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EFFICIENT CONDITIONAL QUANTILE ESTIMATION:
THE TIME SERIES CASE

IVANA KOMUNJER AND QUANG VUONG

Abstract. In this paper we consider the problem of efficient estimation in conditional

quantile models with time series data. Our first result is to derive the semiparametric effi-

ciency bound in time series models of conditional quantiles; this is a nontrivial extension of

a large body of work on efficient estimation, which has traditionally focused on models with

independent and identically distributed data. In particular, we generalize the bound derived

by Newey and Powell (1990) to the case where the data is weakly dependent and heteroge-

neous. We then proceed by constructing an M-estimator which achieves the semiparametric

efficiency bound. Our efficient M-estimator is obtained by minimizing an objective function

which depends on a nonparametric estimator of the conditional distribution of the variable

of interest rather than its density.
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1. Introduction

The purpose of this paper is to study the problem of asymptotically efficient estimation in

models for conditional quantiles. We provide answers to the following closely related ques-

tions: what is the semiparametric efficiency bound for the parameters of a given conditional

quantile, when the data is weakly dependent and heterogeneous? Is efficient estimation

possible in such models, and if so, what is an efficient conditional quantile estimator?

The computation of semiparametric efficiency bounds in models with conditional moment

restrictions–which include the one studied here–has been considered by numerous au-

thors (Chamberlain, 1986, 1987; Robinson, 1987; Hansen, Heaton, and Ogaki, 1988; Newey,

1990a,b, 1993; Hahn, 1997; Bickel, Klaassen, Ritov, and Wellner, 1998; Brown and Newey,

1998; Ai and Chen, 2003; Cosslett, 2004; Newey, 2004). Our contribution to this large lit-

erature is twofold. First, we derive the semiparametric efficiency bound in models with a

conditional quantile restriction allowing the data to be weakly dependent and/or heteroge-

neous. Second, we propose a new estimator for conditional quantiles which actually attains

the semiparametric efficiency bound. Our results are important because they do not require

independence nor identical distribution of the data.

The first of those assumptions–independence–has been prevalent in the existing litera-

ture on efficient estimation, for reasons which pertain to the very definition of the semipara-

metric efficiency bound. Depending on how we characterize the bound–as an “infimum” or

as a “supremum”–there are two approaches to its computation. Most of the above liter-

ature, with the exception of Chamberlain (1987), has used the “infimum” approach, which

can be summarized as follows.

Consider a model in which the parameter vector of interest θ is identified via a conditional

moment restriction. Assume that the model is regular in the sense of Begun, Hall, Huang,

and Wellner (1983) and Newey (1990b). A familiar approach to estimating θ is by using

semiparametric estimators such as GMM (Hansen, 1982), M— (Huber, 1967) or instrumental

variable estimators. Associated with the choice of a particular semiparametric estimator

is its covariance matrix. Hence, to the set of all semiparametric estimators corresponds

a set of positive semidefinite matrices. The crucial property of this set is its orthogonal

structure (Bickel, 1982; Begun, Hall, Huang, and Wellner, 1983; Chamberlain, 1986; Newey,

1990b): any matrix Ω in this set can be written as a covariance matrix of a Gaussian random
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variable–with a positive semidefinite matrix V–plus an independent noise. The matrix V

which is the infimum of this set, is the semiparametric efficiency bound for θ.

This characterization of the semiparametric efficiency bound is the starting point of the

“infimum” approach to its computation. Essentially geometric, the “infimum” approach uses

projection arguments to find V . As such, it requires certain orthogonality conditions, which

in econometric terms correspond to the requirement that the random variables involved be

independent (Bickel, 1982). Hence, most of the “infimum” approach literature has exclu-

sively focused on models with independent observations.1 In models in which we relax the

independence assumption, the projection arguments are difficult to implement, which makes

dealing with time series data difficult. Consideration such as those have lead Ai and Chen

(2003), for example, to conclude: “although our results [...] can be easily extended to weakly

dependent time series data, the problem of semiparametric efficiency bound with time series

data is nontrivial.”

In this paper, we use the alternative–“supremum”–approach pioneered by Chamberlain

(1987). In his seminal paper on semiparametric efficiency bounds in models with conditional

moment restrictions, Chamberlain (1987) compares the asymptotic distribution of an effi-

cient GMM estimator–efficient in the sense of Hansen (1982)–with that of a maximum

likelihood estimator (MLE). The key property of the MLE is that it is efficient, when cor-

rectly specified. Hence any MLE in which the specified likelihood is consistent with the

conditional moment restriction and which contains the data generating process, needs to

have its asymptotic covariance matrix smaller than the semiparametric efficiency bound.

In other words, the semiparametric efficiency bound can be defined as the supremum of

asymptotic covariance matrices of all parametric submodels which satisfy the conditional

moment restrictions and contain the data generating process–this is the key insight behind

Stein’s (1956) characterization of semiparametric efficiency bounds and the starting point of

the “supremum” approach.

1Hansen, Heaton, and Ogaki (1988) is an important exception. Their approach however is based on

the assumption that some transformation–forward filter–of the moment function used in the conditional

moment restriction is serially uncorrelated (see their equation (4.2) and the discussion thereof). Hence,

unless the parameters involved in the forward filter transformation are known, the approach of Hansen,

Heaton, and Ogaki (1988) is not applicable. For example, in models with conditional moment restrictions

in which the variables follow an ARMA(p, q) process–with lags p and q known–one needs to know the q

MA parameters in order to construct the forward filter.
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Chamberlain (1987) implements the “supremum” approach in the case where the random

variables involved in the conditional moment restriction are independent and identically

distributed (iid). In the iid case, the efficient (in the sense of Hansen, 1982) GMM estimator

and the MLE obtained when the data is generated from a multinomial distribution are both

asymptotically normally distributed with asymptotic covariance matrices respectively equal

to Ω and I−1, where I is the Fisher information matrix of the multinomial model. When

the data has finite support, Chamberlain (1987) shows that Ω and I−1 are the same. Hence,

they must be equal to the semiparametric efficiency bound V . Given that any distribution

can be approximated arbitrarily well by a multinomial distribution, the general expression

for the bound follows. The iid assumption plays an important role in Chamberlain’s (1987)

construction of the semiparametric bounds; without it the multinomial approximation is

no longer valid, making the extension of Chamberlain’s (1987) results to time series data

difficult.

The first contribution of this paper is to extend Chamberlain’s (1987) results to weakly

dependent data, by using the “supremum” characterization of the semiparametric efficiency

bound, initially due to Stein (1956). In particular, we focus on models with conditional

quantile restrictions. In such models, there is no published work prior to ours on asymptoti-

cally efficient estimation which would allow for the data to be weakly dependent. Hence, our

first contribution is to fill the gaps in the extant literature on efficient conditional quantile

estimation (Newey and Powell, 1990; Koenker and Zhao, 1996; Zhao, 2001) and derive the

semiparametric efficiency bound in weakly dependent time series models with conditional

quantile restrictions.

Our “supremum” approach is somewhat different from that used by Chamberlain (1987).

We start by constructing a matrix V which is a potential candidate for the semiparamet-

ric efficiency bound. Such candidate matrix is obtained as a minimum within a family of

asymptotic covariance matrices of conditional quantile M—estimators that are consistent for

the parameters of a correctly specified conditional quantile model. Once the candidate ma-

trix V in hand, we follow the insightful approach by Stein (1956), and look for a parametric

submodel that is “as difficult” as the semiparametric model. In other words, we construct a

fully parametric model that satisfies the conditional quantile restriction, contains the data

generating process and in which the inverse of the Fisher’s information matrix equals V .
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This second step is what distinguishes our work from the rest of the literature on asymptot-

ically efficient estimation–specifically, we are able to analytically derive the least favorable

parametric submodel.

Our result on the semiparametric efficiency bound is general: we derive it under the sole

assumption that the model satisfies the conditional quantile restriction. In particular, when

constructing V , we do not make any additional assumptions regarding the properties of the

residuals from the (nonlinear) quantile regression: they can be dependent and nonidentically

distributed. Hence, for the first time in the literature on efficient estimation, we are able to

derive the semiparametric efficiency bound in conditional quantile models with time series

data that are dependent and conditionally heteroskedastic.

The second contribution of this paper is to propose a new conditional quantile estimator

that is efficient. We note that the problem of constructing an efficient estimator is even

more difficult than that of computing the semiparametric efficiency bound. Though to some

extent applicable to time series data, the projection methods used in the “infimum” approach

shed no light on how to construct efficient estimators. As already pointed out by Hansen,

Heaton, and Ogaki (1988), “although [they] delineate the sense of approximation required

for the sequences of GMM estimators to get arbitrarily close to the efficiency bound, [they]

do not show how to construct estimators that actually attain the efficiency bound.” It is an

open question whether the procedures along the lines of Newey (1990a,b, 1993, 2004) can

be extended to models with time series data. Our second contribution to the literature on

efficient estimation is to show how–at least in models with conditional quantile restrictions–

the “supremum” approach naturally leads to estimators that are efficient.

Standard approaches to constructing an efficient estimator are as follows: given a con-

sistent estimator of the parameter of interest θ, take a step away from it in a direction

predicted by the efficient score; the resulting estimator is then efficient. An example of this

construction method is Newey and Powell’s (1990) “one-step” estimator for the parameters

of a quantile regression. Alternatively, instead of taking a step away from an initial consis-

tent estimator of θ, we can use it to construct a set of weights–functions of the efficient

score–and compute the corresponding weighted estimator; the weighted estimator is also

efficient. An example of this method is Zhao’s (2001) weighted conditional quantile esti-

mator. More recently, extending the conditional empirical likelihood (CEL) approach by

Kitamura, Tripathi, and Ahn (2004), Otsu (2003) constructs an efficient estimator in the

quantile regression model in the iid case.
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We propose an efficient conditional quantile MINPIN-type estimator (Andrews, 1994a)

whose construction differs from the previous ones, in two ways. First, our efficient estimator

does not require a preliminary consistent estimate of the parameter of interest, hence it is

similar to the estimator proposed by Otsu (2003). While Otsu’s (2003) efficient estimator is

based on the empirical likelihood principle, our efficient estimator is obtained by minimizing

an efficient M—objective function. Second, our efficient estimator depends on a nonparametric

estimate of the true conditional distribution, unlike Newey and Powell’s (1990) and Zhao’s

(2001) efficient estimators which depend on nonparametric estimates of the true conditional

density. For these two reasons, we can expect our efficient estimator to behave better in

small samples than the efficient estimators proposed by Newey and Powell (1990) and Zhao

(2001). In particular, whenever it is easier to estimate the conditional distributions than

densities (Hansen, 2004a,b), we would expect our efficient estimator to perform better than

the existing ones.

The remainder of the paper is as follows: in Section 2 we define our notation and introduce

models for conditional quantiles. Section 3 characterizes the class of M—estimators that are

consistent for the parameters of such models, provided they are correctly specified. In the

same section we show that such estimators are also asymptotically normally distributed with

an asymptotic covariance matrix whose expression depends on the form of the M—objective

function being minimized. In Section 4, we derive the minimum bound of the above family of

matrices and show that it corresponds to the semiparametric efficiency bound. An efficient

conditional quantile estimator is constructed in Section 5, which concludes the paper. We

relegate all the proofs to the end of the paper.

2. Setup

2.1. Notation. Consider a stochastic sequence (a time series) X ≡ {Xt, t ∈ N} defined on
a probability space (Ω,B, P ) where X : Ω → R(m+1)N and R(m+1)N is the product space
generated by taking a copy of Rm+1 for each integer, i.e. R(m+1)N ≡ ×∞t=1Rm+1, m ∈ N.
We partition the random vector Xt as Xt = (Yt,W

0
t)
0 and are interested in the distribution

of its first (scalar) component, denoted Yt, conditional on the random m-vector Wt. In

particular, we allow Wt to contain lagged values of Yt–particularly interesting for time

series applications–together with other (exogenous) components. The family of subfields

{Wt, t ∈ N} with Wt ≡ σ(W1, . . . ,Wt) corresponds to the information set generated by the

sequence of conditioning vectors up to time t.
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We use standard notations and let P (Yt ∈ A|Wt) denote the conditional distribution

of Yt, with A an element of the Borel σ-algebra on R. To simplify, we assume that for
any T > 1, the joint distribution of (Y1,W1, . . . , YT ,WT ) has a strictly positive continuous

density pT on R(m+1)T so that conditional densities are everywhere defined.2 Then, for every
t, 1 6 t 6 T, T > 1, we let F 0

t (·) denote the conditional distribution function of Yt conditional
upon Wt, i.e. F 0

t (y) ≡ P (Yt 6 y|Wt) for every y ∈ R, and we call f0t (·) the corresponding
conditional probability density. Of course, F 0

t (·) (like f0t (·)) is unknown and we assume
that it belongs to F which is the set of all absolutely continuous distribution functions with
continuously differentiable densities on R. Throughout the paper we assume that for every
t, 1 6 t 6 T, T > 1, f0t (·) and its derivative are bounded so that there exist constants
M0,M1 > 0 such that supt>1 supy∈R f

0
t (y) 6M0 <∞ and supt>1 supy∈R |df0t (y)/dy| 6M1 <

∞.
If V is a real n-vector, V ≡ (V1, . . . , Vn)0, then |V | denotes the L2-norm of V , i.e. |V |2 ≡

V 0V =
Pn

i=1 V
2
i . If M is a real n× n-matrix, M ≡ (Mij)16i,j6n, then |M | denotes the L∞-

norm of M , i.e. |M | ≡ max16i,j6n |Mij|, andM+ denotes a generalized inverse ofM . If A is

a positive definite n× n-matrix, then A−1/2 = P where P is invertible such that PAP 0 = Id

where Id denotes the n×n-identity matrix. Let f : E → R, V 7→ f(V ), withE ⊆ Rn and V =

(V1, ..., Vn)
0, be continuously differentiable to order R > 1 on E. Let r ≡ (r1, ..., rn) ∈ Nn: if

|r| 6 R then Drf(V ) ≡ ∂|r|f(V )/∂V r1
1 ...∂V rn

n where |r| ≡ r1 + ... + rn represents the order

of derivation. If r = 0 then D0f(V ) = f(V ). Further, let r! ≡ r1!...rn! and V r ≡ V r1
1 ...V rn

n .

Then, for any (V, V0) ∈ E2 the (familiar) expression in a Taylor expansion of order R can

be written as
P

|r|6R
Drf(V0)

r!
(V −V0)

r ≡
PR

k=0

P
j1,...,jk∈(1,...,n)k

1
k!

∂kf(V0)
∂Vj1 ...∂Vjk

(Vj1 −V0j1)...(Vjk −
V0jk), for 1 6 l 6 R. For example, when R = 1, we have

P
|r|61D

rf(V0)(V − V0)
r =

f(V0) +
Pn

i=1[∂f(V0)/∂Vi](Vi − V0i) (Schwartz, 1997). When R > 2, we let ∇V f(V ) denote

the gradient of f , ∇V f(V ) ≡ (∂f(V )/∂Vi, ..., ∂f(V )/∂Vn)0, and use ∆V V f(V ) to denote its

Hessian matrix, ∆V V f(V ) ≡ (∂2f(V )/∂Vi∂Vj)16i,j6n. Finally, the function 1I : R → [0, 1]

denotes the Heaviside (or indicator) function: for any x ∈ R, we have 1I(x) = 0 if x 6 0,

and 1I(x) = 1 if x > 0 (Bracewell, 2000). The Heaviside function is the indefinite integral

of the Dirac delta function δ : R→ R, with 1I(x) =
R x
a
dδ, where a is an arbitrary (possibly

infinite) negative constant, a 6 0.

2This excludes the possibility that Wt contains indicator functions of lags of Yt or other variables, for

example.
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2.2. Models for conditional quantiles. In this paper we do not consider the conditional

distribution F 0
t (·) in its entirety but rather focus on a particular conditional quantile of Yt.

In recent years, conditional quantiles have been of particular interest in both applied and

theoretical work in economics in which numerous choices for the conditioning variables have

been proposed.3 In order to keep our analysis both simple and general, we introduce the

following notation: for a given α ∈ (0, 1), let M denote a model for the conditional α-

quantile of Yt,M ≡ {qα(Wt, θ)}, with an unknown parameter θ in Θ, where Θ is a compact

subset of Rk with non-empty interior, Θ̊ 6= ∅. In what follows we restrict our attention to
conditional quantile modelsM in which the set of following conditions is satisfied:

(A0) (i) the model M is identified on Θ, i.e. for any (θ1, θ2) ∈ Θ2 we have: qα(Wt, θ1) =

qα(Wt, θ2), a.s. − P , for every t, 1 6 t 6 T, T > 1, if and only if θ1 = θ2; (ii) for every t,

1 6 t 6 T, T > 1, the function qα(Wt, ·) : Θ → R is twice continuously differentiable on Θ

a.s. − P ; (iii) for every t, 1 6 t 6 T, T > 1, the matrix ∇θqα(Wt, θ)∇θqα(Wt, θ)
0 is of full

rank a.s.− P for every θ ∈ Θ.

The set of conditions in (A0) is fairly standard and generally verified for a wide variety of

conditional quantile models. In what follows, we shall always assume thatM is a conditional

quantile model in which properties (A0)(i)-(iii) above hold. Further, for any given M we

shall denote by Q the range of qα, i.e. Q ≡ {qt ∈ R : qt = qα(Wt, θ), θ ∈ Θ,Wt ∈ Rm},
Q ⊆ R.
One crucial assumption that we make in our analysis, and which is of different nature

than the conditions above, is that the model M is correctly specified, so that there exists

some true parameter value θ0 such that F 0
t (qα(Wt, θ0)) = α, for every t, 1 6 t 6 T, T > 1.

In other words, we assume the following:

(A1) given α ∈ (0, 1), there exists θ0 ∈ Θ̊ such that E[1I(qα(Wt, θ0)− Yt)|Wt] = α, a.s.−P ,

for every t, 1 6 t 6 T, T > 1.
3Since the seminal work by Koenker and Bassett (1978), numerous authors have studied the problems of

conditional quantile estimation (Koenker and Bassett, 1978; Powell, 1984, 1986; Newey and Powell, 1990;

Pollard, 1991; Portnoy, 1991; Koenker and Zhao, 1996; Buchinsky and Hahn, 1998; Khan, 2001; Cai, 2002;

Kim and White, 2003; Komunjer, 2005b) and specification testing (Koenker and Bassett, 1982; Zheng, 1998;

Bierens and Ginther, 2001; Horowitz and Spokoiny, 2002; Koenker and Xiao, 2002; Kim and White, 2003;

Angrist, Chernozhukov, and Fernandez-Val, 2006). An excellent review of applications of quantile regressions

in economics (Buchinsky, 1994; Chernozhukov and Hong, 2002; Angrist, Chernozhukov, and Fernandez-Val,

2006) can be found in Koenker and Hallock (2001).
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In other words, for any t, 1 6 t 6 T, T > 1, the difference between the indicator variable
above and α is assumed to be orthogonal to any Wt-measurable random variable.

3. M—estimators for conditional quantiles

In this paper we consider a particular family of conditional quantile estimators known as

M—(or extremal) estimators (Huber, 1967). M—estimators for θ0, denoted θT , are obtained

by minimizing criterion functions ΨT (θ) of the form ΨT (θ) ≡ T−1
PT

t=1 ϕ(Yt, qα(Wt, θ), ξt)

where for every t, 1 6 t 6 T, T > 1, ϕ is a real function of the variable of interest Yt, the
quantile qα(Wt, θ) and a (possibly inifinite-dimensional) random variable ξt : Ω → Et, i.e.

ϕ : R×Q×Et → R. The variable ξt can be thought of as a shape parameter of the objective
function ϕ. We assume the following:

(A2) (i) for every t, 1 6 t 6 T, T > 1, ξt is Wt-measurable; (ii) for every t, 1 6 t 6
T, T > 1, the function ϕ(·, ·, ·) is twice continuously differentiable a.s. − P on R×Q× Et

with respect to its second argument ( qt).

By assumption (A2)(i), the random variable ξt is allowed to depend only on variables

contained in Wt. In other words, the functional form (or shape) of ϕ cannot depend on

any variable that is observed after time t. We shall see in subsequent sections that the Wt-

measurability of ξt is not trivially satisfied. In particular, if we consider objective functions ϕ

that depend on some estimator based on the observations of Yt andWt up to time T–kernel

estimators of conditional distributions or densities are an example–then (A2)(i) fails to hold.

The requirement (A2)(ii) that, for given realizations of Yt and ξt, ϕ be twice continuously

differentiable with respect to qt on Q a.s.−P , allows for objective functions such as |Yt− qt|
or [α − 1I(qt − Yt)](Yt − qt), for example. Note that in those two cases the shape ξt of ϕ

remains constant over time.

An important subfamily of the class of M—estimators defined above, is that of quasi-

maximum likelihood estimators (QMLEs) (White, 1982; Gourieroux, Monfort, and Trognon,

1984). If in addition to (A2), we assume that there exists a real function c : R × Et→ R,
(y, ξt) 7→ c(y, ξt) < ∞, independent of qt, and such that

R
R exp[c(y, ξt) − ϕ(y, qt, ξt)]dy = 1

for all (qt, ξt) ∈ Q × Et, then we can let lt(·, qt) ≡ exp[c(·, ξt) − ϕ(·, qt, ξt)], and lt(·, qt)
can be interpreted as the (quasi) likelihood of Yt conditional on Wt. Hence, any minimum

θT of the function ΨT (θ) above, is also a maximum of the (quasi) log-likelihood function

LT (θ), LT (θ) ≡ T−1
PT

t=1 ln lt(Yt, qα(Wt, θ)) (Komunjer, 2005b). However, due to the above
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“integrability” constraint on ϕ(·, qt, ξt), the class of QMLEs is smaller than that of M—
estimators.4 We shall see in subsequent sections that this difference plays a greatly important

role for efficient conditional quantile estimation. We now focus on M—estimators for θ0 that

are consistent.

3.1. Class of consistentM—estimators. What are necessary conditions for theM—estimator

θT satisfying (A2), to be consistent for the true conditional quantile parameter θ0 in (A1)?

The key idea behind the answer to this question is fairly simple. Assume that the process

{Xt} and the functions ϕ(·, ·, ξt) are such that θT − θ0T
p→ 0, where θ0T is a unique minimum

of E[ΨT (θ)] ≡ T−1
PT

t=1E[ϕ(Yt, qα(Wt, θ), ξt)] on Θ̊.5 Then a necessary requirement for

consistency of θT is that θ
0
T − θ0 → 0 as T becomes large. In what follows, we restrict our

attention to estimators θT such that θ0T remains constant, i.e. ∀T > 1 we have θ0T = θ0∞.

Then, the class of M—estimators that are consistent for θ0 is obtained by considering all the

functions ϕ(·, ·, ξt) under which θ0∞ = θ0.

Note that the requirement of having θ0T = θ0 for all T > 1 is stronger than that of having
θ0T → θ0.6 This implies that θ0 can be consistently estimated by minimizing objective

functions that are different from the ones derived below, as long as the expected value of

this difference converges uniformly to zero with T . An important example in which the

condition θ0T = θ0 for all T > 1 fails is when the shape ξt of the objective function ϕ depends
on observations up to time T–hence is not Wt-measurable–as in the case of the estimator

θ̂T proposed in Section 5. In that case, θ̂T is consistent provided the difference between

its (M—) objective function Ψ̂T and an (M—) objective function Ψ∗T derived in Theorem 3,

converges uniformly to zero with T .

We now provide a more formal treatment of consistency. A set of sufficient assumptions

for θT −θ0∞
p→ 0 to hold is as follows (see, e.g., Theorem 2.1 in Newey and McFadden, 1994):

(A3) {Xt} and ϕ(·, ·, ξt) are such that: (i) for every t, 1 6 t 6 T, T > 1, and every

θ ∈ Θ, |Drϕ(Yt, qα(Wt, θ), ξt)| 6 mr(Yt,Wt, ξt), a.s. − P , where E[mr(Yt,Wt, ξt)] < ∞,
for r = 0, 1, 2; for any T > 1, (ii) E[ΨT (θ)] is uniquely minimized at θ

0
∞ ∈ Θ̊, and (iii)

supθ∈Θ |ΨT (θ)− E[ΨT (θ)]|
p→ 0.

4We call
R
R exp[c(y, ξt) − ϕ(y, qt, ξt)]dy = 1 for all (qt, ξt) ∈ Q × Et the “integrability” constraint. This

requirement is stronger than exp[−ϕ(·, qt, ξt)] being integrable with respect to the Lebesgue measure on R.
5θ0T is also called the pseudo-true value of the parameter θ.
6See White (1994, p.69-70) for a discussion of the requirement θ0T = θ0.
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Note that the above are not primitive conditions for consistency of θT . For example, the

integrability of Drϕ(Yt, qα(Wt, θ), ξt) with respect to the probability P implied by (A3)(i) in-

volves more primitive conditions on the existence of different moments of Yt,Wt and ξt. Con-

dition (A3)(ii) states that θ0∞ is a minimum of E[ΨT (θ)] and that this minimum is moreover

unique. The first requirement involves more primitive conditions on ∂ϕ/∂qt, ∂2ϕ/∂q2t and

∇θqα, which depend on the shape ξt of ϕ and the functional form of qα. For example, a suffi-

cient set of conditions for θ0∞ to be a minimum is that T
−1PT

t=1E[∇θϕ(Yt, qα(Wt, θ
0
∞), ξt)] =

0 and T−1
PT

t=1E[∆θθϕ(Yt, qα(Wt, θ
0
∞), ξt)]À 0 (Schwartz, 1997). Finally, the uniform con-

vergence condition (A3)(iii) can be obtained by applying an appropriate uniform law of

large numbers to the sequence {ϕ(Yt, qα(Wt, θ), ξt)}. Implicit in (A3)(iii) are primitive as-
sumptions on the dependence structure and heterogeneity of the process {Xt}, and on the
properties of ϕ(Yt, qα(Wt, ·), ξt). A simple example is one where {Xt} is iid and the functions
ϕ(Yt, qα(Wt, ·), ξt) are Lipshitz-L1 a.s.−P on Θ (see, e.g., Definition A.2.3 in White, 1994).

The above pseudo-true value θ0∞ of the parameter θ equals the true value θ0 if and only if,

for any T > 1, θ0 minimizes E[ΨT (θ)]. A necessary and sufficient requirement for θ0∞ = θ0

is given in the following theorem.

Theorem 1 (Necessary and sufficient condition for consistency). Assume that (A0),

(A2) and (A3) hold. If the true parameter θ0 satisfies the conditional moment condition in

(A1), then the M-estimator θT is consistent for θ0, i.e. θT − θ0
p→ 0, if and only if there

exist a real function A(·, ·) : R×Et→ R that is twice continuously differentiable and strictly
increasing with respect to its first argument (qt or Yt) a.s.−P on Q×Et, and a real function

B(·, ·) : R×Et→ R, such that ϕ(Yt, qt, ξt) = [α− 1I(qt−Yt)][A(Yt, ξt)−A(qt, ξt)] +B(Yt, ξt),

a.s.− P on R×Q×Et, for every t, 1 6 t 6 T, T > 1.7

In other words, if for any given sample size T > 1 we are interested in consistently

estimating the conditional quantile parameter of a continuously distributed random vari-

able Yt by using an M—estimator θT , then we must employ an objective function ΨT (·) =
T−1

PT
t=1 ϕ(Yt, qα(Wt, ·), ξt) with

(1) ϕ(Yt, qα(Wt, θ), ξt) = [α− 1I(qα(Wt, θ)− Yt)][A(Yt, ξt)−A(qα(Wt, θ), ξt)] +B(Yt, ξt),

7The real functions A and B in Theorem 1 need not have the same shape parameter: we can let ξt ≡
(ξ0At, ξ

0
Bt)

0 where ξAt and ξBt are the shapes of A(·, ξAt) and B(·, ξBt), respectively. For simplicity, we write
A(·, ξt) and B(·, ξt) with the understanding that changing the shape of A may not affect the shape of B and

vice-versa.
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a.s. − P , for every t, 1 6 t 6 T . Using objective functions of this form is also a sufficient

condition for θT to be consistent for the true parameter θ0 of a correctly specified model for

the conditional α-quantile.

Given that we restrict our attention to objective functions in which (A2)(ii) holds, the

function A(·, ξt) in Theorem 1 needs to be twice continuously differentiable a.s. − P on Q.
The continuity and differentiability of A(·, ξt) need not hold on R\Q. The fact that there
are no requirements on A(·, ξt) outside the range of qα(Wt, θ) is not surprising, given that

changing the objective function outside Q does not affect the values of ∂ϕ/∂qt, and therefore
has no effect on the optimum of ΨT . The fact that A(·, ξt) is necessarily strictly increasing
a.s. − P on Q, comes from the requirement (A3)(ii) that θ0∞ be an interior minimum of

E[ΨT (θ)] on Θ. As previously, there are no requirements on the monotonicity of A(·, ξt) on
R\Q. Finally, note that there are no restrictions on the function B(·, ξt), as expected, since
changing it does not affect the optimum of the objective function ΨT . In what follows we

set B(·, ξt) identically equal to 0, which does not affect any of our results but has the benefit
of simplifying the notation.

Well-known examples of conditional quantile estimators that satisfy Theorem 1 are: (1)

Koenker and Bassett’s (1978) unweighted quantile regression estimator for which A(y, ξt) =

y, for all y ∈ R; (2) Powell’s (1984, 1986) left (right) censored quantile regression estimator
obtained when, for all y ∈ R, A(y, ξt) = max{y, ct} (A(y, ξt) = min{y, ct}) with an observed
censoring point ct;8 (3) weighted quantile regression estimator, proposed by Newey and

Powell (1990) and Zhao (2001), in which for all y ∈ R, A(y, ξt) = ωty where ωt is some

nonnegative weight, as well as its censored version for which A(y, ξt) = ωtmax{y, ct}.
In particular, the class of objective functions ΨT leading to consistent conditional quantile

M—estimators is larger than that leading to consistent QMLEs. In order to simplify the

comparison between M—estimators and QMLEs, assume that at any point in time t, 1 6
t 6 T, T > 1, the conditional α-quantile of Yt can take any real value, so Q = R. As

8Note that A(·, ξt) = max{·, ct} satisfies the strict monotonicity requirement a.s.−P on Q because, in the
censored quantile regression case, qα(Wt, θ0) > ct, a.s. − P , as elegantly discussed by Powell (1984, p 4-6).

The intuition behind this inequality is simple: suppose Yt = ct, a.s. − P for all t, 1 6 t 6 T, T > 1. Then
any value θ0 for which qα(Wt, θ0) 6 ct, a.s.−P for all t, 1 6 t 6 T, T > 1, is a minimum of E[ΨT (θ)], which

in that case equals 0. This violates the uniqueness assumption (A3)(ii), and hence affects the consistency

of θT . The latter is restored by requiring that qα(Wt, θ0) > ct, a.s. − P for a large enough portion of the

sample (see Assumption R.1 in Powell, 1984). An analogous result holds for the right censored case.
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pointed out previously, the main difference between the two classes of estimators lies in

the “integrability” condition on the pseudo-densities. Compare the objective function in

Theorem 1 with the family of tick-exponential pseudo-densities which give consistent QMLEs

for θ0 (Komunjer, 2005b): fα(Yt, qt, ξt) ≡ α(1 − α)a(Yt, ξt) exp{[1I(qt − Yt) − α][A(Yt, ξt) −
A(qt, ξt)]} with A(·, ξt) twice continuously differentiable and strictly increasing a.s. − P on

R, with derivative a(y, ξt) ≡ ∂A(y, ξt)/∂y.
9 For fα(·, qt, ξt) to be a probability density on

R, we need limy→±∞A(y, ξt) = ±∞, for any t, 1 6 t 6 T, T > 1.10 This limit condition

restricts the possible choice of functions A(·, ξt) in Theorem 1.

For example, consider any distribution function Ft(·) in F having a density ft(·) that is
continuously differentiable a.s.− P , and let

(2) A(y, ξFt ) ≡ Ft(y),

for any y ∈ R. Note that the parameter ξFt in the objective function A(·, ξFt ) in Equation (2)
corresponds to the conditional distribution Ft(·) which is stochastic and Wt-measurable.

Under the assumptions of Theorem 1, the M—estimator θFT , which minimizes ΨF
T (θ) ≡

T−1
PT

t=1 ϕ(Yt, qα(Wt, θ), ξ
F
t ) with

(3) ϕ(Yt, qα(Wt, θ), ξ
F
t ) ≡ [α− 1I(qα(Wt, θ)− Yt)][Ft(Yt)− Ft(qα(Wt, θ))],

is consistent for θ0; however, the corresponding function A(·, ξFt ) in Equation (2), bounded
between 0 and 1, does not satisfy the above limit condition. As a consequence, the class of

consistent QMLEs is strictly smaller than that of consistent M—estimators. In subsequent

sections we show that the limit restrictions on A(·, ξFt ) play a particularly important role
for efficient conditional quantile estimation, by constructing an efficient M—estimator whose

objective function is of the form (3).

To resume, we have shown that an M—estimator θT that satisfies (A2) is consistent for θ0,

only if the objective functions ϕ(·, ·, ξt) are of the form given in Theorem 1. The conditions

provided in Theorem 1 are not only necessary but also sufficient for consistency. From the

9It is straightforward to see that ϕ(Yt, qt, ξt) in Theorem 1 and fα(Yt, qt, ξt) in Komunjer (2005b) have

the same optimum.
10The limit conditions on A(·, ξt) directly follow from the quantile restriction

R qt
−∞ fα(y, qt, ξt)dy = α,

which is equivalent to (1 − α) exp[−(1 − α)A(qt, ξt)]
R qt
−∞ a(y, ξt) exp[(1 − α)A(y, ξt)]dy = 1, so that, upon

the change of variable u ≡ A(y, ξt), necessarily A(qt, ξt) → −∞ as qt → −∞. Combining the above

quantile restriction with the condition
R
R fα(y, qt, ξt)dy = 1 yields the result for the limit in +∞ by a similar

reasoning.
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functional form of ϕ(·, ·, ξt) in Equation (1), it follows that the asymptotic properties of θT
only depend on the choice of A(·, ξt) since changing B(·, ξt) does not affect the minimum
of ΨT (θ). Before considering a particular class of functions A(·, ξt), which makes the as-
ymptotics of θT optimal, we need the asymptotic distribution of the latter. We derive the

asymptotic distribution of θT in the next section.

3.2. Asymptotic Distribution. We start by imposing the following assumptions, in addi-

tion to (A0)-(A2):

(A4) for every t, 1 6 t 6 T, T > 1, the functions A(·, ξt) : R → R in Theorem 1 have

bounded first and second derivatives, i.e. there exist constants K > 0 and L > 0 such that
0 < ∂A(qt, ξt)/∂qt 6 K and |∂2A(qt, ξt)/∂q2t | 6 L, a.s.− P on Q×Et;

(A5) θ0 is an interior point of Θ;

(A6) the sequence {(Yt,W 0
t)
0} is α-mixing with α of size −r/(r − 2), with r > 2;

(A7) for some � > 0: (i) sup16t6T,T>1E[supθ∈Θ |∇θqα(Wt, θ)|2(r+�)] < ∞, sup16t6T,T>1E[
supθ∈Θ |∆θθqα(Wt, θ)|r+�] < ∞; (ii) sup16t6T,T>1E[supθ∈Θ |A(qα(Wt, θ), ξt)|r+�] < ∞, and
sup16t6T,T>1E[|A(Yt, ξt)|r+�] <∞.

The above assumptions provide a set of sufficient conditions for the asymptotic normality

of θT that are primitive, unlike the ones for consistency in (A3). In addition to (A1) and

(A2), we now require the functions A(·, ξt) to have bounded first and second derivatives
(A4). The boundedness property is used to show that ϕ(Yt, qα(Wt, ·), ξt) are Lipshitz-L1
on Θ a.s. − P . This implies that any pointwise convergence in θ becomes uniform on Θ.

Note that we can obtain a similar implication by an alternative argument, if the objective

functions ϕ(Yt, qα(Wt, ·), ξt) are convex in the parameter θ. This elegant convexity approach
has, for example, been used by Pollard (1991), Hjort and Pollard (1993) and Knight (1998)

to derive asymptotic normality of the standard Koenker and Bassett’s (1978) quantile re-

gression estimator. In the case of this estimator, the functions A(·, ξt) are linear and hence
ϕ(Yt, qα(Wt, ·), ξt)’s are convex in θ, no matter which conditional quantile model qα in (A0)

we choose.11 Unfortunately, the convexity in θ of the objective functions ϕ(Yt, qα(Wt, ·), ξt)
does not hold for general (nonlinear) A(·, ξt)’s, such as the ones proposed in Equation (3).
Therefore, we cannot rely on the convexity argument in our asymptotic normality proof.

11Recall that ϕ(Yt, qα(Wt, ·), ξt) is convex in a neighborhood of θ0 if and only if the real function s 7−→
[ϕ(Yt, qα(Wt, θ0 + νs), ξt)− ϕ(Yt, qα(Wt, θ0), ξt)]/s is increasing in s ∈ R (ν ∈ Rk). This condition holds for
any model qα in (A0), only if the functions A(·, ξt) have zero convexity, i.e. are linear.
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We are forced to abide by the classical approach which, though generally applicable, has the

disadvantage of being more complicated and requires stronger regularity conditions, such as

the ones in (A4).

Our assumptions on the heterogeneity and dependence structure of the data are, on the

other hand, fairly weak. We allow the sequence {(Yt,W 0
t)
0} to be nonstationary and our

strong mixing (i.e. α-mixing) assumption in (A6) allows for a wide variety of dependence

structures (White, 2001). Assumption (A6) is further accompanied by a series of moment

conditions in (A7) which guarantee that the appropriate law of large numbers and central

limit theorem can be applied. In the special case corresponding to Koenker and Bassett’s

(1978) quantile regression estimator for linear models qα(Wt, θ) = θ0Wt, the set of moment

conditions (A7) reduces to: sup16t6T,T>1E[|Wt|2(r+�)] <∞ and sup16t6T,T>1E[|Yt|r+�] <∞.
The asymptotic distribution of θT is given in the following theorem.

Theorem 2 (Asymptotic Distribution). Under (A0)-(A2) and (A4)-(A7), we have

(Σ0T )
−1/2∆0

T

√
T (θT−θ0) d→ N (0, Id), where∆0

T ≡ T−1
PT

t=1 E[a(qα(Wt, θ0), ξt)f
0
t (qα(Wt, θ0))×

∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0] and Σ0T ≡ T−1

PT
t=1 α(1−α)E[(a(qα(Wt, θ0), ξt))

2∇θqα(Wt, θ0)×
∇θqα(Wt, θ0)

0], where a(qt, ξt) ≡ ∂A(qt, ξt)/∂qt a.s.− P on Q×Et.

In particular, the M—estimator θFT proposed in Equation (3) satisfies the conditions of

Theorem 2, provided the conditional probability densities ft(·) are differentiable a.s.−P on

R with bounded first derivatives, so that |f 0t(y)| 6 L, a.s.− P on R. Moreover, the moment
conditions in (A7) are less stringent for θFT than for Koenker and Bassett’s (1978) estimator:

they reduce to E[|Wt|2(r+�)] < ∞, if the conditional quantile model is linear, for example.
The fact that the moment conditions imposed on Yt disappear in the case of θ

F
T is simply due

to the fact that–any conditional distribution function Ft(·) being bounded between 0 and
1–we always have E[supθ∈Θ |Ft(qα(Wt, θ))|r+�] 6 1 and E[|Ft(Yt)|r+�] 6 1 so that (A7)(ii) is
automatically satisfied. This difference is of particular importance in applications in which

we have reason to believe that higher order moments of Yt–order higher than 2–do not

exist. In such applications, it is unclear what the asymptotic properties of Koenker and

Bassett’s (1978) estimator are. On the other hand, θFT still converges in distribution at the

usual
√
T rate.

Using the results of Theorem 2, the asymptotic distribution of θFT is: (Σ
0,F
T )−1/2∆0,F

T ×
√
T (θFT−θ0)

d→ N (0, Id), with∆0,F
T ≡ T−1

PT
t=1 E[ft(qα(Wt, θ0))f

0
t (qα(Wt, θ0))∇θqα(Wt, θ0)×

∇θqα(Wt, θ0)
0] and Σ0,FT ≡ T−1

PT
t=1 α(1− α)E[(ft(qα(Wt, θ0)))

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0].
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Clearly, changing the distribution function Ft(·) in Equation (2)–hence in Equation (3)–
affects the asymptotic covariance matrix of the corresponding M—estimator θFT , through the

density term ft(·) appearing in the expressions of ∆0,F
T and Σ0,FT . In particular, this result

suggests that appropriate choices of Ft(·) in Equation (3) lead to efficiency improvements
over Koenker and Bassett’s (1978) conditional quantile estimator. Specifically, when the val-

ues of ft(·) and of the true conditional density f0t (·) coincide at the true quantile qα(Wt, θ0),

we have Σ0,FT (∆0,F
T )−1 = α(1− α) Id. In other words, this particular choice of ft(·) seems to

lead to a conditional quantile M—estimator with the minimum asymptotic covariance matrix.

In the next section we make our heuristic argument more rigorous by exploring the questions

of minimum variance and efficient estimation in more details.

4. Semiparametric Efficiency Bound

Our first step in discussing the asymptotic efficiency of conditional quantile estimators is

to rank all the consistent and asymptotically normal estimators constructed in the previous

section by their asymptotic variances. Note that this ranking is useful, as we do not allow

M—estimators to be superefficient, i.e. to have asymptotic variances which for some true

parameter value are smaller than that of the maximum-likelihood estimator. Superefficiency

is ruled out by our continuity assumptions on f0t (·), qα(Wt, ·) in (A0)(ii) and a(·, ξt) in The-
orem 1. Typically, the asymptotic distribution of superefficient estimators is discontinuous

in the true parameters, and our continuity assumptions rule out this discontinuity.

Theorem 3 (Minimum Asymptotic Variance). Assume that (A0)-(A2) and (A4)-(A7)

hold. Then the set of matrices (∆0
T )
−1Σ0T (∆

0
T )
−1 has a minimum V 0

T given by

V 0
T ≡ α(1− α){T−1

XT

t=1
E[(f0t (qα(Wt, θ0)))

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0}−1.

Moreover, an M-estimator θ∗T of the parameter θ0 obtained by minimizing Ψ
∗
T (θ) ≡ T−1

PT
t=1

ϕ(Yt, qα(Wt, θ), ξ
∗
t ) attains V

0
T , (V

0
T )
−1/2√T (θ∗T −θ0)

d→ N (0, Id), if and only if ϕ(Yt, qt, ξ∗t ) =
[α− 1I(qt − Yt)][F

0
t (Yt)− F 0

t (qt)], a.s.− P , on R×Q×Et, for every t, 1 6 t 6 T, T > 1.

Theorem 3 shows two important results. Firstly, the matrix V 0
T is the minimum of the

asymptotic variances of all the consistent and asymptotically normal M—estimators of θ0

that satisfy (A2). In other words, for any ξt and A(·, ξt) in Theorem 1, the difference

between the corresponding asymptotic covariance matrix (∆0
T )
−1Σ0T (∆

0
T )
−1 and V 0

T is always

positive semidefinite. Secondly, there exists a unique M—estimator θ∗T whose asymptotic
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covariance matrix equals V 0
T . This estimator is obtained by minimizing the objective function

Ψ∗T (θ) = T−1
PT

t=1 ϕ(Yt, qα(Wt, θ), ξ
∗
t ), in which

(4) ϕ(Yt, qα(Wt, θ), ξ
∗
t ) = [α− 1I(qα(Wt, θ)− Yt)][F

0
t (Yt)− F 0

t (qα(Wt, θ))],

a.s.− P , for every t, 1 6 t 6 T, T > 1. In particular, the shape ξ∗t of the optimal objective
function in Equation (4) is that of the true conditional distribution F 0

t (·), which is stochastic
and Wt-measurable as required by Assumption (A0)(i). Even though our estimator θ∗T

satisfies all the assumptions in (A2), its computation is not feasible in reality. In order to

construct θ∗T we would need to know the true conditional distribution F
0
t (·) whose inverse–

the conditional α-quantile–is the very object that we are trying to estimate. We come back

to this important feasibility issue in Section 5.

What Theorem 3 does not show is whether V 0
T is also the semiparametric efficiency bound

for θ0, in addition to being the minimum of the set of asymptotic covariance matrices of

consistent and asymptotically normal M—estimators.

4.1. Stein’s (1956) approach: an example. In order to show that V 0
T in Theorem 3 is the

semiparametric efficiency bound in the time series models satisfying the conditional quantile

restriction (A1), we follow the ingenious approach by Stein (1956). Stein’s (1956) original

concern was the possibility of estimating the true parameter adaptively: can we estimate the

parameter θ0 in the conditional quantile restriction (A1) as precisely as if we knew the set

of true conditional densities f0 ≡ {f0t (·), 1 6 t 6 T, T > 1}, up to some finite dimensional
parameter?

If the set of true conditional densities f0 ≡ {f0t (·), 1 6 t 6 T, T > 1} in the conditional
quantile restriction (A1) were known up to a finite dimensional parameter, then we could

easily construct an estimate of θ0 whose asymptotic covariance matrix attains the classical

Cramer-Rao bound. As an illustration, consider the following conditionally heteroskedastic

(CH) model with linear heteroskedasticity

(5) Yt = β00Vt + (1 + |γ00Rt|)Ut,

whereWt ≡ (V 0
t , R

0
t)
0, the process {(Yt,W 0

t)
0} is α-mixing, the error sequence {Ut} is indepen-

dent of {Wt} and iid with some absolutely continuous distribution functionH0(·) (continuous
density h0(·)), such that E(Ut) = 0 and E(U2

t ) = 1, and where β0 and γ0 denote the true

values of the parameters β ∈ B ⊆ Rb and γ ∈ Γ ⊆ Rc. Letting Vt ≡ (1, Yt−1)0 and Rt ≡ Ut−1
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the above equation reduces to a well-known AR(1)-ARCH model, for example (Koenker and

Zhao, 1996).12

4.1.1. Case 1: no nuisance parameter. Assume that the distribution functionH0(·) is known.
In financial applications h0(·) is typically chosen to be a standardized Gaussian or Student-
t density. The conditional density of Yt in the CH model (5) then equals f0t (y) = (1 +

|γ00Rt|)−1h0([1 + |γ00Rt|]−1[y − β00Vt]), and its conditional α-quantile is given by: β
0
0Vt +

H−1
0 (α)(1+|γ00Rt|). Here, the parameter of interest is θ ≡ (β0, γ0)0 ∈ Θ ≡ B×Γ, Θ ⊆ Rk with

k ≡ b+c. Note that θ is the only unknown parameter of the conditional density f0t (·). Hence,
we are in the case where the true conditional density is known up to a finite dimensional pa-

rameter. The true value θ0 ≡ (β00, γ00)0 of θ can be estimated by using a maximum likelihood
approach. Under standard regularity conditions (Bickel, 1982; Newey, 2004), the maximum-

likelihood estimator (MLE) θ̃T of θ0 is known to be efficient: (I0T )
1/2
√
T (θ̃T−θ0) d→ N (0, Id),

where I0T is the Fisher information matrix, I
0
T ≡ T−1

PT
t=1E[(∇θ ln f

0
t (Yt))(∇θ ln f

0
t (Yt))

0],

in which the gradient is evaluated at θ0.13

4.1.2. Case 2: finite dimensional nuisance parameter. In many interesting situations, the

true density h0(·) of Ut in the CH model (5) is not entirely known and this uncertainty

adversely affects the precision of the M—estimates of θ0. A familiar case is the one where the

error Ut belongs to some parametric family of distributions, indexed by a finite dimensional

parameter τ . For example, instead of being standardized Gaussian we can assume H0(·)
to be a standardized Asymmetric Power Distribution (APD), with unknown exponent and

asymmetry parameters (Komunjer, 2005a). In other words, the true distribution function of

Ut is of the form H0(·, τ 0) where τ 0 ∈ Υ ⊂ R+∗ × (0, 1) is the unknown parameter of the APD
family. Here, the true set of conditional densities f0 belongs to the parametric family P,
P ≡ {f(η), η ∈ Π} with f(η) ≡ {ft(·, η) : R → R+∗ , 1 6 t 6 T, T > 1}, indexed by a finite-
dimensional parameter η ∈ Π, Π ⊆ Rp: η ≡ (β0, γ0, τ 0)0 ∈ Π ≡ B × Γ×Υ and p ≡ b+ c+ 2.

The members f(η) of P are such that ft(y, η) = (1 + |γ0Rt|)−1h0([1 + |γ0Rt|]−1[y − β0Vt], τ),

for all t, 1 6 t 6 T, T > 1, and the conditional quantile parameter θ is now given by

12In that case we moreover assume that the parameter spaces B and Γ are such that the standard

stationarity and invertibility conditions hold.
13Following Bickel (1982) and Newey (2004), the regularity conditions imposed are: [f0t (·)]1/2 is mean-

square differentiable with respect to θ0, the Fisher information matrix I0T is nonsingular and continuous in

θ0 on Θ.
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θ ≡ (β0, γ0, q)0 ∈ Θ ≡ B×Γ×Q, Θ ⊆ Rk with k ≡ b+c+1.14 In this interesting situation, the

parameter of interest θ has a lower dimensionality than η: dim θ = k and dim η = p = k+1.

We write θ = θ(η), with θ : Π → Θ being some continuously differentiable function, and

interpret the rest of η as a nuisance parameter (Stein, 1956; Bickel, 1982).

Similar to the previous case, we assume that the above parametric model f(η) is regular

(Bickel, 1982; Newey, 2004), that all the conditional densities ft(·, η) satisfy the conditional
quantile restriction (A1) and are continuously differentiable on R for each η ∈ Π, and that

ft(Yt, ·) is continuously differentiable on Π a.s.−P . Let η0 index the true set of conditional

densities of Yt, i.e. f(η0) = f0, so that the true value of interest θ0 is now written as

θ0 = θ(η0) where η0 ≡ (β00, γ00, τ 00)0. Also, let IT (η) denote the Fisher information matrix
of the parametric model P, IT (η) ≡ T−1

PT
t=1 E[(∇η ln ft(Yt, η))(∇η ln ft(Yt, η))

0]. Then,

an estimator θ̃T of θ0 is efficient if and only if (C0
T )
−1/2√T (θ̃T − θ0)

d→ N (0, Id), with
C0
T ≡ ∇ηθ(η0)(IT (η0))

+∇ηθ(η0)
0. In the special case where the sequence {(Yt,W 0

t)
0} is iid,

several authors have derived necessary and sufficient conditions for the MLE to be efficient

(see, e.g., Conditions S and S∗ in Stein, 1956; Bickel, 1982; Manski, 1984); those are typically

expressed as orthogonality conditions on the gradient of the log-likelihood ∇η ln ft(Yt, η0).

4.1.3. Case 3: infinite dimensional nuisance parameter. Now consider the more realistic sit-

uation in which the true density of Ut in Equation (5) is entirely unknown. Instead, f0 are

only known to belong to a class S which contains all parametric families such as P. Unlike
in P, the sets of densities in S are indexed by an additional infinite dimensional parameter.
In the case of our CH model (5) this infinite dimensional parameter is the unknown proba-

bility density h0(·) of the error term Ut. The density h0(·) could be for example Gaussian,
Student-t, Gamma or any other probability density in a set H–set of all families h of prob-
ability densities, which are parametrized by τ and satisfy some appropriate conditions, such

as being standardized.

The set S is the union of all parametric sub-families Ph ≡ {fh(η), η ∈ Π} obtained when h
varies across H. For any given h ∈ H, the parametric submodel fh(η) is defined as fh(η) ≡
{fht(·, η) : R→ R+∗ , 1 6 t 6 T, T > 1} and is assumed to satisfy standard regularity condi-
tions (Bickel, 1982; Newey, 2004). We let IhT (η) ≡ T−1

PT
t=1E[(∇η ln fht(Yt, η))(∇η ln fht(Yt,

η))0] be the Fisher information matrix of the parametric submodel Ph. In particular, the

14The set Q corresponds to the range of α-quantiles of Ut when the parameter τ of its distribution function

H0(·, τ) varies in Υ.
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matrix IhT (η0), in which fh(η0) = f0, is such that C0
hT ≡ ∇ηθ(η0)

0(IhT (η0))
+∇ηθ(η0) is

nonsingular.

In addition, we assume that for any η ∈ Π and h ∈ H, the conditional densities fht(·, η)
satisfy the conditional quantile restriction (A1) and are continuously differentiable on R,
and that for any h ∈ H, fht(Yt, ·) are continuously differentiable a.s. − P on Π. Then, the

semiparametric efficiency bound for the conditional quantile parameter θ0 is defined as the

supremum of C0
hT over those h. If such a bound is attained by a particular family h∗, then

P∗ ≡ Ph∗ is called the least favorable parametric submodel.

4.2. Least favorable parametric submodel. Following Stein’s (1956) ingenious defini-

tion, V 0
T in Theorem 3 is the semiparametric efficiency bound, if and only if, there exists a

parametric submodel Ph∗ in which the MLE θ̃
∗
T of the true parameter θ0 has the same asymp-

totic covariance matrix V 0
T . The following theorem exhibits the least favorable parametric

submodel which satisfies the conditional quantile restriction (A1).

Theorem 4 (Least Favorable Parametric Submodel). Given M and the set of true

conditional densities f0 ≡ {f0t , 1 6 t 6 T, T > 1}, consider the parametric submodel
P∗ ≡ {f∗(θ), θ ∈ Θ} parametrized by the conditional quantile parameter θ in which f∗(θ) ≡
{f∗t (·, θ) : R→ R+∗ , 1 6 t 6 T, T > 1} with

f∗t (y, θ) ≡

f0t (y)
α(1− α)λ(θ) exp{λ(θ)[F 0

t (y)− F 0
t (qα(Wt, θ))][1I(qα(Wt, θ)− y)− α]}

1− exp{λ(θ)[1− F 0
t (qα(Wt, θ))− 1I(qα(Wt, θ)− y)][1I(qα(Wt, θ)− y)− α]} ,(6)

for all y ∈ R, where λ(θ) ≡ Λ(θ − θ0) and Λ : Rk → R is at least twice continuously differ-
entiable on Rk with Λ(·) > 0 on Rk\{0}, Λ(0) = 0, ∇θΛ(0) = 0, ∆θθΛ(0) nonsingular and

|∆θθΛ(·)| <∞ in a neighborhood of 0.15 Then, under (A0)(ii) and (A1), P∗ is a parametric
submodel in S, i.e.:
(i) for any t, 1 6 t 6 T, T > 1, f∗t (·, θ) is a probability density for all θ ∈ Θ;

(ii) for any t, 1 6 t 6 T, T > 1, f∗t (·, θ) satisfies the conditional quantile restriction
Eθ[1I(qα(Wt, θ) − Yt) − α|Wt] = 0, a.s. − P , for all θ ∈ Θ, where Eθ(·|Wt) denotes the

conditional expectation under the density f∗t (·, θ) for Yt given Wt;

(iii) f0 ∈ P∗.
Moreover, under (A0)-(A1) and (A5)-(A7)(i), P∗ is the least favorable submodel in S, i.e.

15A simple function Λ(·) in Equation (6) which satisfies the conditions of Theorem 4 is Λ(x) = x0x.
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the asymptotic distribution of the MLE θ̃
∗
T associated with P∗ is (V 0

T )
−1/2√T (θ̃∗T − θ0)

d→
N (0, Id) where V 0

T is as defined in Theorem 3.

Because P∗ is a parametric submodel of the set S of all densities satisfying the conditional
quantile restriction in (A1), the semiparametric efficiency bound for θ0 is by Stein’s (1956)

definition at least as large as the asymptotic variance of the above MLE θ̃
∗
T ; Theorem 4

shows that the latter equals V 0
T . On the other hand, in Theorem 3 we have shown that V

0
T is

also the minimum of the asymptotic variances of the consistent and asymptotically normal

M—estimators of θ0. It follows, first, that the semiparametric efficiency bound is V 0
T , and,

second, that the parametric model P∗ is the least favorable parametric submodel in S.
The first result–that V 0

T is the semiparametric efficiency bound–has the following inter-

pretation: when the only thing we know about the model is that it satisfies the conditional

quantile restriction (A1), then we cannot estimate the true conditional quantile parameter

θ0 with precision higher than that given by V 0
T . Note that our result uses the moment re-

striction (A1) only; we do not make any additional assumptions regarding the properties of

the “error” term Yt−qα(Wt, θ) (other than those contained in (A1) and (A6)). In particular,

we allow for Yt − qα(Wt, θ) to be dependent and nonidentically distributed.

Perhaps the most important aspect of Theorem 4 is that it relaxes the independence

assumption. So far as time series data are concerned, two leading situations in which

the independence is violated come into mind. First is the CH model (5): Wt contains

serially dependent exogenous variables or/and lags of Yt, residuals are uncorrelated and

conditionally heteroskedastic.16 There are some results on this case in Newey and Pow-

ell (1990), under the additional assumption that {(Yt,W 0
t)
0} is iid. The authors derive

the semiparametric efficiency bound for the parameters in the linear quantile regression

qα(Wt, θ) = θ0Wt by allowing for conditional heteroskedasticity (given Wt) in the “error”

term Yt − θ0Wt. The first part of Theorem 4 generalizes Newey and Powell’s (1990) re-

sults to the case where the sequence {(Yt,W 0
t)
0} is weakly dependent and heterogeneous,

as in (A6). Unsurprisingly, when the data is iid and qα linear, the bound V 0
T reduces to

V 0 ≡ α(1− α){E[(f0t (qα(Wt, θ0)))
2WtW

0
t ]}−1 derived by Newey and Powell (1990).17 In the

second time series situation of interest, the residuals themselves are correlated in addition to

16In the CH model (5) we have: Yt − qα(Wt, θ0) = (1 + |γ00Rt|)[Ut − µ0 − σ0H
−1
0 (α)].

17This result is a special case of the result derived by Chamberlain (1987) for models with conditional

moment restrictions.
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Figure 1. Case α = .5, qα(Wt, θ) = θ and f0t (y) = exp(−2|y|).

being heteroskedastic. Note that this situation is not covered in the CH model (5); however,

our assumption (A1) does not exclude the possiblity that Yt−qα(Wt, θ) be correlated. So far

there exist no results on semiparametric efficiency bound which cover this dependent case.

To the best of our knowledge, Theorem 4 provides the first result on attainable asymptotic

efficiency for nonlinear (and possibly censored) conditional quantile models when the data

is dependent.

The second result of Theorem 4–an analytic expression of the least favorable parametric

submodel–is entirely new and not yet seen in the literature on efficient estimation under

conditional moment restrictions. The density f∗t (·, θ) in Equation (6) is not of the ‘tick-
exponential’ form derived by Komunjer (2005b): it depends on the true density f0t (·) as
well as the true value θ0 and contains terms such as λ(θ). In the least favorable parametric

submodel P∗, θ parametrizes both the conditional quantile model M and the shape of

f∗t (·, θ)–in other words, the shape of f∗t (·, θ) is now determined by f0t (·) and θ (see Figure

1 for a purely location model of a conditional median). In particular, the density f∗t (·, θ) is
discontinuous for all values of θ different from θ0; when θ = θ0 the density f∗t (·, θ0) equals
the true density f0t (y) which is continuous.

With the semiparametric efficiency bound V 0
T in hand, we now turn to the problem of

constructing a conditional quantile estimator which actually attains the bound.
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5. Efficient Conditional Quantile Estimator

As already pointed out in Section 4, the shape ξ∗t of the optimal objective function ϕ(·, ·, ξ∗t )
in Equation (4) is that of the true conditional distribution F 0

t (·), which is unknown. Hence,
the M—estimator θ∗T is in reality infeasible. We construct our (feasible) efficient conditional

quantile estimator θ̂T by replacing F 0
t (·) in Equation (4) by a nonparametric estimator F̂t(·).

It remains to be shown that the estimator θ̂T retains the same asymptotic variance V 0
T . Note

that θ̂T is constructed without using any knowledge about the true F 0
t (·). It will then follow

that the semiparametric efficiency bound V 0
T can be attained, and that the feasible estimator

θ̂T is semiparametrically efficient.

We let g0t (·) and ḡ0T (·) be the true density of Wt and the average true density ḡ0T (·) ≡
T−1

PT
t=1 g

0
t (·) of {W1, . . . ,WT} respectively, and make the following assumptions:18

(A8) for every T > 1, ḡ0T (·) is continuously differentiable of order R > 1 on Rm with

supT>1 supw∈Rm |Drḡ0T (w)| <∞ for every 0 6 |r| 6 R.

(A9) (i) for every t, 1 6 t 6 T, T > 1, F 0
t (·) = F 0(·|Wt) and f0t (·) = f0(·|Wt); (ii)

the function F 0(·|·) : Rm+1 → [0, 1] is continuously differentiable of order R + 2 with

sup(y,w)∈Rm+1 |DrF 0(y|w)| <∞ for every 0 6 |r| 6 R+ 2.

(A10) for some γ > 0 and any vanishing sequence {cT}: (i)
R
{w:ḡ0T (w)<cT }

ḡ0T (w)dw = o(1),

(ii)
R
{w:ḡ0T (w)<cT }

|∇θqα(w, θ0)| ḡ0T (w)dw = O(cγT ), and (iii)
R
{w:ḡ0T (w)<cT }

f0[qα(w, θ0)|w] ×
|∇θqα(w, θ0)|ḡ0T (w)dw = O(c2γT ).

Assumptions (A8) and (A9)(ii) are standard smoothness assumptions on the true densities

g0t (·) and f0t (·); they adapt assumptions NP2 and NP3 used in Andrews (1995) to the case
where the regression function is the conditional distribution (and density) of Yt. On the

other hand, assumption (A9)(i) is an additional assumption we need to impose on the true

distribution of Yt conditional upon Wt in order to construct an estimator that attains the

semiparametric efficiency bound. The content of this assumption is twofold. First, it states

that no information other than that contained inWt is useful in constructing the conditional

distribution (and density) of Yt. Note that this is a strengthening of our assumption (A1)

which says that Wt contains all the relevant information for the conditional α-quantile of Yt.

Second, assumption (A9)(i) implies that the distribution of Yt conditional on Wt should be

the same as that of Ys conditional on Ws, for any s 6= t.

18Recall from Section 2.1 that all the components of Wt are continuous.
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Assumption (A10)(i) is weak as it is satisfied if the sequence of probability measures

{P̄ 0T (·)} associated with the average densities {ḡ0T (·)} is tight, which is itself implied by the
tightness of {Wt} or equivalently Wt = Op(1).19 The latter is obviously satisfied if the Wt’s

are identically distributed, but it also holds for dependent and heterogenous Wt’s if {Wt} is
uniformly integrable and a fortiori if sup16t6T,Tt>1E[|Wt|1+�] <∞ for some � > 0. Assump-

tions (A10)(ii) and (A10)(iii) are stronger and used to ensure that the bias of Ψ̂T (θ) vanishes

at a
√
T -rate. It is similar to conditions that eliminate the asymptotic bias when a stochastic

trimming is employed as in Hardle and Stoker (1989) and Lavergne and Vuong (1996). It

requires that the tails of ḡ0T (·) vanish sufficiently fast given the tail behaviors of |∇θqα(·, θ0)|
and f0[qα(·, θ0)|·]. For instance, if supw∈Rm |∇θqα(·, θ0)| <∞ and sup(y,w)∈Rm+1 f

0(y|w) <∞,
a sufficient (but not necessary) condition for (A10) is that

R
{w:ḡ0T (w)<cT }

ḡ0T (w)dw = O(c2γT ),

which is a condition on the vanishing rate of the tails of the average density ḡ0T (·).
The true conditional distribution F 0(·|·) can be estimated by the kernel estimator F̂ (·|·)

defined as F̂ (·|w) = 0 if ĝ(w) = 0, and F̂ (y|w) ≡ Ĝ(y,w)/ĝ(w) if ĝ(w) 6= 0 with

Ĝ(y,w) ≡ 1

ThmwT

TX
s=1

L(
y − Ys
hyT

)K(
w −Ws

hwT
),(7)

ĝ(w) ≡ 1

ThmwT

TX
s=1

K(
w −Ws

hwT
),(8)

where L(y) ≡
R
1I(y − u)K0(u)du, K(·) is a multivariate kernel, K0(·) is a univariate kernel

and hwT and hyT are two nonstochastic positive bandwidths. The corresponding kernel

estimator of the true conditional density f0(·|·) is given by ∂F̂ (·|·)/∂y, while ĝ(·) can be
viewed as a kernel estimator of the average true density ḡ0T (·).
In order to eliminate aberrant behavior of kernel estimators for the conditional distribution

(density) of Yt in regions where the densities of {Wt} are small, we define F̂t(·) ≡ dtF̂ (·|Wt),

where dt ≡ 1I(ĝ(Wt)− bT ) effectively deletes (trims out) observations for which ĝ(Wt) < bT

with {bT} a sequence of positive constants. That is, F̂t(·) is a trimmed nonparametric
estimator of the true conditional distribution F 0

t (·) which we now use to construct our

(feasible) estimator θ̂T . Namely, θ̂T is obtained by minimizing the objective function Ψ̂T (θ) ≡

19By definition (Bilingsley, 1995) the tightness of {P̄ 0T (·)} means that for every � ∈ (0, 1) there

exists M� < ∞ such that inf16t6T,T>1 P̄ 0T ([−M�,M�]) > 1 − �. Now,
R 0
{w:ḡ0T (w)<cT }

ḡ0T (w)dw =R
{w∈[−M�,M�]m:ḡ0T (w)<cT }

ḡ0T (w)dw +
R
{w 6∈[−M�,M�]m:ḡ0T (w)<cT }

ḡ0T (w)dw 6 cT (2M�)
m + P̄ 0T (Rm\[−M�,M�]

m)

< cT (2M�)
m + � showing that (A10)(i) holds as cT = o(1) and � is arbitrary.
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T−1
PT

t=1 ϕ(Yt, qα(Wt, θ), ξ̂t), in which

(9) ϕ(Yt, qα(Wt, θ), ξ̂t) ≡ [α− 1I(qα(Wt, θ)− Yt)][F̂t(Yt)− F̂t(qα(Wt, θ))],

for every t, 1 6 t 6 T, T > 1. In other words, our (feasible) estimator θ̂T minimizes a

modified version Ψ̂T (·) of the efficient M—objective function Ψ∗T (·) in which we have replaced
the true conditional distribution of Yt given Wt with a nonparametric estimator. As a

consequence, θ̂T is a MINPIN-type estimator (Andrews, 1994a).20 The shape parameter ξ̂t
of the objective function in Equation (9) is now equal to F̂t(·).
In order to establish the asymptotic properties of our feasible estimator θ̂T we impose the

following conditions on the kernels:

(A11) (i) for any r = (r1, . . . , rm) ∈ Nm, the kernel K(·) satisfies supw∈Rm |K(w)| < ∞,R
K(w)dw = 1,

R
wrK(w)dw = 0 if 1 6 |r| 6 R − 1, and

R
wrK(w)dw < ∞ if |r| =

R; (ii) K(·) has a Fourier transform φ(·) that is absolutely integrable, i.e.
R
|φ(w)|dw <

∞; (iii) supy∈R |K0(y)| < ∞,
R
K0(y)dy = 1,

R
yrK0(y)dy = 0 if 1 6 r 6 R − 1 andR

yRK0(y)dy <∞, (iv) the kernel K0(·) is continuously differentiable on R with derivative
satisfying supy∈R |K 0

0(y)| <∞.

Assumptions (A11)(i)-(iv) are standard and satisfied, for example, by the multivariate

normal-based kernels considered by Bierens (1987): K(x) = (2π)−m/2
PJ

j=1 aj|bj|−m exp[−
ww0/(2b2j)], where J > R/2 is a positive integer and {(aj, bj) : j 6 J} are constants that
satisfy

PJ
j=1 aj = 1 and

PJ
j=1 ajb

2l
j = 0, for l = 1, ..., J − 1.

We now turn to the asymptotic properties of our feasible estimator θ̂T . Note that the

shape ξ̂t of the objective function in Equation (9) depends on all the data up to time T ,

hence is not Wt-measurable as required by assumption (A2)(i). In consequence, the results

of Theorems 1 and 2 do not apply to θ̂T and its asymptotic properties need to be derived

separately. We first establish the consistency of θ̂T .

Theorem 5 (Consistency of θ̂T ). Suppose that (A0)-(A1), (A5)-(A7)(i), (A8)-(A10)(i),

(A11) hold. If bT = o(1) with bT
√
ThmwT →∞, bT/hRwT →∞ and bT/h

R
yT →∞ as T →∞,

then θ̂T
p−→ θ0.

The assumptions on the trimming parameter bT and bandwidths hyT and hwT imply

that bT does not vanish too rapidly and that hyT → 0, hwT → 0 and
√
ThmwT → ∞ as

20Though θ̂T is a member of the MINPIN family, our objective function associated with Equation (9)

does not satisfy the assumptions used by Andrews (1994a).
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T goes to infinity. Though stronger than necessary, the latter condition is typically used

when deriving uniform convergence rates using the Fourier transform φ(·) of K(·) (Bierens,
1983; Andrews, 1995). In particular, when R 6 m/2, this condition excludes the optimal

bandwidth hoptwT ∼ T−1/(2R+m) obtained by Stone (1980, 1982) and Truong and Stone (1992).

In order to derive the asymptotic normality of our efficient estimator θ̂T , we strengthen

our dependence assumption (A6):

(A6’) the sequence {(Yt,W 0
t)
0} is (i) strictly stationary and (ii) β-mixing with β of size

−r/(r − 2), with 2 < r < 3;

The proof of our result uses Lemma 3 in Arcones (1995) which requires strict stationarity

and β-mixing with r > 2. Note that β-mixing (or absolute regularity) in (A6’)(ii) is a con-

dition intermediate between α-mixing (strong mixing)–which is the weakest form of strong

mixing–and φ-mixing (uniform mixing)–which is the strongest form of mixing (Bradley,

1986). As such, our weak dependence assumption is stronger than that of α-mixing used by

Robinson (1983), for example. Assumption (A6’)(ii) also requires the size of the β-mixing

process to be comprised between −∞ and −3. In other words, we limit the amount of de-
pendence allowed in {(Yt,W 0

t)
0}.21 In particular, Truong and Stone (1992) use the condition

βt = O(ρt) as t→∞ for some ρ with 0 < ρ < 1 in order to estimate the conditional quantile

nonparametrically at the optimal rate. Their condition implies β-mixing of arbitrary size

and hence of size −r/(r − 2), with some r, 2 < r < 3.

We can now establish the efficiency of θ̂T .

Theorem 6 (Efficiency of θ̂T ). Suppose that Assumptions (A0)-(A1), (A5), (A6’), (A7)(i)

and (A8)-(A11) hold. If bT = o(T−1/(4γ)) with bTT
1/4hyTh

m
wT → ∞, bT/(T 1/4hRwT ) → ∞,

and bT/(T
1/4hRyT )→∞, as T →∞, then θ̂T is efficient: (V̄ 0

T )
−1/2
√
T (θ̂T − θ0)

d→ N (0, Id),
where

V̄ 0
T ≡ α(1− α){T−1

XT

t=1
E[(f0(qα(Wt, θ0)|Wt))

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0}−1

is the semiparametric efficiency bound.

21Note that the −∞ case, obtained when r = 2, corresponds to independence. As the proof of Lemma

10 shows, the assumption (A6’)(ii) is stronger than necessary: we can replace it by β-mixing with mixing

coefficients βt that satisfy
PT−1

t=1 tβ
(r−2)/r
t = O(

√
T ).
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The conditions on the trimming parameter and bandwidths are stronger than in Theorem

5. They can be written as:

max

½
1

T 1/4hyThmwT
, T 1/4hRwT , T

1/4hRyT

¾
¿ bT ¿

1

T 1/(4γ)
,

where aT ¿ cT means that aT < cT for T sufficiently large. This implies T 1/(4γ)−1/4 ¿
hyTh

m
wT ¿ T−[(m+1)/R][1/(4γ)+1/4]. Hence, necessary conditions are γ > 1 and R > (m+1)(γ+

1)/(γ− 1).22 For instance, when m = 1, R = 3 and γ = 6, a feasible choice is: hyT ∝ T−1/10,

hwT ∝ T−1/10, and bT ∝ T−1/21. Moreover, if R > (m + 1)(3γ + 1)/[2(γ − 1)], one can
choose the L2-optimal bandwidths h∗yT ∝ T−2R/[(2R+m)(2R+m+1)] and h∗wT ∝ T−1/(2R+m) for

estimating f0(y|w)ḡ0T (w) and ḡ0T (w).23 For instance, whenm = 1, R = 4 and γ = 6, then the

L2-optimal bandwidths h∗yT ∝ T−8/90, h∗wT ∝ T−1/9 with trimming parameter bT ∝ T−1/21

can be chosen. In particular, our estimator θ̂T differs frommany semiparametric ones that are√
T -asymptotically normal under assumptions that imply undersmoothing and thus exclude

the L2-optimal bandwidth.

Without assumption (A9)(i) we would not be able to construct a conditional quantile

estimator which attains V̄ 0
T . Note however that our general expression for V

0
T derived in

Theorem 3 remains valid whether or not we are able to construct an efficient estimator–this

is one of the advantages of using the “supremum” characterization of the semiparametric

efficiency bound.

Our efficient M—estimator θ̂T is asymptotically equivalent to: the ‘one-step’ estimator

proposed by Newey and Powell (1990), the weighted quantile regression estimator by Zhao

(2001), and the CEL estimator by Otsu (2003). Two important features distinguish our

efficient estimator from the previous ones. First, similar to Otsu’s (2003) CEL estimator,

22As indicated in Lavergne and Vuong (1996, p.209), we have c2T = o
³R

{w:ḡ0T (w)<cT }
ḡ0T (w)dw

´
when ḡ0T (·)

is continuously differentiable on Rm and monotonically decreasing in the tails, whether or not the support

of ḡ0T (·) is bounded. Under the same conditions, it can be shown that cT = o
³R

{w:ḡ0T (w)<cT }
|w|ḡ0T (w)dw

´
when the support of ḡ0T (·) is Rm. Hence, (A10)(ii) implies γ < 1 when qα(w, θ0) = w0θ0, which contradicts

γ > 1. On the other hand, when the support of ḡ0T (·) is bounded (uniformly in T ), it can be shown thatR
{w:ḡ0T (w)<cT }

|w|ḡ0T (w)dw = O(c2−δT ), where δ > 0 can be arbitrarily close to zero depending on ḡ0T (·).
Hence, our assumptions allow the linear quantile specification qα(w, θ0) = w0θ0, provided the support of

Wt is bounded (uniformly in T ). Bounded supports, however, are not required as our assumptions allow

for unbounded ones. In this case f0[qα(w, θ
0)|w] and |∇θqα(w, θ

0)| should vanish in the tails of Wt at

appropriate rates for (A10) and the trimming/bandwidth conditions to be compatible.
23See Stone (1980, 1982) where h∗yT solves (h

∗
yTh

∗m
wT )

1/(m+1) ∝ T−1/(2R+m+1).
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our M—estimator θ̂T does not require a preliminary consistent estimate of θ0. It is well

established that such a preliminary step causes poor small sample performance in GMM

estimation (Altonji and Segal, 1996).24 Second, the objective functions ϕ(·, ·, ξ̂t) used in the
construction of θ̂T depend on a nonparametric estimator of the distribution function F 0(·|·).
Newey and Powell’s (1990) and Zhao’s (2001) efficient estimators on the other hand depend

on nonparametric estimators of the density f0(·|·).25 Both features can potentially affect the
small sample properties of these efficient estimators.

6. Conclusion

The contributions of this paper are twofold: first, it derives the semiparametric efficiency

bound V 0
T for parameters of conditional quantiles in time series models with weakly depen-

dent and/or heterogeneous data. Our bound V 0
T generalizes expressions previously derived

by the literature on efficient conditional quantile estimation. In particular we allow the data

to exhibit dependence and/or conditional heteroskedasticity. The second result of the paper

is to show that efficient estimation is possible in models for conditional quantiles in which

the true conditional distribution does not depend on any other variables than those entering

the quantile. In such models, the semiparametric efficiency bound equals V̄ 0
T and we are able

to construct an M—estimator θ̂T which actually attains the bound. Our efficient estimator is

different from previous ones and is of the MINPIN-type as the efficient M—objective function

that it minimizes depends on a nonparametric estimator of the conditional distribution.

An interesting by-product of the paper is to show that the class of M—estimators is rich

enough to contain estimators that are efficient, at least in models for conditional quantiles. In

general, one can think of the class of GMM estimators as being the widest one. Then comes

the class of M—estimators which can be viewed as just-identified GMM estimators. Finally

comes the class of QMLEs which is the class of M—estimators whose objective functions sat-

isfy an additional “integrability” condition and can thus be interpreted as quasi-likelihoods.

In models for conditional quantiles, efficient estimators do not belong to the class of QMLEs,

24In models with unconditional moment restrictions, Newey and Smith (2004) show how empirical likeli-

hood based methods improve the finite sample properties of GMM.
25In particular, when estimating F 0(·|·) and f0(·|·) by kernel estimators, there is always one smoothing

parameter less to choose for conditional distributions (Hansen, 2004a,b). For example, in the iid case, our

efficient estimator θ̂T can be constructed by using the empirical distribution function.
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but are contained in the class of M—estimators. Hence, at least from a semiparametric effi-

ciency viewpoint, no advantage is gained by considering GMM over M—estimators. However,

important efficiency improvements are made by going from QMLEs to M—estimators.

Finally, the “supremum” approach we use to derive the semiparametric efficiency bound

V 0
T does not seem to suffer from strong independence assumptions traditionally imposed by

the literature on efficient estimation. Our construction of the least favorable parametric

submodel and the corresponding MLE does not depend on any particular dependence or

heterogeneity structure of the data. We conjecture that it can thus be generalized fairly easily

to accommodate for general moment restrictions. The steps to follow in the construction of

semiparametric efficiency bounds in models with time series data seem to be: (1) construct

the largest class of M—estimators which are consistent for the true parameter θ0 of the

conditional moment restriction in hand; (2) within this class, find the minimum asymptotic

covariance matrix–this is a candidate matrix V for the bound–and the M—estimator which

attains this minimum; (3) use its expression to derive the least favorable parametric submodel

of the initial semiparametric model; (4) show that the inverse of the Fisher information

matrix in this submodel equals V . It then follows that V is the semiparametric efficiency

bound. While step (3) is perhaps the crucial one, we have little guidance on how exactly to

construct the least favorable parametric submodel under general moment restrictions. This

seems to be an important topic which we leave for future research.

7. Proofs

Proof of Theorem 1. First, note that (A2)-(A3) together with the compactness of the para-

meter space Θ, are sufficient conditions for θT to be consistent for θ0∞ ∈ Θ̊ (see, e.g., Theorem

2.1 in Newey and McFadden, 1994). We now show that under correct conditional quantile

model specification assumption (A1), we have: θ0∞ = θ0 for any T > 1 if and only if there
exist a real function A(·, ξt) : R→ R, twice continuously differentiable and strictly increasing
a.s.− P on Q with derivative a(y, ξt) ≡ ∂A(y, ξt)/∂y, and a real function B(·, ξt) : R→ R,
such that, for any T > 1 and every t, 1 6 t 6 T,

(10) ϕ(Yt, qt, ξt) = [α− 1I(qt − Yt)][A(Yt, ξt)−A(qt, ξt)] +B(Yt, ξt), a.s.− P,

on R×Q×Et.

We treat separately the two implications contained in the above equivalence. We start

with the sufficiency part of the proof and show that if, for any T > 1 and every t, 1 6 t 6 T ,
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ϕ(·, ·, ξt) is as in equation (10) above, then θ0∞ = θ0 for any T > 1, i.e. θ0 is also a minimizer of
E[ΨT (θ)] on Θ̊. Given (A3)(i) we know that∇θE[ΨT (θ)] = T−1

PT
t=1E[∇θϕ(Yt, qα(Wt, θ), ξt)].

From (10) and the a.s. − P twice continuous differentiability of A(·, ξt) on Q, for any t,

1 6 t 6 T, T > 1, we have:

E[∇θϕ(Yt, qα(Wt, θ), ξt)]

= E{∇θqα(Wt, θ)a(qα(Wt, θ), ξt)[1I(qα(Wt, θ)− Yt)− α]}

= E{∇θqα(Wt, θ)a(qα(Wt, θ), ξt)E[1I(qα(Wt, θ)− Yt)− α|Wt]},

so that by using the correct model specification assumption (A1) we get E[1I(qα(Wt, θ0) −
Yt) − α|Wt] = 0, a.s. − P , for every t, 1 6 t 6 T, T > 1, and hence ∇θE[ΨT (θ0)] = 0.

Similarly, ∆θθE[ΨT (θ)] = T−1
PT

t=1E[∆θθϕ(Yt, qα(Wt, θ), ξt)] and

E[∆θθϕ(Yt, qα(Wt, θ), ξt)]

= E

½
[
∂a(qα(Wt, θ), ξt)

∂y
∇θqα(Wt, θ)∇θqα(Wt, θ)

0

+a(qα(Wt, θ), ξt)∆θθqα(Wt, θ)][1I(qα(Wt, θ)− Yt)− α]}

+E [∇θqα(Wt, θ)∇θqα(Wt, θ)
0a(qα(Wt, θ), ξt)δ(qα(Wt, θ)− Yt)]

= E

½
[
∂a(qα(Wt, θ), ξt)

∂y
∇θqα(Wt, θ)∇θqα(Wt, θ)

0

+a(qα(Wt, θ), ξt)∆θθqα(Wt, θ)]E[1I(qα(Wt, θ)− Yt)− α|Wt]}

+E {∇θqα(Wt, θ)∇θqα(Wt, θ)
0a(qα(Wt, θ), ξt)E[δ(qα(Wt, θ)− Yt)|Wt]}

so that by using (A1)

∆θθE[ΨT (θ0)]

= T−1
TP
t=1

E{∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0a(qα(Wt, θ0), ξt)E[δ(qα(Wt, θ0)− Yt)|Wt]}

= T−1
TP
t=1

E[∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))],(11)

where for every t, 1 6 t 6 T , f0t (·) is the true probability density function of Yt conditional
onWt. We now show that ∆θθE[ΨT (θ0)]À 0. By using (11), we know that for any χ ∈ Rk,

χ0∆θθE[ΨT (θ0)]χ = 0 only if T−1
PT

t=1E[χ
0∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0χa(qα(Wt, θ0), ξt)×
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f0t (qα(Wt, θ0))] = 0. Now, note that for any t, 1 6 t 6 T and T > 1,

E[χ0∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0χa(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))]

= E[(χ0∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))] > 0,(12)

for any χ ∈ Rk, since we know that a(qα(Wt, θ0), ξt) > 0, a.s. − P and f0t (qα(Wt, θ0)) >

0, a.s. − P . Taking into account the inequality in (12) we have that for any χ ∈ Rk,

χ0∆θθE[ΨT (θ0)]χ = 0 only if E[(χ0∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))] = 0, for

all t, 1 6 t 6 T , T > 1. Using again the strict positivity of a(·, ξt) and f0t (·) this last
equality is true only if χ0∇θqα(Wt, θ0) = 0, a.s. − P , for every t, 1 6 t 6 T , T > 1. This,

together with (A0)(iii), implies that χ = 0. From there we conclude that ∆θθE[ΨT (θ0)]À 0

and therefore θ0 is a minimizer E[ΨT (θ)] on Θ̊. Since by (A3)(ii) this minimizer is unique,

we have that for any T > 1, θ0∞ = θ0 which completes the sufficiency part of the proof.

We now show that the functional form of ϕ(·, ·, ξt) in (10) is necessary for θ0∞ = θ0 to

hold for any T > 1. Given the differentiability of E[ΨT (θ)] on Θ by (A3)(i), a necessary

requirement for θ0∞ = θ0 is that the first order condition∇θE[ΨT (θ0)] = 0 be satisfied, which

is equivalent to

T−1
TX
t=1

E{∇θqα(Wt, θ0)E[
∂ϕ

∂qt
(Yt, qα(Wt, θ0), ξt)|Wt]} = 0.

Since the above equality needs to hold for any T > 1, any choice of conditional quantile

modelM and for any true parameter θ0 ∈ Θ̊, we need to find a necessary condition for the

implication

E[1I(qα(Wt, θ0)− Yt)− α|Wt] = 0, a.s.− P(13)

⇒ E[
∂ϕ

∂qt
(Yt, qα(Wt, θ0), ξt)|Wt] = 0, a.s.− P,

to hold, for all t, 1 6 t 6 T , T > 1, and all absolutely continuous distribution function F 0
t

in F . We now show that

(14)
∂ϕ

∂qt
(Yt, qα(Wt, θ0), ξt) = a(qα(Wt, θ0), ξt)[1I(qα(Wt, θ0)− Yt)− α], a.s.− P,

for any θ0 ∈ Θ̊ and any t, 1 6 t 6 T , T > 1, where a(·, ξt) : R→ R is strictly positive a.s.−P
on Q, is a necessary condition for (13). Using a generalized Farkas lemma (Lemma 8.1, p
240, vol 1) in Gourieroux and Monfort (1995), (13) implies there exists a Wt-measurable
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random variable at such that

∂ϕ

∂qt
(Yt, qα(Wt, θ0), ξt) = at[1I(qα(Wt, θ0)− Yt)− α], a.s.− P.

Since the left-hand side only depends on Yt, qα(Wt, θ0) and ξt, the same must hold for

the right-hand side. Hence, at can only depend on qα(Wt, θ0) and ξt and we can write

at = a(qα(Wt, θ0), ξt); so the equality in (14) holds.

We now need to show that a(·, ξt) is strictly positive a.s.−P on Q. A necessary condition
for θ0 ∈ Θ̊ to be a minimizer of E[ΨT (θ)] (in addition to the above first order condition) is

that for every χ ∈ Rk the quadratic form χ0∆θθE[ΨT (θ0)]χ > 0 (existence of ∆θθE[ΨT (θ)] is

ensured by (A3)(i)).26 Taking into account (14) and our previous computations leading to

(11), we have

χ0∆θθE[ΨT (θ0)]χ = T−1
TX
t=1

χ0E[∆θθϕ(Yt, qα(Wt, θ0), ξt)]χ

= T−1
TX
t=1

E[(χ0∇θqα(Wt, θ0))
2a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))].

Hence, the quadratic form χ0∆θθE[ΨT (θ0)]χ is nonnegative for any T > 1, any condi-

tional quantile model M, any true value θ0 ∈ Θ̊ and any conditional density f0t (·), only
if a(qα(Wt, θ0), ξt) > 0, a.s.− P , for all t, 1 6 t 6 T, T > 1. Note that the uniqueness of the
solution θ0 implies that a(qt, ξt) > 0, a.s.− P for any qt ∈ Q and for all t, 1 6 t 6 T, T > 1.
The remainder of the proof is straightforward: we need to integrate the necessary condition

(14) with respect to qt. Note that (14) can be written

∂ϕ

∂qt
(Yt, qα(Wt, θ0), ξt) =

(
(1− α)a(qα(Wt, θ0), ξt), if Yt 6 qα(Wt, θ0),

−αa(qα(Wt, θ0), ξt), if Yt > qα(Wt, θ0),
, a.s.− P,

for any θ0 ∈ Θ̊ and for any t, 1 6 t 6 T, T > 1. Together with the continuity of ϕ(Yt, ·, ξt)
a.s.− P on Q in (A2)(ii), the above integrates into

ϕ(Yt, qα(Wt, θ0), ξt) = B(Yt, ξt)+

(
(1− α)[A(qα(Wt, θ0), ξt)−A(Yt, ξt)], if Yt 6 qα(Wt, θ0),

−α[A(qα(Wt, θ0), ξt)−A(Yt, ξt)], if Yt > qα(Wt, θ0),

a.s. − P , where for every t, 1 6 t 6 T, T > 1, A(·, ξt) is an indefinite integral of a(·, ξt),
A(qt, ξt) ≡

R qt
a
a(r, ξt)dr, a ∈ R, and B(·, ξt) : R→ R is a real function. Note that the above

26Note that this requirement is weaker than the positive definiteness of∆θθE[ΨT (θ0)], ∆θθE[ΨT (θ0)]À 0,

which is a sufficient condition for θ0 to be a minimum.
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equality has to hold for any θ0 ∈ Θ̊ so that

(15)

ϕ(Yt, qα(Wt, θ), ξt) = B(Yt, ξt)+ [α− 1I(qα(Wt, θ)−Yt)][A(Yt, ξt)−A(qα(Wt, θ), ξt)], a.s.−P,

for every t, 1 6 t 6 T, T > 1, and for all θ ∈ Θ; this is a necessary condition for the M—

estimator θT to be consistent for θ0. Equality (15) implies that for any t, 1 6 t 6 T, T > 1,
ϕ(Yt, qt, ξt) = B(Yt, ξt) + [α− 1I(qt − Yt)][A(Yt, ξt)−A(qt, ξt)], a.s.− P on R×Q×Et. ¤

Proof of Theorem 2. To show that Theorem 2 holds, we first show that under primitive con-

ditions given in (A0)-(A2) and (A4)-(A7), θT is consistent for θ0, i.e. θT − θ0
p→ 0. We

proceed by checking that all the assumptions for consistency used by Komunjer (2005b) in

her Theorem 3 hold. Given that her proof of consistency for the family of tick-exponential

QMLEs derived in Theorem 3 does not require any assumptions on the limits in ±∞ of

the functions A(·, ξt), it applies directly to the M—estimator θT defined in (A2). Assump-
tions A2 and A3 in Komunjer (2005b) are satisfied by imposing our (A5) and (A4), re-

spectively. The α-mixing condition A4 in Komunjer (2005b) and the assumption that Wt

is a function of some finite number of lags of Xt stated in A0.iv in Komunjer (2005b) are

used to ensure that {(Yt,W 0
t)
0} is α-mixing of with α of the same size −r/(r − 2), r > 2.

Here, we directly impose the mixing of the sequence {(Yt,W 0
t)
0} in our (A6), which is suf-

ficient for the proof of Theorem 3 in Komunjer (2005b) to go through. Finally, the mo-

ment conditions A5 in Komunjer (2005b) directly follow from our (A7) and the fact that

E[supθ∈Θ |∇θqα(Wt, θ)|] 6 max{1, E[supθ∈Θ |∇θqα(Wt, θ)|2]} < ∞. Hence we can use the
results of Theorem 3 in Komunjer (2005b)–corresponding to the case where the conditional

quantile model is correctly specified (A1)–which proves the consistency of θT . Similarly,

we derive asymptotic normality by using the results of Corollary 5 in Komunjer (2005b).

The boundedness of the second derivative of A(·, ξt) contained in assumption A3’ in Ko-
munjer (2005b) is directly implied by (A4). The moment condition in assumption A5’ in

Komunjer (2005b) follows from our (A7). Finally in our setup we have assumed that the

true conditional density f0t (·) of Yt is strictly positive and bounded on R, which verifies as-
sumption A6 in Komunjer (2005b). Hence, from Corollary 5 in Komunjer (2005b) we know

that
√
T (Σ0T )

−1/2∆0
T (θT − θ0)

d→ N (0, Id) where

(16) ∆0
T = T−1

PT
t=1E[a(qα(Wt, θ0), ξt)f

0
t (qα(Wt, θ0))∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0],
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and

(17) Σ0T = T−1
PT

t=1 α(1− α)E[(a(qα(Wt, θ0), ξt))
2∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0].

¤

Proof of Theorem 3. The proof of this theorem is inspired by a similar result by Gourieroux,

Monfort, and Trognon (1984). Let V 0
T be as defined in Theorem 3 and consider the difference

(∆0
T )
−1Σ0T (∆

0
T )
−1 − V 0

T . We show that this difference is positive definite for any A(·, ξt),
1 6 t 6 T, T > 1, in Theorem 1:

(∆0
T )
−1Σ0T (∆

0
T )
−1 − V 0

T

= V 0
T (V

0
T )
−1V 0

T − V 0
T∆

0
T (∆

0
T )
−1 − (∆0

T )
−1∆0

TV
0
T + (∆

0
T )
−1Σ0T (∆

0
T )
−1

= T−1
TP
t=1

E{V 0
T [
(f0t (qα(Wt, θ0)))

2

α(1− α)
∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0]V 0
T

− V 0
T [f

0
t (qα(Wt, θ0))a(qα(Wt, θ0), ξt)∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0](∆0
T )
−1

− (∆0
T )
−1[f0t (qα(Wt, θ0))a(qα(Wt, θ0), ξt)∇θqα(Wt, θ0)∇θqα(Wt, θ0)

0]V 0
T

+ (∆0
T )
−1[α(1− α)(a(qα(Wt, θ0), ξt))

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0](∆0

T )
−1},

so that

(∆0
T )
−1Σ0T (∆

0
T )
−1 − V 0

T =
1

α(1− α)
T−1

TX
t=1

E[χtχ
0
t],

where for every t, 1 6 t 6 T, T > 1, we let

χt ≡ [f0t (qα(Wt, θ0))V
0
T − α(1− α)a(qα(Wt, θ0), ξt)(∆

0
T )
−1]∇θqα(Wt, θ0),

and a(y, ξt) ≡ ∂A(y, ξt)/∂y as previously. Hence, for anyA(·, ξt), 1 6 t 6 T, T > 1, such that
a(·, ξt) > 0, a.s.−P onQ, the matrix (∆0

T )
−1Σ0T (∆

0
T )
−1−V 0

T is positive semidefinite. In other

words, the matrix V 0
T is the lower bound of the set of asymptotic matrices (∆

0
T )
−1Σ0T (∆

0
T )
−1

obtained with functions A(·, ξt) satisfying the conditions of Theorem 1.

We now show that this lower bound V 0
T is attained by an M—estimator θ

∗
T if and only if

its objective function corresponds to Ψ∗T (θ) ≡ T−1
PT

t=1 ϕ(Yt, qα(Wt, θ), ξ
∗
t ) with

(18) ϕ(Yt, qt, ξ
∗
t ) = [α− 1I(qt − Yt)][F

0
t (Yt)− F 0

t (qt)], a.s.− P,
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onR×Q×Et, for every 1 6 t 6 T, T > 1. We first show the necessary part of this equivalence:
V 0
T is attained only if for any T > 1, there exist ξ∗t and A(·, ξ∗t ), 1 6 t 6 T, T > 1, such that

(19) T−1
TX
t=1

E(χtχ
0
t) = 0.

The above needs to hold for any T > 1, hence (19) implies that E(χtχ
0
t) = 0 for every t,

1 6 t 6 T, T > 1. Taking into account the positivity a.s. − P of the quadratic form χtχ
0
t,

the latter equalities holds only if for every t, 1 6 t 6 T, T > 1, we have χtχ0t = 0, a.s.− P .

Hence, (∆0
T )
−1Σ0T (∆

0
T )
−1 = V 0

T for any T > 1, if and only if for every t, 1 6 t 6 T, T > 1,
χt = 0, a.s.− P , which combined with (A0)(iii) is equivalent to

f0t (qα(Wt, θ0))

α(1− α)a(qα(Wt, θ0), ξ
∗
t )
V 0
T∆

0
T = Id, a.s.− P,

for all t, 1 6 t 6 T, T > 1. This in turn implies that for every t, 1 6 t 6 T, T > 1 and any
qt ∈ Q,

a(qt, ξ
∗
t ) = c

f0t (qt)

α(1− α)
and V 0

T∆
0
T = c · Id,

where c is some strictly positive real constant, c > 0. Note that the above condition is

equivalent to a(qt, ξ
∗
t ) = cf0t (qt)/[α(1 − α)] alone, which by integration with respect to qt

gives that for every t, 1 6 t 6 T, T > 1, and any qt ∈ Q

(20) A(qt, ξ
∗
t ) = c

F 0
t (qt)

α(1− α)
+ d,

with d ∈ R. Condition (20) is both a necessary and a sufficient condition for the equality
in (19) to hold for any T > 1. It is important to note that changing the value of A(·, ξ∗t )
outside Q does not affect the minima of E[ΨT ] so A(·, ξ∗t ) can take arbitrary values on R\Q.
To keep the notation simple and without altering the general validity of our result, we set

A(y, ξ∗t ) = cF 0
t (y)/[α(1 − α)] + d, for all y ∈ R. Moreover, changing the constants c and

d does not affect the value of (∆0
T )
−1Σ0T (∆

0
T )
−1 so that they can be arbitrarily chosen in

R∗+ × R for any T > 1. For example, we can let c = α(1− α) and d = 0 in which case

(21) A(y, ξ∗t ) = F 0
t (y),

for all y ∈ R; this completes the proof of the necessary part.
Now, we show that under (A0)-(A1), (A5)-(A6) and (A7)(i), the M—estimator θ∗T—obtained

by minimizing Ψ∗T (θ) associated with (18)—is such that
√
T (V 0

T )
−1/2(θ∗T − θ0)

d→ N (0, Id).
Note that the shape ξ∗t of A(·, ξ∗t ) corresponds to the true conditional distribution F 0

t (·)
which is stochastic and Wt-measurable thereby satisfying (A2)(i). Moreover, F 0

t (·) is twice



36 KOMUNJER AND VUONG

continuously differentiable with bounded f0t (y) and |df0t (y)/dy|, which satisfies (A2)(ii) and
(A4). Moreover, F 0

t (·) being bounded by 1 the moment conditions in (A7)(ii) automatically
hold. Hence, we can apply Theorem 2 to show that, under (A0)-(A1), (A5)-(A6) and (A7)(i),

θ∗T with A(·, ξ∗t ) as in (21), is asymptotically normally distributed
√
T (Σ0T )

−1/2∆0
T (θT−θ0)

d→
N (0, Id) with

∆0
T = T−1

PT
t=1E{[f0t (qα(Wt, θ0))]

2∇θqα(Wt, θ0)∇θqα(Wt, θ0)
0},

and Σ0T = α(1− α)∆0
T , so that (∆

0
T )
−1Σ0T (∆

0
T )
−1 = V 0

T . ¤

Proof of Theorem 4. The following lemma shows that (i)− (iii) in Theorem 4 hold:

Lemma 7. The parametric submodel P∗ defined by (6) is a submodel of S.

In order to show that P∗ is the least favorable model, consider estimating the parameter θ
inP∗ by using theMLE θ̃

∗
T , which maximizes the log-likelihood LT (θ) ≡ T−1

PT
t=1 ln ft(Yt, θ).

STEP1: First, we establish the consistency of θ̃
∗
T by checking that conditions (i)-(iv) of

Theorem 2.1 in Newey and McFadden (1994) hold. Given (A0)(i) we know that ln f∗t (Yt, θ) 6=
ln f∗t (Yt, θ0) a.s.−P , whenever θ 6= θ0 (see Figure 1 for example); this verifies the uniqueness

condition (i) of Theorem 2.1. The compactness condition (ii) of Theorem 2.1 follows by

assumption. Using qt(θ) = qα(Wt, θ) we have

ln f∗t (Yt, θ) = ln[α(1− α)f0t (Yt)] + lnλ(θ) + λ(θ)[F 0
t (Yt)− F 0

t (qt(θ))][1I(qt(θ)− Yt)− α]

− ln
¡
1− exp{λ(θ)[1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− Yt)− F 0

t (qt(θ))]}
¢
,

showing that E[ln f∗t (Yt, θ)] is continous on Θ and that E[supθ∈Θ | ln f∗t (Yt, θ)|r+�] < ∞ for

all t, 1 6 t 6 T, T > 1, and � > 0; this verifies condition (iii) of Theorem 2.1. We show

the uniform convergence condition (iv) of Theorem 2.1 by following the same steps as in the

proof of Theorem 3 in Komunjer (2005b). To simplify the notation let

(22) x(θ) ≡ [1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− Yt)− F 0
t (qt(θ))] and u(z) ≡ exp z

1− exp z ,
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for θ ∈ Θ and z ∈ R−. Note that −1 < x(θ) < 0 and −λ(θ) < λ(θ)x(θ) < 0 on Θ a.s.− P .

We have

∇θ ln f
∗
t (Yt, θ) =

∇θλ(θ)

λ(θ)
+∇θλ(θ)[F

0
t (Yt)− F 0

t (qt(θ))][1I(qt(θ)− Yt)− α]

− λ(θ)f0t (qt(θ))∇θqt(θ)[1I(qt(θ)− Yt)− α]

+ λ(θ)[F 0
t (Yt)− F 0

t (qt(θ))]δ(qt(θ)− Yt)∇θqt(θ)

+ u(λ(θ)x(θ))∇θ(λ(θ)x(θ)),(23)

where ∇θ(λ(θ)x(θ)) = ∇θλ(θ)x(θ) + λ(θ)∇θx(θ) and

(24) ∇θx(θ) =
©
f0t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[α− F 0

t (qt(θ))]
ª
∇θqt(θ).

(The equality in (24) follows from (22) and the fact that [1I(·)]2 = 1I(·).) Note that u(z) =
−1/z − 1/2 + o(1) in the neigborhood of 0 and that λ(θ)x(θ) = op(1) in the neigborhood of

θ0 so

u(λ(θ)x(θ))∇θ(λ(θ)x(θ)) = −
∇θ(λ(θ)x(θ))

λ(θ)x(θ)
+ op(1)

= −∇θλ(θ)

λ(θ)
− ∇θx(θ)

x(θ)
+ op(1),(25)

in the neighborhood of θ0. In particular, combining (23) (25), (24) and (22) we get

∇θ ln f
∗
t (Yt, θ0)

= −∇θqt(θ0)

½
f0t (qt(θ0))[α− 1I(qt(θ0)− Yt)] + δ(qt(θ0)− Yt)[α− F 0

t (qt(θ0))]

[1I(qt(θ0)− Yt)− α][1− 1I(qt(θ0)− Yt)− F 0
t (qt(θ0))]

¾
= − 1

α(1− α)
∇θqt(θ0)f

0
t (qt(θ0))[1I(qt(θ0)− Yt)− α],(26)

where the second equality uses x(θ0) = −α(1− α) and F 0
t (qt(θ0)) = α.

Using −1 < x(θ) < 0 on Θ a.s.− P so that¯̄̄̄
∇θλ(θ)

λ(θ)
{1 + λ(θ)x(θ)u(λ(θ)x(θ))}

¯̄̄̄
6 |x(θ)∇θλ(θ)|,

we then have

sup
θ∈Θ

|∇θ ln f
∗
t (Yt, θ)| 6 2 sup

θ∈Θ
|∇θλ(θ)|+ sup

θ∈Θ
|λ(θ)|M0|∇θqt(θ)|+

+C1 sup
θ∈Θ

¯̄̄̄
f0t (qt(θ))∇θqt(θ)

1− 1I(qt(θ)− Yt)− F 0
t (qt(θ))

¯̄̄̄
, a.s.− P,(27)
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where C1 ≡ supx∈[0,supθ∈Θ λ(θ)] | x
1−exp(−x) | <∞. We have supt>1 supθ∈Θ F 0

t (qt(θ)) ∈ (a, b) with
a > 0 and b < 1, so C2 ≡ supt>1 supy∈R supθ∈Θ (|1− 1I(qt(θ)− y)− F 0

t (qt(θ))|−1) < ∞ and

the last term of the above inequality is bounded above by C1C2M0 supθ∈Θ |∇θqt(θ)|. From
(A7)(i) we know that E[supθ∈Θ |∇θqt(θ)|] < ∞, so E[supθ∈Θ |∇θ ln f

∗
t (Yt, θ)|] < ∞ for all t,

1 6 t 6 T, T > 1, which shows that equation (25) in Komunjer (2005b) holds; together

with (A6) and E[supθ∈Θ | ln f∗t (Yt, θ)|r+�] < ∞ for all t, 1 6 t 6 T, T > 1, this establishes

condition (iv) of Theorem 2.1 and completes the proof of consistency.

STEP2: We now show that the MLE θ̃
∗
T is asymptotically normal by checking that con-

ditions (i)-(v) of Theorem 7.2 in Newey and McFadden (1994)–applied to ∇θLT (θ)–hold.

We first establish the asymptotic first order condition
√
T∇θLT (θ̃

∗
T )

p→ 0 by following the

same steps as in the proof of Lemma A1 in Komunjer (2005b): for every j = 1, . . . , k, let

G̃∗T,j(h) be the right-derivative of L̃
∗
T,j(h) ≡ T−1

PT
t=1 ln f

∗
t (Yt, θ̃

∗
T + hej), where {ej}kj=1 is

the standard basis of Rk, and h ∈ R is such that for all j = 1, . . . , k, θ̃∗T + hej ∈ Θ. Since

for every j = 1, . . . , k, L̃∗T,j(0) = LT (θ̂T ) so that the functions h 7→ L̃∗T ,j(h) achieve their

maximum at h = 0, we have, for ε > 0, G̃∗T,j(ε) 6 G̃∗T,j(0) 6 G̃∗T,j(−ε), with G̃∗T,j(ε) 6 0

and G̃∗T,j(−ε) > 0. Therefore |G̃∗T,j(0)| 6 G̃∗T,j(−ε) − G̃∗T,j(ε). By taking the limit of this

inequality as ε→ 0, we get

|G̃∗T,j(0)| 6 T−1
TX
t=1

[1 + 2C1]

"¯̄̄̄
¯∂λ(θ̃

∗
T )

∂θj

¯̄̄̄
¯+

¯̄̄̄
¯λ(θ̃∗T )f0t (qt(θ̃∗T ))∂qt(θ̃

∗
T )

∂θj

¯̄̄̄
¯
#
1I{qt(θ̃

∗
T ) = Yt}.

Hence

P
³√

T |∇θLT (θ̃
∗
T )| > ε

´
6 P

µ√
T max
16j6k

|G̃∗T,j(0)| > ε

¶
6 P

Ã
TX
t=1

"¯̄̄̄
¯∂λ(θ̃

∗
T )

∂θj

¯̄̄̄
¯+

¯̄̄̄
¯λ(θ̃∗T )f0t (qt(θ̃∗T ))∂qt(θ̃

∗
T )

∂θj

¯̄̄̄
¯
#
1I{qt(θ̃

∗
T ) = Yt} > ε

√
T (1 + 2C1)

−1

!
.

The facts that P (1I{qt(θ̃
∗
T ) = Yt} 6= 0) = 0 and that E[

¯̄̄
∂λ(θ̃

∗
T )

∂θj

¯̄̄
+
¯̄̄
λ(θ̃

∗
T )f

0
t (qt(θ̃

∗
T ))

∂qt(θ̃
∗
T )

∂θj

¯̄̄
] is

bounded then ensure that limT→∞ P
³√

T |∇θLT (θ̃
∗
T )| > ε

´
= 0. Condition (i) of Theorem

7.2 follows from the correct specification of ft(·) (see (iii) in Theorem 4). By (A5), θ0 is an

interior point of Θ so that condition (iii) of Theorem 7.2 holds.

We now check the differentiability of E[∇θLT (θ)] and the nonsingularity condition (ii) of

Theorem 7.2. We have E[∇θLT (θ)] = T−1
PT

t=1E[∇θ ln f
∗
t (Yt, θ)]; using (23) and (24) the

latter is easily shown to be differentiable at any θ ∈ Θ̊. We now show that ∇θE[∇0θLT (θ0)] =

T−1
PT

t=1E[∆θθ ln f
∗
t (Yt, θ0)] and that the latter is nonsingular. For u(z) in (22) we have
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du(z)/dz = u(z) + [u(z)]2, hence, for any t, 1 6 t 6 T, T > 1,

∆θθ ln f
∗
t (Yt, θ)

=
∆θθλ(θ)

λ(θ)
− ∇θλ(θ)∇θλ(θ)

0

[λ(θ)]2
+∆θθλ(θ)[F

0
t (Yt)− F 0

t (qt(θ))][1I(qt(θ)− Yt)− α]

+ 2∇θλ(θ)∇θqt(θ)
0 ©f0t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[F

0
t (Yt)− F 0

t (qt(θ))]
ª

+ λ(θ)∇θqt(θ)∇θqt(θ)
0
½
df0t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)]

−2f0t (qt(θ))δ(qt(θ)− Yt) + [F
0
t (Yt)− F 0

t (qt(θ))]
dδ(qt(θ)− Yt)

dq

¾
+ λ(θ)∆θθqt(θ)

©
f0t (qt(θ))[α− 1I(qt(θ)− Yt)] + [F

0
t (Yt)− F 0

t (qt(θ))]δ(qt(θ)− Yt)
ª

+
£
u(λ(θ)x(θ)) + (u(λ(θ)x(θ)))2

¤
(∇θ(λ(θ)x(θ))) (∇θ(λ(θ)x(θ)))

0

+ u(λ(θ)x(θ))∆θθ(λ(θ)x(θ)),(28)

where ∆θθ(λ(θ)x(θ)) = ∆θθλ(θ)x(θ) + 2∇θλ(θ)∇θx(θ)
0 + λ(θ)∆θθx(θ) and

∆θθx(θ)

=

½
df0t (qt(θ))

dq
[α− 1I(qt(θ)− Yt)]− 2f0t (qt(θ))δ(qt(θ)− Yt)

+
dδ(qt(θ)− Yt)

dq
[α− F 0

t (qt(θ))]

¾
∇θqt(θ)∇θqt(θ)

0

+
©
f0t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[α− F 0

t (qt(θ))]
ª
∆θθqt(θ).

Now, note that u(z) + [u(z)]2 = 1/z2 − 1/12 + o(1) in the neighborhood of 0 so that

£
u(λ(θ)x(θ)) + (u(λ(θ)x(θ)))2

¤
(∇θ(λ(θ)x(θ))) (∇θ(λ(θ)x(θ)))

0

=
∇θλ(θ)∇θλ(θ)

0

[λ(θ)]2
+ 2
∇θλ(θ)∇θx(θ)

0

λ(θ)x(θ)
+∇θqt(θ)∇θqt(θ)

0×½
f0t (qt(θ))

[α− 1I(qt(θ)− Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α− F 0
t (qt(θ))]

x(θ)

¾2
+ op(1),(29)
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in the neighborhood of θ0. Similarly,

u(λ(θ)x(θ))∆θθ(λ(θ)x(θ))

= −∆θθλ(θ)

λ(θ)
− 1
2
∆θθλ(θ)x(θ)− 2

∇θλ(θ)∇θx(θ)
0

λ(θ)x(θ)

−∇θqt(θ)∇θqt(θ)
0
½
df0t (qt(θ))

dq

[α− 1I(qt(θ)− Yt)]

x(θ)

−2f
0
t (qt(θ))δ(qt(θ)− Yt)

x(θ)
+

dδ(qt(θ)− Yt)

dq

[α− F 0
t (qt(θ))]

x(θ)

¾
−∆θθqt(θ)

½
f0t (qt(θ))

[α− 1I(qt(θ)− Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α− F 0
t (qt(θ))]

x(θ)

¾
+ op(1),(30)

in the neighborhood of θ0. Combining (28) with (29) and (30), we then get that, for any t,

1 6 t 6 T, T > 1,

∆θθ ln f
∗
t (Yt, θ)

= ∆θθλ(θ)

½
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

¾
+∇θqt(θ)∇θqt(θ)

0
½
f0t (qt(θ))

[α− 1I(qt(θ)− Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α− F 0
t (qt(θ))]

x(θ)

¾2
−∇θqt(θ)∇θqt(θ)

0
½
df0t (qt(θ))

dq

[α− 1I(qt(θ)− Yt)]

x(θ)

−2f
0
t (qt(θ))δ(qt(θ)− Yt)

x(θ)
+

dδ(qt(θ)− Yt)

dq

[α− F 0
t (qt(θ))]

x(θ)

¾
−∆θθqt(θ)

½
f0t (qt(θ))

[α− 1I(qt(θ)− Yt)]

x(θ)
+ δ(qt(θ)− Yt)

[α− F 0
t (qt(θ))]

x(θ)

¾
+ op(1),(31)

in the neigborhood of θ0. Using α = F 0
t (qt(θ0)) and x(θ0) = −α(1− α) we have

|∆θθ ln f
∗
t (Yt, θ0)| 6 |∆θθλ(θ0)|

5

2
+ |∇θqt(θ0)∇θqt(θ0)

0|
µ

M2
0

[α(1− α)]2
+

M1

α(1− α)

¶
+|∆θθqt(θ0)|

M0

α(1− α)
+ op(1),

with |∆θθλ(θ0)| <∞. From (A7)(i) we have E[|∇θqt(θ0)∇θqt(θ0)
0|] <∞ and E[|∆θθqt(θ0)|]

< ∞, which shows that the expectation of the right hand side of the above inequality is
finite; hence ∇θE[∇0θ ln f∗t (Yt, θ0)] = E[∆θθ ln f

∗
t (Yt, θ0)] for any t, 1 6 t 6 T, T > 1 and so

∇θE[∇0θLT (θ0)] = T−1
PT

t=1E[∆θθ ln f
∗
t (Yt, θ0)] as desired.
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Now consider E[∆θθ ln f
∗
t (Yt, θ0)]; for any t, 1 6 t 6 T, T > 1, we have

E

µ
∆θθλ(θ0)

½
[F 0

t (Yt)− F 0
t (qt(θ0))][1I(qt(θ0)− Yt)− α]− 1

2
x(θ0)

¾¶
= ∆θθλ(θ0)

∙
E
¡
[F 0

t (Yt)− α][1I(qt(θ0)− Yt)− α]
¢
+
1

2
α(1− α)

¸
= ∆θθλ(θ0)

∙
−1
2
α(1− α) +

1

2
α(1− α)

¸
= 0,

since

Et

¡
[F 0

t (Yt)− α][1I(qt(θ0)− Yt)− α]
¢

= (1− α)

Z qt(θ0)

−∞
[F 0

t (y)− α]f0t (y)dy − α

Z +∞

qt(θ0)

[F 0
t (y)− α]f0t (y)dy

= (1− α)
h1
2
[F 0

t (y)− α]2
iqt(θ0)
−∞

− α
h1
2
[F 0

t (y)− α]2
i+∞
qt(θ0)

= −1
2
α(1− α).

In addition, α = F 0
t (qt(θ0)) and x(θ0) = −α(1− α) so

E

Ã
∇θqt(θ0)∇θqt(θ0)

0
½
f0t (qt(θ0))

[α− 1I(qt(θ0)− Yt)]

x(θ0)
+ δ(qt(θ0)− Yt)

[α− F 0
t (qt(θ0))]

x(θ0)

¾2!

= E

µ
∇θqt(θ0)∇θqt(θ0)

0Et

½
[f0t (qt(θ0))]

2[α− 1I(qt(θ0)− Yt)]
2

α2(1− α)2

¾¶
= E

µ
∇θqt(θ0)∇θqt(θ0)

0 [f
0
t (qt(θ0))]

2

α(1− α)

¶
,

where the last equality uses Et ([1I(qt(θ0)− Yt)− α]2) = α(1− α), a.s.− P . Similarly,

E

µ
∇θqt(θ0)∇θqt(θ0)

0
½
df0t (qt(θ0))

dq

[α− 1I(qt(θ0)− Yt)]

x(θ0)

−2f
0
t (qt(θ0))δ(qt(θ0)− Yt)

x(θ0)
+

dδ(qt(θ0)− Yt)

dq

[α− F 0
t (qt(θ0))]

x(θ0)

¾¶
= E

µ
∇θqt(θ0)∇θqt(θ0)

0Et

½
df0t (qt(θ0))

dq

[1I(qt(θ0)− Yt)− α]

α(1− α)
+ 2

f0t (qt(θ0))δ(qt(θ0)− Yt)

α(1− α)

¾¶
= 2E

µ
∇θqt(θ0)∇θqt(θ0)

0 [f
0
t (qt(θ0))]

2

α(1− α)

¶
,
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where the last equality uses Et (1I(qt(θ0)− Yt)− α) = 0, a.s. − P and Et(δ(qt(θ0) − Yt)) =

f0t (qt(θ0)), a.s.− P . Finally, using the same reasoning gives

E

µ
∆θθqt(θ0)

½
f0t (qt(θ0))

[α− 1I(qt(θ0)− Yt)]

x(θ0)
+ δ(qt(θ0)− Yt)

[α− F 0
t (qt(θ0))]

x(θ0)

¾¶
= 0.

Combining the above results then yields, by (31),

(32) E[∆θθ ln f
∗
t (Yt, θ0)] = −E

µ
∇θqt(θ0)∇θqt(θ0)

0 [f
0
t (qt(θ0))]

2

α(1− α)

¶
,

for all t, 1 6 t 6 T, T > 1. Hence, for any χ ∈ Rk,

χ0∇θE[∇0θLT (θ0)]χ = −T−1
TX
t=1

E

µ
|∇θqt(θ0)

0χ|2 [f
0
t (qt(θ0))]

2

α(1− α)

¶
6 0,

with equality if and only if χ = 0. Hence ∇θE[∇0θLT (θ0)] is negative definite (therefore

nonsingular).

We now check condition (iv) of Theorem 7.2 by using a CLT for α-mixing sequences (e.g.

Theorem 5.20 in White, 2001, p.130). By (A6), for any θ ∈ Θ̊, the sequence {∇θ ln f
∗
t (Yt, θ)}

is strong mixing (i.e. α-mixing) with α of size −r/(r − 2), r > 2 (see, e.g., Theorem

3.49 in White, 2001, p.50). Moreover, using (23) and (A1), E[∇θ ln f
∗
t (Yt, θ0)] = 0 and

using (A7)(i), E[|∇θ ln f
∗
t (Yt, θ0)|r] 6 {M0/[α(1 − α)]}rE[supθ∈Θ |∇θqt(θ)|r] < ∞, for all t,

1 6 t 6 T, T > 1. Now,

Var
³
T−1

XT

t=1
∇θ ln f

∗
t (Yt, θ0)

´
= E

³
T−1

XT

t=1
∇θ ln f

∗
t (Yt, θ0)∇θ ln f

∗
t (Yt, θ0)

0
´

= E

µ
T−1

XT

t=1

[f0t (qt(θ0))]
2[1I(qt(θ0)− Yt)− α]2

[α(1− α)]2
∇θqt(θ0)∇θqt(θ0)

0
¶

= V 0
T

where the first equality uses Et (∇θ ln f
∗
t (Yt, θ0)) = 0, a.s. − P , implied by (A1), and the

last equality uses Et ([1I(qt(θ0)− Yt)− α]2) = α(1−α), a.s.−P . Applying Theorem 5.20 in

White (2001) we then have (V 0
T )
−1/2√T∇θLT (θ0)

d→ N (0, Id) with V 0
T as defined in Theorem

3.

Finally, we check the stochastic equicontinuity condition (v) of Theorem 7.2 by veryfing

that all the assumptions in Theorem 7.3 in Newey and McFadden (1994) hold. (The main

reason for using Theorem 7.3 is that it does not put any restrictions on the dependence
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structure of {(Yt,W 0
t)
0}.) For any t, 1 6 t 6 T, T > 1, let

rt(θ) = |∇θ ln f
∗
t (Yt, θ)−∇θ ln f

∗
t (Yt, θ0)−∆θθ ln f

∗
t (Yt, θ)

0(θ − θ0)|/|θ − θ0|,

for θ ∈ Θ̊. Using u(z) = −1/z−1/2+o(1) in the neigborhood of 0 and λ(θ)x(θ) = op(|θ−θ0|)
in the neigborhood of θ0, we have, from (23), (26) and (28), rt(θ) 6 r

(1)
t (θ)+r

(2)
t (θ)+r

(3)
t (θ)+

op(1), where

r
(1)
t (θ) ≡

¯̄̄̄
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− x(θ)

2

¯̄̄̄
|∇θλ(θ)−∆θθλ(θ)

0(θ − θ0)|
|θ − θ0|

,

r
(2)
t (θ) ≡

¯̄̄̄
f0t (qt(θ))

2
[1I(qt(θ)− Yt)− α] + δ(qt(θ)− Yt)

∙
F 0
t (qt(θ))

2
− F 0

t (Yt) +
α

2

¸¯̄̄̄
|λ(θ)∇θqt(θ)|
|θ − θ0|

,

r
(3)
t (θ) ≡

¯̄̄̄
∇θx(θ)

x(θ)
− ∇θx(θ0)

x(θ0)
− ∆θθx(θ)

0(θ − θ0)

x(θ)
+
∇θx(θ)∇θx(θ)

0(θ − θ0)

[x(θ)]2

¯̄̄̄
/|θ − θ0|.

With probability one, r(1)t (θ) 6 2|∇θλ(θ)−∆θθλ(θ)
0(θ − θ0)|/|θ − θ0| for any θ ∈ Θ̊. Given

that λ(·) is twice continously differentiable on Rk, with probability one r(1)t (θ)→ 0 as θ→ θ0

and there exists ε1 > 0 such that

(33) E
³
supθ∈Θ̊:|θ−θ0|<ε1 r

(1)
t (θ)

´
<∞.

Now, note that |f0t (qt(θ))[1I(qt(θ)− Yt)− α]| 6M0 for any θ ∈ Θ̊, so

r
(2)
t (θ) 6 1

2

n
M0 + δ(qt(θ)− Yt)[F

0
t (qt(θ))− 2F 0

t (Yt) + α]
o |λ(θ)∇θqt(θ)|

|θ − θ0|

6 1

2

n
M0 + δ(qt(θ)− Yt)[F

0
t (qt(θ))− 2F 0

t (Yt) + α]
o
|∇θλ(θc)| · |∇θqt(θ)|

for some θc ≡ cθ0+(1−c)θ with c ∈ (0, 1). Hence, using the fact that∇θλ(·) is continuous on
Rk, that ∇θλ(θ0) = 0 and that δ(qt(θ0)−Yt)[F

0
t (qt(θ0))− 2F 0

t (Yt)+α] = 0, with probability



44 KOMUNJER AND VUONG

one r(2)t (θ)→ 0 as θ→ θ0. Moreover, for some θd ≡ dθ0 + (1− d)θ, d ∈ (0, 1),

E
³
supθ∈Θ̊:|θ−θ0|<ε1 r

(2)
t (θ)

´
6 E

Ã
sup

θ∈Θ̊:|θ−θ0|<ε1

nM0

2
+Et

µ
δ(qt(θ)− Yt)

¯̄̄̄
F 0
t (qt(θ))

2
− F 0

t (Yt) +
α

2

¯̄̄̄¶o
× |∇θλ(θc)| · |∇θqt(θ)|

!

6 M0

2
· E
Ã

sup
θ∈Θ̊:|θ−θ0|<ε1

|∇θλ(θc)| · |∇θqt(θ)|
!

+
1

2
E

Ã
sup

θ∈Θ̊:|θ−θ0|<ε1
|∇θλ(θc)| · |∇θqt(θ)| · |α− F 0

t (qt(θ))|f0t (qt(θ))
!

6 M0

2
·
Ã

sup
θ∈Θ̊:|θ−θ0|<ε1

|∇θλ(θc)|
!

×
"
E

Ã
sup

θ∈Θ̊:|θ−θ0|<ε1
|∇θqt(θ)|

!
+M0E

Ã
sup

θ∈Θ̊:|θ−θ0|<ε1
|∇θqt(θ)| · |∇θqt(θd)|

!#
<∞,(34)

where the last inequality uses the continuity of ∇θλ(·) on Rk, (A7)(i) and the Cauchy-

Schwarz inequality. Finally, let rx(θ) = [x(θ0)− x(θ)−∇θx(θ)
0(θ0 − θ)] /|θ0−θ| andRx(θ) =

[∇θx(θ0)−∇θx(θ)−∆θθx(θ)
0(θ0−θ)]/|θ0−θ| and note that with probability one supθ∈Θ̊:|θ−θ0|<ε1

|rx(θ)| → 0 and supθ∈Θ̊:|θ−θ0|<ε1 |Rx(θ)| → 0 as θ → θ0. This implies that with probability

one r(3)t (θ)→ 0 as θ→ θ0. Moreover

E
³
supθ∈Θ̊:|θ−θ0|<ε1 r

(3)
t (θ)

´
6 E

³
supθ∈Θ̊:|θ−θ0|<ε1[|rx(θ)|+ |Rx(θ)|]/|x(θ)|

´
6 E

³
supθ∈Θ̊:|θ−θ0|<ε1[1/|x(θ)|]

³
supθ∈Θ̊:|θ−θ0|<ε1 |rx(θ)|+ supθ∈Θ̊:|θ−θ0|<ε1 |Rx(θ)|

´´
<∞,(35)

where the last inequality uses the fact that supt>1 supθ∈Θ F 0
t (qt(θ)) ∈ (a, b) with a > 0 and

b < 1, soC3 ≡ supt>1 supy∈R supθ∈Θ
³
|[1I(qt(θ)− Yt)− α][1− 1I(qt(θ)− y)− F 0

t (qt(θ))]|
−1
´
<

∞. Combining results (33)− (35) then gives that with probability one rt(θ)→ 0 as θ → θ0

and that E
³
supθ∈Θ̊:|θ−θ0|<ε1 rt(θ)

´
< ∞. It remains to be shown that for all θ in a neigh-

borhood of θ0 we have T−1
PT

t=1∆θθ ln f
∗
t (Yt, θ)

p→∇θE[∇0θLT (θ)]. By (A6), for any θ ∈ Θ̊,
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the sequence {∆θθ ln f
∗
t (Yt, θ)} is strong mixing (i.e. α-mixing) with α of size −r/(r − 2),

r > 2 (see, e.g. Theorem 3.49 in White, 2001, p.50). Now note that given θ ∈ Θ̊, there exists

θa = aθ0 + (1− a)θ, a ∈ (0, 1), such that for any η > 0

P
¡
δ(qt(θ)− Yt)

¯̄
α− F 0

t (qt(θ))
¯̄
> η

¢
6 E

¡¯̄
α− F 0

t (qt(θ))
¯̄
f0t (qt(θ))

¢
/η

6 |θ − θ0|E
¡
|∇θqt(θa)|f0t (qt(θa))f0t (qt(θ))

¢
/η

6 |θ − θ0|M2
0E[supθ∈Θ |∇θqt(θ)|]/η,(36)

so that in a neighborhood of θ0, δ(qt(θ)− Yt) |α− F 0
t (qt(θ))| = op(1). Similarly,

P
¡
[dδ(qt(θ)− Yt)/dq]

¯̄
α− F 0

t (qt(θ))
¯̄
> η

¢
6 E

¡¯̄
α− F 0

t (qt(θ))
¯̄
df0t (qt(θ))/dq

¢
/η

6 |θ − θ0|M0M1E[supθ∈Θ |∇θqt(θ)|]/η(37)

where the first inequality uses the fact that Et(dδ(qt(θ)− Yt)/dq) = df0t (qt(θ))/dq, a.s.− P .

From (31) we have that for any t, 1 6 t 6 T, T > 1,

∆θθ ln f
∗
t (Yt, θ)

= ∆θθλ(θ)

½
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

¾
+
∇θqt(θ)∇θqt(θ)

0

[x(θ)]2

n¡
f0t (qt(θ))[α− 1I(qt(θ)− Yt)]

¢2
+
¡
δ(qt(θ)− Yt)[α− F 0

t (qt(θ))]
¢2

−x(θ)[df0t (qt(θ))/dq][α− 1I(qt(θ)− Yt)] + x(θ)[dδ(qt(θ)− Yt)/dq][α− F 0
t (qt(θ))]

ª
− ∆θθqt(θ)

x(θ)

©
f0t (qt(θ))[α− 1I(qt(θ)− Yt)] + δ(qt(θ)− Yt)[α− F 0

t (qt(θ))]
ª
+ op(1),

in a neighborhood of θ0, which combined with (36) and (37) gives

∆θθ ln f
∗
t (Yt, θ)

= ∆θθλ(θ)

½
[F 0

t (Yt)− F 0
t (qt(θ))][1I(qt(θ)− Yt)− α]− 1

2
x(θ)

¾
∇θqt(θ)∇θqt(θ)

0

[x(θ)]2

n¡
f0t (qt(θ))[α− 1I(qt(θ)− Yt)]

¢2 − x(θ)[df0t (qt(θ))/dq][α− 1I(qt(θ)− Yt)]
o

− ∆θθqt(θ)

x(θ)

©
f0t (qt(θ))[α− 1I(qt(θ)− Yt)]

ª
+ op(1),
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so that for a given ε > 0, there is a positive constant nr,ε such that

|∆θθ ln f
∗
t (Yt, θ)|r+ε

6 nr,ε
³
|∆θθλ(θ)|r+ε (5/2)r+ε + |∇θqt(θ)∇θqt(θ)

0|r+εC2(r+ε)
3

©
M2
0 +M1

ªr+ε
+|∆θθqt(θ)|r+εCr+ε

3 M r+ε
0

¢
+ op(1),

in a neigborhood of θ0, and so using (A7)(i) and the fact that |∆θθλ(θ)| <∞ in a neighbor-

hood of θ0, we have E[|∆θθ ln f
∗
t (Yt, θ)|r+ε] <∞. The weak LLN then follows from Corollary

3.48 in White (2001). This completes the proof of asymptotic normality of the MLE θ̃
∗
T . ¤

Proof of Lemma 7. We proceed in two steps.

STEP1: To prove (i) and (iii), we start by showing that for any θ ∈ Θ\{θ0}, the function
f∗t (·, θ) in (6) is a probability density, for all t, 1 6 t 6 T, T > 1. First, note that for

any θ ∈ Θ\{θ0}, f ∗t (·, θ) is continuous and f∗t (·, θ) > 0 on R. Thus it suffices to show
that

R
R f

∗
t (y, θ)dy = 1. Consider the change of variable u ≡ λ(θ)F 0

t (y), where λ(θ)F 0
t (·)

is strictly increasing in y since λ(θ) = Λ(θ − θ0) > 0 and f0t (·) is strictly positive (so
du = λ(θ)f0t (y)dy). To simplify the notation, we let qt(θ) ≡ qα(Wt, θ). Noting that 1I(qt(θ)−
y) = 1I[λ(θ)F 0

t (qt(θ))− u], we haveZ
R
f∗t (y, θ)dy =

λ(θ)F 0t (qt(θ))Z
0

α(1− α) exp{(1− α)[u− λ(θ)F 0
t (qt(θ))]}

1− exp[−(1− α)λ(θ)F 0
t (qt(θ))]

du

+

Z λ(θ)

λ(θ)F0t (qt(θ))

α(1− α) exp{−α[u− λ(θ)F 0
t (qt(θ))]}

1− exp{−αλ(θ)[1− F 0
t (qt(θ))]}

du

=
α exp[−(1− α)λ(θ)F 0

t (qt(θ))]

1− exp[−(1− α)λ(θ)F 0
t (qt(θ))]

h
exp[(1− α)u

iλ(θ)F 0t (qt(θ))
0

+
(1− α) exp[αλ(θ)F 0

t (qt(θ))]

1− exp{−αλ(θ)[1− F 0
t (qt(θ))]}

h
− exp(−αu)

iλ(θ)
λ(θ)F 0t (qt(θ))

= α+ (1− α) = 1,

which shows that f∗t (·, θ) is a probability density for any θ ∈ Θ\{θ0}.
We now show that this is also true for θ0 and that f∗t (·, θ0) = f0t (·). For this, let

Pt(θ) ≡ α(1− α)λ(θ) exp{λ(θ)[F 0
t (y)− F 0

t (qt(θ))][1I(qt(θ)− y)− α]},(38)

Qt(θ) ≡ 1− exp{λ(θ)[1− F 0
t (qt(θ))− 1I(qt(θ)− y)][1I(qt(θ)− y)− α]},(39)

so that f∗t (y, θ) = f0t (y)Pt(θ)/Qt(θ). By (A0)(ii), the functions Pt and Qt are at least twice

continuously differentiable on Θ a.s. − P ; thus for every (θ, θ0) ∈ Θ2 we can write their
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respective Taylor developments of order two as

Pt(θ) =
X
|l|62

DlPt(θ0)

l!
(θ − θ0)

l + o(|θ − θ0|2),(40)

Qt(θ) =
X
|l|62

DlQt(θ0)

l!
(θ − θ0)

l + o(|θ − θ0|2).(41)

Straightforward though lengthy computations show that, for any function λ(θ) = Λ(θ − θ0)

such that ∇θΛ(0) = 0 and ∆θθΛ(0) nonsingular, we have

(42) Pt(θ0) = 0, D
1Pt(θ0) = 0,D

2Pt(θ0) = α(1− α)D2λ(θ0),

and

(43) Qt(θ0) = 0,D
1Qt(θ0) = 0, D

2Qt(θ0) = α(1− α)D2λ(θ0),

Hence

Pt(θ) = 1
2
α(1− α)D2λ(θ0)(θ − θ0)

2 + o(|θ − θ0|2),(44)

Qt(θ) = 1
2
α(1− α)D2λ(θ0)(θ − θ0)

2 + o(|θ − θ0|2).(45)

Given the nonsingularity of∆θθΛ(0), an immediate consequence of l’Hôpital’s rule and (44)−
(45) is that limθ→θ0 Pt(θ)/Qt(θ) = 1. Hence by a.s.−P continuity of f∗t (y, ·) on Θ, we have,

for any y ∈ R, f∗t (y, θ0) = limθ→θ0 f
∗
t (y, θ) = f0t (y). This shows that f

∗
t (·, θ) is a probability

density for any θ ∈ Θ, and that f∗t (·, θ0) = f0t (·), so that f0 ∈ P∗, as desired.
STEP 2: It remains to be shown that this parametric model P∗ satisfies the conditional

moment restriction in (ii) for all θ ∈ Θ. This restriction is clearly satisfied when θ = θ0 as

f∗t (·, θ0) = f0t (·) and [θ0, f0t (·)] satisfies (A1) by assumption. When θ 6= θ0, using again the

change of variable u ≡ λ(θ)F 0
t (y), we have

Eθ[1I(qt(θ)− Yt)|Wt] =

Z qt(θ)

−∞
f∗t (y, θ)dy

=

Z λ(θ)F 0t (qt(θ))

0

α(1− α) exp{(1− α)[u− λ(θ)F 0
t (qt(θ))]}

1− exp[−(1− α)λ(θ)F 0
t (qt(θ))]

du = α.

¤

Proof of Theorem 5. From Theorem 3 we know that θ∗T which minimizes Ψ
∗
T (θ) is consistent

for θ0. Thus, in order to establish the consistency of θ̂T , it suffices to show that Ψ̂T (θ)−Ψ∗T (θ)
converges uniformly (in θ) to zero, i.e. supθ∈Θ |Ψ̂T (θ)−Ψ∗T (θ)| = op(1). For this we need a
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uniform consistency property of DλĜ(·, ·), where Dλ denotes the λth derivative with respect

to y.

Lemma 8. Suppose that (A6), (A8)-(A9), (A11) hold. Then, sup(y,w)∈Rm+1 |DλĜ(y,w) −
H0

λT (y, w)| = Op[1/(
√
ThλyTh

m
wT )]+Op(h

R
wT )+Op(h

R
yT ), where H

0
λT (y,w) ≡ DλF 0(y|w)ḡ0T (w)

and λ = 0, 1, 2.

We will also need the uniform consistency of ĝ(·) for ḡ0T (·) ≡ (1/T )
PT

t=1 g
0
t (·):

(46) sup
w∈Rm

|ĝ(w)− ḡ0T (w)| = Op[1/(
√
ThmwT )] +Op(h

R
wT ),

which follows from Theorem 1(a) in Andrews (1995) with η = ∞ given (A6), (A8) and

(A11)(i)-(ii). We let qt(θ) = qα(Wt, θ) as previously, and b�T ≡ bT + �T , d�t ≡ 1I[ḡ0T (Wt)− b�T ]

and Ψ�
T (θ) be equal to Ψ̂T (θ) where F̂t(·) ≡ dtF̂ (·|Wt) is replaced by d�tF̂ (·|Wt), i.e.

(47) Ψ�
T (θ) =

1

T

TX
t=1

d�t[α− 1I(qt(θ)− Yt)][F̂ (Yt|Wt)− F̂ (qt(θ)|Wt)],

where {�T} > 0 is an appropriate vanishing sequence. The remainder of the proof adapts

the consistency proof of Theorem 1 in Lavergne and Vuong (1996). Let �T be such that

�T = o(bT ), �T
√
ThmwT →∞, �T/hRwT →∞ and �T/h

R
yT →∞ . As

sup
θ∈Θ

|Ψ̂T (θ)−Ψ∗T (θ)| 6 sup
θ∈Θ

|Ψ̂T (θ)−Ψ�
T (θ)|+ sup

θ∈Θ
|Ψ�

T (θ)−Ψ∗T (θ)|,

whereΨ�
T (θ) is defined in Equation (47), it suffices to prove that both terms in the right-hand

side are op(1). Given Lemma 8 and Equation (46) we will use

a−1T sup
(y,w)∈Rm+1

|Ĝ(y, w)−H0
0T (y, w)| = op(1),(48)

a−1T sup
w∈Rm

|ĝ(w)− ḡ0T (w)| = op(1),(49)

which hold for any sequence {aT} satisfying aT
√
ThmwT →∞, aT/hRwT →∞ and aT/h

R
yT →

∞. We will also use the identity

(50) F̂ (y|w)− F 0(y|w) = 1

ĝ(w)
[Ĝ(y, w)−H0

0T (y,w)]−
F 0(y|w)
ĝ(w)

[ĝ(w)− ḡ0T (w)].

STEP 1: We first show that supθ∈Θ |Ψ̂T (θ)−Ψ�
T (θ)| = op(1). We have

Ψ̂T (θ)−Ψ�
T (θ) =

1

T

TX
t=1

(Jt −Ht)[α− 1I(qt(θ)− Yt)][F̂ (Yt|Wt)− F̂ (qt(θ)|Wt)]

= ∆Ψ̂1T −∆Ψ̂2T +∆Ψ̂3T ,
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where Jt = dt(1− d�t), Ht = (1− dt)d
�
t and

∆Ψ̂1T =
1

T

TX
t=1

(Jt −Ht)[α− 1I(qt(θ)− Yt)][F̂ (Yt|Wt)− F 0(Yt|Wt)],

∆Ψ̂2T =
1

T

TX
t=1

(Jt −Ht)[α− 1I(qt(θ)− Yt)][F̂ (qt(θ)|Wt)− F 0(qt(θ)|Wt)],

∆Ψ̂3T =
1

T

TX
t=1

(Jt −Ht)[α− 1I(qt(θ)− Yt)][F
0(Yt|Wt)− F 0(qt(θ)|Wt)].

As Ht 6 1I[|ĝ(Wt)− ḡ0T (Wt)|− �T ] and the event {supw |ĝ(w)− ḡ0T (w)| > �T} has asymptotic
probability 0 because Property (49) holds with aT = �T by construction of �T , we have

sup16t6T,T>1Ht = 0 with probability approaching one. Hence, we need to consider the Jt

terms only. Namely, it suffices to show that supθ∈Θ∆Ψ̂J
jT = op(1) for j = 1, 2, 3. Using

Identity (50) and the definition of Jt, we obtain

|∆Ψ̂J
1T | 6 b−1T

"
sup

(y,w)∈Rm+1
|Ĝ(y,w)−H0

0T (y,w)|+ sup
w∈Rm

|ĝ(w)− g0T (w)|
#
1

T

TX
t=1

Jt

Because (1/T )
PT

t=1 Jt 6 1, we get supθ∈Θ∆Ψ̂J
1T = op(1) in view of Properties (48) − (49)

with aT = bT under our assumptions on bT . Similarly, supθ∈Θ |∆Ψ̂J
2T | = op(1). Regarding

∆Ψ̂J
3T , we have |∆Ψ̂J

3T | 6 (1/T )
PT

t=1 Jt. But (1/T )
PT

t=1 Jt 6 (1/T )
PT

t=1(1− d�t) with

E

"
1

T

TX
t=1

(1− d�t)

#
=
1

T

TX
t=1

Z
{w:ḡ0T (w)<b�T }

gt(w)dw =

Z
{w:ḡ0T (w)<b�T }

ḡ0T (w)dw = o(1),

where the last equality follows by taking cT = b�T in (A10)(i). Hence, (1/T )
PT

t=1(1− d�t) =

op(1) by Markov inequality. Thus,

(51)
1

T

TX
t=1

Jt = op(1),

and supθ∈Θ∆Ψ̂J
3T = op(1).
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STEP 2: We next show that supθ∈Θ |Ψ�
T (θ)−Ψ∗T (θ)| = op(1). We have

Ψ�
T (θ)−Ψ∗T (θ) =

1

T

TX
t=1

d�t[α− 1I(qt(θ)− Yt)][F̂ (Yt|Wt)− F 0(Yt|Wt)]

− 1
T

TX
t=1

d�T [α− 1I(qt(θ)− Yt)][F̂ (qt(θ)|Wt)− F 0(qt(θ)|Wt)]

− 1
T

TX
t=1

(1− d�T )[α− 1I(qt(θ)− Yt)][F
0(Yt|Wt)− F 0(qt(θ)|Wt)]

≡ ∆Ψ�
1T −∆Ψ�

2T −∆Ψ�
3T

Thus, it suffices to show that supθ∈Θ∆Ψ�
jT = op(1) for j = 1, 2, 3. Because �T = o(bT ),

b�T ≡ bT + �T is a sequence satisfying b�T
√
ThmwT → ∞, b�T/hRwT → ∞ and b�T/h

R
yT → ∞

so that Properties (48) − (49) hold with aT = b�T . In particular, Property (49) implies

P
³
inf{w:ḡ0T (w)>b�T } ĝ(w) > b�T (1− η)

´
→ 1 as T →∞ for any η ∈ (0, 1). Thus, using Identity

(50), we have

|∆Ψ�
1T | 6 (b�T )−1(1−η)−1

(
sup

(y,w)∈Rm+1
|Ĝ(y, w)−H0

0T (y, w)|+ sup
w∈Rm

|ĝ(w)− ḡ0T (w)|
)
1

T

TX
t=1

d�t,

with probability approaching 1, where (1/T )
PT

t=1 d
�
t 6 1. Hence, supθ∈Θ∆Ψ�

1T = op(1)

using Properties (48) − (49) with aT = b�T . Similarly, supθ∈Θ∆Ψ�
2T = op(1). Regarding

∆Ψ�
3T , we have supθ∈Θ |∆Ψ�

3T | 6 (1/T )
PT

t=1(1− d�T ) = op(1) from Step 1. ¤

Proof of Lemma 8. The proof adapts that of Lemma A-1 in Andrews (1995) to incorporate

the supremum over y-values, which leads to the additional term Op(h
R
yT ). It is done in three

steps. Recall that L(·) was defined as L(y) ≡
R
1I(y−u)K0(u)du. Let It(y) be L[(y−Yt)/hyT ]

if λ = 0,K0[(y−Yt)/hyT ] if λ = 1, andK 0
0[(y−Yt)/hyT ] if λ = 2. Thus, omitting the subscript

T , we have

sup
(y,w)∈Rm+1

|DλĜ(y, w)−H0
λ(y,w)|

= sup
(y,w)∈Rm+1

¯̄̄̄
¯ 1

Thλyh
m
w

TX
t=1

It(y)K

µ
w −Wt

hw

¶
−DλF 0(y|w) 1

T

TX
t=1

g0t (w)

¯̄̄̄
¯
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for λ = 0, 1, 2. The desired result then follows from: (i)

sup
(y,w)∈Rm+1

¯̄̄̄
¯ 1

Thλyh
m
w

TX
t=1

It(y)K

µ
w −Wt

hw

¶

− 1

Thλyh
m
w

TX
t=1

E

∙
It(y)K

µ
w −Wt

hw

¶¸¯̄̄̄
¯ = Op

Ã
1√

Thλyh
m
w

!
,(52)

which is proved in Step 1 by adapting Andrews’ (1995) proof of Lemma A-2, (ii)

sup
(y,w)∈Rm+1

¯̄̄̄
¯ 1

Thλyh
m
w

TX
t=1

E

∙
It(y)K

µ
w −Wt

hw

¶¸

− 1

Thmw

TX
t=1

E

∙
DλF 0(y|Wt)K

µ
w −Wt

hw

¶¸¯̄̄̄
¯ = Op

¡
hRy
¢
,(53)

which is proved in Step 2, and (iii)

sup
(y,w)∈Rm+1

¯̄̄̄
¯ 1

Thmw

TX
t=1

E

∙
DλF 0(y|Wt)K

µ
w −Wt

hw

¶¸

− DλF 0(y|w) 1
T

TX
t=1

g0t (w)

¯̄̄̄
¯ = Op

¡
hRw
¢
,(54)

which is proved in Step 3.

STEP1: When λ = 0, note that |It(y)| 6
R
|K0(u)|du < ∞ by (A11)(iii). When λ = 1,

|It(y)| 6 supy∈R |K0(y)| < ∞ by (A11)(iii). When λ = 2, |It(y)| 6 supy∈R |K 0
0(y)| < ∞ by

(A11)(iv). Hence, It(y) is bounded by some C0 < ∞. Moreover, (A6) and Theorem 3.49

in White (2001) guarantee that for every y, the sequence {(It(y),W 0
t)
0} is strong mixing

with α of size −r/(r − 2), r > 2. Hence, for any (t, s), 1 6 t, s 6 T , T > 1, we have

α(|t − s|) = O(|t − s|−r/(r−2)−�) for some � > 0 (see Definition 3.45 in White, 2001), and

C1 ≡
P∞

s=0 α(s) <∞. Thus, by Billingsley (1995, Lemma 2, p.365), we have¯̄̄
Cov

³
It(y) cos(v

0Wt), Iu(y) cos(v
0Wu)

´¯̄̄
6 4C2

0α(|t− u|),

for any v ∈ Rm and any y, t, u ∈ R. Hence, instead of (A.15) in Andrews (1995), we have

Var

Ã
1

T

TX
t=1

It(y) cos(v
0Wt)

!
6 8C2

0

1

T

T−1X
t=0

α(s) 6 8C2
0C1
T

.

As this also holds for sin(·) replacing cos(·), Lyapunov inequality implies

E

¯̄̄̄
¯ 1T

TX
t=1

n
It(y) exp(iv

0Wt)−E[It(y) exp(iv
0Wt)]

o¯̄̄̄¯ 6 2C0
r
8C1
T

,
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for any v ∈ Rm and any y ∈ R. Let LT denote the left-hand side of (52). Using (A.11) in

Andrews (1995) with λ = 0 and the above inequality, we obtain

E(LT ) 6 E

ÃZ
sup
y∈R

¯̄̄̄
¯ 1Thλy

TX
t=1

n
It(y) exp(iv

0Wt)− E[It(y) exp(iv
0Wt)]

o¯̄̄̄¯ |φ(hwv)|dv
!

6 2C0

r
8C1
T

1

hλy

Z
|φ(hwv)|dv =

C2√
Thλyh

m
w

,

where C2 = 2C0
√
8C1

R
|φ(u)|du < ∞ by (A11)(ii) using the change of variable u = hwv.

By Markov inequality Equation (52) follows.

STEP 2: Consider first λ = 0. Using Fubini’s Theorem, we note that

E[It(y)|Wt = w] =

Z
L

µ
y − Y

hy

¶
dF 0(Y |w)

=

Z Z
1I
µ
y − Y

hy
− u

¶
K0(u)dudF

0(Y |w)

=

Z
F 0(y − hyu|w)K0(u)du,(55)

which does not depend on t because of (A9)(i). When λ = 1, using the change of variable

Y = y − hyu, we note that

(56) E

∙
It(y)

hy
|Wt = w

¸
=

Z
1

hy
K0

µ
y − Y

hy

¶
f0(Y |w)dY =

Z
f0(y − hyu|w)K0(u)du.

When λ = 2, using the change of variable Y = y − hyu and integration by parts, we have

E

∙
It(y)

h2y
|Wt = w

¸
=

Z
1

h2y
K 0
0

µ
y − Y

hy

¶
f0(Y |w)dY = 1

hy

Z
f0(y − hyu|w)K 0

0(u)du

=

Z
Df0(y − hyu|w)K0(u)du.(57)
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Now, let LT (y,w) denote the term inside the absolute value on the left-hand side of Equation

(53). Combining Equations (55)-(57) with (A11)(iii), we have

LT (y, w)

=
1

Thmw

TX
t=1

E

½∙
It(y)

hλy
−DλF 0(y|Wt)

¸
K

µ
w −Wt

hw

¶¾

=
1

Thmw

TX
t=1

E

½∙Z
[DλF 0(y − hyu|Wt)−DλF 0(y|Wt)]K0(u)du

¸
K

µ
w −Wt

hw

¶¾

=

Z ∙Z
[DλF 0(y − hyu|W )−DλF 0(y|W )]K0(u)du

¸
K

µ
w −W

hw

¶
1

Thmw

TX
t=1

g0t (W )dW.

Hence, taking an Rth-order Taylor expansion ofDλF 0(y−hyTu|W ) at y, and using (A11)(iii)
we obtain

sup
(y,w)∈Rm+1

|LT (y, w)| 6 hRy sup
(y,w)∈Rm+1

|Dλ+RF 0(y|w)|
Z
|uRK0(u)|du

Z
|K(W̃ )|dW̃

× sup
T>1

sup
w∈Rm

ḡ0T (w),

which establishes Equation (53) because of (A8), (A9)(ii), and (A11)(i,iii).

STEP 3: The study of the bias (54) is standard as in the proof of Lemma A-3 in Andrews

(1995). Using (A9)(i) we have

1

Thmw

TX
t=1

E

∙
DλF 0(y|Wt)K

µ
w −Wt

hw

¶¸
=

1

Thmw

TX
t=1

Z
DλF 0(y|W )K

µ
w −W

hw

¶
g0t (W )dW

=

Z
H0

λ(y,w − hwW̃ )K(W̃ )dW̃ ,

where W̃ = (w −W )/hw. Hence, using a Taylor expansion of order R at w together with

(A11)(i) we obtain

1

Thmw

TX
t=1

E

∙
DλF 0(y|Wt)K

µ
w −Wt

hw

¶¸
−DλF 0(y|w) 1

T

TX
t=1

g0t (w)

=

Z h
H0

λ(y,w − hwW̃ )−H0
λ(y,w)

i
K(W̃ )dW̃

=

Z ⎡⎣X
|r|=R

(−1)R
R!

hRw
∂RH0

λ(y|w − h̃wW̃ )

∂W r1
1 . . . ∂W rm

m

W̃ r1
1 . . . W̃ rm

m

⎤⎦K(W̃ )dW̃ ,

where 0 < h̃w < hw. This establishes Equation (54) using (A8), (A9)(ii) and (A11)(i). ¤
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Proof of Theorem 6. From Equation (9), the first order conditions associated with θ̂T are

(58)
√
T∇θΨ̂T (θ̂T ) = 0, a.s.− P,

where∇θΨ̂T (θ) = (1/T )
PT

t=1{1I[qt(θ)−Yt]−α}f̂t[qt(θ)]∇θqt(θ) and f̂t(y) = dt
h
∂Ĝ(y,Wt)/∂y

i
/ĝ(Wt). Given (A11)(iv) f̂t(·) is continuously differentiable on R. Thus, a first-order Taylor
expansion of the condition (58) at θ0 gives

(59)
√
T∇θΨ̂T (θ0) +∆θθΨ̂T (θ̄

c
T )
√
T (θ̂T − θ0) = 0, a.s.− P,

where θ̄
c
T ≡ cθ0 + (1 − c)θ̂T for some c ∈ (0, 1). To establish the theorem, we need two

lemmas:

Lemma 9. Suppose that (A0)-(A1), (A5)-(A7)(i), (A8)-(A10)(i) and (A11) hold. If bT → 0

with bT
√
Th2yTh

m
wT → ∞, bT/hRwT → ∞ and bT/h

R
yT → ∞, then ∆θθΨ̂T (θ̄

c
T )−∆θθΨ

∗
T (θ0) =

op(1).

In particular, the conditions in Theorem 6 imply the conditions in Lemma 9. Thus

∆θθΨ̂T (θ̄
c
T )−∆θθΨ

∗
T (θ0) = op(1).

Lemma 10. Suppose that all the conditions of Theorem 6 hold. Then,
√
T [∇θΨ̂T (θ0) −

∇θΨ
∗
T (θ0)] = op(1).

The remainder of the proof is straightforward: Equation (59), Lemmas 9 and 10 together

imply:
√
T (θ̂T − θ0) = − [∆θθΨ

∗
T (θ0) + op(1)]

−1
³√

T∇θΨ
∗
T (θ0) + op(1)

´
, a.s. − P . Thus θ̂T

is
√
T -asymptotically equivalent to θ∗T . The desired result follows. ¤

Proof of Lemma 9. Note that the assumptions of Theorem 5 are satisfied under those of

Lemma 9. Hence, θ̂T
p−→ θ0. Moreover, because θ̄

c
T = cθ0 + (1 − c)θ̂T for some c ∈ (0, 1),

we have θ̄cT
p−→ θ0. Thus, it suffices to prove that supθ∈Θ |∆θθΨ̂T (θ) −∆θθΨ

∗
T (θ)| = op(1),

where

∆θθΨ̂T (θ)

=
1

T

TX
t=1

dt {1I[qt(θ)− Yt]− α}
n
D2F̂ [qt(θ)|Wt]∇θqt(θ)∇θqt(θ)

0 +DF̂ [qt(θ)|Wt]∆θθqt(θ)
o
,

∆θθΨ
∗
T (θ)

=
1

T

TX
t=1

{1I[qt(θ)− Yt]− α}
©
D2F 0[qt(θ)|Wt]∇θqt(θ)∇θqt(θ)

0 +DF 0[qt(θ)|Wt]∆θθqt(θ)
ª
.
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Let �T be such that �T = o(bT ), �T
√
Th2yTh

m
wT →∞, �T/hRwT →∞ and �T/h

R
yT →∞. As

sup
θ∈Θ

|∆θθΨ̂T (θ)−∆θθΨ
∗
T (θ)| 6 sup

θ∈Θ
|∆θθΨ̂T (θ)−∆θθΨ

�
T (θ)|+ sup

θ∈Θ
|∆θθΨ

�
T (θ)−∆θθΨ

∗
T (θ)|,

whereΨ�
T (θ) is defined in Equation (47), it suffices to prove that both terms in the right-hand

side of the above inequality are op(1). Given Lemma 8 and Equation (46) we will use

a−1T sup
(y,w)∈Rm+1

|DλĜ(y, w)−H0
λT (y, w)| = op(1),

a−1T sup
w∈Rm

|ĝ(w)− ḡ0T (w)| = op(1),

for λ = 1, 2, which hold for any sequence {aT} satisfying aT
√
Th2yTh

m
wT →∞, aT/hRwT →∞

and aT/h
R
yT →∞. For λ = 1, 2 we will also use the identity

DλF̂ (y|w)−DλF 0(y|w) = 1

ĝ(w)
[DλĜ(y,w)−H0

λT (y,w)]−
DλF 0(y|w)

ĝ(w)
[ĝ(w)− ḡ0T (w)]

which follows from Equation (50). The proof then draws from that of Theorem 5. Specifi-

cally, in Step 1 we deal with ∆θθΨ̂T (θ)−∆θθΨ̂
�
T (θ) = −∆Ψ̂θθ

1T −∆Ψ̂θθ
2T −∆Ψ̂θθ

3T , where ∆Ψ̂θθ
jT

are equal to ∆Ψ̂jT , for j = 1, 2, 3, where F̂ (Yt|Wt)−F 0(Yt|Wt), F̂ (qt(θ)|Wt)−F 0(qt(θ)|Wt),

F 0(Yt|Wt)−F 0(qt(θ)|Wt) are replaced by {D2F̂ [qt(θ)|Wt]−D2F 0[qt(θ)|Wt]}∇θqt(θ)∇θqt(θ)
0,

{DF̂ [qt(θ)|Wt]−DF 0[qt(θ)|Wt]}∆θθqt(θ), andD2F 0[qt(θ)|Wt]∇θqt(θ)∇θqt(θ)
0+DF 0[qt(θ)|Wt]

∆θθqt(θ), respectively. We then obtain

|∆Ψ̂θθJ
1T | 6 b−1T

"
sup

(y,w)∈Rm+1
|D2Ĝ(y, w)−H0

2T (y, w)|

+ sup
(y,w)∈Rm+1

|D2F 0(y|w)| sup
w∈Rm

|ĝ(w)− ḡ0T (w)|
#"

1

T

TX
t=1

Jt sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
#
.

Thus, supθ∈Θ∆Ψ̂θθJ
1T = op(1) as Cauchy-Schwarz inequality gives

1

T

TX
t=1

Jt sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0| 6

Ã
1

T

TX
t=1

Jt

!1/2Ã
1

T

TX
t=1

µ
sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
¶2!1/2

= op(1),(60)

by Equation (51) and (1/T )
PT

t=1(supθ∈Θ |∇θqt(θ)∇θqt(θ)
0|)2 = Op(1), which follows from

E

"
1

T

TX
t=1

µ
sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
¶2#

6 sup
16t6T,T>1

E

µ
sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
¶2

<∞,
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using (A7)(i) and Markov inequality. Similarly, supθ∈Θ∆Ψ̂θθJ
2T = op(1) using

(61)
1

T

TX
t=1

Jt sup
θ∈Θ

|∆θθqt(θ)| = op(1).

Regarding ∆Ψ̂θθJ
3T , we have

|∆Ψ̂θθJ
3T | 6 sup

(y,w)∈Rm+1
|D2F 0(y|w)| 1

T

TX
t=1

Jt sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|

+ sup
(y,w)∈Rm+1

|DF 0(y|w)| 1
T

TX
t=1

Jt sup
θ∈Θ

|∆θθqt(θ)|,

showing that supθ∈Θ∆Ψ̂θθJ
3T = op(1) using Equations (60)− (61) and (A9)(ii).

In Step 2, we deal with ∆θθΨ̂
�
T (θ)−∆θθΨ

∗
T (θ) = −∆Ψ�θθ

1T −∆Ψ�θθ
2T +∆Ψ�θθ

3T , where ∆Ψ�θθ
jT

are equal to ∆Ψ�
jT , for j = 1, 2, 3, where F̂ (Yt|Wt)−F 0(Yt|Wt), F̂ (qt(θ)|Wt)−F 0(qt(θ)|Wt),

F 0(Yt|Wt)−F 0(qt(θ)|Wt) are replaced by {D2F̂ [qt(θ)|Wt]−D2F 0[qt(θ)|Wt]}∇θqt(θ)∇θqt(θ)
0,

{DF̂ [qt(θ)|Wt]−DF 0[qt(θ)|Wt]}∆θθqt(θ), andD2F 0[qt(θ)|Wt]∇θqt(θ)∇θqt(θ)
0+DF 0[qt(θ)|Wt]

∆θθqt(θ), respectively. We then obtain

|∆Ψ�θθ
1T | 6 (b�T )−1(1− η)−1

"
sup

(y,w)∈Rm+1
|D2Ĝ(y,w)−H0

2T (y,w)|

+ sup
(y,w)∈Rm+1

|D2F 0(y|w)| sup
w∈Rm

|ĝ(w)− ḡ0T (w)|
#"

1

T

TX
t=1

d�t sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
#
,

with probability approaching 1, where (1/T )
PT

t=1 d
�
t supθ∈Θ |∇θqt(θ)∇θqt(θ)

0| 6 (1/T )
PT

t=1

supθ∈Θ |∇θqt(θ)∇θqt(θ)
0| = Op(1) by Markov inequality and (A7)(i). Hence, supθ∈Θ∆Ψ�θθ

1T =
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op(1). Similarly, supθ∈Θ∆Ψ�θθ
2T = op(1). Regarding ∆Ψ�θθ

3T , we have

|∆Ψ�θθ
3T |

6
"

sup
(y,w)∈Rm+1

|D2F 0(y|w)|
#"

1

T

TX
t=1

(1− d�T ) sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
#

+

"
sup

(y,w)∈Rm+1
|DF 0(y|w)|

#"
1

T

TX
t=1

(1− d�T ) sup
θ∈Θ

|∆θθqt(θ)|
#

6
"

sup
(y,w)∈Rm+1

|D2F 0(y|w)|
#"

1

T

TX
t=1

(1− d�T )
2

#1/2 "
1

T

TX
t=1

µ
sup
θ∈Θ

|∇θqt(θ)∇θqt(θ)
0|
¶2#1/2

+

"
sup

(y,w)∈Rm+1
|DF 0(y|w)|

#"
1

T

TX
t=1

(1− d�T )
2

#1/2 "
1

T

TX
t=1

µ
sup
θ∈Θ

|∆θθqt(θ)|
¶2#1/2

which is an op(1) as (1/T )
PT

t=1(1 − d�T )
2 = (1/T )

PT
t=1(1 − d�T ) = op(1) from Step 1 of

Theorem 5. ¤

Proof of Lemma 10. Note that for any density ft(·), we have E
³
ft[qt(θ0)]∇θqt(θ0){1I[qt(θ0)−

Yt]− α}
´
= 0. Thus, Lemma 10 could be established from (i) the stochastic equicontinuity

at f0(·|·) of the vector process νT (f) = (1/
√
T )
PT

t=1 f [qt(θ0)|Wt]∇θqt(θ0){1I[qt(θ0)−Yt]−α}
with respect to some pseudo-metric ρ(f1, f2), and (ii) the consistency of f̂(·|·) = 1I[ĝ(·) −
bT ]DĜ(·, ·)/ĝ(·) to f0(·|·) with respect to ρ(·, ·). See Andrews (1994b) for some general results
on stochastic equicontinuity. These require, however, a more elaborate trimming than the

one used here in view of Andrews (1995, p.571). We thus prove Lemma 10 directly.

Though more complex, our proof draws from the asymptotic normality proof of Theorem

1 in Lavergne and Vuong (1996). For similar asymptotic normality proofs in the iid case see

also Robinson (1988) and Hardle and Stoker (1989). As previously, we let q0t = qα(Wt, θ0).

Moreover, let �T be such that �T = o(bT ), �TT 1/4hyThmwT → ∞, �T/(T 1/4hRwT ) → ∞ and

�T/(T
1/4hRyT )→∞. As

∇θΨ̂T (θ0)−∇θΨ
∗
T (θ0) =

h
∇θΨ̂T (θ0)−∇θΨ

�
T (θ0)

i
+ [∇θΨ

�
T (θ0)−∇θΨ

∗
T (θ0)] ,

where Ψ�
T (θ) is defined in Equation (47), it suffices to prove that both terms on the right-

hand side of the above equality are op(T−1/2). Given Lemma 8 and Equation (46) we shall
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use

a−2T sup
(y,w)∈Rm+1

|DĜ(y, w)−H0
1T (y, w)|2 = op(T

−1/2),(62)

a−2T sup
(y,w)∈Rm+1

|DĜ(y, w)−H0
1T (y, w)| sup

w∈Rm
|ĝ(w)− ḡ0T (w)| = op(T

−1/2),(63)

a−2T sup
w∈Rm

|ĝ(w)− ḡ0T (w)|2 = op(T
−1/2),(64)

which hold for any sequence {aT} satisfying aTT 1/4hyThmwT → ∞, aT/(T 1/4hRwT ) → ∞ and

aT/(T
1/4hRyT )→∞. We shall also use the identities

f̂(y|w)− f0(y|w) =
1

ĝ(w)
[DĜ(y, w)−H0

1T (y, w)]−
f0(y|w)
ĝ(w)

[ĝ(w)− ḡ0T (w)],(65)

=
DĜ(y,w)− f0(y|w)ĝ(w)

ḡ0T (w)
+

f0(y|w)
ĝ(w)ḡ0T (w)

[ĝ(w)− ḡ0T (w)]
2

− 1

ĝ(w)ḡ0T (w)
[DĜ(y, w)−H0

1T (y, w)][ĝ(w)− ḡ0T (w)].(66)

STEP1: We first show that ∇θΨ̂T (θ0)−∇θΨ
�
T (θ0) = op(T

−1/2). We have

√
T
h
∇θΨ̂T (θ0)−∇θΨ

�
T (θ0)

i
=

1√
T

TX
t=1

(Jt −Ht)[1I(q0t − Yt)− α]f̂(q0t |Wt)∇θq
0
t

=
√
T∆Ψ̂θ

1T (θ0) +
√
T∆Ψ̂θ

2T (θ0),

where Jt = dt(1− d�t), Ht = (1− dt)d
�
t and

√
T∆Ψ̂θ

1T (θ0) =
1√
T

TX
t=1

(Jt −Ht)[1I(q0t − Yt)− α][f̂(q0t |Wt)− f0(q0t |Wt)]∇θq
0
t ,

√
T∆Ψ̂θ

2T (θ0) =
1√
T

TX
t=1

(Jt −Ht)[1I(q0t − Yt)− α]f0(q0t |Wt)∇θq
0
t .

As Ht 6 1I[|ĝ(Wt)− ḡ0T (Wt)|− �T ] and the event {supw |ĝ(w)− ḡ0T (w)| > �T} has asymptotic
probability 0 because Property (64) holds with aT = �T by construction of �T , we have

sup16t6T,T>1Ht = 0 with probability approaching one. Hence, we need to consider the Jt

terms only. Namely, it suffices to show that ∆Ψ̂θJ
jT (θ0) = op(T

−1/2) for j = 1, 2. Using
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Equality (65) and the definition of Jt, we obtain

|∆Ψ̂θJ
1T (θ0)| 6 b−1T

"
sup

(y,w)∈Rm+1
|DĜ(y,w)−H0

1T (y,w)|

+ sup
(y,w)∈Rm+1

f0(y|w) sup
w∈Rm

|ĝ(w)− ḡ0T (w)|
#"

1

T

TX
t=1

Jt|∇θq
0
t |
#
,

|∆Ψ̂θJ
2T (θ0)| 6

1

T

TX
t=1

Jtf
0(q0t |Wt)|∇θq

0
t |.

But (1/T )
PT

t=1 Jt|∇θq
0
t | 6 (1/T )

PT
t=1(1− d�t)|∇θq

0
t | = Op(b

γ
T ) and (1/T )

PT
t=1 Jtf

0(q0t |Wt)

|∇θq
0
t | 6 (1/T )

PT
t=1(1−d�t)f

0(q0t |Wt)|∇θq
0
t | = Op(b

2γ
T ) by Markov inequality combined with

(A10)(ii)-(iii) where cT = b�T = O(bT ). Hence, using sup(y,w)∈Rm+1 f
0(y|w) < ∞ by (A9)(ii)

combined with Properties (62) and (64) where aT = bT , we obtain ∆Ψ̂θJ
1T (θ0) = Op(T

−1/4bγT )

and ∆Ψ̂θJ
2T (θ0) = Op(b

2γ
T ). Since bT = o(T−1/(4γ)) we obtain ∆Ψ̂θJ

jT (θ0) = op(T
−1/2) for

j = 1, 2, as desired.

STEP 2: We next show that ∇θΨ
�
T (θ0) − ∇θΨ

∗
T (θ0) = op(T

−1/2). We have ∇θΨ
�
T (θ0) =

µ0 + [∇θΨ
�
T (θ0)− µ0], where µ0 ≡ T−1

PT
t=1 d

�
t[1I(q

0
t − Yt)− α]f0(q0t |Wt)∇θq

0
t and

∇θΨ
�
T (θ0)− µ0

=
1

T

TX
t=1

d�t[1I(q
0
t − Yt)− α][f̂(q0t |Wt)− f0(q0t |Wt)]∇θq

0
t

=
1

T

TX
t=1

d�t[1I(q
0
t − Yt)− α]

DĜ(q0t ,Wt)− f0(q0t |Wt)ĝ(Wt)

ḡ0T (Wt)
∇θq

0
t

+
1

T

TX
t=1

d�t[1I(q
0
t − Yt)− α]

f0(q0t |Wt)

ĝ(Wt)ḡ0T (Wt)
[ĝ(Wt)− ḡ0T (Wt)]

2∇θq
0
t

− 1

T

TX
t=1

d�t[1I(q
0
t − Yt)− α]

DĜ(q0t ,Wt)−H0
1T (q

0
t ,Wt)

ĝ(Wt)ḡ0T (Wt)
[ĝ(Wt)− ḡ0T (Wt)]∇θq

0
t

≡ µ1 + µ2 − µ3,

using Equality (66). Hence, ∇θΨ
�
T (θ0) = µ0 + µ1 + µ2 − µ3. Thus, the proof is complete if

µ0 = ∇θΨ
∗
T (θ0) + op(T

−1/2) and µj = op(T
−1/2) for j = 1, 2, 3, as shown next.

STEP 2a: We show that µ0 = ∇θΨ
∗
T (θ0) + op(T

−1/2). We have

µ0 = ∇θΨ
∗
T (θ0)−

1

T

TX
t=1

(1− d�t)[1I(q
0
t − Yt)− α]f0(q0t |Wt)∇θq

0
t .
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Let µ02 denote the second term on the right-hand side of the above equality. Thus, it

suffices to show that µ02 = op(T
−1/2). But, from Step 1 we know that |µ02| 6 T−1

PT
t=1(1−

d�t)f
0(q0t |Wt)|∇θq

0
t | = Op(b

2γ
T ). The desired result follows from bT = o(T−1/(4γ)).

STEP 2b: Next, we show that µ2 = µ3 = op(T
−1/2). We have

|
√
Tµ2| 6

√
T

b�T inf{w:ḡ0T (w)>b�T } |ĝ(w)|
sup

(y,w)∈Rm+1
f0(y|w) sup

w∈Rm
[ĝ(w)− ḡ0T (w)]

2 1

T

TX
t=1

|∇θq
0
t |.

But Property (64) with aT = b�T implies (b
�
T )
−1 supw |ĝ(w) − ḡ0T (w)| = op(T

−1/4) = op(1).

Hence, for any η ∈ (0, 1) we have inf{w:ḡ0T (w)/b�T>1} |ĝ
0
T (w)|/b�T > 1 − η with probability

approaching one. Thus, with probability approaching one

|
√
Tµ2| 6

√
T

(b�T )
2(1− η)

sup
(y,w)∈Rm+1

f0(y|w) sup
w∈Rm

[ĝ(w)− ḡ0T (w)]
2 1

T

TX
t=1

|∇θq
0
t |,

which is an op(1) by Property (64)with aT = b�T as sup(y,w)∈Rm+1 f
0(y|w) <∞ and (1/T )

PT
t=1

|∇θq
0
t | = Op(1) as noted earlier. That is, µ2 = op(T

−1/2). Similarly,

|
√
Tµ3| 6

√
T

b�T inf{w:ḡ0T (w)>b�T } |ĝ(w)|

× sup
(y,w)∈Rm+1

|DĜ(y, w)−H0
1T (y, w)| sup

w∈Rm
|ĝ(w)− ḡ0T (w)|

1

T

TX
t=1

|∇θq
0
t |,

which shows that µ3 = op(T
−1/2) using the same argument with Property (63).

STEP 2c: Lastly, we show that µ1 = op(T
−1/2). Let K0T (·) ≡ (1/hyT )K0(·/hyT ) and

KT (·) ≡ (1/hmwT )K0(·/hwT ). Thus, from the definitions of DĜ(y,w) and ĝ(w) we have

µ1 =
1

T 2

TX
t=1

TX
s=1

d�t
1I(q0t − Yt)− α

ḡ0T (Wt)

£
K0T (q

0
t − Ys)− f0(q0t |Wt)

¤
KT (Wt −Ws)∇θq

0
t

≡ L+
T − 1
T

U,
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where L and U are the diagonal and U-statistic parts defined as

L ≡ 1

T 2

TX
t=1

d�t
1I(q0t − Yt)− α

ḡ0T (Wt)

£
K0T (q

0
t − Yt)− f0(q0t |Wt)

¤
KT (0)∇θq

0
t

U ≡ 1

T (T − 1)
X

16t6=s6T
uTts

uTts =
1

2

¡
u0Tts + u0Tst

¢
≡ hT (Yt,Wt, Ys,Ws)

u0Tts =
£
K0T (q

0
t − Ys)− f0(q0t |Wt)

¤
KT (Wt −Ws)d

�
t

1I(q0t − Yt)− α

ḡ0T (Wt)
∇θq

0
t

u0Tst =
£
K0T (q

0
s − Yt)− f0(q0s |Ws)

¤
KT (Ws −Wt)d

�
s

1I(q0s − Ys)− α

ḡ0T (Ws)
∇θq

0
s ,

for 1 6 t 6= s 6 T . Note that hT (Yt,Wt, Ys,Ws) is symmetric in (Yt,Wt) and (Ys,Ws).

Hence, it suffices to show that L and U are both op(T
−1/2).

For L we have

|
√
TL| 6 1√

Tb�Th
m
wT

"
1

hyT
sup
y∈R

|K0(y)|+ sup
(y,w)∈Rm+1

f0(y|w)
#
|K(0)| 1

T

TX
t=1

|∇θq
0
t |

where sup(y,w)∈Rm+1 f
0(y|w) < ∞, supy∈R |K0(y)| < ∞ and |K(0)| < ∞ by (A11)(iii) and

(A9)(ii). As (1/T )
PT

t=1 |∇θq
0
t | = Op(1) by (A7)(i), (A5) and Markov inequality, we obtain√

TL = op(1) because
√
Tb�ThyTh

m
wT = b�TT

1/4hyTh
m
wTT

1/4 →∞ using b�T = bT (1 + o(1)).

It remains to be shown that U = op(T
−1/2). Because of the stationarity assumption

(A6’)(i), we have ḡ0T (·) = g0t (·) ≡ g0(·). Moreover, from the Hoeffding decomposition (see

e.g. Arcones (1995, eq. 1.7)), we have U = U0 + 2U1 + U2 where

U0 =

Z Z Z Z
hT (y1, w1, y2, w2)

2Y
t=1

[f0(yt|wt)g
0(wt)dytdwt](67)

U1 =
1

T

TX
t=1

hT1(Yt,Wt)(68)

U2 =
1

T (T − 1)
X

16t6=s6T
hT2(Yt,Wt, Ys,Ws)(69)

hT1(y1, w1) =

Z Z
hT (y1, w1, y2, w2)f

0(y2|w2)g0(w2)dy2dw2 − U0(70)

hT2(y1, w1, y2, w2) = hT (y1, w1, y2, w2)− hT1(y1, w1)− hT1(y2, w2)− U0.(71)

Note that U0 6= E[U ] as
Q2

t=1[f
0(yt|wt)g

0(wt)] is not the joint density of (Y1,W1, Y2,W2),

while hT1(·) and hT2(·) are canonical kernels, i.e. symmetric kernels satisfying E[hT1(Y1,W1)]
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= 0 and E[hT2(y1, w1, Y2,W2)] = 0, respectively, as noted by Arcones (1995). Thus, it suffices

to show that
√
TUk = op(1) for k = 0, 1, 2.

STEP 2c(i): We start by showing that
√
TU0 = op(1). In fact, we have U0 = 0 as Equation

(67) gives

U0 =

Z Z Z Z
1

2
(u0T12 + u0T21)

2Y
t=1

[f0(yt|wt)g
0(wt)dytdwt]

=
1

2

Z Z ½Z £
K0T (q

0
1 − y2)− f0(q01|w1)

¤
f0(y2|w2)dy2

¾
×
½Z £

1I(q01 − y1)− α
¤
f0(y1|w1)dy1

¾
KT (w1 − w2)

d�1∇θq
0
1

g0(w1)
g0(w1)g

0(w2)dw1dw2

+
1

2

Z Z ½Z £
K0T (q

0
2 − y1)− f0(q02|w2)

¤
f0(y1|w1)dy1

¾
×
½Z £

1I(q02 − y2)− α
¤
f0(y2|w2)dy2

¾
KT (w2 − w1)

d�2∇θq
0
2

g0(w2)
g0(w1)g

0(w2)dw1dw2,

where
R
[1I(q0t − yt)− α] f0(yt|wt)dyt = 0 for any t by assumptions (A1) and (A9)(i).

STEP 2c(ii): We now show that
√
TU1 = op(1). By Markov inequality it suffices to show

that E(TU2
1 ) = o(1). But assumption (A6’) and Lemma 3 in Arcones (1995) with p = r

imply

(72) E(TU2
1 ) = T−1E

"³ X
16t6T

hT1(Yt,Wt)
´2#

6 c
³
T−1 + T−1

T−1X
t=1

tβ
(r−2)/r
t

´
M2

T1,

where βt are the mixing coefficients of {(Yt,W 0
t)
0}, c is a universal constant and MT1 =

sup16t<∞ [E|hT1(Yt,Wt)|r]1/r. Note that Lemma 3 in Arcones (1995) is written for canonical
kernels that are independent of T . It is, however, easy to see from his proofs that this lemma

and Lemma 8, which is used to prove it, both hold even when canonical kernels depend on

T as in hT1(·) and hT2(·). From (A6’)(ii) we know that
P∞

t=1 β
(r−2)/r
t < ∞ (see e.g. White

2001 for the definition of the size) hence T−1 + T−1
PT−1

t=1 tβ
(r−2)/r
t = O(1). We now show

that MT1 → 0. As U0 = 0 and the integral of u0T21 with respect to f
0(y2|w2)g0(w2)dy2dw2 is
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zero because
R
[1I(q02 − y2)− α] f0(y2|w2)dy2 = 0, we have from Equation (70)

|hT1(y1, w1)|

=

¯̄̄̄
1

2

£
1I(q01 − y1)− α

¤ d�1∇θq
0
1

g0(w1)

×
Z ½Z £

K0T (q
0
1 − y2)− f0(q01|w1)

¤
f0(y2|w2)dy2

¾
KT (w1 − w2)g

0(w2)dw2

¯̄̄̄
6 |∇θq

0
1|

2b�T

¯̄̄̄Z ½Z
K0(u)

£
f0(q01 − uhyT |w2)− f0(q01|w1)

¤
du

¾
KT (w1 − w2)g

0(w2)dw2

¯̄̄̄
6 |∇θq

0
1|

2b�T

¯̄̄̄Z ½Z
K0(u)

£
f0(q01 − uhyT |w2)− f0(q01|w2)

¤
du

¾
KT (w1 − w2)g

0(w2)dw2

¯̄̄̄
+
|∇θq

0
1|

2b�T

¯̄̄̄Z £
f0(q01|w2)−f0(q01|w1)

¤
KT (w1 − w2)g

0(w2)dw2

¯̄̄̄
6 |∇θq

0
1|

2b�T

Z ¯̄̄̄Z
K0(u)

£
f0(q01 − uhyT |w2)− f0(q01|w2)

¤
du

¯̄̄̄
|KT (w1 − w2)|g0(w2)dw2

+
|∇θq

0
1|

2b�T

¯̄̄̄Z £
f0(q01|w2)g0(w2)− f0(q01|w1)g0(w1)

¤
KT (w1 − w2)dw2

¯̄̄̄
+
|∇θq

0
1|

2b�T
f0(q01|w1)

¯̄̄̄Z £
g0(w2)− g0(w1)

¤
KT (w1 − w2)dw2

¯̄̄̄
6 |∇θq

0
1|

b�T
O(hRyT )

Z
|K(v)|g0(w1 − vhwT )dv

+
|∇θq

0
1|

2b�T

¯̄̄̄Z £
f0(q01|w1 − vhwT )g

0(w1 − vhwT )− f0(q01|w1)g0(w1)
¤
K(v)dv

¯̄̄̄
+
|∇θq

0
1|

2b�T
f0(q01|w1)

¯̄̄̄Z £
g0(w1 − vhwT )− g0(w1)

¤
K(v)dv

¯̄̄̄
6 |∇θq

0
1|

b�T

©
O(hRyT ) + [1 + f0(q01|w1)]O(hRwT )

ª
,

so

(73) |hT1(y1, w1)| 6
|∇θq

0
1|

b�T

©
O(hRyT ) +O(hRwT )

ª
,

where we have used the change of variables u = (q01 − y2)/hyT and v = (w1 − w2)/hwT

combined with (A8), (A9)(ii), (A11)(i,iii) and Taylor expansions of order R of the inte-

grands. As E|∇θq
0
1|r < sup16t6T,T>1E[supθ∈Θ |∇θqα(Wt, θ)|r] < ∞ by (A5) and (A7)(i),

it follows that (E|hT1(Yt,Wt)|r)1/r 6 (1/b�T )
©
O(hRyT ) +O(hRwT )

ª
uniformly in t. Hence,

MT1 6 (1/b�T )
©
O(hRyT ) +O(hRwT )

ª
. Given b�T = bT [1 + o(1)], hRyT = o(bT ) and hRwT = o(bT ),
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which follow from bT/(T
1/4hRyT ) → ∞ and bT/(T

1/4hRwT ) → ∞ respectively, we have that

MT1 = o(1). Combining Property (72) and (A6’)(i) then gives E(TU2
1 ) = o(1) as desired.

STEP 2c(iii): Finally we show that
√
TU2 = op(1). Again, by Markov inequality it suffices

to show that E(TU2
2 ) = o(1). Similar to the previous case, Assumption (A6’) and Lemma 3

in Arcones (1995) with p = 2r imply

E(TU2
2 ) =

µ
T

T − 1

¶2
T−3E

"³ X
16t6=s6T

hT2(Yt,Wt, Ys,Ws)
´2#

6
µ

T

T − 1

¶2
c
³
T−1 + T−1

T−1X
t=1

tβ
(r−1)/r
t

´
M2

T2,(74)

where c is a universal constant and MT2 = sup16t6=s<∞ [E|hT2(Yt,Wt, Ys,Ws)|2r]1/(2r). We
now show that T−1 + T−1

PT−1
t=1 tβ

(r−1)/r
t = O(1/

√
T ) and that MT2 = o(T 1/4). The first

property is implied by
P∞

t=1 tβ
(r−1)/r
t <∞ for which it suffices to show that

P2τ
t=τ tβ

(r−1)/r
t →

0 as τ →∞. As previously, from (A6’)(ii) we know that
P∞

t=1 β
(r−2)/r
t <∞ hence β(r−2)/rt t→

0 as t→∞ and βt 6 tr/(2−r) for t large enough. Thus
P2τ

t=τ tβ
(r−1)/r
t 6

P2τ
t=τ t

−1/(r−2) which

vanishes when 2 < r < 3 as assumed. For the second property, we bound MT2. From

Equations (71), (73) and U0 = 0 we obtain

|hT2(y1, w1, y2, w2)| 6 |hT (y1, w1, y2, w2)|+
|∇θq

0
1|+ |∇θq

0
2|

b�T

©
O(hRyT ) +O(hRwT )

ª
6 |∇θq

0
1|+ |∇θq

0
2|

b�T

©
O(hyTh

m
wT )

−1 +O(hRyT ) +O(hRwT )
ª
,

where the second equality follows from the definitions of u0T12 and u
0
T21, where supy∈R |K0(y)| <

∞, supw∈Rm |K(w)| <∞ and sup(y,w)∈Rm+1 f
0(y|w) <∞ by (A11)(i,iii) and (A9)(ii). Thus,

by Minkowski inequality we obtain

MT2 6 sup
16t6=s<∞

n£
E|∇θq

0
t |2r
¤1/(2r)

+
£
E|∇θq

0
s |2r
¤1/(2r)o×(

O

µ
1

b�ThyTh
m
wT

¶
+O

Ã
hRyT
b�T

!
+O

µ
hRwT
b�T

¶)

= O

µ
1

b�ThyTh
m
wT

¶
+O

Ã
hRyT
b�T

!
+O

µ
hRwT
b�T

¶
,

by (A7)(i). Given b�T = bT [1 + o(1)], hRyT = o(bT ), hRwT = o(bT ) and bTT
1/4hyTh

m
wT →∞, we

have MT2 = o(T 1/4) as desired. Thus, Equation (74) implies E(TU2
2 ) = o(1). ¤
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