Skip to main content
eScholarship
Open Access Publications from the University of California

UCSD Molecule Pages

UCSD Molecule Pages bannerUC San Diego

Complement C5

Creative Commons 'BY' version 3.0 license
Abstract

Complement C5 is a 189 kDa protein synthesized in liver as a single-chain precursor molecule. The precursor molecule is then cleaved to a disulfide linked two-chain glycoprotein consisting of a 115 kDa (C5α) and a 75 kDa N-terminal (C5β) chain. C5 is present in all the three known complement activation pathways: classical, alternative and lectin. C5α chain is cleaved by C5 convertases, which are formed during the complement activation process, to form C5a (74 a.a long) and C5α' chain (925 a.a long). C5α' chain and C5β chain (655 a.a. long) together form C5b. C5a is a major anaphylotoxin involved in chemotaxis of neutrophils and release of pro-inflammatory cytokines. These functions of C5a require binding to its receptor, C5aR. C5b sequentially recruits C6, C7, C8 and C9 in a non-enzymatic manner to form the terminal complement complex (TCC, also called membrane attack complex or MAC). TCC forms a lytic pore in the target membrane and kills the pathogen. While the functions of C5a and C5b aid in killing the pathogen, they can also be responsible for generating an excess inflammatory response, which can damage host cells. Therefore, C5 functions are tightly regulated by interaction with other proteins in host. The regulatory proteins can either be host generated or pathogenic factors. Unregulated C5 function can result in disease phenotypes. Therapeutic antibodies against C5 are being developed with a view to treat these conditions.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View