
UC Berkeley
Working Papers

Title
Database Environment for Fast Real-Time Simulation of Urban Traffic Networks with ATMIS

Permalink
https://escholarship.org/uc/item/76k4c6nf

Authors
Jayakrishnan, R.
Sheu, Phillip
Wang, Taehyung
et al.

Publication Date
2000-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/76k4c6nf
https://escholarship.org/uc/item/76k4c6nf#author
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Database Environment for Fast Real-time
Simulation of Urban Traffic Networks
with ATMIS
R. Jayakrishnan, Phillip Sheu,
Taehyung Wang, MinHua Xu
University of California, Imine

California PATH Working Paper
UCB-ITS-PWP-2000-4

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of Trans-
portation; and the United States Department Transportation, Federal
Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

Report for MOU 227

March 2000

ISSN 1055-1417

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Database Environment for Fast Real-time Simulation of Urban Traffic

Networks with ATMIS

Partners in Advanced Transit and Highways (PATH), CALTRANS

Research Project MOU-227

September 1998

R. Jayakrishnan

Department of Civil and Environmental Engineering

University of California, Irvine, CA

Philip Sheu

Department of Electrical and Computer Engineering

University of California, Irvine, CA

Taehyung Wang

Department of Electrical and Computer Engineering

University of California, Irvine, CA

MingHua Xu
Department of Electrical and Computer Engineering

University of California, Irvine, CA

Abstract

This projects develops the environment for using the ATMIS simulation software developed under

previous PATH projects (MOUs 39, 84 and 170) for real-time traffk simulation and scenario

analysis with feedback from the real urban network. DYNASMART simulation model was

developed during the MOU-39 research, and was augmented with a graphical user-interface and

display during the MOU-84 research. However, for real-time use in realistically large networks,

faster parallel processing is required, which is the focus of the current project, MOU-170. Based

on the early results fiom MOU- 170 research, it has become apparent that the full potential of such

a simulation framework cannot be realized without a database management system that handles

the data for the multiple processes during the parallel simulation, as well as the network feedback

data for real-time updates of the simulation data and parameters. An object-oriented database

environment is proposed here. Partially on-line data and off-line data from the Anaheim ATMS

research testbed will be used to replicate the real network feedback during the research. The

model will be developed with as much compatibility with other PATH projects (MOU-141,

MOU-169) as possible. It is expected that the model will complete the environment for

simulation-based analysis of ATMIS in real-time, which will be required for the field operational

tests envisaged in the near future by Caltrans, PATH, and FHWA

Key words: Traffic Simulation, Databases, Obect-relational Databases, Dynasmart

11
..

CONTENTS

Abstract

Chapter 1 INTRODU(JTI0N

1.1. Overview and Summary of the Research Project

1.2. Motivation and Background

Chapter 2 METHODOLOGY

2.1. The Simulation Framework (DYNASMART)

2.2. Project Overview and Relationship to PATH MOU-170

2.3. Limitations of Current Approaches

2.4. Methodology of the Object-Relational Database System

1

4

Chapter 3 OBJECT-RELATIONAL DATABASE DESIGN FOR DYNASMART 1 1

3.1. Introduction to the Fundamental Design Concepts (Relational Databases)

3.1.1. Primary and Foreign Keys

3.1.2. Queries

3.1.3. Structured Query Language

3.1.4. Referential Integrity

3.1.5. Normalization

3.2. Object-Relational Database Design for DYNASMART

Chapter 4 FRONT-END DATABASE QUERY SYSTEM - Netcompose

4.1. Overview of Netcompose

4.2. Netcompose Network Architecture

4.3. Active Rule Processing in Netcompose

4.4. Related Issues on Rules in Database Query Systems

4.5. Examples of the use of Netcompose to Query Traffic data

24

111
...

Chapter 5 SOFTWARE INTEGRATION

5.1. MS-Access Database System on PCs

5.2. CORBA/C++ Software at the Caltrans-UCI ATMIS Research Testbed

5.2.1. Prerequisites for building CORBA clients

5.2.2. Building and executing CORBA clients

5.2.3. Description of CORBA clients

5.2.3.1 LDS

5.2.3.2 VDS

5.2.3.3 RMS

5.2.3.4 CCTV

5.2.3.5 CMS

5.2.3.6 Decoded LDS

5.2.3.7 DecodedLDS andRMS

Chapter 6 RESEARCH CONCLUSION

ACKNOWLEDGEMENT

REFERENCES

42

47

49

50

iv

Figure 1.1.

Figure 2.1.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Schematic Diagram of the Proposed Database Management

DYNASMART Object-relational Database Design

Architecture of Netcompose

Netcompose and Interneantranet

A rule network

A merged rule network

User selection object(s) from Object Choosx.

Initialization of simulator from the database query system.

Posted Query on selected vehicles(s)

Query Result (at vehicle generation point)

Query Result (Specific vehicle)

Visualization of vehicle Dositions (3-D view)

V

Chapter 1

INTRODUCTION

1.1. Overview and Summary of the Research Project

This projects develops the environment for using the ATMIS simulation software developed under

previous PATH projects (MOUs 39, 84 and 170) for real-time traffic simulation and scenario

analysis with feedback fiom the real urban network. DYNASMART simulation model was

developed during the MOU-39 research, and was augmented with a graphical user-interface and

display during the MOU-84 research. However, for real-time use in realistically large networks,

faster parallel processing is required, which is the focus of the current project, MOU- 170. Based
on the early results from MOU- 170 research, it has become apparent that the full potential of such

a simulation framework cannot be realized without a database management system that handles

the data for the multiple processes during the parallel simulation, as well as the network feedback

data for real-time updates of the simulation data and parameters. An object-oriented database

environment is designed in this research. The model will complete the environment for simulation-

based analysis of ATMTS in real-time at the Caltrans-UCI Research Testbed, and will be useful for

the projects and operational tests envisaged in the near future by Caltrans, PATH, and FHWA.

1.2. Motivation and Background

The motivation for this project developed during a meeting in 1995 with Mr. Joseph Palen of

the California Department of Transportation in connection with the research on parallel

processing for fast traffic simulation (PATH MOU-170) which was then ongoing at UC

Irvine. The MOU 170 research was exploratory in nature, and developed parallel codes of

traffic flow models, with specific focus on the DYNASMART model developed for ATMIS

simulations. The model in the sequential form required considerable computation time. As

an example, the Anaheim network of about IO00 links runs up to 4 or 5 times faster than

real-time, which reduces the applicability of the model to online analyses of multiple

scenarios. For real-time applications the simulations for a near horizon (say, about 30

1

minutes) needs to be done say in a few seconds, so that alternative scenarios can be studied

before any ATMIS advisory strategies such as route diversions are developed. The research

had been successful in showing the potential of parallel processing to achieve such speed-up

for real-time applications. However, one of the bottlenecks in achieving such parallel

computing efficiency is the data management. This was recognized as a primary difficulty

which needs to be addressed in further research.

Furthermore, the UCI-Caltrans ATMIS research testbed has several other components

needed for online analyses, such as freeway control modules, incident detection algorithms,

traffic management expert systems, network optimization algorithms, etc., which are

deployed on a distributed computational platform using the CORBA architecture. Before

these algorithms can be tested in the real-world, a simulation platform that replicates the real-

world in the laboratory is needed, and DYNASMART is a part of the simulation workbench

in the testbed. Once again, the studies requires careful data management in the simulation

which would facilitate the flexibility of providing timely simulation capabilities of any of these

modules, which may be incorporated into the various designs of ATMIS proposed to be

studied in the testbed. A data management scheme that is essentially hard-coded inside the

simulation program as Fortran or C arrays would be very cumbersome for this purpose and a

object-oriented database with the simulation is considered a requirement.

Another significant aspect in real-time operations is the possibility of using on-line data from the

road network to update the simulation parameters and data. For instance, if real-time counts on

the streets are available, it can be used to update the dynamic trip tables used by the simulation, as

the simulation proceeds. Here the database manager is required to ensure the integrity of the data,

as well as to ensure that the data is shared by the parallel processors in a correct manner. Models

for dynamic updating of 0-D demand have been recently developed, but environments where

these can be used for real-time simulations are still to be developed.

Another significant objective is to prepare for the upcoming field operational tests (FOT) and

demonstrations in the near future. One such FOT would be for Dynamic Traffic Assignment

(DTA) which is expected to commence within the next two years, as planned by the Federal

2

Highway Administration. DYNASMART has already been used as part of pilot off-line

frameworks in this regard, but it was recognized that real-time data management will be a requisite

capability for practical implementation of such fi-ameworks. The research conducted here would

be significant in helping Caltrans, PATH and UC Irvine in being able to develop future projects

where the past efforts can be successfully brought to practical fi-uition. This is also significant in

terms of the further productive use of the real-time ATMS research testbed at Anaheim,

California, for k l d operational tests.

Finally, it has been the view of Caltrans that a simulation program such as DYNASMART cannot

be used for practical applications, till it is properly validated and calibrated with real-life data. The

database system will provide the perfect platform to accomplish this. The intention is that when

coupled with real data, calibratiodvalidation routines can be developed and added as processes in

this environment, to self-tune the software with real data. This is a very signiticant benefit for the

validity and more importantly, the transferability of the simulation software.

The literature in the area of traffic simulation models is well-known, and the UCI researchers have

described this in their earlier reports, as well as in recent papers (Jayakrishnan et al., 1994).

Suffices to say that none of the other well-known ATMIS simulation packages such as

INTEGRATION, NEMIS and THOREAU have flexible object-oriented data base platforms that

achieve the above-mentioned objectives. The existing research literature in the area of object

oriented databases is extremely vast, and it does not appear necessary to discuss the literature

here. Research on the application of object-relational oriented databases for real-time traffic

simulation is in its infancy, however. The earlier PATH research on developing such databases for

IVHS (MOU-141) is possibly one of the most significant recent research on this topic.

3

Chapter 2

METHODOLOGY

In this section, we start with a brief description on the trafiic simulation program. Then we

describe the earlier research in parallel processing for trafiic simulation, and follow it with a

description of the research approach in this project and its methodological details. The details of

designing a relational-database are provided in Chapter 3, which is then followed by the object-

relational database we design in this project.

2.1 The Simulation Framework (DYNASMART)

The ATMIS simulation program, DYNASMART (Dynamic Network Assignment Simulation

Model for Advanced Road Telematics), was developed at UC h i n e and the University of Texas,

Austin with support from the PATH program and FHWA. The simulation program is

macroscopic in nature, but keeps track of individual vehicles and models the behavior of the

drivers in response to ATIS, as well as the operation of the traffic control devices. The extensive

capabilities of the model include:

Macroscopic modelling of traffic flow dynamics such as congestion formation and shock

wave propagation. Tracking of locations of individual drivers.

Modelling of different traffic control strategies (freeways, surface streets, signalized

intersections, r a m p entry/exit etc)

Modelling of prescriptivelcompulsory guidance as well as non-prescriptive guidance with

trip time information on alternative routes.

Modelling of various aspects of the controller such as Sequent updates of the network

route information database.

Modelling of individual drivers’ response to information in the case of descriptive guidance

based on a set of paths rather than a single shortest path. Random assignment of driver

behavioral characteristics. Flexibility to incorporate alternative behavioral rules.

4

6) Modelling of capacity-reducing incidents at any time, anywhere in the network.

7) Modelling of cases with only a fraction of the vehicles equipped for information.

8) Capability to cany out simulations based on externally specified dynamic

equilibrium paths for drivers not equipped to receive information.

9) Several levels of output statistics for the system, for individual drivers as well as for

groups of drivers (equipped drivers, unequipped drivers, drivers on certain 0-D pairs etc).

Statistics include average trip times, distances, average speeds and a variety of route

switching statistics.

10) A user-friendly graphical interface that allows efficient editing of the network data and

run-time display of the simulation.

More details on DYNASMART are available in Jayakrishnan et al (1990, 1993b, 1994). The

basic traffic flow modelling approach, called macro-particle simulation, is described in Chang et al

(1985). Even though the original model was written for sequential processors (mostly Sun work

stations), the model is currently being rewritten for parallel computation on other platfom, as

described in the next section.

2.2. Project Overview and Relationship to PATH MOU-170

The objective of the earlier project (MOU-170) was to parallelize the DYNASMART traffic

simulator in order to achieve near-realtime performance. The original DYNASMART program is

written in FORTRAN and runs on a variety of platforms, primarily, UNIX. To port the original

serial version of the DYNASMART program to parallel computers, we have made changes to

some portions of the code without altering any semantic of the program. Basically the core of

DYNASMART consists of two large loops for each simulation time step. In the first loop, new

vehicles are generated for each link of the transportation network; in the meantime every vehicle

already on any given link advances by the same distance, based on the link’s speed during that time

step (which in turn, depends on the link density). We call this loop the FIRST LINK LOOP.

Moving each vehicle within a link is accomplished by a small loop inside of the FIRST LINK

LOOP called the VEHICLE LOOP. In the second loop, called the SECOND LINK LOOP, each

5

vehicle that would cross any boundary between two links is taken care of. All vehicles crossing

boundaries will be moved to the following link based on capacity restrictions and signal timings.

Since a vehicle never appears in more than one link simultaneously, these three loops theoretically

can be run in parallel.

However, there are still some data dependencies that need to be removed before the loop-level

parallelism can exploited. The data dependency problem is dealt with using either directives

provided by the parallel FORTRAN compiler or by creating new data structures that avoid

dependencies (see Wolfe and Banerjee, 1987). In the following discussion we point to our

experience with the FORTRAN utilities on the Convex SPPlOOO parallel machine. The

LOOPPFUVATE directive was used to create multiple copies of a variable under the same name

so that parallel loops can access them at the same time. After removing all potential data conflicts,

the next step was to use the LOOP-PARALLEL directive to force loops to be executed in

parallel. Instances of a loop would be dispatched to different processors in forms of threads

regardless of data dependencies. This is handled very carehlly since any data dependency not

being taken care of could create a hazard and crash the program. After careful investigation and

extensive testing, we have eliminated all data dependencies that would otherwise handicap the

parallelization of the program.

We have also tested another directive called CRITICAL-SECTION. This directive will guard a

segment of code (called a critical section) so that at any time only one thread can run it. This

mechanism of serialization helps when dependencies are hard to remove. However, the

performance of a program using CRITICAL-SECTION is expected to be worse than other

methods of dependency removal because the accesses to a critical section are serialized. This

directive was only used for very limited occasions.

Another way to exploit parallelism is to have the machine automatically explore data dependencies

and eliminate any data conflicts. This is achieved through the compiler directive PREFER-LOOP.

When encountering this directive the compiler tries to resolve all data dependencies by itself. If it

succeeds, the program is translated into a parallized version. Otherwise, it will keep the program

6

serial. According to our experiments, this directive never really succeeded. It can only deal with

loops of very small sizes therefore was not able to handle the loop sizes in our program. We have

not used this directive in our project.

2.3. Limitations of Current Approaches

In DYNASMART, some computational resources are unavoidably allocated to parallel FOR

loops to perform some unproductive computations. For example, if there are lo00 links and only

one link needs to be computed, the program will loop over each link to make the only one useful

computation. Even though the execution jumps to the next iteration very won if there is nothing

for to compute in the current iteration, certain wasted computation still occurs. Furthermore, if

the computation load for each iteration of a loop varies significantly, it is hard to balance the

workloads among all the processors. Even though we find it unusual for one processor to be

extremely busy while the others are idle, we have to find ways to reduce any resource wastage and

make the workload as balanced as possible.

As we mentioned before, data sharing has an important impact on the performance of a program

running in parallel mode. Basically every process will contend for the memory resources. As the

number of processes and data size grow, the simplistic memory management provided by the

DYNASMART will not be sufficient. To be practical, we have to look for a mechanism which

can accommodate large size of data and is intrinsically shared-based.

Another limitation is memory. Since the current program uses arrays extensively, the size of input

cannot grow beyond a certain point. This prevents the program from being scaled to larger

problems. Even though we can use dynamicdy allocated memory to replace these arrays, the size

of the main memory is still limited.

7

2.4. Methodology of the Object-Relational Database System

Based on the above observations, we propose to incorporate an object oriented database (OODB)

into DYNASMART to support its parallelldistributed execution With such an environment, a

number of concurrent processes can run simultaneously with a high degree of data sharing. See

Figure 1.1 for a schematic diagram. With parallel database search, the synchronous parallel FOR

loops that iterate on every object (i.e., link and vehicle) can be replaced by a number of processes

driven by discrete events. For example, an event could be a vehicle entering a link or leaving a

link. In this way, not all vehicles need to be processed every time step in each loop. The

workload balancing and idle loop problems can thus be efficiently resolved.

In our database version of DYNASMART there would be a process serving as the vehicle

generator. Links in the transportation network will be grouped into processes based on the

number of processors available. Each process has internal data structures to store its states.

Processes are awaken only if some triggering event arrives. This minimizes the overhead of

process management.

Vehicles, on the other hand, are pure data and maintained by the database. Later on each vehicle

is manipulated by the link processes during its lifetime and will be taken out of the system once it

reaches its destination. The database will retrieve sets of datdinformation in response to the

requests made by the processes. For example, the database can retrieve all vehicles that will cross

link boundaries and direct them to the downstream links. A portion of computation resources is

to be allocated to the database to facilitate parallel search. Further evaluation will be done during

the research project to ensure that excessive computational overhead will not be introduced into

the simulation due to vehicle processing, possibly resulting in refinements in this approach.

Experience fiom past use of the object oriented databases in simulation is that large number of

objects can in some cases slow down the simulation

We note here that depending on how exactly the database is used for various purposes, it may be

more theoretically rigorous to call it an “object-relational database”. The distinction arises based

8

essentially on whether the database is used for primarily storing the object-data, as and when the

simulation reads and writes to the database, or whether it is used during the simulations to handle

all object data. Our experience is that it is better to let the simulation’s own internal data arrays

handle many of the large number of objects such as vehicles, but to let the database handle other

objects, such as networks, paths, links, etc, which are much less dynamic in nature. From this

standpoint, our designs, when deployed act often as object-relational databases than an object-

oriented database. For the purpose of the discussions in this report, however, we use both terms

interchangeably.

As far as input/output is concerned, we can use the database to hold pre-generated input data to

increase the efficiency of the simulator. Also, traffic performance information gathered during

each time step, like congestion level and traffic loads, can be held in the database for further

processing. This is especially helpful when the number of links and the size of data are large.

9

r

Anaheim City Network - Real World Traffic

I
Dynasmart
Net- 1

Dynasmart
Net-2

\
r

1

I Net-3

v
Global Network Database Global Network Database

Figure 1.1. Schematic Diagram of the Proposed Database Management System for
Fast Real-time Parallel Simulation of Traffic

10

Chapter 3

OB JECT-RELATIONAL DATABASE DESIGN FOR DYNASMART

In this chapter, we describe our design of the database. Section 3.1 discusses the design

concepts. The discussion in section 3.1 is based on a pure relational database, without

“objects”, for ease of explanation. The concepts are similar in object-relational databases and

regular relational databases. We follow this in section 3.2 with our design of the database for

DYNASMART.

3.1. Introduction to the Fundamental Design Concepts (Relational Databases)

The discussion in this section draws heavily from Joe Garrick’s Database design primer

(Error! Bookmark not defined.). We use the same simple example as in that reference to

explain some of the primary design issues involved, rather than explain it on the basis of the

object-relational database developed in this project (section 3.2) which is considerably more

complex.

The relational database model has become the de-facto standard for the design of databases

both large and small. While the concepts involved are not terribly complex, it can be diffcult

at first to get a handle on the concept.

The simplest model for a database is a “flat file”, which has only a single table which includes

fields for each element to be stored. Nearly everyone has worked with flat file databases, at

least in the form of spreadsheets. The problem with flat files is that they waste storage space

and are problematic to maintain. Let’s consider the classic example of a customer order entry

system. Assume that the data has to be managed for a company with customers, each of

whom will be placing multiple orders. In addition, each order can have one or more items.

The data to be for each component of the application:

1 1

Customers

Customer Number

Company Name

Address

City, State, ZIP Code

Phone Number

Orders

Order Number

Order Date

PO Number

Order Line Items

Item Number

Description

Quantity

Price

A flat fde to represent this data would cause serious problems. Each time an order is placed,

there is a need to repeat the customer information, including the Customer Number,

Company Name, etc. What’s worse is that for each item, we not only need to repeat the order

information such as the Order Number and Order Date, but we also need to continue

repeating the customer information as well. Consider the case of a customer who has placed

two orders, each with four line items. To maintain this tiny amount of information, we need

to enter the Customer Number and Company Name eight times. If the company should send

you a change of address, the number of records to be updates is equal to the sum of product

of orders and order line items. Obviously this will quickly become unacceptable in terms of

both the effort required to maintain the data and the likelihood that at some point there will

be data entry errors and the customer address will be inconsistent between records.

The solution to this problem is to use a relational model for the data. It simply means that in

this example each order entered is related to a customer record, and each line item is related

12

to an order record. A relational database management system (RDBMS) is then a piece of

software that manages groups of records which are related to one another. Let’s take our flat

file and break it up into three tables: Customers, Orders, and OrderDetails. The fields are just

as they are shown above, with a few additions. To the Orders table a Customer Number field

is added, and to the OrderDetails table an Order Number field is added. Here’s the list again

with the required additional fields and modified field names.

Customers

CustID

CustName

CustAddress

CustCity

CustState

CustZIP

CustPhone

Orders

OrdID

OrdCustID

OrdDate

OrdPONumber

OrderDetails

ODID

ODOrdID

ODDescription

ODQty

ODPrice

Note that some clever naming schemes are used her to avoid confusion while programming

the database.

13

What is done here, besides the name change, is to add some new fields to the Orders and

OrderDetails tables. Each have key fields used to provide a link to the associated Customers

and Orders records, respectively. These additional fields are called foreign keys.

3.1.1. Primary and Foreign Keys

A key is simply a field which can be used to identify a record. In some cases, key fields are a

part of the data that is being storing or derived from that data, but they are just as often an

arbitrary value. For the Customers table above, one could use the company name as a key,

but if there are ever two companies with the same name, the system would be broken. One

could also use some derivation of the company name in an effort to preserve enough of the

name to make it easy for users to derive the name based on the key, but that often breaks

down when the tables become large. Simply using an arbitrary whole number may be the best

solution. One can also completely hide the use of the numbers from the end users, or expose

the data.

There are two types of key fields: primary keys and foreign keys. A primary key is a field that

uniquely identifies a record in a table. No two records can have the same value for a primary

key. Each value in a primary key will identify one and only one record. A foreign key

represents the value of primary key for a related table. Foreign keys are the cornerstone of

relational databases. In the Orders table, the OrdCustID field would hold the value of the

CustID field for the customer who placed the order. By doing this, we can attach the

information for the customer record to the order by storing only the one value

3.1.2. Queries

Rather than repeating the Customers table data for each Orders table record, we simply

record a customer number in the OrdCustID field. By doing this, we can change the

information in the Customers table record and have that change be reflected in every order

placed by the customer. This is accomplished by using queries to reassemble the data. One of

the inherent problems of any type of data management system is that ultimately the human

users of the system will only be able to view data in two dimensions, which in the end become

14

rows and columns in a table either on the screen or on paper. While people can conceptualize

objects in three dimensions, its very difficult to represent detail data in anything other than a

flat table. This is accomplished using queries. A query is simply a view of data which

represents the data from one or more tables.

3.1.3. Structured query Language

Queries are built in a relational database using Structured Query Language, or SQL This is

the standard language for relational databases and includes the capability of manipulating

both the structure of a database and its data. In its most common form, SQL is used to create

a simple SELECT query. For the earlier example, an SQL for a query to look at customer

orders could be:

SELECT CustName, CustCity, CustState, OrdDate

FROM Customers INNER JOIN Orders ON

Customer.CustID = 0rders.OrdCustID;

This query starts with the SELECT keyword. Most of the are normally SELECT queries.

Following the SELECT keyword is the list of fields. Next comes the FROM keyword. This is

used to indicate where the data is coming from. In this case, its coming from the Customers

table and the Orders table. The key to this query is the INNER JOIN. There are two basic

types of joins which can be done between tables: inner joins and outer joins. An inner join will

return records for which only the matching fields in both tables are equal. An outer join will

return all the records from one table, and only the matching records from the other table.

Outer joins are further divided into left joins and right joins. The left or right specifies which

side of the join returns all records. The balance of the example query specifies which fields

are used to join the table. In this case we are matching the CustID field from Customers to

the OrdCustID field (the foreign key) in Orders. Note that this is a specific kind of SQL.

Each RDBMS has its own particular dialect of SQL, but they all have similar characteristics.

15

3.1.4. Referential Integrity

Consider what happens while manipulating the records involved in the order entry system. In

the example above, editing the customer information can be done at will without any ill

effects, but deleting a customer can cause problems. If the customer has orders, the orders

will be orphaned. Clearly there cannot be an order placed by a non-existent customer, so

there has to be a means in place to enforce that for each order, there is a corresponding

customer. This is the basis of enforcing referential integrity. There are two ways that you can

enforce the validity of the data in this situation. One is by cascading deletions through the

related tables, the other is by preventing deletions when related records exist. Database

applications have several choices available for enforcing referential integrity, but if possible, it

is better to let the database engine handle this. The latest advanced database engines allow the

use of “declarative referential integrity”, i.e., a relationship is specified between tables at

design time, indicating if updates and deletes will cascade through related tables. If cascading

updates are enabled, changes to the primary key in a table are propagated through related

tables. If cascading deletes are enabled, deletions from a table are propagated through related

tables.

3.1.5. Normalization

Normalization is a subject that is extensively and often confusingly addressed in database

literature. In a nutshell, its simply the process of distilling the structure of the database to the

point where the repeating groups of data are moved into separate tables. In the above

example, we have normalized customers and orders by creating a separate table for the

orders. Careful normalization is needed to design a database to be efficient and reliable, and

at times one may need to sacrifice normalization to practicality. When taken to extremes,

there is indeed a performance penalty for excessive normalization. The problem is often the

added overhead of additional joins, when the queries look for many details at once.

16

3.2. Object-Relational Database Design for DYNASMART

In this section we describe the Object-relational design developed to manage the data objects

in the DYNASMART simulator. The design is developed such that only minimal

modifications will be needed in the DYNASMART program code. For this reason, the main

objects (which are essentially tables, as explained in the relational database primer in section

3.1) are as in the existing simulator code. The primary objects are,

Vehicle Object
Link Object
Node Object
Network Object
Path Object
Detector Station Object
Move
Phase
Plan

Each of these objects include several “data items” which are the variables associated with

each object. The vehicle, Link and Node objects are self-explanatory. The Network Object

is needed to handle the distributed operation of DYNASMART on multiple networks, i.e.,

the sub-networks being simulated by different DYNASMART processes. In a single

simulator setup, this would be a single Network object, and is obviously easier to implement

than in a distributed simulator case. In the distributed simulator case, the database acts as the

global database for the complete network, and thus each subnetwork becomes a separate

Network Object in the database. The plan, move and phase objects deal with the

signalization at each node, and are split into various tables, according to the scheme used in

the design of DYNASMART. Figure 3.1 in the next page shows the “relations” between

these objects which is the key aspect behind the ‘object-relational database”. This database

design easiy to implement in Microsoft Access. How the MS-Access operates with the

Simulator processes is explained in Chapter 5.

17

Dynasmart Database

L

L

Vehicle

number

decision
stime
atime
curlink
dromindex
xpar
distans

tleft
qstatus

ifamilir
ttilnow
jdest

icurmt
ipath

J

number

numplans
curplan

Link

number

nlanes

speed
cmax
vmax
XI

dg
length
nin
n m v
npar
nout
on-link
numdslinks
numuslinks
volume

conc

t t
i

Road-Netwod

nodes-list I

DymDetector-Station
number

dist
length

I cross
totcross

nlanes

I

Phase
number

offset
nummove
mwelist
active

(end

nliks
links-list
nmves
movement
WP
cmspath
numph
phase
nstations

Path

list

priority
-
tot

L

Plan

number I numphases
phaselist
cycle
active

I
Dynasmart DB Objects

18

Object Name: Dyna-Detector-Station

Variable Name

Number I Integer

Link I Integer

Dist Integer

Length I Integer

Cross Integer

Totcross Integer

I

Object Name: Road-Network

Variable Name I Type

nnodes

String nodes-list

Integer

nlinks

String links-list

Integer

nmoves

String movement

Integer

Integer

cmspath I String
I

numph Integer

phase I String

nstations Integer

Description I
station number

Location downstream end of detector

(from upstream node of link)

Effective length of detector

Number of vehicles that crossed--q

previous interval

crossed detector

Description

number of nodes

list of nodes in the network

number of links

list of links in the network

number of link to link movements

list of movements in the network

total number of cms paths in the

network

list of all the cms paths in the network

total number of phases

list of all phase in the network

number of detector stations

19

Object Name: Link

Variable Name Type

Integer

Description

the number of the’link

number of lanes on the (main section

of the link)

current concentration

current speed (mi/min)

max concertration on link

max (freeflow) speed on link

lane-miles on link

volume to be generated during current

timestep

The length of the link

The number of vehicles that entered

this link during the timestep

The number of vehicles that have left

the link during the timestep

number of vehicles currently on link

number of vehicles which left the

network from link

List of vehicles on the link

Number of links connecting

downstream from this link

Number of links connecting upstream

form this link

Number

Nlanes Integer

Conc Float

Speed Float

Float Cmax

Vmax Float

x1 Float

Float

Length Integer

Nin Integer

Nmov Integer

Integer

Nout Integer

on-link String

numdslinks Integer

Numuslinks Integer

Integer Volume

20

Object Name: Node

Variable Name Type

Number Integer

Xcoord I Integer

Ycoord I Integer

Description

number of node

x coordinate

y coordinate

number of signal(contro1) plans

available for node

the current plan number used with

node

Object Name: Path

Variable Name

List

Description Type

path choice rating variable Double Priority

node listing in path String

Tot Integer total number of vehicles which have

selected path

Object Name: Phase

21

Object Name: Plan

Variable Name Description Type

l number
tYPe

Integer

Integer offset

Integer

numphases Integer

phaselist String list of all phases in the plan

cycle

Integer active

Integer

Object Name: Move

Variable Name

fromlink

tolink

tYPe

capacity

nlanes

moved

TY Pe

Integer

Integer

Integer

Integer

Integer

Integer

Description

movement from link number

movement to link number

movement type

movement capacity available during

current timestep (number of vehicles)

approximate number of lanes serving

movement

number of vehicles in the queue for this

movement after the current timestep

22

Object Name: Vehicle

Variable Name

Integer number

Type

decision Integer

I stime I Float

atime

Integer curlink

Float

I zfrom-index I Integer

I

distans Float

qstatur Integer

ifamiliar I Integer

1 ttilow I Float

jdest I Integer

I String

icurrnt I String

Description

vehicle number

number of touting decision vehicle has

made

vehicles start time from origin

vehicles arrival time at destination

vehicles current link

Index of vehicles origin zone

vehicles distance from the downstream

node on its current link

distance vehicle has travelled

amount of timestep remaining after a

vehicle reaches the end of its link

vehicles familiarity level with network

time vehicle has spent travelling

number of vehicle destination

enumeration of vehicles path

list of vehicles location in its path

23

Chapter 4

FRONT-END DATABASE QUERY SYSTEM - NetCompose

In this chapter we describe the query system developed for the object-relational database of

DYNASMART. While the database can be operational for purely computational purposes

and flexibility to add/delete/compare data items, the user could substantially benefit from

queries to the database while the simulation is running. For instance, if a given network is

being simulated, and the real-world data from actual freeway detectors is coming to the lab

(as at the UCI-Caltrans ATMIS research testbed), the analyst can visualize the simulation’s

performance in comparison with the real data. Alternatively, if the user wants to find more

complicated items such as say the positions of all vehicles in the network which departed

during certain time periods, a query front-end to the database is essential. Indeed, the

benefits from an object-relational database is its ability to work with such structured queries,

and a query system is developed in this research for this purpose. We call it NetCompose, as

it evolved from the Compose database system developed in the electrical engineering

department at UCI for studies with biological databases.

Section 4.1 describes the NetCompose database query system. This is followed by a brief

section on the Network implementation architecture of NetCompose. Section 4.3 describes

the core research development that makes the query system flexible and powerful, i.e., the

active rule processing schemes, which are state-of-the-art in its theoretical foundations. This

is followed by section 4.4 which discusses some related research issues, and the chapter

concludes with several screen shots of the front-end system, which bring out the user-friendly

and flexible nature of the system.

4.1. Overview of NetCompose

NetCompose is our next-generation database query tool that is organized hierarchically and

possess a logic and structure easily applied. It runs on top of any relational database (such as

24

Sybase, Oracle, MicroSoft SQL Server, and Informix) and provides an intelligent and

complete object-relational interface to the user. Unlike the traditional approach, which is

completely table driven, queries in NetCompose are structured along the lines of natural

language and sentences. Objects (nouns) are identified, described (adjectives, predicates) and

acted upon (verbs). Oueries are composed by naive users based on simple multiple

hierarchical choices without knowing any low level concepts such as “join” and “selection”.

Suppose for example the investigator wishes to identify the vehicles which are located in the

area which is defined by two-dimensional points and whose speeds are less than 50 miles. The

query would consist of a noun (vehicles), two predicates (within a certain are, and having less

than 50 miles speed) and a verb (find).

The NetCompose database management system controls accessedchanges of information

based on integrity constraints (i.e., rules that have to be verified whenever the contents of the

database are changed; e.g., No vehicle should run A if vehicle arrives to destination), triggers

(i.e., rules that define the actions to be taken when certain conditions are satisfied; e.g., Let

me know whenever vehicles with behavior pattern A also presents behavior pattern B), and

security rules which are again constructed based on the semantic building blocks. In addition

it allows the user to define complex building blocks or rules in terms of simpler ones without

any knowledge of programming. Consequently even the most complicated queries or logic

can be composed naturally and easily for non-expert users and managers.

A NetCompose database has a three-layer architecture, as shown in Figure 4.1. At the lowest

level, the relation layer, information is stored as relations (tables). On top of relations, in the

object layer objects are formed accordiqg to their structures. The top layer, the knowledge

layer, stores the object schema, the object vocabulary (i.e., the basic predicates and deductive

laws, i.e., rules that define higher-order predicates in terms of more primitive ones), integrity

constraints, and triggers that can be expanded dynamically; they are stored internally in

mathematical logic that is transparent to the user. It is the top layer that provides the object-

oriented intelligent user interface and control. Conceptually, a query is first processed by the

knowledge layer, which expands higher-level predicates into lower-level ones, checks the

25

impacts of the query to the database, and takes appropriate actions if certain conditions are

satisfied (in the case of triggers) or informing the user whenever any data inconsistency is

detected (in the case of integrity constraints).

Queries

Figure 4.1. Architecture of NetCompose

As discussed, on top of the objects, NetCompose provides a high level query language in

which object-oriented queries are expressed in the following form:

declaration of object variables (in form of object var: domain)

object-oriented operation(s)

where object-oriented predicates

Note that an object-oriented action can be a set-oriented operation such as adding an

element, deleting an element, or replacing an element; it may be any operation that is

associated with the object involved. As a simple example, the query of finding those cases

which present similar pattern of behaviors with vehicle “\100001” is expressed formally in

NetCompose as follows:

range of va is vehicle

range of vb is vehicle

retrieve (va)

26

where vb.id = "voooO1" and similar-in-behavior(va,vb)

Including procedural methods is problematic to conventional relational query optimization

techniques. For a large database, an optimal nested-loop algorithm is inefficient when the

number of variables involved in a query is large. Realizing this, a non-linear search approach

based on query decomposition is taken in the database. In this research, query processing is

optimized based on an extended query decomposition algorithm we have developed to

minimize the number of function calls. Specifically, before an object-oriented predicate is

evaluated, all the inputs are instantiated or dissected because the values of input arguments

are needed for evaluation.

4.2. NetCompose Network Architecture

Figure 4.2 shows how the NetCompose technology fits in the Internetnntranet architecture.

Figure 4.2. NetCompose and Internetnntranet

27

4.3 Active Rule Processing in NetCompose

In NetCompose, the database server continuously monitors the triggers and integrity

constraints. The constraints and triggers, which are expressed as logical rules and organized

into a set of networks, are evaluated based on incoming events.

In NetCompose, five types of primitive events are defined:

Message Events: Point in time when a message is arriving at an active object and the point in

time when the object has finished executing the appropriate method requested by the

message.

Value Events: Point in time when the value of an object is being modified

Time Events: Absolute points in time (e.g., 22:00:00, Feb. 28, 1995), periodically reappearing

events (e.g., every hour), or relative to occurring events (e.g., one min after event E l) .

Transaction Events: Defined by the beginning or termination of (user-defined) transactions.

Abstract Events: Events defined by users and applications according to their specific

semantics.

The following composite events can be specified given two (composite or primitive) events

E l and E2:

(ElIE2): Occurs when either E l or E2 occurs.

(El,E2): Occurs when El and E2 occur, regardless of the order.

(El;E2): Occurs when El and afterward E2 occurs.

(-El) : Occurs when E l does not occur in a specified (named) transaction or in a predefined

time interval.

In general, processing of production rules or integrity constraints can become a serious

performance bottleneck if we evaluate each rule from scratch every time the contents of the

database are changed. To solve this problem, we take an incremental approach which

28

complies each rule into a rule network. When a rule is first evaluated, all intermediate results

are saved instead of being purged. Subsequently, whenever the database is changed, the

changes are input to the network to trigger other changes in the rule network. Thus only the

part of the rule network that is affected by the database change needs to be re-computed. In

addition, heuristic rules are employed to merge rules which have common sub-expression to

avoid duplicated efforts. The network approach is similar to the RETE algorithm ([1][7]) but

is more general in treating logical formulas, events, and structured objects.

In our approach, integrity constraints are converted into production rules as well so that both

integrity constraints and triggers can be treated in the same way. Specifically, given a set of

constraints { [EIIFI + RI, . . . , [EnIFn + R n } , where Ei is a formula describing events and

both Fi and Ri are formulas describing the database state, each constraint Fi + Ri is

converted into the form Fi A Ri + warning().

Thus, in NetCompose, rules are in general expressed in the following form:

LI A L ~ A.. . A L ~ + R

where L1, L2, . . . , L n , R are predicates which can be in one of the two forms:

cZass-name(X), where class-name is the name of a class and X is an variable. This predicate

asserts that X is an instance of the classclass-name, or

predicate-name(arg1, ..., argN), where each argument can be a variable (which are

expressed in the form X or X.attribute.attribute) or a constant (integer, float, or a string in

the form of "text"). This asserts that when applying the predicate predicate-name on argl,

..., argN, the result is true.

Following are some example rules:

29

rectangle(obj-0) A rectangle(obj-1) A seq(obj-0. ”A”) A intersect(0bj-0, obj-1) +

rotate(obj-1)

patient(obj-0) A patient(obj-1) A patient(obj-2) A similarfobj-0,obj-1) A simiWobj-0,

obj-2) A ieq(obj-O.age,65) plotgrofile(obj-2,1O,”mytext”)

Now we define a rule network as a directed graph that consists of a set of nodes, where each

node corresponds to a predicate. There are three types of nodes: source nodes, operational

nodes, and terminal nodes. Nodes whose corresponding predicates are of the form

class-name(arguments) are “source nodes”. Source nodes do not have any input arcs. A

source node interfaces with the database and generates a set of objects of the same class for

further processing. A node which does not have any output arcs are “terminal nodes”; it

consumes its input objects and do not generate any output objects. Finally, a node which is

not a source node or a terminal node is called an “Operational” node. In general, if an

operational node N has a set of input arcs from the nodes N l , ..., Nk and has an output arc

going to the node Nc, it means the object sets produced by the Ni’s are input to N so that N
can perform some computation and produce a set of objects which will be taken byNc.

Now given a production rule of the form [ElILl A L2 A ... A Ln + R, we can construct a

rule network as follows:

Let A = {L l , ..., Ln}

For each Li of the form class-name(obj-x), create a source node Nx. A = A - { Li } .

Let Ax = { Li I Li E A whose arguments have one and only one variable obj-x}. Ceate an

operational node Nx’ and create an arc from Nx to Nx’. A = A - Ax.

Let Axy = { Li I Li E A whose arguments have two and only two variables obj-x and obj y }.

Create an operational node Nxy and create an arc from Nx’ to Nxy and an arc from Ny’ to

N x y . A = A - A x y .

Let Axyz = { Li I Li E A whose arguments have three and only three variables obj-x, ob jd ,

and obj-z }. Create an operational node Nxyz and create an arc from (Nx’, Nyz), (Ny’, Nxz),

30

(Nz’, Nxy), or (Nx’, Ny’,Nz’), whichever is applicable, to Nxyz. If two or more candidates

exist, then the choice is arbitrary. A = A - Axyz.

Repeat the above process for predicates involving 4 or more variables with the same principle

until A becomes an empty set.

Create a terminal node Nt. Create an arc from each node created in steps 2-6 which do not

have any output arc. The terminal node Nt performs the computations involved inR.

Store in each node its corresponding predicate and the associated arguments.

The rule network functions as follows:

In general, if an operational node N has a set of input arcs from the nodes NI, . . ., Nk and has

an output arc going to the node Nc, it means that the object sets produced by the Ni’s are

input to N so that N can perform some computation and produce a set of objects which will

be taken by Nc.

Each source node corresponding to a class class-name retrieves from the database the set of

objects of class-name and sends a copy of the set to each operational node connected to it

via an arc.

For each operational node, perform the operations involved in the corresponding predicates

whenever the data set on each of its input arc is ready. Assume the operation node has n

input arcs whose corresponding object sets are A I , . . ., An, respectively, the result produced

by the operational node will be a subset ofAl X A2 X . . . x An.

The terminal node performs the operations involved in its corresponding predicate whenever

all data sets on the input arcs are ready.

31

Since the nodes of a rule network form a partial order, we can associate a logical formula

with each node as follows:

Each source node is associated with its corresponding predicate. Assume the operation node

has n input arcs which are connected to nodes AI, ... , An, whose associated formulas are

Ll , ..., L n , respectively. Also assume that the operation node was created based on rn

predicates PI, ..., Pm. Then the operation node is associated with the formulaf = LI A L2 A

... A Ln A PI A ... A Pm.

As an example, given the following production rule, the resulting rule network is shown in

Figure 4.3, where the source nodes are shaded and the terminal node is designated by an

oval.

On El: class-l(X) A class_2(Y) A pl(X,Y) A p2(Y) + R(X)

I 1

Figure 4.3. A rule network

To avoid duplicated efforts, two networks can be merged into one according to some

heuristics. The following are some example heuristic rules:

The networks corresponding to two identical rules can be merged into one. Consider two

production rules [E l] FI -+ RI whose corresponding network is N l and [E21 FI A F2 -+ R2

whose corresponding network is N 2 In this case N2 can be built as shown in Figure 4.4.

32

Figure 4.4. A merged rule network

When several rules are merged into one network, for each rule of the form [E] F + R, where

E is an event qualifier, we associate each node involved in making the formula F the event

qualifier E. Consequently, given a set of rules, each node of the merged rule network may be

associated with several event qualifiers. These qualifiers play an important role when the rule

network is evaluated. Once a merged network is built, it is evaluated based on the incoming

events. Specifically, when an event arrives, all the nodes which are associated with the event

become active (Note that these nodes can be found by checking the event modifiers

associated with each node). All the active nodes of the network forms a sub-network and the

sub-net is evaluated.

4.4. Related Issues on Rules in Database Query Systems

The idea of incorporating rules into a database system has exist as integrity constraints and

triggers as early as in CODASYL, in the form of ON conditions. More recently, the idea of

combining rules and data has received much serious consideration. The term “active

database” has been used frequently in referencing such database. For example, rules has been

built into POSTGRES [lo]: there is no difference between constraints and triggers; all are

implemented as a single rules mechanism. In addition, POSTGRES allows queries be stored

as a data field so that it is evaluated whenever the field is retrieved. In HiPAC [4], the

concept of Event-Condition-Action (ECA) rules was proposed. When an event occurs, the

condition is evaluated; if the condition is satisfied, the action is executed. It can be shown that

ECA rules can be used to realize integrity constraints, alters, and other facilities. Rules have

33

also been included in the context of object-oriented databases. In Starburst, for example,

rules can be used to enforce integrity constraints and to trigger consequent actions.

On the other hand, there has been growing interest in building large production systems that

run in database environments. The motivation for thise are two. First, expert systems have

made an entry into the commercial world. This has brought forth the need for knowledge

sharing and knowledge persistence, These are features found in current databases. Secondly,

many emerging database applications have shown the need for some kind of rule-based

reasoning. This is one of the principle features of expert systems. Production systems is a

commonly used paradigm for the implementation of expert systems. The confluence of needs

from the areas of AI and database has made the study of database productions very

important. The research conducted in this project has thus relevance to other areas, as well.

Traditionally production systems have been used in AI, where data are stored in main

memory. Various needs, as mentioned above, have lead production systems designers to use

databases for data storage. We refer to these as database production systems (DPS).

Commercial DBMS’s do not have the necessary mechanisms to provide full support for such

systems. Views can be used in lieu of rules, but only in a limited way. Work has been

reported for more powerfbl mechanisms to handle a large class of rules [2] [3]. However, the

focus has been on retrieval, especially evaluating recursive predicates, and proposed

approaches do not handle updates as in systems like OPS5 and HEARSAY-11. [5] [6] [9]

[ll] have addressed this issue, and much attention has been placed on parallelizing the

evaluation of production systems (see, e.g., [8]). To our knowledge, little effort has been

made for production systems that work on objects or distributed evaluation of production

systems.

Next we provide some screen shots to demonstrate the graphical front end developed for

Netcompose, which facilitate its use in conjunction with DYNASMART.

34

4.5. Examples of the use of NetCompose to Query Traffic Data

Figure 4.5. User selection object@) from Object Chooser.

Figure 4.6. Initialization of simulator from the database query system.

Figure 4.7. Posted Query on selected vehicles(s)

Figure 4.8. Query Result (at vehicle generation point)

Figure 4.9. Query Result (Specific vehicle)

Figure 4.10. Visualization of vehicle positions (3-D view, Network links not shown)

The visualization capabilities of NetCompose are significant. The graphical visualization

front end is currently written in Java and can show the vehicle positions in the network. In

fact, the java program is general enough for it to be easily modified to show other details

such as locations of signals, freeway detectors, etc. The Figure 4.10 above shows the

vehicles positions in the network in a 3-dimensional figure and it is easy to pan, zoom, and

change the viewpoint in the network. This is a very significant capability from the user’s

perspective, as it can show the areas in the network where congestion develops, as well as

other details such as entry ramp queues, etc. It is also reasonably easy to make

modifications to include other details such as intersections, however, several graphical

“primitives” will need to be created for such purposes. The above picture does not show the

links in the network, for instance, as we have not yet created the basic link icons.

If the database is expanded in the future to include further data items in addition to the

DYNASMART data items, then the above-shown visualization capabilities can be extended

to show other items, as long as they are items with x and y coordinates on the network.

41

Chapter 5

SOFTWARE INTEGRATION

In this chapter, we describe the essential details of the Distributed CORBA platform in the

testbed, which is used to bring in the real-time data, and make it available for comparisons

with the simulation data stored in the object-relational database.

5.1. MS-Access Database System on PCs

The object relational database is designed for implementation on a PC platform running

Windows 95 or Windows-NT, with MS-Access database. The research has originally

focussed on the database implementation on the ORACLE platform, but found that the

overhead computations involved did not justify its use. The MS-Access database

communicates through ODBC that is available as standard under Windows-95 for

communication with the database. The ODBC provides the ability to send data from a

process on PC, communicating with a DYNASMART process (or processes) running on

UNIX systems.

The communication between multiple machines (running various subnetwork

DYNASMARTs) to the PC process (which in turn communicates through ODBC to the

database) can be easily set up in the Caltrans-UCI ATMIS research testbed using the

CORBA platform for inter-processor communication and process distribution. The following

sections describe the CORBA platform that exists in the testbed. This is also important, as

other modules in the Testbed may in the future utilize an extended form of the Object-

relational database developed in this project, since the NetCompose query system can then be

valuable as a single front-end to the whole testbed network traffic analysis. We do not

describe the details of the systems programming needed to set up MS-Access and ODBC, as

they are internal to the database architecture. We do, however, describe the CORBA

platform in the testbed, as it is significant in future uses of the database as explained above.

42

5.2. CORBA/C++ Software at the Caltrans-UCI ATMIS Research Testbed

5.2.1. Prereauisites for building CORBA clients

The following software components must be installed on a PC connected to the private LAN

at UCI TMC before client programs which communicate with CORBA objects at Dl2 can be

built at UCI; (1) Windows NT 4.0 (2) Microsoft Visual C++ 97 (3) Iona Technologies'

Orbix ~ 2 . 3 ~ for Windows NT/95, and (4) Iona Technologies' OrbixNames software.

Software component (4) is freely downloadable athttp://www.iona.com/.

5.2.2. Building and executing CORBA clients

Makefiles are provided in each of the CORBA client directories. Open the MSDOS window

under Windows NT and simply type nmake in the appropriate directory. This command

reads the Makefile, invokes the Microsoft Visual C++ compiler and compiles all the CORBA

client source files in the directory. After compilation, the makefile directs the Microsoft

Visual C++ linker to link the generated object modules with the Orbix and OrbixNumes

libraries.

Once a ".EXE" file is generated, it is ready for execution. Note that the PC has to have

proper communication facilities set up so that the CORBA clients may invoke the CORBA

objects at Dl2 TMC. If communication facilities are not set up properly, the CORBA client

execution will fail. Note that in order to execute just the CORBA client software, the Orbix

daemon orbixd need not be executed in the local client node.

5.2.3. DescriDtion of CORBA clients

All the CORBA clients currently available at UCI are based on the original CORBA clients

provided to UCI by NET via the Dl2 website http://tctdb03/download. The NET document

Testbed Intertie And Zntranet provided to UCI by NET explains the basic functionality of

43

athttp://www.iona.com
http://tctdb03/download

various CORBA objects available at the Dl2 TMC server. The reader is strongly

recommended to read through that manual before continuing any further. Note that while the

client source files available at the Dl2 web site are HP-UX 10.20 version, they have been

adapted to a Windows NTNicrosoft VC++ environment here at UCI.

5.2.3.1 LDS

This version contains the CORBA/C++ source files for receiving the raw LDS data here at

UCI from the Dl2 TMC server. When the client program is executed, it will request the user

to enter a freeway name, direction, and two post-mile boundaries. Upon entering this

information, the program will attempt to receive the raw LDS data on all post-mile locations

between the ones on the freeway chosen by the user. Besides displaying the data on the

screen, it is also saved into a local file named "1ds.log". (Source File Directory:

D:\users\atmsUds)

5.2.3.2 VDS

This version contains the CORBA/C++ source files for receiving the VDS data here at UCI

from the Dl2 TMC server. When the client program is executed, it will request the user to

enter a freeway name, direction, and two post-mile boundaries. Upon entering this

information, the program will attempt to receive the raw LDS data on all post-mile locations

between the ones on the freeway chosen by the user. The process will be repeated once

roughly every 30 seconds until the user stops the client by pressing the CTRL-C key.

Besides displaying the data on the screen, it is also saved into a local file named "vds.log".

(Source File Directory: D:\users\atms\vds)

5.2.3.3 RMS

This version contains the CORBA/C++ source files for receiving and sending meter rates to

the field. This version is very similar to the RMS client version available at the Dl2 web site

44

http://tctdb03/download. I have merely ported the HP version available at the web site to a

Windows NT environment. Currently, this client attempts to first read the current metering

rates on all post-mile locations on freeway 91W. Next, it attempts to read the current

metering rates at all post-mile locations in Orange County. (Source File Directory:

D:\users\atmshs)

5.2.3.4 CCTV

This version contains the CORBNC++ source files for choosing CCTV cameras at a specific

post-mile location. When the client program is executed, it will request the user to enter a

freeway name, direction, two post-mile boundaries, and a camera number (either # 1 or ## 2).

Upon entering this information, the program will attempt to select cameras one by one

between the post-mile locations chosen by the user. After selecting a location, the user has

the ability to say whether he/she is satisfied with the camera image. If the user is not

satisfied, the program will attempt to choose the camera from the next post-mile location

which falls within the boundaries chosen by the user. (Source File Directory:

D:\users\atms\cctv)

5.2.3.5 CMS

This version contains the CORBNC++ source files for reading CMS’s from the field. This

version is very similar to the CMS client version available at the Dl2 web site

http://tctdb03/download. I have merely ported the HP version available at the web site to a

Windows NT environment. Currently, this client attempts to first read the current CMS’s on

all post-mile locations on freeway 91W. Next, it attempts to read the CMS’s at all post-mile

locations in Orange County. (Source File Directory: D:\users\atms\cms)

45

http://tctdb03/download
http://tctdb03/download

5.2.3.6 DecodedLDS

This version contains the CORBA/C++ source files for receiving the raw LDS data here at

UCI from the Dl2 TMC server and then decoding it into meaningful lane-by-lane volumes

and occupancies. When the client program is executed, it will request the user to enter a

freeway name, direction, and two post-mile boundaries. Upon entering this information, the

program will attempt to receive the raw LDS data on all post-mile locations between the ones

on the freeway chosen by the user. It will then decode the raw byte data into meaningful

lane-by-lane volumes and occupancies. Besides displaying the raw data and the decoded data

on the screen, it is also saved into a local file named "1ds.log" (Source File Directory:

D:\usersbtms\decoded-lds)

5.2.3.7 Decoded LDS and RMS

This muhithreaded version contains the CORBA/C++ source files for receiving the raw LDS

data here at UCI from the Dl 2 TMC server, decoding it into meaningful lane-by-lane

volumes and occupancies, using this decoded data and a simple metering algorithm to

calculate the metering rates, and then attempting to send the data back to Dl2 and

subsequently to the field. When the client program is executed, it will request the user to

enter a freeway name, direction, and two post-mile boundaries. Upon entering this

information, the program will attempt to receive the raw LDS data on all post-mile locations

between the ones on the freeway chosen by the user. It will then decode the raw byte data

into meaningful lane-by-lane volumes and occupancies. After this, the program attempts to

calculate metering rates for these post-mile locations and then attempts to send back the rates

to the field via the Dl2 RMS CORBA server. The raw LDS data and the decoded LDS data

are saved into a local file named "1ds.log". (Source File Directory:

D:\users\atms\decoded-lds-and-rms)

46

Chapter 6

RESEARCH CONCLUSION

This project developed an object-relational database, initially designed for operating with a

distributed set of DYNASMART simulators (working on subnetworks), but to be extended

in the future to include other modules in the Caltrans-UCI ATMIS research testbed. There

are several motivations for developing such a capability, the most significant being the ability

to integrate the data management requirements during distributed simulations in a seamless

and flexible manner.

The UCI-Caltrans ATMIS research testbed has several other components needed for online

analyses, such as freeway control modules, incident detection algorithms, traffic management

expert systems, network optimization algorithms, etc., which are deployed on a distributed

computational platform using the CORBA architecture. Before these algorithms can be

tested in the real-world, a simulation platform that replicates the real-world in the laboratory

is needed, and DYNASMART is a part of the simulation workbench in the testbed. Once

again, the studies requires careful data management in the simulation which would facilitate

the flexibility of providing timely simulation capabilities of any of these modules, which may

be incorporated into the various designs of ATMIS proposed to be studied in the testbed.

Another significant aspect benefit from the database is in storing “mirror-data”, i.e., fiom the real-

world as well as from the simulated-network, for easy comparisons on the performance of the

simulations, as well as to facilitate the online calibration of the simulator. This is an important part

of the “consistency checks” currently being developed in DTA (Dynamic Traffic Assignment)

models.

The research conducted here would be significant in helping Caltrans, PATH and UC Irvine in

being able to develop future projects where the past efforts can be successfully brought to

practical fruition. This is also significant in terms of the further productive use of the real-time

ATMS research testbed at Anaheim, California, for field operational tests.

47

Finally, it has been the view of Caltrans that a simulation program such as DYNASMART cannot

be used for practical applications, till it is properly validated and calibrated with real-life data. The

database system will provide the perfect platform to accomplish this. The intention is that when

coupled with real data, calibratiodvalidation routines can be developed and added as processes in

this environment, to self-tune the software with real data. This is a very significant benefit for the

validity and more importantly, the transferability of the simulation software.

The main conclusions from the research projects are:

An object-relational database is useful for simulations and for general hybrid

simulationheal-world ATMIS testbeds.

Several components of the simulation, such as vehicles, links, nodes, paths, signal

phases, movements, and subnetworks can all be designed as objects in the database with

their own associated data values, and with specified relations to other such objects.

It is possible to design the database in an efficient manner for it to provide easy query

capabilities during simulations, using straightforward structured rules.

The database system implemented on a PC platform using standard MS-Access

databases suffices for the purposes of research studies, and based on our experience, the

effort and expenses involved in using “higher-strength” databases such as ORACLE may

not be advisable for most purposes in traffic analysis, especially when very dynamically

changing data values are involved.

The front end query system developed in this project is rather advanced in its capabilities

to use structured rules to group and extract object and data values from the simulator.

This was indeed a significant theoretical and academic research contribution resulting

from this research.

The Netcompose database query system can provide answers to complex questions into

the state of the simulation or the results after simulation. An example would be a

question such as, “show the speeds of all vehicles which entered the network during a

48

given period, at a give time”, or “show the speeds on all links of a given path”. Such

capabilities extends the practical usefulness of simulation programs significantly.

Visualization capabilities developed for the database front end are ideal for traffic

analysis purposes, as vehicle movements and other dynamic data changes in the database

can be visualized using Java-based graphical screens.

The database system is on a PC-based platform communicating through ODBC to

outside, and in the case of the Caltrans-UCI research testbed, can communicate to

multiple DYNASMARTs or other modules, through the COMA process distribution

platform.

This research project, however, does not develop a product that is “completed and

delivered”, but rather a product that satisfies the ambitious objectives when the project

started. The research is an ongoing effort, and even though this PATH project (MOU-227)

researched and developed several components, it needs further testing which will be

continued as part of the Caltrans-UCI ATMIS research testbed plans. Specifically, the

researchers wish that the real-world hardware/software connections and the COMA

platform were fully implemented and understood by the testbed researchers a few months

earlier so that a more complete evaluation of the performance of the database in real-time

simulations could be completed. As such, this report does not report extensive evaluations,

which will be completed as part of theTestbed research program and reported in the future.

ACKNOWLEDGEMENT

The researchers wish to that Caltrans and PATH for the generous support for this research.

We also wish to thank Prof. Wilfred Recker, Director of the Institute of Transportation

Studies at UCI for facilitating the use of the labs, as well as for the constant encouragement.

49

REFERENCES

[l] h o o p Gupta, Charles Forgy, Allen Newell, and Robert Wedig, “Parallel Algorithms and

Architectures for Rule-based System,”Proc. ICPP, 1986.

[2] Bancilhon, F., and R. Ramakrishnan, “An Amateur’s Introduction to Recursive Query

Processing,” Proc. ACM-SIGMOD International Conference on Management of Data,

Washington, D.C., 1986.

[3] Chakravarthy, U.S., and J. Minker, “Multiple Query Processing in Deductive Database,”

Proc. 12th International Conference on Very Large Databases, Kyoto, Japan, 1986.

[4] Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., et. al. ‘The HiPAC Project:

Combining Active Databases and Timing Constraints,” ACM SIGMOD Record, 17, 1,

March, 1988, pp. 5 1-70.

[5] Delcambre, L.M.L, J.N. Etheredge, “The Relational Production Language: A Production

Language for Relational Databases,” Proc. Second International Conference of Expert

Database Systems, 1988.

[6] Eick, C., J. Liu, P. Werstein, “Integration of Rules into a Knowledge Base Management

System,” Proc. First International Conference on Systems Integration, Morristown,

April, 1990

[7] Forgy, Charles L., “RETE : A Fast Algorithm for the Many PatterdMany Object Pattern

Match Problem,’’ Artificial Intelligence 19, September 1982.

50

[8] Ishida, T. “Parallel Rule Firing in Production Systems”, IEEE Transactions on

Knowledge and Data Engineering, pp 11-17, March, 1991.

[9] Raschid, L., T. Sellis, C.-C. Lin, “Exploiting Concurrency in a DBMS Implementation for

Production Systems“, Proceedings of the 1st International Symposium on Databases in

Parallel and Distributed Systems, 1988.

[lo] Rowe, L., and Stonebraker, M., ‘The POSTGRES Data Model,” Proc. VUIB, 1987,

pp. 83-96.

[l l] Sellis, T., et. el., “Implementing Large Production Systems in a DBMS Environment:

Concepts and Algorithms,’’ Proceedings of ACM-SIGMOD, 1988.

[12] Chang, G-L, Mahmassani, H. S., and Herman, R. (1985); “A Macroparticle Traffic

Simulation Model to Investigate Pek-period Commuter Decision Dynamics”,

Transportation Research Record 100.5, pp. 107- 120.

[13] Jayakrishnan, R. and H. S . Mahmassani (1990); “Dynamic Simulation-Assignment

Methodology to Evaluate In-vehicle Information Strategies in Urban Traffic Networks”,

proceedings of the 1990 Winter Simulation Conference, New Orleans, Dec. 1990.

[14] Jayakrishnan, R., Cohen, M., Kim, J., Mahmassani, H. and Hu, T-Y. (1993b); “Simulation

Framework for the Analysis of Urban Traffic Networks Operating Under Real-time

Information”, PATH Final Research Report UCB-ITS-PRR-93-25.

[151 Jayakrishnan, R., Mahmassani, H. S. , and Hu T-Y (1994); “An Evaluation Tool for

Advanced Traffic Information and Management Systems in Urban Networks”, Transportation

Research, Part-C.

51

[16] Sheu, P. C-Y. and Yoo, S . B. (1990); "A Knowledge-based Software Environment (KSBE)

for Designing Concurrent Processes," International Journal of Human-Computer

Interactions, Vol. 1, No. 2, pp. 161- 185, 1990.

[17] Wolfe, M., and U. Banerjee (1987); "Data Dependence and Its Application to parallel

Processing," International Journal of Parallel Programming, Vol. 16, No. 2, 1987, pp.

137- 178.

[18] Yoo, S., Yu. M. and Sheu, P. C-Y. (1993); "Concurrency Control in Deductive

Databases and Object Bases," International Journal of Data and Knowledge Engineering,

Vol. 9, pp. 223-240

52

	Combining Active Databases and Timing Constraints,ﬂ ACM SIGMOD Record

