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Maximum Empirical Likelihood: Empty

Set Problem

Abstract

In the Empirical Estimating Equations (Ê3) approach to estimation and
inference estimating equations are replaced by their data-dependent empirical
counterparts. It is odd but with Ê3 there are models where the Ê3-based estima-
tor does not exist for some data set, and does exist for others. This depends on
whether or not a set of data-supported probability mass functions that satisfy
the empirical estimating equations is empty for the data set. In a finite sample
context, this unnoted feature invalidates methods of estimation and inference,
such as the Maximum Empirical Likelihood, that operate within Ê3. The empty
set problem of Ê3 is illustrated by several examples and possible remedies are
discussed.



Maximum Empirical Likelihood:
Empty Set Problem

M. Grendár∗ and G. Judge†

Abstract

In the Empirical Estimating Equations (E3) approach to estimation and in-
ference estimating equations are replaced by their data-dependent empirical
counterparts. It is odd but with E3 there are models where the E3-based esti-
mator does not exist for some data set, and does exist for others. This depends
on whether or not a set of data-supported probability mass functions that sat-
isfy the empirical estimating equations is empty for the data set. In a finite
sample context, this unnoted feature invalidates methods of estimation and in-
ference, such as the Maximum Empirical Likelihood, that operate within E3.
The empty set problem of E3 is illustrated by several examples and possible
remedies are discussed.

1 Introduction

In statistics and other fields such as econometrics, it is rather common to formulate
a probabilistic model for the random variable X ∈ Rd with a probability distribution
rX (x;θ) that is parametrized by θ ∈ Θ ⊆ RK , as a set Φ(Θ) of probability distri-
butions with certain moment properties. This is accomplished through estimating
functions u(X ;θ) ∈ RJ of parameter θ . The estimating functions are employed to
form the set Φ(Θ) =

⋃

θ∈ΘΦ(θ) of parametrized probability distributions F(x;θ),
where Φ(θ) is defined through the estimating equations [9] as

Φ(θ) =

¨

F(x;θ) :

∫

u(x;θ) dF(x;θ) = 0

«

.

In general, we assume that rX (x;θ) need not belong to Φ(Θ). Given a random sam-
ple X n

1 = X1, X2, . . . , Xn from rX (x;θ) the objective is to estimate θ and draw infer-
ences. To this end, the Empirical Estimating Equations (E3) approach replaces the
model Φ(Θ) by its empirical, data-based counterpart Φq(Θ) =

⋃

θ∈ΘΦq(θ) where

Φq(θ) =
¦

q(x;θ) : ch
�

u
�

X n
1 ;θ
��

∩ {0}
©

and in this way, connects it with the data. There, ch(A) denotes the convex hull
of the set A ⊆ RJ , and 0 is the J -dimensional zero vector. Note that in doing so,
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the set Φ(Θ) of probability distributions is replaced by the set Φq(Θ) of probability
mass functions (pmf’s) q(x;θ) that are supported on the data X n

1 . An estimate θ̂
of θ is then obtained by means of a method that selects a pmf q̂(·; θ̂) from Φq(Θ).
One prominent method is the Maximum Empirical Likelihood Estimation (MELE)
method (cf. [20], [19]) which selects

q̂(·; θ̂)MELE = arg sup
q(·;θ)∈Φq(Θ)

1

n

n
∑

i=1

log q(x i;θ). (1)

Since the interest is in θ̂MELE, it can be - by means of the convex duality [21] -
obtained as

θ̂MELE = arg inf
θ∈Θ

sup
λ∈RJ
−

1

n

n
∑

i=1

log q(x i;θ ,λ), (2)

where

q(·;θ ,λ) =



n



1−
J
∑

j=1

λ ju j(·;θ)









−1

.

The Maximum Empirical Likelihood Estimator (MELE) is a non-linear function of
the data. It can be obtained by a numerical solution of the above optimization
problem. Asymptotic distributional properties of MELE are known (cf. [20]), and
provide a basis for inference.

Methods other than MELE can be used for estimation within E3 approach. In
particular, the objective function in (1) can be replaced by another measure of
closeness of q(·) to the uniform distribution, supported on the sample; cf. [1], [3],
[5], [15], [16], [18], [19], [22]. Most common are the measures of closeness
(also known as divergences) encapsulated by the Cressie Read family [7], or, in
general, the so-called convex statistical distances, which lead to the Generalized
Minimum Contrast (GMC) estimators [2], [6], [17]. The GMC class contains MELE
and Maximum Entropy Empirical Likelihood (also known as the Exponential Tilt,
cf. [15], [16], [5], [18]) as special cases.

Finally, let us note that there is also in use a modification of E3, where the
nonnegativity constraints q(x i;θ) ≥ 0 are dropped out, so that Φq(θ) is replaced
by

Φm
q (θ) =

¦

q(x;θ) : ah
�

u
�

X n
1 ;θ
��

∩ {0}
©

,

In this case ah(A) is the affine hull [21] of the set A ⊆ RJ . A method such as
the Euclidean Empirical Likelihood [3], or some other member of the CR class of
estimators operate within the modified E3 approach (abbreviated mE3) to provide
a basis for estimation and inference.

2 Empty set problem

The replacement of Φ(Θ) by Φq(Θ) may seem natural1. However, this substitution
is not as innocent as it may appear. Because Φq(Θ) is data-dependent, it can be
empty for some data and therefore may be subject to the empty set problem (ESP).
In other words, ESP introduces the possibility that for the sample size n, there

1In particular, when it is phrased in context of the Generalized Minimum Contrast estimation, cf.
[17], [2].
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may exist X n
1 ∼ rX (x;θ) such that Φq(Θ) = ;. Consequently for such a model the

very existence of an estimator and corresponding inferences that are obtained by
methods that operate within E3 are data-dependent.

In the section ahead, it will be demonstrated that models considered in Qin
and Lawless’ seminal paper [20] (abbreviated QL) are subject to the empty set
problem. A few other models are used to illustrate the problem and provide a basis
for further discussions.

There are models, such as QL, Example 1, where even the modified E3 approach
is subject to an empty set problem. In this case the empty set problem concerns
the possibility that for the sample size n, there may exist X n

1 ∼ rX (x;θ) such that
Φm

q (Θ) = ;. This form of ESP will be referred to as the affine Empty Set Problem
(aESP). Whenever there is the affine ESP for a data set, then there is also ESP; the
opposite need not be true.

Two notes are worth making in advance:
1) The empty set problem is a substantive extension of the convex hull problem,

that is known in the literature on the Empirical Likelihood; cf. [19], see also Sect.
2.3.1. Indeed, the convex hull problem can be seen as the empty set problem, in
the case when Θ = {θ0}, i.e., when the parametric space comprises a single point.
It is well-known that in such case the set Φq(θ0) may be empty, for some data set,
and some θ0. Our objective is to show, for some models there are data, for which
Φq(Θ) may be empty, for the entire Θ .

2) Another substantive point concerns the affine form Φm
q (Θ) of the model. We

show that even in this case there are models that are subject to the affine empty set
problem. It means, that the modifications of MELE, which are designed to mitigate
the convex hull problem by expanding it into the affine hull, cannot, in general,
serve as a rescue from the empty Φm

q (Θ) set problem.

2.1 QL, Example 1

QL, Example 1, p. 301 and pp. 309-311, consider the following setup: there is
a random variable X , with pdf r(X ;θ), where θ ∈ Θ = R, and a random sample
X n

1 = X1, . . . , Xn, drawn from rX (x;θ). A researcher specifies a pair of estimating
functions

u1(X ;θ) = X − θ ,

u2(X ;θ) = X 2 − (2θ 2 + 1).

The estimating functions, through unbiased estimating equations, define a set of
pdf’s (i.e., the model) Φ(Θ) =

⋃

θ∈ΘΦ(θ) where Θ= R and

Φ(θ) =
�

fX (x;θ) : Eu1(X ;θ) = 0;Eu2(X ;θ) = 0
	

,

into which, in the researcher’s view, the ’true’ sampling distribution should belong.
In this case J > K and the model is over-identified.

As noted in the Introduction, the Empirical Estimation Approach (E3) proceeds
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by replacing the set Φ(θ) by its empirical analogue

Φq(θ) =

(

q(x;θ) :
n
∑

i=1

q(x i;θ)u1(x i;θ) = 0;
n
∑

i=1

q(x i;θ)u2(x i;θ) = 0;

n
∑

i=1

q(x i;θ) = 1; q(x i;θ)≥ 0, 1≤ i ≤ n

)

.

First, a condition on data X n
1 under which the set Φq(Θ) is empty, will be de-

rived. To this end, note that the two empirical estimating equations
∑n

i=1 q(x i;θ)
(x i−θ) = 0,

∑n
i=1 q(x i;θ)(x2

i −(2θ
2+1)) = 0 can be lumped into a single equation

n
∑

i=1

q(x i; ·)x2
i − 2

 

n
∑

i=1

q(x i; ·)x i

!2

= 1. (3)

The question is whether for an observed sample X n
1 = xn

1 the value on the Right-
Hand Side of (3) can be attained, for some q(·, ·). If not, then for the data xn

1 the
set Φq(Θ) is empty. It can be seen that the expression on the Left-Hand Side of (3)
can attain its maximal value for such a q(x; ·) that the only non-zero elements of
q(x; ·) are q(1) ¬ q(x(1); ·) and q(n) ¬ q(x(n); ·); there x(1) denotes the lowest, x(n)
the largest value in xn

1 . The value q̂(1) of q(1) for which the LHS of (3) attains its
maximum is given as

q̂(1) = arg max
q(1)∈[0,1]

L(q(1)), (4a)

where

L(q(1))¬ q(1)x
2
(1) + (1− q(1))x

2
(n) − 2(q(1)x(1) + (1− q(1))x(n))

2. (4b)

Without a [0,1] constraint on the range of the values that q(1) can take on, the
optimal value q̂m

(1) is

q̂m
(1) =

x2
(1)−x2

(n)

4(x(1)−x(n))
− x(n)

x(1) − x(n)
,

and q̂m
(n) = 1− q̂m

(1). Without the [0,1]-range constraint the maximal value of the
LHS of (3) is thus given by plugging q̂m

(1) into (4b); let us denote it by v. Under the
range constraint the maximal value of the LHS of (3) can be only smaller or equal
to v. If the data X n

1 ∼ rX (x;θ) are such that v is smaller than 1 (i.e., the RHS of
(3)) then Φm

q (Θ) as well as Φq(Θ) is empty for such data. Consequently, for such
data there is no mE3-based or E3-based estimator.

For a given r(X ;θ) and n, we are interested in the probability Pr(v < 1) that
the LHS maximal value is smaller than 1, the RHS value of (3); i.e., the probability
that Φm

q (Θ) (as well as Φq(Θ)) is empty. The probability can be estimated by means
of a Monte Carlo simulation from r(X ;θ). For r(X ;θ) being n(0,1) and n= 15, as
in QL, the Monte Carlo estimate of the probability is 0.0173, based on M = 10000
samples. Thus, 17 of 1000 samples of size n= 15 drawn from n(0,1) are such that
Φm

q (Θ) (as well as Φq(Θ)) is empty, and hence it is meaningless in these samples to
look for EL, or any other E3-based (or mE3-based) estimate.

QL performed an MC study of small-sample properties of MELE, with the aim
of comparison with other estimators (sample mean and ML). The above results
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indicate that the numbers in Table 1 of QL are meaningless. Since MELE does
not exist if Φq(Θ) is empty, this puts into question the comparison of MELE with
other competitive estimators. Indeed, the entire Empirical Estimating Equations
approach is questionable, except of in asymptotics2, since the feasible set Φq(Θ)
becomes ’always’ non-empty as for n→∞. The same holds for mE3.

The setup considered by QL in their Example 1 is a simple one. Its simplicity
permits the empty set problem of E3 to be illustrated analytically. E3 approach,
and its most common instance - the Maximum Empirical Likelihood Estimation, -
are commonly studied with more complicated models, where the question whether
Φq(Θ) is non-empty for a particular data, may be much harder to answer. Anyway,
the very possibility that an estimator based on E3 exists for some data and does not
exist for a different data, puts this estimation method in question. The same can
be said about mE3 approach.

2.2 QL, Example 2

In the second QL example, there is a random sample (X , Y )n1 of bivariate observa-
tions, such that E(X ) = E(Y ) = θ , θ ∈ Θ = R. The authors suggest that we use the
bivariate estimating function u(x , y;θ) = (X − θ , Y − θ) and estimate θ by MELE.
However, due to the problem of the empty set Φq(Θ) this is not always possible.
For instance, let X ∼ n(0,σ2

1), Y ∼ n(0,σ2
2). Then Φq(Θ) will be empty for every

sample, such that X i−Yi > 0, or X i−Yi < 0, for all i = 1, . . . , n, as Qin and Lawless
[20] note. For n = 10 the probability is 2(0.5)10 = 0.002. The probability rises, as
the model becomes misspecified. For instance, assume that X ∼ n(−0.3, 0.1) and
Y ∼ n(0, 0.1), then X−Y ∼ n(−0.3, 0.2) and the probability Pr(X−Y < 0) = 0.749,
so that Pr(X − Y > 0) = 0.251. Consequently, for n= 10, the probability that Φq is
empty is 0.74910 + 0.25110 = 0.056.

2.3 QL, Example 3

The third QL example concerns the selection of the ’representative member’ from

Φ(Θ = {a}) =
¦

fX (x;θ) : E f u(X ;θ) = 0
©

,

where a ∈ R is known, and there is a random sample X n
1 from unknown rX (x). In

the E3 approach, the model Φ(a) is replaced by its empirical analogue

Φq(a) =

(

q(x; a) :
n
∑

i=1

q(x i; a)u(x i; a) = 0,
n
∑

i=1

q(x i; a) = 1, q(x i; a)≥ 0,∀i

)

,

and a pmf is selected from Φq(a) by some method, such as MELE, or Minimum Dis-
criminant Information [12]. Even in this simple setting the empty set problem ap-
pears. For the sake of illustration, let us assume that rX (x) = [0.025, 0.025, 0.15,
0.8] is a pmf on X = {1, 2,3, 4}. Let u(X ) = X − a, a = 2.0 and let the sample
size n = 40. The probability that Φq(2) is empty is the probability that the sample
contains only values greater than 2, or only values smaller than 2, which is 0.129.

2The point that MELE is an asymptotic method has already been made in [10], albeit from a different
point of view.
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2.3.1 EL confidence intervals and tests

The empty set problem in the setting of this Example also has bearing for con-
structing confidence intervals and tests by the method of Empirical Likelihood (EL).
Although we are concerned here with MELE estimation and inference, it is worth
noting that EL inference is also undermined by the empty set problem. For in-
stance, assume - in the context of the above Example - that the null hypothesis
H0 : EX = µ = 2.0 is to be tested. EL test and confidence interval are based on the
Non-parametric Likelihood Ratio statistic (cf. [19]), which involves computation
of the value of the Non-parametric Likelihood at µ = 2.0. If the data are such that
Φq(2.0) is empty then no confidence interval or test can be performed. In the above
setting this happens with probability 0.129, for the data of size n= 40.

Existence of the empty set problem in the construction of confidence intervals
and statistical tests by EL is not new, and in [19] (cf. Sect. 3.14, Sect 10.4, Chap.
12, among others), it is referred to as the convex hull condition. Recently, Chen,
Variyath and Bovas [4] suggested an adjustment of EL, with the aim of mitigating
the problem. The authors suggest adding to the data an additional observation
which is the negative multiple of the sample average. The multiplication constant
serves to rescue EL from the empty set problem. However, the value of the constant
which achieves the goal is also data dependent.

2.4 Estimation of location parameter from noisy data

Motivated by [11], consider the following data-generating process: Y = X + ε,
where X ∼ Exp(1), ε∼ n(0,σ2) and X⊥ε. A researcher observes a random sample
Y n

1 and would like to estimate the location parameter θ of the distribution fX (x;θ)
of X . Since neither fX (x;θ) nor the distribution of ε are known, the researcher
chooses an over-determined model based on the first two moments of Y :

Φ(θ) = { fY (y;θ) : E(Y − θ) = 0; E(Y 2 − (2θ 2 +δ2) = 0},

and θ ∈ Θ = (0,∞). To make it operative, Φ(θ) is replaced by its empirical ana-
logue Φq(θ), in the usual way. Observe that the model is just a modification of
Example 1 of QL, so the argument of Sect. 2.1 can be employed to find probability
that in this setting Φq(Θ) is empty. For σ = 3 and n= 100 the probability is 0.215.
This is another illustration that the ESP is not only a problem that applies to small
samples.

2.5 Mean and median

Brown and Chen [3] investigated the problem of estimating a location parameter of
a sampling distribution by a data-based combination of the mean and the median.
Their empirical model is

Φq(θ) =

(

q(x;θ) :
n
∑

i=1

q(x i;θ)(x i − θ) = 0;
n
∑

i=1

q(x i;θ)sgn(x i − θ) = 0;

n
∑

i=1

q(x i; ·) = 1; q(x i; ·)≥ 0, 1≤ i ≤ n

)

,
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and θ ∈ Θ = R. In their model J > K and thus is over-determined. Unless Θ is
restricted to a subspace of R (cf. Sect. 2.8), there is no problem of empty Φq(Θ) set,
and hence MELE always exists in this case. However, EL confidence interval/test
need not exist for every θ .

2.6 Score E3

Let rX (x;θ) andΘ be such that the Maximum Likelihood (ML) estimator θ̂ML of θ is
identical with the solution of the score equations. If Φ(Θ) is defined by estimating
functions which are based on the score equations, then the corresponding Φq(Θ) is
free of the empty set problem, for any random sample X n

1 drawn from rX (x;θ). Any
of the GMC estimators is then identical with θ̂ML. A trivial example is given by the
gaussian n(0,1) sampling distribution, where the score equation for the location
parameter θ is 1

n

∑n
i=1 X i−θ = 0. Then for the estimating function u(X ;θ) = X−θ

the set Φq(Θ), where Θ= R, cannot be empty for any X n
1 from n(0, 1). Changing Θ

into the halfline [0,∞) gives rise to ESP; cf. Sect. 2.8.

2.7 Discrete random variable

It is clear that the empty set problem is not a peculiarity of a continuous random
variable. As an illustration, consider an over-identified model given as the set of
pmfs which satisfy the estimating equations for the estimating functions u1(x;θ) =
X − θ , u2(x;θ) = X 2 − θ 2 − θ , θ ∈ Θ = [0,∞), and defined on the support
X = {0, . . . ,∞}. Its empirical analogue Φq(θ) is empty for any data X n

1 , for which

q(1)x
2
(1) + (1− q(1))x

2
(n) − (q(1)x(1) + (1− q(1))x(n))

2 − q(1)x(1) − (1− q(1))x(n) < 0,

where q(1) = 0.5+ 0.5/(x(n) − x(1)). This follows from the same reasoning as in
Sect. 2.1. For the Poisson sampling distribution Poi(1), the probability that for a
sample of size n= 10 there will be no empirical estimator is 7/1000 (estimated by
10000 runs of MC).

2.8 Restricted parameter space

Let the data-sampling distribution rX (x;θ) be parametrized by a parameter θ
which can take on any value in Θ = R. Assume, for the sake of simplicity, the
exactly identified model specified by a single estimating function u(X ;θ) = X − θ ,
and by θ ∈ Θ̃ = (a, b), a, b are finite. The model is misspecified in the sense
that Θ̃ ⊂ Θ. In E3 approach, the model Φ(Θ̃) is replaced by its empirical analogue
Φq(Θ̃). The probability that Φq(Θ̃) is empty depends on rX (x;θ), the values of a,
b, and the sample size n. It is not difficult to construct an illustrative example. Let
the sampling distribution be n(0,1), n = 100, Θ̃ = (2,3). The probability that the
set Φq(Θ̃) is empty is essentially determined by the probability that all the observed
values are below 2, which is 0.100. An extreme case of this setting was considered
in Sect. 2.3, where Θ̃ comprised a single element.

There is also other possibility to get an empty Φq(Θ), by restricting the param-
eter space Θ of the sampling distribution. As an illustration, assume the gaussian
n(θ , 1) sampling distribution, with θ ∈ Θ = [0,∞), and the model let be given by
the estimating function u(X ;θ) = X − θ . Whenever the sample X n

1 is such that all
its elements are smaller than 0, the parametric space restriction cannot be satisfied;
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cf. also [19], Sect. 10.5. Note, that for such a sample the parametric space restric-
tion can be satisfied within the modified E3, and hence, there is no affine ESP in
this model.

The two possibilities are pertinent also to the over-identified (i.e., J > K) and
under-identified (i.e., J < K) models. As an example of the under-determined
model consider the one given by the estimating function u(X ;θ ,σ2) = (X − θ)2 −
σ2, where θ , σ2 are parameters of the sampling distribution; θ ∈ Θ = R, σ2 ∈
Σ = (0,∞). Let the space of values which both θ and σ2 can take on be restricted
in the model, in such a way that the resulting set of distributions is non-empty.
The corresponding empirical counterpart of the model can be empty for any data
which, regardless of q, cannot satisfy restrictions of the parametric space.

3 Summary and discussion

As a way of summing up the statistical implications of the examples we make the
following comments:

1) There are models Φ(Θ) and data-sampling distributions rX (x;θ) for which
the corresponding empirical counterpart Φq(Θ) may be empty for some data X n

1
from rX (x;θ), and non-empty for others.

2) Whether a particular model is subject to the empty set problem (ESP) is, in
general, not easy to discern3. For the simple models considered here, we were able
to address the existence of the empty set problem analytically.

3) If an E3 is subject to ESP, then the probability that the set Φq(Θ) is empty de-
pends on the set, the sample size and the underlying sampling distribution rX (x;θ).

4) Examples 1,2,3 from Qin and Lawless [20] are subject to ESP.
5) There are models for which the E3 approach is not affected by the empty set

problem (cf. Sect. 2.5, 2.6 for examples).
6) The convex hull condition resulting from construction of Empirical Likeli-

hood confidence intervals and moment restriction tests, is a special case of the
empty set problem. This is true in the sense that it concerns calculation of MELE
when Θ comprises (usually) a single point (cf. Sect. 2.3).

7) Once Φq(Θ) is subject to ESP, any method which is used to select a q(x;θ)
from it, breaks down, for any data for which Φq(Θ) is empty.

8) Over-identified, exactly-identified as well as under-identified models can be
subject to the empty Φq(Θ) set problem.

9) There are models (cf. Sect. 2.1 for an example) where the modified E3

approach is subject to the affine ESP. For such models, the existence of estimators
that are obtained by methods, such as the Euclidean Empirical Likelihood, that
operate within the modified E3 (mE3) approach, can be data-dependent.

In general, the Empirical Estimating Equations (E3) approach (the modified
Empirical Estimating Equations, mE3) is undermined by the empty set problem
(the affine empty set problem), as are also methods of estimation and inference –
such as MELE (the Euclidean Empirical Likelihood), – that operate within it. Some
possible responses to the empty set problem of the E3/mE3 approach are:

3For instance, in context of the Example 1 of QL (cf. Sect. 2.1) data for which the set Φq(Θ) is empty
can lead to a meaningfully looking MELE estimate. However, a review of the ’optimal’ result of the inner
optimization in (2) will reveal that it failed. On the other hand, difficulty with the inner optimization
cannot be taken as a sign that the set Φq(Θ) is empty, for the data in hand.
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• Abandon E3/mE3. An option, then, is to return back to the Estimating Equa-
tions and use the Semi-parametric Bayesian approach, cf. [8], [10].

• Use the empirical estimating equations, and satisfy them approximately, only.
The Generalized Method of Moments [13] follows this route. Recall that the
GMM estimator θGMM of θ is given as a solution of

θ̂GMM(W ) = arg min
θ∈Θ





1

n

n
∑

i=1

u(x i;θ)− 0





′

W





1

n

n
∑

i=1

u(x i;θ)− 0



 ,

where W is a positive definite symmetric weight matrix. The objective of
GMM is to find a θ that satisfies the equations 1

n

∑

u(x i;θ) = 0 approxi-
mately, as best as possible, where goodness of the approximation is measured
by the weighted euclidean distance. Thus, GMM is not a method that oper-
ates within mE3/E3-approach. The same holds for the Continuous updating
GMM [14].

• Stay with E3 (mE3), but use it only when Φq(Θ) (Φm
q (Θ)) is non-empty.
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