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THE EFFICIENCY OF SEARCH STRATEGIES: A NUMERICAL AND ANALYTICAL COMPARISON
OF STRATEGIES ASSUMING NO OR RESTRICTED KNOWLEDGE
OF THE UNDERLYING DISTRIBUTIONS

I. Introduction

Since Stigler's well known artic]el a variety of papers have been pub-
lished on the economics of information. Important and well known applications
of this theory are consumer search for information in price and quality of
goods, search of unemployed workers for a job in the labor marketz and the
search of unwed individuals searching for a marriage partner.3 In economics
less well known is the application of search models in the design of random-
ized a]gor‘ithms.4 In this application an algorithm searches within a pre-
specified set of algorithms solving the same problem such that the total loss
of the algorithm finally chosen to solve the problem plus the search cost is
minimized.5 Independent of the majority of the literature on optimal search
several articles have been published analyzing the optimal policy of search if

we assume that only ordinal utility can be assigned to the objects found.

1G. Stigler, "The economics of information," Journal of Political Economy LXIX
(June 1961), 213-25. Besides this the earlier paper of McQueen, J. and
Miller, R.G., "Optimal Persistence Policies," Operations Research, Vol. 8,
Pp. 362-380 (1960) gave a more efficient search strategy in a different
context.

2See for example S.A. Lippman, "Search Unemployment: Mismatches, layoffs, and
unemployment insurance", Working paper No. 286, University of California,
Los Angeles, Western Management Institute, 1979.

3See for example G.S. Becker and E.M. Landes, "An Economic Analysis of Marital
Instability", Journal of Political Economy 8, no. 6 (December 1977), pp. 1141
-88.

4w. Janko, "Stochastische Modelle in Such-und Sortierverfahren", Duncker &
Humblot, Berlin, 1976.

5To the authors knowledge that is the only application of this type of search
models which is in practical use.



This work usually does not consider search costs6 and concentrates on asymp-
totic considerations. The results are thus hard to compare with the results
in the economics of information literature.

In this paper we shall try to compare the efficiency of search strate-
gies. To compare ordinal utility methods with cardinal utility methods we
have to violate some of the basic assumptions of ordinal utility theory by
introducing search costs which are deductible from the ordinal utility indices.
Although this makes the interpretation of the results more difficult these
results yield some insight into the efficiency of drawing with and without
recall. Linear utility functions are assumed and a 1imited number of observa-
tions of this discrete and uniformly distributed utility (loss) function are
presumed without being able to observe the actual value of an observation.

For exploratory purposes we shall describe the search model in terms of a
consumer searching for the lowest cost of the alternative offered plus search

costs.

II. Search Strategies

Using ordinal utility means that we assume the existence of a weak prefer-
ence ordering on the set of consequences of the alternatives only. After
putting all consequences to which we are indifferent in quotient classes we
are able to introduce an ordinal utility function on the quotient set. We
assume here that the quotient set consists of a finite number of elements only
and the ordinal utility index 1is constructed by sorting the equivalence
classes. (This 1is possible in 0(n log n) time with n equivalence classes.)

We shall furthermore for reasons of clarity and simplicity assume here that

65. Chow, S. Moriguti, H.Robbins and M.S. Samuels, Optimal Selection Based on
Relative Rank, Israel Journal of Mathematics, vol. 2, pp. 81-90 (1964);
Y.S. Chow, H. Robbins and D. Siegmund, Great Expectations: The Theory of
Optimal Stopping, Houghton Mifflin Company, Boston (1971).



every equivalence class contains only one e]ement.7 The resulting problem is
then to draw with or without replacement from a finite set of the first n
natural numbers, {1,2,...,n}, which represent the ordinal indices. Drawing an
offer means that we are able to determine the rank of the utility of the offer
within the offers we already got. We are not able to determine the ordinal
utility index of the utility of the offer in the quotient set until we have
drawn all offers. The efficiency of rank oriented search strategies can be
compared with distribution oriented search strategies only if we assume search
costs of zero or if we introduce search costs which are deductible from the
ordinal utility index. We shall choose this latter more realistic possibility
and assume fixed search costs c for every observation throughout. We shall
compare the results we get investigating these rank-oriented strategies with-
out recall with the results in a search with recall. For reasons of sim-
plicity we shall assume a linear cardinal utility function of the observer.
The results shall be compared with a strategy where the distribution of offers
is unknown in the Bayesian sense. In this case we shall restrict ourselves on
sequential strategies with and without recall. From the set of distributions
involved we will primarily derive conclusions using the uniform distribution.
For the consumer search example chosen we assume whenever it is plausible --
that the goods are described by the characteristic, 'price'. Sampling from
this distribution is assumed to be costly. The cost of observation is con-
stant and equal to c. Once an observation is drawn at cost c, the price can

be observed without cost.

7We such avoid the necessity to consider the problem of drawing from multisets
of ordinal indexes (with and without replacement).



I1I. Rank Oriented Models of Search

1. The strategy with unlimited memory

Rank oriented stopping strategies have been studied extensively in litera-
ture.8 None of the strategies tries to include search costs c into the con-
siderations and are 1largely oriented to achieve asymptotic results. For
various reasons and as it 1is economically hardly justfied to neglect the
search costs this strategies did not gather much attention -- at least by
economists. To clarify the efficiency of this type of strategies we shall
investigate these strategies. The problem we consider first has been called
the pigeon problem, the dowry problem, the beauty-contest problem and the
secretary problem, among other nhames.

Suppose now that a consumer is offered n price quotations. The consumer
can observe the offers only one at a time as he has no prior information on
their true rank in sorting order (according to their negative utility 2(i)).
(With sorting order we mean that £(1) < £(2) <... < £ (i) < 2(i+1) <...< 2(n)
is valid.) The only information the searcher can rely on, is the information
about the relative rank of the latest offer observed by the searcher within
the offers already observed before. We assume in the following considerations
that the searcher will not be able to observe -- whether intentionally or
unintentionally -- an offer already observed previously. We will furthermore

in the derivation assume that the searcher, once he has decided not to accept

8Besides the papers and the book mentioned in the introduction two references
shall be mentioned without being exhaustive:

M. DeGroot, ‘Optimal Statistical Decisions, McGraw-Hill Company, New York,
1970, and

J. Gilbert and F. Mosteller, Recognizing the maximum of & sequence, J. Am.
Statistical Association, Vol. 61, pp. 35-73.



a particular object, can never go back and select it at a later stage.9 Now

let us assume that Ym denotes the random variable of the relative rank of the
m-th observed offer within the observations already drawn. The random vari-

ables

Yq,Y Y

FIERETA

are independently distributed and we get for the probability
W(Ym=j) =1/m for j=1,2,...,m

Now let R denote the true rank of the offer observed and let Rm be the random

variable "true rank" when we assume that the m-th element drawn has the rela-

tive rank j within the offers observed so far. Let E(Rm/Ym=j) be the expected

true rank assuming Ym=j. Now obviously the following relation is valid:
n-m+j

ER /Y = J) = bij 2(bIW(R =b/Y =3)

where 2(b) is the loss function.

For the unconditional expectation E(Rm) we get therefore:

m
E(R) = 2 EQRy/Yp=i (Y, =1)

Assuming that the true rank is equal to the loss index, that means 1(i)=i, we
get

n-m+j
E(Rm/Ym=J) = 2 W(Rm=r/Ym=J)r

=]

9This is usually called "searching without recall."



An offer with true rank r has the relative rank j iff the j-1 offers are
drawn out of r-1 offers with the true ranks 1,2,...,r-1 and m-j offers were
drawn out of the n-r offers with the true rank r+l,r+2,...,n.

Therefore we get

CThen
W(R =r/Y =j) = J-1""m-j°

n
)
and from the definition above

n-m+j r(%_ )(
s j-1 _ (n*1)
E(Rm/Ym_J) Pij (m) m+1

Using this result we get for the expected true rank of the m-th offer observed

£(hy) = €2 1) = I kv

Using the principle of backward induction10 we get for the expected rank when

only one offer is left:

n+l 1
ERy) =BG 3 = 5,

|l M3
Cads
1
&

Assuming now that we have drawn n-1 observations we should only observe
the n-th observations if the expected rank plus the search cost, which must in
our derivation be expressable in units of ranks is lower than the expected

rank at the (n-1)-th step; we get therefore

10See for example, Y.S. Chow, H. Robbins and D.Siegmund, Great Expectations:....
1971.



1
_ . N+l _ 1 n
V-1 = E(m]n(—ﬁ— Yn_1 s vn+c)) il

n
J

min(E%l i, vn+c)

™M

1

where Vi denotes the expected loss (expressed in rank units) at the k-th
i - _ 0+l
observation and Vo = E(Rn) =5 -

Similarly we get for the expected loss at the i-th observation:

ntl oy

;
vi = E(min(GEg Vi, Viuq * O)) = 3 2 min(z33 J, V;

Computing successively the values of Vi=1» Vp-pirc--oVys We get the expected

value of the strategy vy

This can be simplified if we use the for practical purposes indeed neces-

sary reservation index S5 for stopping with a relative rank < S. at the i-th

observation.

We get the reservation index vector, which is an integer valued function

of the number of observations drawn by the following considerations:

with the i-th observation implies

or in terms of the implicit relative rank which implies stopping at the ith

observation

i+1

si = [ 7 (viyp + )] for i=n-1,...,2,1.

Using S and the fact that the relation

_ ntl
Vi T 39 E(Yi/Yi < 51.) + W(Y]. > 51’) (viJr1 + c)



is valid we get:

_ 1 ,n+l . _
Vi =7 (m (1+2+'“+Si) + (i S_i)(V_i+1 +c)) =
s.(s.+1)
1 ,nt .
3 (?& (75 (v ¥ )
Using v, = D%l we can easily calculate the reservation rank vector and

the expected value of this strategy vy
For the following calculation we used search costs of c=1 rank units and
price offers for goods of identical utility assuming that the price represents

the Toss.
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10
The matrix (% g ; g g %g) would say that until a sample size of 2 you should stop
with relative rank 1, with the sample sizes 3, 4, 5 you should stop with a
relative rank equal to or better than 2, and so on. If you do this your
expected cost for searching and purchasing would be 5.5 rank units assuming
search costs of c¢=1 rank units.

2. The strategy with extremely Timited memory

As we can see by the numerical examples given the unlimited acceptance of
offers of any relative rank using their true rank as a representation of their
(cardinal) utility involves for a large number of offers some calculation and
permanent sorting and memorizing of offers already observed, although these
offers are not valid anymore. The other extreme would be to accept only
offers with the possible true rank 1. These offers must naturally also have

1 shows, this is the other extreme to the

the relative rank of 1. As DeGroot
strategy considered above. The strategy considered below is equivalent to a
strategy which maximizes the probability to find the offer with true rank 1.
If search costs are 0 it is well known that asymptotically the observer should
jnitially observe n/e offers and then stop with an offer which is relatively
at least as good as the best of these n/e offers already observed in a learn-
ing phase. If we introduce search costs of ¢ the behavior of this strategy
has to be reconsidered. The problem is formulated as a rank maximizing prob-
lem for the decreasing sorting order £(n), 2(n-1),...,2(1).

Lemma: The probability, that the true rank of the offer chosen is v and the

number of the initially drawn subset of the total sample (learning set)

is k, 1s equal to

(v-D)(n-2)!
(v-2)in!

W(N=v, L=¢) = 1—'_‘1

11M. DeGroot, Optimal Statistical Decisions,...loc.cit., p. 337.
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There is a probability that the offer with true rank one was already observed

within the first k offers.

n n
(v-1)!k(n-2)!
The sum 2 2 — —
o=k+1 v=g (v-2)t(2-1)n!

therefore is equal to 1 - %. It is important to recognize that this strategy

will be formulated as a rank maximizing strategy. Using a different sorting
order this does not cause a problem. If we denote the event, that the best
offer is not observed within the sample of the first k offers with T, we get
the following theorem.

12 The conditional expectation E(R/T) of the true rank of the

Theorem:
offer accepted by the above policy assuming that the best offer is not

within the first k offers observed is given by:

k+1)(n+l) _ (2n+l) k) n

1 (2
ER/T) = 5 (506D ) ek

. . 2 .
The variance of this mean value o (R/T) is equal to

n(n+l)k

2 _on+l 2

O ((R/T) T

The expected number of offers observed such is

-1
_nk "t
E(L/T) (k) zik N

and the variance of this mean value is

2 _ -
LT = nk + E(L/T)(1-E(L/T))

12The proof of this theorem is lengthy and can be found in Appendix A.
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As we usually can assume that the relation k<<n is valid we can use in many

cases the approximation

=

- _n 1
HUD =5 2 12T

As the reader can easily verify the unconditional expectation of Ek(R) can be
interpreted as a continuous and differentiable and concave function of k and

we get for the maximum

024 0-5 dE, (R)
) 1 for k<<n and 0 < k < n using the equation —z— = 0.

kmax = |:(2n+1

The search process considered has two phases:
- the learning phase, which consists of drawing k observations ini-
tially and memorizing the best observation o*;
- the actual search phase, which leads to stopping as soon as an
observation is made which is better than o*.
The decisive choice the searcher has to make is the choice of the number of
observations k he wants to draw in the learning phase. To choose an optimal
value k' of k with respect to fixed search costs ¢ he has to act such that an
increase of k' by one observation increases the expected rank of the observa-
tion stopped with by less than ¢ per unit of search cost. We get the in-
creased search costs implied by an increase of the learning phase (with k
observations) by one observation (to a total of k+1 observations) by consider-
ing the difference Ek+1(L/T)-Ek(L/T)

= AEk(L/T). The gain in ranks is equal to

Ek+1(R/T) - Ek(R/T) = AkE(R/T)
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conditional on the event T that the best offer is not observed within the
learning phase. So we have to consider the case of the complimentary event T.
T denotes the event that the best offer was already observed in the learning
phase. We assume that we continue in this case until we have observed all
offers realizing then that the best offer in the learning phase must have been
the best offer of all offers. We get therefore the expected rank of our rank

maximizing strategy using a learning phase of k observations by

E (R/Po1) = £ (R/T) + n ‘ﬁ‘

Similar considerations hold for the value of the total expected search costs

of our policy:
- k
Ek(L/Po1)'— cEk(L/T) +cn o
We denote the differences of expected search cost
Ek+1(L/Po1) -Ek(L/Pol)
by AEk+1(L/P01) and the difference of expected rank
Ek+1(R/P01) -Ek(R/Pol)

by AE, . (R/Pol).

k+1
Therefore we should choose an optimal value Kt such that

AEk+(R/Po1) AE k;r_l(R/Po])
—— < C
AEk+(L/Po1) - AEkil(L/Po1)
is valid.
~1.2 [(n2+n 0.5
(It should be remembered that for k—"2°°"""> il ] the value of

Ek(R) is increasing monotonically; for larger k these values decrease. Further-

more Ek(L/T) and Ek(R/T) are increasing monotonically for all values of k
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(k=1,2,...,n-1)). Our strategy was formulated as a rank maximizing strategy;

it suffices now to think of a decreasing sorting order

2(n), 2(n-1), ..., 2(1)
of the prices for the different offers. We thus get the ranks for ascending

sorting order E(PR/Po1) from E(R/Pol) simply through

E(PR/Po1) = n+l - E(R/Pol).

Obviously it suffices to use AE(R/Pol) as the relation

/AE(R/Po1)/ = /AE(PR/Po1)/
is valid.
Now let us assume c=1. Using this value and using above considerations

to get optimal values of k for various values of n we get:

k+ for n between 3 and 1000
1 3 - 25
2 25 - 56
3 57 - 103
4 104 - 167
5 168 - 248
6 249 - 348
7 349 - 468
8 469 - 607
9 608 - 767
10 768 - 948
11 948 -

Using these values of Kt and calculating the expected search costs and the

expected rank of the price we get for selected values of n and c=1:
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n E(PR/Pol)+k cE(L/Pol)+ck
20 6.5 4.734
30 7.5 8.346
40 9.167 8.85
50 10.83 9.248
60 11 12.989
70 12.25 13.401
80 13.5 13.763
90 14.75 14.084

100 16 14.373
200 22.167 24.454
500 36.278 42.13
1000 53.167 61.668

These results are obviously valid for the case that we assume that we are
searching from the finite set {0,1,2,...,n-1} of price offers without visiting
one offer twice14 and without recall if we reduce the value of E(PR/Pol) + k
by one. The effect of not allowing recall in this case is not the only differ-
ence. In the strategies described here we made the following assumptions:
1) The number of offers which will ultimately become available is known
precisely.
2) There is no recall of offers once they have been passed over.
3) There is no possibility to evaluate any offers on a priori grounds
apart from ranking it relative to other offers already observed.
The difference between the first strategy given and the latter one is that in
the latter one we simply maximize the probability of selecting the best alter-
native or, to put it into other words, the second best is not more acceptable
than the worst. The difference between these strategies and the strategies so
far described primarily in the economics of search literature lies in the

abilities we require

14Samph’ng without replacement.
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from our searcher. In our case we only require that he is able to sort the
alternatives observed. Besides we require however for the calculation of the
optimal policy that search costs ¢ can be expressed in true rank units or in
other words and that the difference in utility between two alternatives is
proportional (at Teast in the average) to the difference in true rank. But we
are not restricted in the application of these models to those situations
where we observe a random variables value with a distribution with known or
unknown parameters. Even the true rank is in this policies not supposed to be
a directly observable quantity. We only assume sortability of the observed
alternatives. But we indeed switch with the way we introduce search costs to
cardinal utility functions, which are not any more invariant to monotone
transformations.

3. Possible Extensions

The two models presented only constitute two extreme examples of a pat-
tern of strategies with variable memory limits. Besides it was felt that the
assumption that the number of alternatives, which will ultimately become
available is known precisely is a rather strong restriction to the applica-
bility of these models. There are at least two ways to avoid this assumption.
One way is to assume the existence of a known distribution on the number N of
offers or at least to assume a Bayesian case with a proper or improper prior.
Another version is to assume a constant flow of incoming and outgoing offers
according to stochastic laws 1like for example the convolution of poisson
arrival times with normally distributed values of the offers. We will discuss
possible extensions of these models to handle the case of unknown value of N
in another paper.

4. Rank oriented search with recall

The models given above concentrate on observations without recall. At
least limited recall 1is in many practical cases available. So we should

compare the results derived in a search without recall with the strategies
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15

selecting alternatives according to their rank with unlimited recall. A

nonsequential rule is investigated. In a sequential policy we would indeed be
able to determine a reservation rank but we would not be able to determine in
general whether or whether not an offer observed has a true rank lower or
equal to this reservation rank. Therefore we shall consider here only a
nonsequential strategy. This strategy shall simply consist in drawing a
sample of a priori fixed size and determining the best alternative drawn.
This is the alternative to be chosen. To reduce the side effects we have to
determine the optimal number of observations in observations without replace-
ment. We assume again that the n alternatives will be sorted in decreasing

order of the price of the offers:
1(n) > 1(n-1) > ... > (1)

Qur aim is to maximize the rank in this sorting order; that means 2(n) has

rank 1, 2(n-1) rank 2 and so on.16

Lemma: Xk = max{yl,yz,...,yk} and the set {yl,yz,...,yk} is a random sample
of offers drawn without replacement from {1,2,...,n}. The probability

for drawing an offer with rank x is

-~

x-1
k-1

P(X, = x) =
X M

15Limited recall is to the author's knowledge rarely considered in the Titera-
ture so far.

16Samph‘ng with replacement was already considered by G. Stigler, loc. cit.
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The expected rank observed in a sample of k alternatives is

= (n+1)k
EX) = HeT
and its variance oi is equal to
k

2 _ -
oy, = ECt (WEK))

. _ (n+2) (k+1) _
with u = Sy — 1

Using now the difference E(Xk+1)-E(Xk) we get for the optimal value of k the
equation:

0 = c(k?+3k) - (n-1)

or

= =3¢ ¥y c? - ac(n-1)
1,2 2

For the special case c=1 we get for the optimal value k+

k' = [-1.5 + V5/% * n]

which for large n is approximately equal to Jn .
The expected true rank will then be

n+l

E(n+l - X,) =
K™t

For larger values of n this will not deviate much from Jn giving a total cost
of approximately ZJB for larger n and c=1. Using our numerical calculations

it can be seen that this is less than the policies assuming no recall. This
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is not only true for the expected cost of the offer plus the search cost but
also for the variance of the distribution of cost of the alternative stopped

with.

IV. Models of search with some knowledge of the underlying distribution function

Rank oriented models do not assume that we can exactly quantify the value
of an alternative. They do not even assume that we know anything about the
distribution of the utility, loss or other observable quantities characteriz-
ing an alternative's utility. We only assume that we are able to rank the
alternatives drawn. However the necessity to introduce search cost in our
considerations seem to diminuish the practical value of these strategies. It
seems not to be easily possible anymore to confine ourself to ordinal utility
functions. In the models to be considered now we assume that it is possible
to observe a value - which we call price - characterizing the alternative.
Also we assume that the price distribution is known. Using the Bayesian
approach we only assume knowledge of the distribution and not of the param-
eters of the price distribution. We shall consider here the multinomial
distribution only. We shall give analytical results for the special case of
the discrete uniform distribution.

M. Rothschild has treated the problem of searching for the lowest price

17

when the distribution of prices is multinomial. It is well known that the

family of Dirichlet distributions is a conjugate family for observations which

17M. Rothschild, Searching for the Lowest Price When the Distribution of
Prices is Unknown, J.P.E., Vol. 82 (1976), pp. 689-711; despite its title this
paper assumes knowledge of the type of distribution function as it treats the
multinomial case only. The technical rigu]ts of this paper can in part be
found in the excellent paper of Randolph.
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18 It must be emphasized that using the

have a multinomial distribution.
multinomial distribution we assume prior knowledge of the maximal value of

observable offers. Let the prior density function of the multinomial probabil-

ities x = (xO, Xl""’xk-l) be equal to
Mo, +...+a, ) %71 =171
f(x/a) = r(ao) M k 1) Xg Xi-1
07 Wg-1
k
for X5 > 0 and 2 X5 = 1
i=1

To simplify notation we assume without loss of generality that a; > 0 for
i=20,1,...,k-1. The posterior distribution function after making the n
k-1

observations and letting nj be the number of observations of j and n = 2 nj
j=0

is then

F(ag*. . - +a,_q+n) ) %0 )
F(a0+n0)...r(ak_1+nk_1) 1 k

f(x/a+n) =

The multinomial probability p(Xn+1=j) is than for j € {0,1,2,...,k-1} equal to

+1.. a.tn.
P = A

Using the tuple (ao,al,az,...,uk_l) we can determine the probability vector Pg:P1s- -

k-1

Pr-1 but not vice versa. The value of @ = X a. plays such an important role
i=0

in the use of our prior distribution; it can be interpreted as the "degree of

belief" we are having in our prior distribution. Assuming o to be very large

18See for example M. DeGroot, Optimal Statistical Decisions, McGraw Hill
Company, N.Y., 1970 and P.H. Randolph, Optimal Stopping Rules for Multinomial
Observations, Metrika, vol. 14, pp. 48-61 (1968).
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means that observations have 1ittle impact on the value of our multinomial

probabilities. (With o »= new observations would not change our prior proba-

bilities at all). Low values of a to the contrary make our prior multinomial

probabilities very "vulnerable" to experience. Now let Vi be equal to X, *cn

in the case of no recall and equal to min (xl,xz,...,xn)+cn in the case of

recall. Let the prior density before we observe the (n+l)-th alternative be
k~1

_ o.tn.-1
fn(x) = I'(a+n) jEO (Xj i3/ F(uj+nj))

Than the multinomial prior probabilities are given by
p,(J) = (aj+nj)/(a+n) for j = 0,1,2,...,k-1

The expected value from an additional observation is then equal to

[v_]

n
Tn+1 (Vn) =2 (v

- 3) p (3)
3=0 "

n

We would stop therefore when
Tn+1 (Vn) ¢
and continue search when

Tn+1 (vn) > c

[v ] [v,]
Using T, (v.) = I (v-3)p (3) = (o+m) ' 3

J=0 j=0

s §

(vn-j)(aj+nj)

and bearing in mind that

aj = a po(j) (po(j) are the prior probabilities of our search) we get
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[v,]
(vn) = (u+n)-1aT(vn) + (0t+n)_1 2

i=0 (Vn-‘])nj

Tn+1

T(vn) is equal to the expression

[v,]

jio (v,"3) pg(d)
which is the expected value of an additional observation assumig a known
multinomial distribution function with the probabilities po(j). In sampling
with recall Vi is the Towest offer observed in all observations, the values of
n. are therefore zero for j=0,1,...,[vn]. That means we get for the case of

J
recall

T (v = () ha T(v )

and for the case of no recall

[v.]

M

T (v ) = () To T(v ) + (oem) ™t (vydn;

j=0

n+l

fixed prior probabilities based on an infinite coefficient of belief « is a

As 1im T (vn) = T(vn) and 1im T$+1(Vn) = T(vn) we can see that the case of
o> o0

very special case of the adaptive formulation.

We shall also consider the problem of the influence of «. With increas-
ing o and observations with recall the value of Tn+1(vn) increases with o. Or
to put it into other words: if two searchers have the same prior distribution
and have observed the same alternatives the one with a higher degree of belief
a in his prior probabilities continues searching when the one with the lower
degree of (subjective) belief in his prior probabilities has already stopped

the search. This statement can be more precisely expressed if we consider the



discrete uniform distribution only: the maximum number of observations is in

this case exactly equal to the solution of

k-1 = -0.5 + {0.25 + 2c + 2nkc
a

or kz—k(gigﬂﬁ)-zc=o

Solving this equation for n we get for the maximal value n' of n, which can be

obtained:

The dominating term 1in this expression is o«a(k-1)/2c. Such the number of
alternatives searched for will be primarily dependent on the degree of belief
in our prior distribution (expressed through o), the value of k and the search
costs. The higher the search costs are, the lower the maximal number of
observations. The larger k, the larger is the maximal number of observations
and the larger is the variance. It is seldom mentioned that with this search
strategy k has to be fixed in advance. As k has to be fixed in advance and is
not revised by the adaptive strategy this model of search will rather show a
tendency to make the maximal number of observations larger than necessary.
This because k has to be chosen such that it covers also the most unfortunate
cases which eventually do not even occur.

The basic assumption in this adaptive strategy is that we want to con-
verge to one "true" distributionl9 which is unknown. But this is not the case
in many applications. In fact wherever the "true" unknown underlying distribu-
tion changes over time the strategyvdescribed leads to wrong results. It can

be shown that the reservation price strategy is rather stable against moderate
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shifts of the reservation price if the entropy is relatively high within the
scope of the (elementary) events j(j=0,1,...,[vn]) concerned.20 Simulation
experiments have shown that the prior distribution converges relatively fast
to the "true" distribution. However as mentioned earlier as the true distribu-
tion would itself be rather a function of the underlying economic environment,
the consumers attitude and other factors, the "true" distribution itself will
vary over time. But the larger the coefficient of confidence a, the slower
the distribution will converge to the "true" distribution. With a+nse the
“prior" will obviously not react any more to a change of the true distribution.
What therefore should be done in this case is to start to reduce a+n by the
initial observations if a+n > g(a) for some g(a). g(a) has to be fixed indi-
vidually according to the amount and the speed of the change of the underlying
"true" distribution with respect to the speed the observations done in the
same time interval. g should also be a function of the confidence coefficient

o, (as this coefficient determines the speed of adaptation.)

V. Conclusions

Two classes of search strategies were discussed, which basically do not
assume knowledge of the distribution of the observations value or utility.
Rather we assumed in this first class of strategies that we are able to sort
the offers observed. We saw that the amount of memory we admit allows to dis-
tinguish a pattern of different search strategies. From these possible strate-

gies we considered only two extreme strategies, one with a very limited memory

19“True" is within quotes as the author believes that there is nothing like
one "true" distribution in the economic applications considered!

20If the prior distribution is uniform the expected number of observations is
equal to the expected waiting time to stop fv—éij plus the expected value of
n

the alternative, which is equal to [vn]/Z.
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and the other one with a "complete" amount of memory. A1l strategies intro-
duced in the first part do not allow recall. One observation was allowed per
offer and the number n of offers available was assumed to be known in advance.
This 1last assumption at least could be dropped if we follow an alternate
approach. It was shown that if we drop the assumption of no recall using the
simple fixed sample size strategy we get a strategy which seems to have less
costs. This proposition is however based only on numerical calculations.

If we assume that the true value (or rank) of the offers can be recog-
nized at the time of the observation we should rather choose a strategy which
revises its prior distributional assumption if necessary. Maintaining a high
degree of flexibility, this 1is possible if we assume that the offers are
multinomially distributed. This distribution leaves a great amount of freedom
in the learning process and does not fix the form of a distribution function
(as it is the case with the normal distribution function). We also saw that
in this adaptive case we have to distingush policies with and without recall.
This is not the case with strategies which do assume a precise prior knowledge
of the offers utility (loss) distribution. In these cases there is no differ-
ence between strategies with and without recall, if we do not assume a prior
Timitation on the number of offers to be observed. In this case however the
strategies have to be constructed using the principle of backward induction21
to determine the value of the strategies and the stopping vector. The con-
siderations made in establishing these strategies are in fact similar to the

considerations we had to make in our rank oriented strategy (without memory

limitations).

let consists basically of dynamic programming arguments. The policy construc-
tion principle is described in Y.S. Chow, H. Robbins and D. Siegmund, Great
Expectations:..., loc. cit., pp. 50-51 and shall therefore not be described
here.
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Basically the rank oriented strategies without recall, seem to be less
efficient than strategies where we assume that the distribution is known and
the offers utility (or 1loss) can be recognized. We hardly can compare
Bayesian strategies with respect to their efficiency to non-Bayesian or rank
oriented strategies. However, we saw that in the Bayesian strategies we have
not to fear the risk of possibly infinitely many observations if we start with
the uniform distribution. The need for the development of a strategy where we
Timit the number of observations prior to the search is such not felt in this
case. In addition to this we have to distinguish between the policy with and
without recall as these give different strategies. A very special property of
the Bayesian multinomial policy is the considerable importance of the choice
of the coefficient of confidence (a). As increasing values of « diminish the
adaptability of the policy to a change in the "true" distribution, Timited
memory should be introduced. We would such be able to forget "elder" experi-
ences and adopt ourself to the underlying distribution continuously. In the
case of a discrete uniform prior distribution the policy with recall and the
policy without recall converges with a»>» to the well known optimal policy with

an underlying discrete uniform distribution.
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Appendix A

First we show that the probability that the true rank N finally chosen is
v when the size of the learning set is k and the number L of observed alterna-

tives is £ is equal to:

k  (v-1)! (n-2)!
2-1 (v-2)! n!

W(N=v, L=2) =

If the 2-th alternative observed has a rank of v and we stop with this alterna-
tive implies that 2-1 alternatives observed before were of a rank lower than
v. As there are v-1 such alternatives we have (v-1)!/(v-2)! ordered subsets
of (2-1) alternatives drawn from (v-1) alternatives. Now the second best
alternative was within the first k alternatives observed. As this alternative
is observed with equal probability as first, second, ..., k-th alternative,
the probability for the second best to be within the first k observations is
such k/(£-1). Recognizing that there are exactly n!/(n-£)! possibilities of
drawing £ alternatives (sorted) out of n alternatives we get the Temma. We

show now that the relation

n n
(v=-1)! k(n-2)! _k
peal vy FDTG-DAT T 17
is correct.

We show the correctness by calculation:

n n _ _ n - - n _
s 3 (eDtkegy |7 k(n(ﬁ}igﬁ'l)! 5 (Z-%)
2=k+1 v=2  v(v-2)!'(2-1) 2=k+1 : v=4
n -1 n
k n-1 n k
= b3 — (,.7) ()= 2 — =
pmgs1 EDn te-l Mg gmke1 D2
n 1 1 1 1 k
=k 2 (g -g)=kg-7)=1-5



29

We now show the correctness of the formulas in our theorem 1.

n n

n n
_ (v=-D'k{n-2)! _ bk {(n-2)! v! _
A TR (o 1E b L S M ¢ =5y B 3]
_obk Dot 1wl _ kD (me)tet (nel)!
T, oD LW Thar 2 Do
_ n 1 _ k(n+1) R D S
T KD L TDED T 2 P2 D T D) T
_ok(ntl) 1, 1 R U A |
B S = RN = S (=) Bl (=) SRR sy
= b % ((n+1) + kﬁfil) - k(g-l) -k) =
-, (2k+1)(n+l) _ (2n+1)k n
= (T no 0 (2 )
n n
_ (v-1)! k(n-2)!

R o (e )X =R
_ k. Dog(me)t 1)
=qur P £=i+1 (2-1) v§2 (v-2)!
Sk oy 5 o1 7 (v-1)! _

e D 2 T oD
_k oy o3 ot Gy ko g a(nme) (-1 My =

Nt el (2-1) v=g 21 ) (2-1) 2

L I S |
=kb 3 i== 58
g=ke1 71 (7K) oy
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We have to show

n
ERY/Ty =5 b 3
P og=kel

(n-2)! 2!
(2-1)

V=

The following relation is valid:

n

v=2

n
b3 (;) v

n+2

n n
3o = 3 (1)) = () = 3 (DD - ()

nt+l

n n
=) 2 (D - 3 ()= G- O
v=_ v=_
_ . 2+(2+1)n ,n+l
T Ty Ge)
Using this relation we get:
2,0y = K D (n-212! (n+1)! (2+1)n+2
FR/D = 2 D@D e (2+2)

or

n

2 _k (n-2)! 2! (n+1)!
FR/D =P 2 eI e

n
1
(1) (n+2)kb 3 ;—r
pme1 EDED

n

- bk(n+l) =

(n+2)(2+1) _
( ) 1)

n 1
p=ke1 D@ T

k(n+1)b

sk § 1 1
3 ey @D T D)
2(n+2) (nt)k 1 1 1
3 PO (g

bl @D | @nk
2 (k+1) n

1 1
: @ T

L

1

1 1
D) - ) R Y ey T )Y



From this we get

1

E(R/T) = p LK (L, 1

31

1 1

7 - XY eD T D T W

( (k) (n+1) _

(2n+1)k

=b
2 k+1

We get

E(RZ/T) = gg%ig) (E(R/T) +

)

n

b(n+1)k _ b(n-1)k

2(k+2) 2(n+2)

= Eigiﬁl (E(R/T) +

and using the lemma

b(n+1)k(n-k) | _
22y (k) )~ ER/D

ECR - ER/T)2/T) = EGRY/T) - E2(R/T)

we get finally:

RM = L) ER/T) -

n{n+lk

EZ(R/T) + 3(k*2)

Similarly we get the variance of E(L/T).

oo 2 (v-1)k(n-2)!

EEm= 3 s g
2=k+1 v=2

n

(v-2)1 (2-1Dn?

g-2(n-2)t(e-1)t M y-1

:k_b >

n! 0=k+1 (2-1)

n~1 1

H

2=k

Using the lemma above we get

N

o

s (U =k
v=p 471

bk = (1 + ) = nk + E(L/T).

= nk + E(L/T) - E2(L/T)

) - E(R/T)





