Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Inhibition of sEH via stabilizing the level of EETs alleviated Alzheimer's disease through GSK3β signaling pathway

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by dementia. Inhibition of soluble epoxide hydrolase (sEH) regulates inflammation involving in central nervous system (CNS) diseases. However, the exactly mechanism of sEH in AD is still unclear. In this study, we evaluated the vital role of sEH in amyloid beta (Aβ)-induced AD mice, and revealed a possible molecular mechanism for inhibition of sEH in the treatment of AD. The results showed that the sEH expression and activity were remarkably increased in the hippocampus of Aβ-induced AD mice. Chemical inhibition of sEH by TPPU, a selective sEH inhibitor, alleviated spatial learning and memory deficits, and elevated levels of neurotransmitters in Aβ-induced AD mice. Furthermore, inhibition of sEH could ameliorate neuroinflammation, neuronal death, and oxidative stress via stabilizing the in vivo level of epoxyeicosatrienoic acids (EETs), especially 8,9-EET and 14,15-EET, further resulting in the anti-AD effect through the regulation of GSK3β-mediated NF-κB, p53, and Nrf2 signaling pathways. These findings revealed the underlying mechanism of sEH as a potential therapeutic target in treatment of AD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View