ 12.

Let us compute Φ(ag5). We have δ5 = (u5 − us4)
+ = 1, α1 = maxi∈[1,4]{asi − λi} = 2

and β1 = λ4 = 1 (with d = 4). Thus

Φ(ag5) =





0 if 0 ≤ a ≤ 3,
a− 3 if 3 ≤ a ≤ 4,
1 if 4 ≤ a ≤ 5.

Unfortunately characterizing Φ(ag`) for a > δ` +α1 +β1 +asd
−λd is much harder,

because reducing a variable with small λi first, without considering asi − λi, may not
be the best for larger a.

From Lemma 6 we know that, given that a set of variables {ysi}i∈Q, Q{i ∈
[1, p]asi > λi} is reduced to zero (in some order) and a = δ`+

∑
i∈Q asi−λk; increasing

a further, increases Φ(ag`)|Q at the same rate by some λq, after which Φ(ag`) will be
constant for some ast − λt, q, t ∈ [1, p].

However, Figure 1 illustrates that there is no single sequence in which to reduce
ysi for computing Φ(ag`) as a increases. Here we plot two upper bounds on Φ(ag`)
obtained by reducing yi in two different sequences. The plot with dashed line is
obtained by reducing yi in the order 1,2,3,4, whereas the plot with dotted line is
obtained when yi is reduced in the order 1,4,2,3. Φ(ag`) is the point–wise minimum
of these two lines (not drawn in the figure). ¤

In order to overcome the difficulty illustrated in Example 2, we resort to an easily
computable lower bound on Φ(ag`) by sorting asi − λi in nonincreasing order, and
λi in nondecreasing order separately. Formally, let αk be the kth largest asi − λi,
i ∈ [1, p] such that asi > λi and βk be the kth smallest λi, i ∈ [1, p] such that
asi > λi, and α0 = β0 = 0. Define ᾱi :=

∑i
k=0 αk and β̄i :=

∑i
k=0 βk for i ∈ [0, r],
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aβ1 β2α2 α3 β3 α4α1δ`

φ`(a)

β̄1

β̄3

β̄2

Figure 1. Illustration of φ`(a) for Example 2.

where r = |{i ∈ [1, p] : asi > λi}|, and φ` : IR+ 7→ IR+ as

φ`(a) =





0 if 0 ≤ a ≤ δ`,
β̄i if δ` + ᾱi + β̄i ≤ a ≤ δ` + ᾱi+1 + β̄i, i ∈ [0, r − 1],
a− δ` − ᾱi if δ` + ᾱi + β̄i−1 ≤ a ≤ δ` + ᾱi + β̄i, i ∈ [1, r − 1],
a− δ` − ᾱr if δ` + ᾱr + β̄r−1 ≤ a.

Since, by Lemma 6, the plot of Φ(ag`) has alternating sloped regions of length λq and
constant regions of length ast − λt, lining up longest constant regions and shortest
sloped regions as in φ` gives a lower bound on Φ(ag`).

The solid line in Figure 1 shows φ5(a) for Example 2. The bold line segments on
the horizontal axis indicate the regions where the φ5(a) equals Φ(ag`), the point–wise
minimum of the dashed and dotted lines.

Finally, we consider the case ` < sp. Notice that by increasing u` and usi for
i ∈ [1, p] with ` < si < sp to usp , we relax the problem PΦ(ag`). Hence, φ`(a) with
δ` := (u`−usp)+ is indeed a lower bound on Φ(ag`) for ` < sp as well. This completes
the characterization of a lower bound on Φ(ag`) for a particular ` ∈ T ; and from the
preceding we have the following proposition.

Proposition 7. Given a facet–defining inequality (5) for conv(FT ), T ⊂ [1, n]

1. φ`(a) ≤ Φ(ag`) for 0 ≤ a ≤ u` and all ` ∈ T ,
2. φ`(a) = Φ(ag`) for 0 ≤ a ≤ δ` + α1 + β1 + asd

− λd and ` ∈ T ∩ [sp + 1, n],
3. φ`(a) = Φ(ag`) for 0 ≤ a ≤ u` and ` ∈ T ∩ [sp + 1, n] if

(i) either ai = ak for all i, k ∈ S,
(ii) or λi = λk for all i, k ∈ [1, p].

Next we show how to obtain valid coefficients (πi, µi) for all i ∈ T in (6).
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Lemma 8. Φ(
∑

i∈T yigi) ≥
∑

i∈T φi(yi) for all T ⊆ [1, n] \ S.

Proof. For any k ∈ T let ψ : IR 7→ IR+ be defined as

ψ(a) =
{

φk(a + δk) if a > 0
0 if a ≤ 0,

or equivalently

ψ(a) =





0 if a ≤ 0
β̄i if ᾱi + β̄i ≤ a ≤ ᾱi+1 + β̄i, i ∈ [0, r − 1],
a− ᾱi if ᾱi + β̄i−1 ≤ a ≤ ᾱi + β̄i, i ∈ [1, r − 1],
a− ᾱr if ᾱr + β̄r−1 ≤ a.

Since ᾱi is partial sum of nonincreasing terms and β̄i is partial sum of nondecreasing
terms, it follows that ψ is superadditive; i.e., ψ(a1)+ψ(a2) ≤ ψ(a1+a2) for a1, a2 ∈ IR.

The lemma is trivially true if T is empty or singleton. Suppose it is true for all
strict subsets of T and let ` = max{i : i ∈ T}. Then, since Φ is nondecreasing and
the constraint matrix is lower–triangular, we have

Φ(
∑

i∈T

yigi) ≥ max



Φ(

∑

i∈T\{`}
yigi), Φ((

∑

i∈T

yi)g`)





≥ max





∑

i∈T\{`}
φi(yi), φ`(

∑

i∈T

yi)



 (Proposition 7 and induction)

= max





∑

i∈T\{`}
ψ(yi − δi), ψ(

∑

i∈T

yi − δ`)





≥
∑

i∈T\{`}
ψ(yi − δi) + ψ(y` − δ`) =

∑

i∈T

φi(yi).

In order to see the last inequality, observe that if
∑

i∈T\{`}(yi−δi) ≥
∑

i∈T yi−δ`, we
have y` − δ` ≤ 0, and hence ψ(y` − δ`) = 0. Otherwise, since ψ is nondecreasing and
superadditive, we have ψ(

∑
i∈T yi− δ`) ≥ ψ(

∑
i∈T\{`}(yi− δi)) ≥

∑
i∈T\{`} ψ(yi− δi).

So ψ(
∑

i∈T yi−δ`) ≥
∑

i∈T\{`} ψ(yi)+ψ(y`−δ`) ≥
∑

i∈T\{`} ψ(yi−δi)+ψ(y`−δ`). ¤

Valid coefficients (π`, µ`) for (x`, y`) are obtained by ensuring that

h(a) = max π`x` + µ`y`

(H) s.t. y` = a

0 ≤ y` ≤ a`x`, x` ∈ {0, 1}



A STUDY OF THE LOT–SIZING POLYTOPE 13

is no more than φ`(a) and equals φ`(a) for two linearly independent solutions, as
suggested in Gu et al. [9]. It is seen above that h(a) = π` + µ`a for a > 0. Thus π`

and µ` are intercept and slope of an affine function that supports φ`(a) at two linearly
independent solutions of (H). Defining γi = δ` + β̄i + ᾱi+1, it is easy to verify that
(π`, µ`) ∈ H` = {(0, 0)} ∪H1

` ∪H2
` , where

H1
` =

{
(β̄i−1 − βiγi−1

βi + αi+1
,

βi

βi + αi+1
) : a` ≥ γi, i ∈ [1, |S| − 1]

}
and

H2
` =

{
(−δ` − ᾱi, 1) if γi−1 < a` ≤ γi−1 + βi, i ∈ [1, |S|],
(β̄i−1 − βiγi−1

a`−γi−1
, βi

a`−γi−1
) if γi−1 + βi < a` < γi, i ∈ [1, |S| − 1]

}
.

Theorem 9. Inequality (6) with (πi, µi) ∈ Hi for i ∈ T , where S, T ⊂ [1, n] and
S ∩T = ∅ is valid for F . It defines a facet of conv(F ) if inequality (5) defines a facet
of conv(FT ), T ⊆ [sp + 1, n], and ai ≤ δi + α1 + β1 for all i ∈ T .

Proof. The validity of (6) is a consequence of (7), which follows from Lemma 8 and
that πi + µia ≤ φi(a) for a ≥ 0 when (πi, µi) ∈ Hi, i ∈ T . The facet condition follows
from the fact that φi(a) = Φ(agi) for 0 ≤ a ≤ δi + α1 + β1 and i > sp, and that
πi +µia supports φi(a) at two linearly independent solutions of (H) for all i ∈ T . ¤

Example 1 (cont.) Earlier we have seen that for S = {s1, s2} = {2, 3}, inequality

4(1− x2) + 3(1− x3) + y2 + y3 ≤ 11

defines a facet of conv(F ). Lifting it with (xi, yi), i ∈ T = {1, 4}, we have α1 = 4,
β1 = 4, α2 = 3, δ1 = 0, and δ4 = 2. Hence, H1

1 = ∅, H2
1 = (1,−4), H1

2 = ∅,
H2

2 = (2
3 ,−4); consequently, we obtain

−4x1 + 4(1− x2) + 3(1− x3)− 4x4 + y1 + y2 + y3 +
2
3
y4 ≤ 11.

This inequality and similar ones

−4x1 + 4(1− x2) + 3(1− x3) + y1 + y2 + y3 ≤ 11,

4(1− x2) + 3(1− x3)− 4x4 + y2 + y3 +
2
3
y4 ≤ 11,

by taking T = {1} and T = {4} are easily verified to be facet–defining for conv(F ).
The inequality with T = {1} illustrates that lifted inequalities (6) may define facets
also when T 6⊆ [sp + 1, n]. ¤
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3. Special cases

3.1. Uncapacitated case. We obtain the uncapacitated lot–sizing polytope when
ai = ui for all i ∈ [1, n]. In this case, inequalities (6) for S = [1, `], ` ∈ [0, n− 1], and
T ⊆ [` + 1, n] reduce to

∑̀

i=1

yi + (u` − u`−1)(1− x`) +
∑

i∈T

yi ≤ u` +
∑

i∈T

(ui − u`−1)xi,

or
`−1∑

i=1

yi +
∑

i∈T∪{`}
yi ≤ u`−1 +

∑

i∈T∪{`}
(ui − u`−1)xi,

which are equivalent to the uncapacitated lot–sizing inequalities∑

t∈T

wt ≤
∑

t∈T

dt`zt + i`

for T ⊆ [1, `], ` ∈ [1, n]. These inequalities are sufficient to describe the lot–sizing
polytope in the uncapacitated case and can be separated in polynomial time [2].

3.2. Constant capacity case. When the capacities are constant; i.e., ai = a for all
i ∈ [1, n], inequalities (2) reduce to

(9)
p∑

i=1

min{a, (usp − usbi
− (p− bi − 1)a)+}(1− xsi) +

p∑

i=1

ysi ≤ usp

for S = {s1, s2, . . . , sp} ⊆ [1, n]. Observe from Theorem 4 that for the constant
capacity case, as α1 := maxk∈[1,p]{ask

− λk} = usp − usbp
− (p− bp − 1)a, inequalities

(6) with (πi, µi) = (usbp
+ (p − bp − 1)a − ui, 1), i ∈ T ⊆ [sp + 1, n] such that

ui−usp < (p− bp)a define facets of conv(F ) whenever (9) defines a facet of conv(FT ),
because φi(a) = Φ(agi) as a ≤ α1 + β1.

We show here that these inequalities can be separated in polynomial time. Note
that they form a strong, strict subset of the (k, `, S, I) inequalities given by Pochet
and Wolsey [16], for which no polynomial–time separation algorithm is known.

First we describe the separation algorithm for inequalities (9) and then extend it
for the lifted inequalities. Given a point (x, y) to separate, for each fixed sp ∈ [1, n],
we define a directed network on which a longest path corresponds to an inequality (9)
with the largest left–hand–side value for (x, y). Let N = (V, A) be an acyclic directed
graph, where each vertex in V is a triple (t, d, r) such that t ∈ [0, sp]; d ∈ [0, t− 1] if
t ∈ [1, sp−1] (d is undefined if t = 0); and r ∈ [0, sp−t]. For a vertex (t, d, r), t denotes
an element that may possibly be included in S, d denotes a possible bottleneck for t,
and r denotes |{si ∈ S : si > t}|. A tuple ((ti, di, ri), (tk, dk, rk)), or simply (i, k), is
an arc in A if and only if it satisfies ti < tk, ri = rk + 1, and dk = ti or dk = dti .
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Thus N is an acyclic graph with source vertices {(0,−, 0), (0,−, 1), . . . , (0,−, sp)}
and sink vertices {(sp, 0, 0), (sp, 1, 0), . . . , (sp, sp−1, 0)}. The set of vertices on a path
from a source vertex to a sink vertex represents S and an arc (i, k) on such a path
denotes that ti and tk are two consecutive elements in S. Observe that in (1) the
bottleneck of tk is either ti or the bottleneck of ti; therefore, G, with O(n4) arcs, can
be built easily with a forward pass from the sources to the sinks.

Next we assign lengths on the arcs. Given a point (x, y) to separate, the length of
arc (i, k) ∈ A equals the contribution of (xk, yk) to the left hand side of inequality
(9). In order to do that we define the length of an arc (i, k) as

cik =
{

ytk + min{a, (usp − rka)+}(1− xtk) if ti = 0,
ytk + min{a, (usp − ubi − (pos[i]− pos[dk] + rk)a)+}(1− xtk) if ti ≥ 1,

where pos[i] is the number of vertices in a longest path from any source vertex to
vertex i. Since the longest path algorithm on an acyclic directed network proceeds
in topological ordering of the vertices (see for instance [1]), pos[i] and pos[dk] are
determined before the arc (i, k) is used in the algorithm. Therefore cik is computed
when running the longest path algorithm as it is needed. Given a longest path with
arc (i, k), since pos[i] refers to the position of ti in S, p = |S|, and rk = |{si ∈ S :
si > tk}|, we see that pos[i]− pos[dk] + rk = p − bpos[k] − 1. Hence the length of a
longest path from a source vertex to a sink vertex (sp, i, 0), i ∈ [0, p− 1], all of which
can be computed simultaneously in O(n4), equals the maximum left hand side value
for any inequality (9) under the assumption that i is the bottleneck of p. Longest of
these sp paths gives the desired inequality (9).

Now it is easy to extend this algorithm to find a most violated lifted bottleneck
cover inequality. We augment N with a super sink vertex ν and an arc from each
sink vertex (sp, i, 0) to ν with length equal to

(10)
∑

k∈Ti

(ȳk −min{a, usi + (p− bp − 1)a− uk}x̄k),

where Ti = {k ∈ [sp + 1, n] : min{a, usi + (p − bp − 1)a − uk}x̄k < ȳ
k
}. Note that Ti

is the index set of variables (xi, yi) that has a positive contribution to the left hand
side of the inequality, given that i is the bottleneck of sp and the summand (10) can
be computed in linear time. Therefore a longest path from a source to the super
sink ν gives a lifted bottleneck cover inequality with the largest left hand side value.
Hence for the constant capacity case, separation problem for the lifted bottleneck
cover inequalities (6) with T ⊆ [sp + 1, n] can be solved in O(n5) by running the
linear–time longest path algorithm for each sp ∈ [1, n].
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4. Computations

In this section we describe our computational experience on using the inequal-
ities introduced in Section 2 as cutting planes when solving lot–sizing problems
with a branch–and–cut algorithm. All experiments are done on a 2GHz Intel Pen-
tium4/Linux workstation with 1GB RAM using the callable libraries of CPLEX1

Version 8.1 Beta with one hour time limit.
For our experiments we created a data set of capacitated lot–sizing instances with

varying cost and capacity characteristics. Our preliminary experience has shown that
two main characteristics play a major role in influencing the integrality gap and hence
the difficulty of solving the problem instances. The first one is the tightness of the
capacities with respect to the demand. The second one is the ratio between the
setup cost and the inventory holding cost. Therefore, the instances are generated
for varying average capacity/demand ratios c ∈ {3, 6, 9, 12} and setup/holding cost
ratios f ∈ {100, 200, 500}. Capacity ct is drawn from integer uniform [0.75cd̄, 1.25cd̄],
setup cost st is drawn from integer uniform [0.90fh̄, 1.10fh̄], where d̄ and h̄ are the
averages for demand and holding cost. For all instances ht equals 10, and pt and dt

are drawn from uniform integer [81,119] and [1,19], respectively. Here we report a
summary of the solution statistics for instances with number of time periods 60, 90,
120, and 365.

We use a heuristic separation algorithm in order to find violated cutting planes.
Given a fractional solution (x, y), for each j ∈ [1, n] we sequentially let S = [1, j],
S = {i ∈ [1, j] : xi > 0}, and S = {i ∈ [1, j] : 1 > xi > 0} and then find T ⊆ [1, n] \ S
that maximizes the left–hand–side value for (6) for each such S. Observe that given
S, finding T ⊆ [1, n]\S that maximizes

∑
i∈T (πixi+µiyi), where (πi, µi) ∈ Hi, can be

done easily by testing πixi +µiyi > 0 for (πi, µi) ∈ Hi separately for each i ∈ [1, n]\S.
If the inequality with T = ∅ is violated by (x, y), it is added to the formulation also.

Our experiments are summarized in Tables 1–4. On every two consecutive lines
in these tables, we report the statistics from experiments with default CPLEX and
with default CPLEX plus the lifted bottleneck cover cuts (6) and a combination
of parameters c and f. Each entry in the tables corresponds to the average for 5
random instances. The first line is with default CPLEX, the second one is with the
lifted bottleneck cover cuts. Default CPLEX MIP solver adds several classes of generic
cutting planes, including the flow cover inequalities mentioned in Remark 1, to the
formulation.

In these tables we report the averages for the percentage integrality gap of the
formulation before cuts are added (initgap = 100 × (bestub− initlb)/bestub),
the percentage improvement in the integrality gap after adding cuts before branching
(gapimp = 100 × (rootlb− initlb)/(bestub− initlb)), and the percentage gap

1CPLEX is a trademark of ILOG, Inc.
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c f initgap gapimp endgap cuts nodes time
3 100 5.93 80.39 0.00 35 1613 2

90.72 0.00 178 99 1
3 200 5.77 65.28 0.00 21 16477 12

76.08 0.00 568 1533 14
3 500 4.65 54.35 0.00 264 232745 386

66.14 0.00 1406 7872 144
6 100 10.29 92.26 0.00 32 64 0

99.64 0.00 78 0 0
6 200 11.79 77.46 0.00 28 1681 2

97.33 0.00 150 22 1
6 500 11.00 61.86 0.00 79 10486 9

82.98 0.00 574 855 10
9 100 13.86 92.78 0.00 46 120 0

99.72 0.00 87 0 0
9 200 16.59 65.10 0.00 20 10765 7

99.26 0.00 86 2 0
9 500 17.01 57.09 0.00 42 8445 6

93.77 0.00 277 74 2
12 100 15.68 91.46 0.00 51 342 1

99.95 0.00 98 0 0
12 200 19.44 67.10 0.00 44 20894 14

99.64 0.00 108 0 0
12 500 20.83 52.01 0.00 18 9630 6

98.13 0.00 134 19 1

Table 1. 60 time periods

between the lowest upper bound and the highest lower bound on the optimal value at
termination (endgap = 100 × (bestub− bestlb)/bestub), where initlb, rootlb,
bestlb, bestub are the objective function values of the initial LP relaxation, LP
relaxation after all cuts are added before branching, the lowest lower bound for all
unexplored nodes of the search tree, and finally the best feasible solution. We report
also the averages for the number of cuts added in the search tree (cuts), the number
of nodes explored (nodes) and the elapsed CPU time in seconds (time). We report
the number of unsolved instances on the right of engdap in brackets if some of the
instances of an experiment could not be solved to optimality within the one hour time
limit. Consequently, we infer, for instance, that the endgap for the unsolved instance
in group c = 12 of Table 2 is 2.15%.
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c f initgap gapimp endgap cuts nodes time
3 100 6.11 72.18 0.00 32 547439 775

86.92 0.00 536 1882 35
3 200 5.74 64.86 0.00 17 746093 1013

77.67 0.00 1040 9022 183
3 500 4.28 64.76 0.00 22 162234 187

74.34 0.00 2178 13831 470
6 100 10.75 88.36 0.00 52 1556 3

99.25 0.00 132 11 1
6 200 11.81 69.64 0.00 18 216147 266

94.14 0.00 317 215 5
6 500 10.97 57.99 0.00 12 633771 731

81.77 0.00 1990 12643 621
9 100 14.11 90.76 0.00 77 1826 4

99.78 0.00 140 2 1
9 200 16.41 77.03 0.21[1] 92 681471 735

99.77 0.00 135 0 1
9 500 16.75 54.08 0.23[1] 20 918048 915

96.15 0.00 480 149 7
12 100 16.05 89.02 0.00 102 5805 14

99.88 0.00 152 0 1
12 200 19.70 66.29 0.43[1] 76 1653136 1775

99.91 0.00 161 0 1
12 500 21.39 45.56 0.00 17 1363485 1513

98.83 0.00 229 25 3

Table 2. 90 time periods

An immediate observation that can be made from the Tables 1–4 is that the initial
integrality gap increases with capacity. On the other hand, as setup/holding cost
ratio increases, it decreases for tight capacities, but increases for high capacities.

The lifted bottleneck cover inequalities reduce the integrality gaps at the root node
of the search tree quite favorably compared with CPLEX cuts. The gap improvement
increases as the capacities get higher, which is an expected result since the facets of the
uncapacitated case is defined completely by a special case of the cuts as explained in
Section 3. The gap improvement decreases as the setup/holding cost ratio increases.
On the average over about 70% of the integrality gap is closed by CPLEX cuts, where
as this improvement increases to over 90% when lifted bottleneck flow cover cuts are
added as well.
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c f initgap gapimp endgap cuts nodes time
3 100 5.94 79.59 0.00 85 352212 1046

91.30 0.00 588 959 37
3 200 5.90 64.05 0.75[5] 58 1971093 3613

74.79 0.25[2] 2392 63839 3157
3 500 4.42 59.26 0.49[4] 36 2068223 3456

64.70 0.57[3] 3710 56611 3337
6 100 11.07 87.19 0.00 84 88726 252

98.89 0.00 184 11 2
6 200 12.06 69.64 0.52[4] 59 1531901 3367

93.57 0.00 664 797 29
6 500 11.16 54.03 1.86[5] 21 2686541 3617

83.32 0.11[1] 3110 25055 1646
9 100 14.37 89.61 0.00 110 20373 70

99.67 0.00 177 1 1
9 200 16.55 64.77 1.53[4] 70 2124499 3091

99.50 0.00 209 6 2
9 500 16.32 53.14 1.52[4] 17 2424953 3318

96.52 0.00 543 264 15
12 100 16.35 86.12 0.00 124 205615 682

99.89 0.00 212 0 2
12 200 19.75 65.67 2.19[4] 132 1878952 3113

99.92 0.00 241 2 3
12 500 21.25 44.02 4.07[5] 15 3403311 3620

98.95 0.00 326 26 6

Table 3. 120 time periods

The improvement in the integrality gaps has profound effect in reducing the number
of nodes explored in the search tree and elapsed CPU time. All instances up to 90
time periods are solved to optimality within the one hour time limit. For instances
that are not solved to optimality, the maximum optimality gap at termination is
under 1% for instances up to 120 time periods and under 3% for instances with 365
periods. Average optimality gap at termination over all instances is 0.18%.

All instances with mean capacity/demand ratio 9 or larger are solved very easily
in a few nodes. The instances with very tight capacities and high setup costs are the
hardest ones to solve with our cuts. Even though they have smaller integrality gaps,
the percentage gap improvement by the cuts is smallest for them.
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c f initgap gapimp endgap cuts nodes time
3 100 6.29 70.42 1.69[5] 190 413932 3610

86.68 0.62[5] 1916 10518 3630
3 200 6.38 52.22 3.11[5] 77 543234 3610

70.39 1.69[5] 3909 8095 3689
3 500 5.30 40.99 3.17[5] 20 780071 3610

51.70 2.39[5] 5588 7589 3760
6 100 11.28 87.82 0.90[5] 261 382649 3609

99.01 0.00 670 148 83
6 200 12.35 66.35 3.79[5] 127 484482 3609

94.67 0.28[5] 2296 11691 3639
6 500 11.94 66.35 3.79[5] 127 484482 3609

77.71 2.35[5] 5273 7023 3779
9 100 14.77 90.05 0.90[5] 321 371756 3610

99.93 0.00 596 1 57
9 200 17.49 76.00 3.48[5] 345 295057 3608

99.52 0.00 705 43 64
9 500 17.77 44.46 10.07[5] 43 722353 3610

94.92 0.45[4] 4050 7915 3569
12 100 16.97 89.24 1.23[5] 312 373887 3609

99.92 0.00 638 1 82
12 200 20.92 72.61 4.86[5] 387 358506 3609

99.89 0.00 692 2 94
12 500 22.89 38.14 14.07[5] 21 788805 3610

99.18 0.00 1129 249 195

Table 4. 365 time periods

5. Conclusions

We identified facets of the lot–sizing polytope using its bottleneck structure. These
facets are then generalized by simultaneous lifting with pairs of variables.

The computational experiments with the lifted bottleneck cover inequalities suggest
that they are quite effective in solving lot–sizing problems when used as cutting
planes. One may pursue several directions for improving the computations further.
The separation heuristic used for finding violated cuts in our computations is quite
simple. Other construction and exchange heuristics may be developed to find more
violated cuts. Identifying stronger lower bounds on the lifting function Φ than φ
would reduce the integrality gap further.
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A complete description of the lot–sizing polytope for the constant capacity is un-
known. Investigation of Φ for the constant capacity special case merits attention.
Preliminary observations in this direction indicate that the constant–capacity lot–
sizing polytope has facets that are not described by (k`SI) inequalities [16]; but are
much harder to identify explicitly than the ones listed in this paper.

The bottleneck cover inequalities and adaptations of them may have the potential
of speeding up computations for more complicated production planning problems that
contain the lot–sizing problem as a substructure.
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