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SUMMARY

Conditional heteroscedasticity has been often used in modelling and understanding the
variability of statistical data. Under a general setup which includes the nonlinear time
series model as a special case, we propose an efficient and adaptive method for estimat-
ing the conditional variance. The basic idea is to apply a local linear regression to the
squared residuals. We demonstrate that without knowing the regression function, we can
estimate the conditional variance asymptotically as well as if the regression were given.
This asymptotic result, established under the assumption that the observations are made
from a strictly stationary and absolutely regular process, is also verified via simulation.
Further, the asymptotic result paves the way for adapting an automatic bandwidth selec-
tion scheme. An application with financial data illustrates the usefulness of the proposed

techniques.

Some key words: Absolutely regular; ARCH; Conditional variance; Efficient estimator;

Heteroscedasticity; Local linear regression; Nonlinear time series; Volatility.



1 INTRODUCTION

Many scientific studies depend on understanding the local variability of the data, which
is often featured as the conditional variance or the volatility function in a statistical
model. It is of common interest to estimate conditional variance functions in a variety of
statistical applications such as measuring the volatility or risk in finance (Andersen and
Lund, 1997; Gallant and Tauchen, 1997), monitoring the reliability in nonlinear prediction
(Yao and Tong, 1994), identifying homoscedastic transforms in regression (Carroll and
Ruppert, 1988), choosing optimal design and understanding residual pattern (Miiller and
Stadtmiiller, 1987; Gasser et al., 1986), monitoring the signal-to-noise ratios in quality
control of experimental design (Box, 1988) and so on. The problem can be mathematically
formulated as follows.

Let {(Yi, X;)} be a two-dimensional strictly stationary process having the same marginal
distribution as (Y, X). Let m(z) = E(Y|X = z) and o%(z) = var(Y|X = z) # 0. We

write a regression model of Y; on X; as
Y = m(X;) + o(X))e. (1.1)

Then F(¢]X;) = 0 and var(e;|X;) = 1, although the conditional distribution of ¢; given
X; = = may still depend on z. For X; = Y;_y, (1.1) is an autoregressive conditional
heteroscedastic (ARCH) time series model, and o(.) is called the volatility function (Engle,
1982). Connections of model (1.1) with one-factor diffusion model in finance will be
discussed in Section 4. The aim of this paper is to derive an efficient fully-adaptive
procedure for estimating o?(.).

Due to the simple decomposition o?(z) = E(Y?|X = 2)—m?(z), the following obvious

and direct estimator is used:

oi(x) = v(x) - {r(z)}?, (1.2)

where 72(.) and D(z) are respectively a regression estimator for m(.) and v(z) = E{Y?%X =
z} (Yao and Tong, 1994; Hirdle and Tsybakov, 1997). However, 63(.) is not always non-
negative, especially if different smoothing parameters are used in estimating m(.) and v(.).
Furthermore, such a direct method can create a very large bias (§3.1 below). Hardle and
Tsybakov (1997) recognized these problems and used a common bandwidth and a common

kernel to reduce the bias. While their idea is useful, the approach is still not fully adaptive



to the unknown regression function m(.). An alternative regression-adaptive approach
is to apply the difference-based estimator (Rice, 1984; Gasser et al., 1986; Miiller and
Stadtmiiller, 1987; also §3.2 below), which uses a high-pass filter to remove the regression
function from the data sequence {Y;}. Hall et al. (1990) demonstrated that the resulting
estimator was inefficient even in homoscedastic models with optimal filters.

In this paper, we consider a residual-based estimator of the conditional variance. While
the idea is not new (Hall and Carroll, 1989; Neumann, 1994), its implications and imple-
mentations are novel. In particular, we show that our estimator is fully regression-adaptive
in the sense that without knowing m(.), we can estimate the conditional variance func-
tion o?(.) asymptotically as well as if m(.) were known. After we have completed this
paper, we find that this phenomenon is observed independently by Ruppert et al. (1997)
in regression models with independent and identically distributed observations.

One interesting feature of our approach is that we do not need to undersmooth the
regression function m(.) in order to obtain a regression-adaptive estimator for the condi-
tional variance o%(.). In practice, this implies that we can use a data-driven bandwidth
selector in estimating m(.), then apply the same bandwidth selector with the the squared
residuals to estimate o2(.). This is in marked contrast with the previous methods, where
new bandwidth (or filter length) selection problems are encountered.

The paper is organized as follows. In §2, we propose and study the residual-based
estimator of the conditional variance based on local linear regression. In §3, we compare
the performance of our estimator with various procedures in the literature and discuss
their mutual relationship. In §4, we present numerical applications with a financial data

set and two simulated models. All the technical proofs are given in the Appendix.

2 MAIN RESULTS
2.1 Estimator

If the regression function m(-) is given, we can regard the problem of estimating o?(-)

as a nonparametric regression problem due to the relation
E(r|X =z) = o*(z), where r={Y —m(X)}%

Given the observations {(Y;, X;),1 < ¢ < n} from model (1.1), we write 7, = {Y; —

m(X;)}?. Then the local linear estimator of o%(+) is 67(z) = & (the subscript b stands for



‘benchmark’), where
P = X, —z
(4,0) = argmin > {ri — a - (X - oW (220 (21)
B T hy
and W (.) is a density function on R and h; > 0 is a bandwidth (Fan and Gijbels, 1996,
p.58). The local linear estimators have several nice properties. They possess high sta-
tistical efficiency in an asymptotic minimax sense and are design-adaptive (Fan, 1993).
Further, they automatically correct edge effects (Fan and Gijbels, 1992; Ruppert and
Wand, 1994; Hastie and Loader, 1995). Therefore, 67(.) provides a benchmark to our
problem.
In practice, m(.) is typically unknown. A natural approach is to substitute m(-) by a
nonparametric regression estimator. We choose the local linear estimator because of its

aforementioned optimal properties. Let /(z) = @ be the local linear estimator that solves

the following weighted least-squares problem:
(@,b) = argmin Zn:{m —a—b(X; —2)}°K <u) (2.2)
’ a,b =1 hg ’
where K(.) is a density function on R and hy > 0 is a bandwidth. Denote the squared

residuals by #; = {Y; — Mm(X;)}?. This leads to the residual-based estimator 6%(z) = &

with kernel W and bandwidth Ay, where

3, 3) = ar minn ;o — o — [ — )2 Xi—z
(605) = argmin 32— o B~ () (23)

Although the above idea appears somewhat ad hoc, it has interesting implications.
Specifically, while the bias for i itself is of order O(h%), its contribution to 6%(.) is only
of o(h2). This can be intuitively explained as follows: Observe that

Fo — = 2{m(X;) — (X)) }o(X)e + {m(X;) — m(X;)}2,

It is intuitively clear that the biases of the residuals are of order O{h3+ (nhy)~'} and this
is the effect of the estimated regression function on the estimated variance. See Theorem
1 and Remark 1 below. This result also paves the way for adapting a fully data-driven

bandwidth procedure in our estimation.

2.2 ASYMPTOTIC NORMALITY

THEOREM 1. Suppose that conditions (C1) — (C5) in the Appendix hold. Then,

Vnhi{6%(z) — o*(z) — 6, } is asymptotically normal with mean 0 and variance

P ()0 ()N e) [ W,



where p(.) denotes the marginal density function of X, A%(z) = FE{(¢® — 1)} X = z},
e={Y —m(X)}/o(X), o = [1*W(t)dt, and
6, = %%U%V&Z(m) + o(h? + h3). (2.4)

The above adaptive result is obtained under the assumption that m is twice differen-
tiable. This is not a minimal condition. The function o(-) can be estimated with optimal
rates under weaker smoothness conditions on m(-). See Hall and Carroll (1989) and Miiller
and Stadtmiiller (1993). Note that the above asymptotic normality result complements
the asymptotic approximatons for conditional mean square error obtained by Ruppert et
al. (1997) for regression models with independent observations.

Remark 1. The bias and variance expressions given in Theorem 1 are exactly those
which arise in the usual nonparametric regression analysis, considering the regression
function to be o?(z). In the bias of 6%(z), the contribution from the error caused by
estimating m(z) is of smaller order than A%, namely the order of the bias of (z) itself.
This permits us to use the optimal bandwidth to smooth 7 — no undersmooth of m is

needed. Our proof shows further that the second term on the RHS of (2.4) is o(n™9¢) if
the bandwidths with optimal rates (i.e. by = O(n="/%) and hy = O(n~'/?)) are used.

2.3 EFFICIENCY

It follows from the local linear regression theory (§6.2.2 of Fan and Gijbels 1996),
the benchmark estimator 67(.) derived from (2.1) is asymptotically normal. The leading
terms in asymptotic bias and variance are exactly the same as those given in Theorem
1, provided hy used in estimator 6%(.) converges to 0 not slower than hy. This is a very
minor requirement. It is well known that the best hy for estimating m(.) should be of

the order n=1/5,

Substituting such an hg in (2.4), the optimal hy which minimizes the
asymptotic mean squared error is also of the order n=1/5. Therefore, the estimator 5%(.)
behaves asymptotically as well as 67(-) and hence is adaptive to the unknown regression

function m(+). Since the local linear estimator 67(-) is efficient in the sense of Fan (1993),

so is 02(.).

2.4 BANDWIDTH SELECTION

Bandwidth parameter is important to virtually any kernel estimators. The results

given in §2.2 permit us to take advantage of existing bandwidth selection methods for



the local linear fit. Let fz(Xl, <+, Xn; Y1,--+,Y,) be a data-driven bandwidth selection
rule for the local linear regression based on the data (X1,Y71),---,(X,,Y,). This can be
in one case the cross-validation bandwidth rule, and in another case the pre-asymptotic
substitution method of Fan and Gijbels (1995) or the plug-in approach of Ruppert et al.
(1995). The latter two methods have been demonstrated to be less variable and more
effective. In all cases, .iz(Xl, <, Xp; Y1, -+, Y,) is a consistent estimate of the asymptotic
optimal bandwidth, which is of order O(n='/%). Our bandwidth selection rule reads as

follows:

1. Use bandwidth hy = A(Xy, -+, X,;Y1,---,Y,) in local linear regression (2.2) to

obtain the estimate m(X;) fori=1,---,n.
2. Compute squared residuals #; = {Y; — m(X;)}?,i=1,---,n.

3. Apply bandwidth Ay = iL(Xl, <+, Xp; 71, -, Tp) in local linear regression (2.3) to

obtain 62(-).

In the above algorithm, we keep the bandwidth selection method flexible. In our im-
plementation, we use the pre-asymptotic substitution method by Fan and Gijbels (1995),
since it has been demonstrated that the resulting estimator possesses fast relative rate of

convergence (Huang, 1995, a PhD dissertation).

3 OTHER ESTIMATORS
3.1 DIRECT ESTIMATORS

Hérdle and Tsybakov (1997) proposed an improved version of the direct estimator
62(.), as given in (1.2), with local polynomial regression estimators r(.) and 2(.) us-
ing the same kernel function and the same bandwidth, where 7(z) is an estimate for
E(Y?]X = z). They also established the asymptotic normality of the estimator. If the
local linear estimators are used with kernel W(.) and bandwidth A4, the leading terms in

the asymptotic bias and the asymptotic variance of 63(z) are

1

bias{63(z)} : %U%V[&Q(m)—l—Q{m(m)}Q], var{63(z)} : n—}ha4(m)/\2(m)p_1(m)/WQ(t)dt.

On comparing this with Theorem 1, the direct estimator has the same asymptotic variance

as the benchmark 67(.) and the residual-based estimator 62(.), but admits one more term



in the bias. This extra term hfo,{m(z)}? could lead to an adverse effect on the quality
of estimation. For example, even when m(-) is a linear function with a large slope, this
direct method would have a large bias. Thus, the residual-based estimator 6%(.) appears
more appealing.

The existence of one more term in the bias of the direct estimator can be understood

through the following heuristic arguments. Note that

63(a) - o(x) = {(x) - v(a)} - 2m(2){i(x) - m(2)} - {i(x) - m(x)}%.  (3.1)

The first term on the RHS has the bias
h—%UQ v(z) = h—%UQ 53(z) + hiog {m(z)}* + hiohym(z)imn(z) (3.2)

9 w 9 w 1YW 1YW ’
in which the last term on the RHS will cancel the bias of the second term on the RHS
of (3.1). Note that the bias from the third term on the RHS of (3.1) is of the order
hi. Therefore, the term involving {r(z)}* stays. This argument also shows that using
different kernels or bandwidths in the estimators m(.) and #(.) could further increase the
bias of 63(.).

Why can the residual-based estimator 6%(.) give smaller bias? To gain some insight,
let us consider the local constant smoother, namely setting 8 equal 0 in (2.3). Then the

resulting estimator is

;{Y (X)W (thz ‘f) ;W (thz ) .

This estimator will reduce to the direct estimator 63(z) if all the 7 (X;)’s in the above
expression are replaced by m(z). Clearly, {Y; —m(z)}? is more biased for E{Y —m(X)}?
than {Y; —m(X;)}%. This explains why the residual-based estimator inherits less bias from

m(.) than the direct estimator.

3.2 DIFFERENCE-BASED ESTIMATORS
For a fixed design model
Y: = m(zi) + o(zi)e,

in which z; < ... <z, are fixed, F(¢;) = 0 and E(¢?) = 1, Miiller and Stadtmiiller (1987)

proposed to estimate o?(.) through a difference sequence. Their approach can be briefly



described as follows. Form an initial local variance estimate
2
m
GHxi) = | Y wiVis| (3-3)
j=—m
where m > 0 is a prescribed integer, and the difference sequence {w;} satisfies the condi-

tions

Y w=0, Y wiol. (3.4)

i=—m i=—m
By writing 0?(z;) = 6%(2;) + &, a kernel smoother is applied to obtain the final estimator
for 02(.) based on the above regression relationship.

Estimators of this type have a long history in the time series context; see, for exam-
ple, Anderson (1971, p.66). The application in nonparametric homoscedastic regression
includes Rice (1984), Gasser et al. (1986), and Hall et al. (1990). It is shown by Hall
et al. (1990) that if the optimal difference sequence of {w;} is employed for a Gaussian
model, the efficiency of the estimator is 4m/(4m + 1).

In fact, the residual-based estimator 6%(.) can be regarded as a generalized difference-
based estimator, and #; serves as a crude estimate of ¢%(X;). To make such a connection,

we express the local linear estimator of m(.) as
n
=1

Then, it can be shown that wyi(z)+ ...+ wy(z) = 1. Write

2
7 =Y, —m(X)} = (z”: quz) ,
j=1
where w; ; = 1 — w;i(X;) and w; ; = —w;(X;) for i # j. Obviously, {w;;} is a difference
sequence satisfying w;1 + ...+ w;, = 0. However, such a sequence of {w;;} does not
exactly fulfill the second condition in (3.4), but

Z 'wij =1+ Op{(nhg)_l}.

J

The effective length of the sequence is 2m = 2nho, which tends to infinity. This also
explains why the estimator 6%(.) is efficient in contrast to the aforementioned results of
Hall et al. (1990).

Estimation of variance functions with more general weights was discussed by Miiller
and Stadtmiiller (1993). The rates of convergence for this class of estimators were thor-

oughly investigated. In particular, Miiller and Stadtmiiller (1993) find that it requires



only very mild smoothness condition on the regression function in order to obtain the

optimal rates for the variance estimation.

3.3 MAXIMUM LOCALLY LIKELIHOOD ESTIMATORS

If the distribution of ¢ is known, the locally maximum likelihood approach could be
more efficient. See §4.9 of Fan and Gijbels (1996) and the references therein. For example,

if {¢;} are independent and normal, the log likelihood function can be expressed as
1 n
5 D0 LX), Vi = m(X2)),
=1

where L(a,y) = a™'y? + loga. The local maximum likelihood approach with the local
constant smoother leads to the direct estimator 63(.) with both 7(.) and 2(.) being the
local constant estimators. The approach with the local linear smoother needs to estimate
four functions. To make it more tractable, we substitute m(.) directly by its local linear
estimator 7(.), derived from (2.2). Let & and 3 be the minimizer of the residual-based

likelihood function:

"~ A _ . - . . ; XZ_m
(6,8 = argmin 3, L{a+ f(Xi - 2), ¥, AW (S5

Then, the maximum local likelihood estimator is defined by 62 ,(z) = &. The estimator is
also residual-based, and is adaptive to all unknown regression functions in a similar way
to what 6%(+) does. The local maximum likelihood estimator share the same leading terms

as those for 6%(z) given in §2.1, but is more computationally involved.

4 APPLICATIONS AND SIMULATIONS

In this section, we first apply the adaptive estimator 6%(.) derived from (2.3) to an interest-
rate data set. The finding from the application includes the validation of an existing
structural model. Then, extensive simulations are carried out to confirm the theoretical
claim that the adaptive estimator works almost as well as the ideal estimator 67(.) defined
in (2.1). We use two simulated models, one with independent observations and one with
nonlinear time series.

Throughout this section, the two dashed curves around a solid curve always indicate
the two standard deviations above and below the estimated curve. The conditional vari-

ance functions are always estimated by the adaptive estimator 62(.) derived from (2.3)



Interest rate

A

unless specified otherwise. We always use the Epanechnikov kernel in our calculation. All
bandwidths are selected using the pre-asymptotic substitution method by Fan and Gijbels
(1995).

Frample 1. This example concerns the yields of the three month Treasury Bill from
the secondary market rates (on Fridays). The secondary market rates are annualized using
a 360-day year of bank interest and quoted on a discount basis. The data consist of 1,735
weekly observations, from January 5, 1962 to March 31, 1995, and are presented in Figure
1(a). The data were previously analyzed by various authors, including Andersen and Lund

(1997) and Gallant and Tauchen (1997).

Three month T-Bill rate Residuals after an AR(5) fit
59 4
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Figure 1: Three-month Treasure Bill data. (a) Raw data z;. (b) Residuals after an AR(5)
fit is plotted against X = z_1; solid curve is the regression curve. (c) The regression curve
for the data in (b). (d) The estimated volatility curve (thick curve) and the conditional
variance function (thin curve).

Let z; denote the time series presented in Figure 1(a). We first fitted an AR model

with order selected by the Akaike information criterion. This yields the following AR(5)




model:
zt = 1.07332;,_1 — 0.04232;_9 + 0.01652,_3 + 0.0228z;_4 — 0.07732;_5 + Y;.

The selection of an AR(5) model coincides with that used by Andersen and Lund in a
technical report. The ‘residuals’ Y; are plotted against X; = z,_; in Figure 1(b). Figure
1(c) depicts the estimator of the mean regression function m(z) = F{Yi|z—1 = z}. The
nonlinearity with a slightly increasing trend (up to z,_; = 14) can be noted. The band-
width selected by our software is 1.9535. The residual-based estimator for the conditional
variance of Y; given z;_1 = z is denoted as &Q(m) with the automatically selected band-
width 3.1461. The estimated volatility function &(z) is presented in Figure 1(d). The

overall fitted model is
z = m(z—1)+1.07332,_1 — 0.04232,_5+ 0.01652,_5 + 0.02282;_4 — 0.07732_5+ 6(z¢—1 )€,

in which E(e]z—1) = 0, and var(ez;—1) = 1. Note that the correlation coefficient between
the logarithm of z;,_; and logarithm of 6(z._1) is 0.999. This lends a strong support to
the structural volatility model

o(z1) = az,

which was considered by Andersen and Lund in a technical report. Applying the least-
square fit to the log-transformed data, we found that o = 0.0169 and 3 = 1.380.
A commonly-used model for asset pricing admits the following form: The value Sy of

an underlying asset at time ¢ satisfies
dSt = M(St)dt + U(St)dVVt, (41)

where p is the (instantaneous) expected rate of return, ¢ is the price volatility, and W; is
the standard Wiener process. This nonparametric model was recently used to model term
structure dynamics by for example Ait-Sahalia (1996) and Stanton (1998). Tt includes the
famous interest rate models of Cox, Ingersoll and Ross (1985), Chan, Karolyi, Longstaff
and Sanders (1992), among others. We now briefly connect this continuous model with
our nonparametric regression model. Suppose that the data are sampled at time :A for
t=1,---,T—1. SetY; = (S(i+1)A—SiA)/A and X; = S;a. Model (4.1) can be understood
as

Y m u(X0) + o (Xi)ei/VA, (4.2)

10



where {¢;} are Gaussian white noise. Therefore, our method can be directly used to es-
timate functions u(-) and o(-). For the short interest rate data set, our Y; is basically
the same as the difference z; — z_1. Therefore, functions in Figures 1(c) and 1(d) are
respectively a scaled version of the estimated expected rate of return and price volatility
in the continuous model (4.1). In fact, similar estimates to Figures 1 (c¢) and (d) were inde-
pendently obtained by Stanton (1998). Our method differs from that of Stanton (1988) in
the following three important aspects: Squared residuals instead of the squared responses
Y? are used to estimate the volatility; local linear approach instead of kernel method is
used for nonparametric regression; more sophisticated bandwidth selection techniques are
implemented. The first two aspects can reduce considerably biases in the estimate and
the last aspect enables one to conduct correct amount of smoothing.

Frample 2. We simulated 400 random samples of size n = 200 from the model
Y; = a{X; + 2exp(—16X?)} + 0(X;)e;, with o(z) = 0.4exp(—222) + 0.2,

where {X;} and {¢;} are two independent sequences of independent random variables, and
X; ~ U[-2,2] and ¢ ~ N(0,1). Four different values of a, namely a = 0.5,1,2,4, are
used in the simulation. For each simulated sample, the performance of the estimator is

evaluated by the Mean Absolute Deviation Error (MADE):

Terid
MADE = n_iy > [6(z;) — o(=;),
=1

where {z;,j =1, -, ngia} are the grid points on [—1.8,1.8] with ngiq = 101. The results
are summarized in Figure 2. Figure 2(a) compares the adaptive variance estimator with
the ideal variance estimator 67(.) which does not vary with different values of a. Presented
there are the boxplots of MADEs based on 400 simulations. The first four boxplots are
the MADEs of the adaptive estimator 62(.) for a = 0.5,1,2,4 in order, and the last one is
that of the ideal estimator 67(.). As anticipated, the adaptive estimator performs almost
as well as the ideal one.

To get further insights, we consider the specific case ¢ = 1. The scenario is similar
for other cases. Figure 2(b) plots the MADE based on the adaptive estimator versus
the MADE based on the ideal estimator, using the same sample data. Clearly, there is
about equal chance that one estimator beats the other. The marginal densities of MADE
of the adaptive estimator (thick curve) and of the ideal estimator (thin curve) are also

depicted in Figure 2(b). This shows again that the performance of the two estimators

11
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Figure 2: Simulation results for Frample 2. (a) Bozplots of the MADFEs for the adaptive
estimator with a = 0.5,1,2,4, and for the ideal estimator (from left to right). (b) The
scatter plot of the MADE of 6*(.) versus the MADE of 67(.); the straight line marks the
position where the two MADFESs are equal. Thick curve — the estimated density function of
the MADE of 62(.); thin curve — the estimated density function of the MADE of 6}(.). (c)
A representative sample, the corresponding estimated regression curve (thin curve), and
the true regression curve (thick curve). (d) The sample residuals from (c), the estimated
volatility (thin curve), and the true volatility (thick curve).

is comparable. Figure 2(c) presents a typical simulated sample with its corresponding

estimated regression function. The typical sample was selected in such a way that the

corresponding MADE is equal to its median among the 400 simulations. The sample

residuals and the estimated conditional standard deviations are plotted in Figure 2(d). The

bandwidths are automatically selected by the procedure outlined in §2.4 and are 0.1867

for the mean regression and 0.4841 for the conditional variance function respectively.

Frample 3. Consider the following nonlinear time series model

Xt_}_l = 0235Xt(16 - Xt) + €1,

12
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Figure 3: Simulation results for Frample 3. (a) Bozplots of the MADFEs for the adaptive
estimator and for the ideal estimator. (b) The scatter plot of the MADE versus the ideal
MADEFE for 3-step prediction. The straight line marks the position where the two MADFEs
are equal. (c) A representative sample and its estimated 3-step ahead regression curve.
(b) The sample residuals of (c), the true volatility function (thick curve), and estimated
volatility function.

where €1, €, ..., are independent with the common distribution N(0,0.3?). The skeleton
of this model exhibits chaos and has been used by Yao and Tong (1994) to illustrate the
influence of the initial values on nonlinear prediction.

For this nonlinear time series, we consider the two-step and three-step ahead prediction
by taking respectively ¥; = Xy49 and Y; = Xy43. Note that the conditional variance
functions concerned are not constant. On the other hand, the conditional variance of the
one-step prediction is a constant, and is therefore not presented here.

Figure 3(a) compares the ideal estimator with the adaptive estimator based on 400

simulations with » = 500. As we can see, the adaptive estimator works almost as well

13



as the ideal estimator. Figure 3(b) gives the scatter plot of MADE for the adaptive
estimator and the ideal estimator for three-step ahead prediction. A typical simulated
data set and the corresponding estimated curves are presented in Figures 3 (b) and (c).
The criterion used to choose a typical sample is again the one for which the MADE
is equal to its median among the 400 simulations. Figure 3(c) presents the estimated
regression function for 3-step ahead prediction, where bandwidth 0.5577 was selected by
our procedure. The estimated volatility function is presented in Figure 3(d) with data-
driven bandwidth 0.8165. Similar results to Figures 3(b)—(d) were obtained for two-step

prediction and are omitted for brevity.
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APPENDIX
Regularity conditions

We use the same notation as in §2. We always use ¢ to denote a generic constant which

may be different at different places. We introduce the following regularity conditions.

(C1) For a given point z, p(z) > 0, %(x) > 0 and the functions E{Y*|X = z}
is continuous at z for k = 3,4. Further, 7i(2) = d*m(z)/dz? and %(z) =
d*{c?(2)}/dz* are uniformly continuous on an open set containing the

point z.
(C2) E{Y*(1+9)} < oo, where § € [0,1) is a constant.

(C3) The kernel functions W and K are symmetric density functions each
with a bounded support in R. Further, |W(z1) — W(z2)| < c|z1 — 22|,
[K(21) = K(22)| < efer — 29| and also [p(z1) — p(22)] < |2y — @ for

x1,29 € R.

(C4) The strictly stationary process {(X;,Y;)} is absolutely regular, i.e.

B(I) = SUPE{ sup |pr(A|77) —pT(A)I} —0, as j— o,
21 AE]:I.O_I?J

where ]—"Z»j is the o-field generated by {(Xx,Yx) : k = 4,...,7}, ( > ).

Further for the same ¢ as in (C2),
> 2,0 .
D BT () < .
i=1

(We use the convention 0° = 0.)

C5) Asn — o0, h; — 0, and liminf,,— . nh? > 0, for i = 1, 2.
( 9 9 7 9 9
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We impose the boundedness on the supports of K(.) and W(.) for brevity of proofs;
it may be removed at the cost of lengthier proofs. In particular, the Gaussian kernel is
allowed. The assumption of the convergence rate of 3(j) is also for technical convenience.

The assumption on the convergence rates of Ay and hg is not the weakest possible.

Remark 2. When {(X¢,Y;)} are independent, (C4) holds with § = 0 and condition
(C2) reduces to E(Y*) < oc. On the other hand, if (C4) holds with § = 0, there are at
most finitely many non-zero 3(j)’s. This means that there exists an integer 0 < jo < oo

for which (X;,Y;) is independent of {(X;,Y;), 7 > i+ jo}, for all i > 1.

Proofs

In the sequel, /(.) denotes the local linear estimator derived from (2.2). We always
assume that conditions (C1) — (C5) hold. We call that B, (z) = B(z)+0,(by) (or Op(by,))
uniformly for z € GG if

sup | Bu(2) = B()| = 0p(bn) (o Op(bn)).
We only present the proof for the cases with § > 0. The case with é = 0 can be dealt in
a more direct and simpler way. (See Remark 2.)
The proof is based on the following lemma which follows from Lemma 2 of Yao and

Tong (1996, a technical report) directly.

LEMMA 1. Let G C {p(z) > 0} be a compact subset. As n — oo, uniformly for z € G,

n

#2(z) - o(z) nhlp Z <

=1

2) {hi = (o) = BH(@)(X — )} + O Rua (o)),
(A.3)

i) =) = s S e(Nak (F) + i) + 0 a(a A

b (N - - o) |




Proof of Theorem 1. Note that
o= {Y; —m(X)}? = {o(Xy)e +m(X;) — (X))}
= (X)) + 20(Xo)e{m(X) — m(Xi)} + {m(X;) - i(X)}.
It follows from (A.3) that

63 z)— o (2) =L+ I — I3+ I+ Op(h)(| I + Iy — Is + Ly| + |I] + I — I5 + 1)),

where
Bo= i W (B e = o) = )K= ),
ho= o ZW (B=2) erxae - 1),
L = nhj)(x) gw <Xhz m) o(X)edr(X;) — m(X)}, (A.5)

and [} is defined in the same way as I; with one more factor h7Y(X; — ) in the i-th

summand (1 < j < 4). It is easy to see that the theorem follows from statements (a) —

(d) below directly.

(a) It = Y26%(2)0%, + o0,(h?), and T{ = o,(h).

(b) v/nhy Iy <, N(0, o*(z)N\*(z) [ W?2(t)dt/p(x)), and

Vb I —5 N(0, of(2)A2(z) [ 2W2(1)dt/p(z)).

() Ts = o(2 + h3), and T} = o,(h} + b3).

(@) It = 0y + 3), and I} = o,(h2 + B3)
In the sequel, we establish the statements on I; in (a) — (d) only. The cases with I can
be proved in the same manner.

It is easy to see that (a) follows from a Taylor’s expansion, and a direct application

of the ergodic theorem. Conditions (C2) and (C3) imply that E{W (X;L—I_I) a?(Xi)(ef -
1)}2%%/2 < 0. Note that the condition of absolutely regular implies a-mixing with a(5) <

B(7). By (C4) and Theorem 1.7 of Peligrad (1986), I is asymptotically normal with mean

0 and variance oZ/nhy, where

= defw(B22) 0 )




1 & X1 — 2\ o%(Xy) X;— 2\ o*(Xy)
— Y F W( ) 62—1W< ) & —1)p (A6
3w () S - ow (557 G - of o

It is easy to see that the first term in the above expression converges to o*(z)A?(z) [ W2(t)dt/p(z).

Note that for any 7 > 2,

. {W ) Z,Q((X)?))@? —ow () 2(?))( - 1>}1+é = o(h}),

X — 2\ o}(X) [ — 2\ 0%(X)
ESW < ) (2 —1)p = W ) -1
{ hi ) p(X) ( )} ‘ hi ) p(X) ( )
It follows from (C4) and Lemma 1 Yoshihara (1976) that the absolute value of the second

term on the RHS of (A.6) is bounded above by chgl_é)/(lw){ﬁl%(l)—}-. . .—}-ﬁl%@(n— 1)} =
o(1). Hence (b) holds.

Note that W(.) has a bounded support contained in the interval [—s,,, s,,], say. There-
fore in the summation on the RHS of (A.5), only those terms with X; € [z —hoSy, 2+ hosy]

might not be 0. It follows from (A.4) that we may wirte I5 = 31 + I3z + [33, where
X —X; X;—«x
I — K X X . -1 Xz 7
0 = i Z (F57) exoe e (o cxaw (27)

: p—«x»wﬁzf)}

= i; = i+ O A7
n2h1h2p 2]231 Pij n2h1h2p 1<Z;<n Pii h ) ( )
hig2
I, = 2K < ) X)em(X;) = o,(h? A.
% = e 2" o(Xi)ei(X:) = o,(h), (A8)

0,(1) | & Xi—z\ ([ Xi— X;\ o o
< P V [ . ¢ J X X )eles X
|I33| = n2h1 Z'Ej::ll < hl ) K < hg ) U( Z)U( ])|€Z|€]/p( 2)

0,(1) | &~ X; - X, (Xz'—fﬁ) ,<Xz’—Xj> ' N '
o |2 T W) K (T ) eae(Xa)leilei /p(X)

+ Op(h%)-

t,j=1
It follows from Lemma A(ii) of Hjellvik, Yao and Tjgstheim (1996, a technical report)

that for any ¢g > 0 and € > 0,

pr{n—l(hth)—(li—é—so)/Ql Z@ijl > 5} < ME{(hlhg 2(1+5) ES‘O } — 0((h1h2)50)
1<g 1<g

; -1 — (555 +=0)/2
Therefore, the first term on the RHS of (A.7) is 0,{n™"' (h1hy) ™" T#5 70/}, Thus

Isy = op(n~ (hihy)"(TFT20)/2) 1 0 (n~1h3 1),
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Condition (C5) implies that both terms on the RHS of the above expression is of the order
0,(h3 + h3) if we choose g9 < (14 §)~!. Performing Hoeffding’s projection decomposition
of U-statistics, we can prove I3 = o,(h} + h3) in the same way.

The proof of (d) is similar to that of (c), therefore is omitted here.
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