Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Quasi-optical network analyzers and high-reliability RF MEMS switched capacitors

Abstract

The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high- resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter- wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched- capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7 -channel channelizer based on the mammalian cochlea. The cochlea is an amazing channelizing filter, covering three decades of bandwidth with over 3,000 channels in a very small physical space. Using a simplified mechanical cochlear model and its electrical analogue, a design method is demonstrated for RF and microwave channelizers that retains the desirable features of the cochlea including the ability to cascade a large number of channels (for multiple-octave frequency coverage), and a high-order stop-band rejection. A 6-pole response is synthesized in each channel using the top-C coupled topology. A constant absolute 3 dB bandwidth of around 4.3 MHz and an insertion loss of around 3.9 dB is measured in each channel. A high isolation (greater than 35 dB) is achieved between adjacent channels. A reflection loss of greater than 15 dB is measured at the input port over the entire channelizer bandwidth. Application areas for the demonstrated channelizer include wideband, contiguous- channel receivers for signal intelligence or spectral analysis

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View