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Optimal Measure Preserving Derivatives

Brendan K. Beare∗†

University of California, San Diego

April 27, 2010

Abstract: Consider the collection of all derivative contracts written on an asset that
deliver the same payoff distribution as a direct investment of $1 in the asset. We refer
to the cheapest such derivative as the optimal measure preserving derivative. Using the
Hardy-Littlewood rearrangement inequality, we obtain an explicit solution for the optimal
measure preserving derivative in terms of the payoff distribution and pricing kernel of the
underlying asset. The optimal measure preserving derivative corresponds to a direct
investment of $1 in the underlying asset if and only if the pricing kernel is monotone
decreasing. We obtain conditions under which an estimated optimal measure preserving
derivative formed from estimates of the underlying payoff distribution and pricing kernel
will be consistent in a particular sense. Building on an existing empirical study, we
estimate the optimal measure preserving derivative for the S&P 500 index in October
1986 and April 1992, using a 31-day time horizon. We find that the precrash optimal
derivative roughly coincides with a direct investment in the index, while the postcrash
optimal derivative does not. The estimated price of the postcrash optimal derivative
corresponds to nearly half a percentage point increase in monthly returns compared to a
direct investment in the index.
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1 Introduction

Suppose we have some underlying asset – say, a market index – upon which we are

considering writing a derivative contract such as a put or call option. A direct invest-

ment of $1 in the underlying asset yields a random nonnegative payoff after one period

distributed according to the probability measure µ. Profit after one period is equal to the

random payoff minus the initial investment of $1. A derivative written on the underly-

ing asset is simply a function that maps the underlying payoff outcomes to other payoff

outcomes. For instance, a European call option written at strike price s is characterized

by the map x 7→ max{0, x− s}, while a European put option written at strike price s is

characterized by the map x 7→ max{0, s − x}. The prices of derivatives written on the

underlying asset can be obtained as their discounted expected payoffs under a probability

measure ν referred to as the risk neutral measure for the underlying payoff.

In this paper we consider the following problem: given the measures µ and ν, what is

the form of the cheapest derivative contract ϑ that achieves the minimum price among all

derivatives that are measure preserving with respect to µ? Under some simple technical

conditions given in the formal presentation of our model in the next section, we find an

explicit formula for ϑ in terms of µ and ν. We refer to ϑ as the optimal measure preserving

derivative. The optimal measure preserving derivative describes the cheapest way that

an investor may obtain the payoff distribution of the underlying asset by purchasing a

derivative written on that asset. When the underlying asset is a market index, the optimal

measure preserving derivative is of particular interest: if it does not coincide with a direct

investment in the market index – i.e. if ϑ is not the identity function – then a rational

agent will never invest his entire wealth in the market index. This is because he may

obtain a return distribution that first-order stochastically dominates the market return

by instead investing all his wealth in derivatives of the form ϑ.

Our results in this paper build on important early work by Dybvig (1988a,b). Dybvig

considered the collection of all derivatives written on the underlying asset that generate

a fixed payoff distribution, and showed that any derivative that is not countermonotone

with respect to the underlying pricing kernel cannot achieve the minimum price over that

collection. The underlying pricing kernel π is defined as the Radon-Nikodym derivative

of ν with respect to µ. For each x, π(x) can be thought of as the nondiscounted price-

per-probability-unit of an Arrow security paying $1 when the underlying payoff is equal

to x, and $0 otherwise. A derivative θ is said to be countermonotone with respect to

π if we have θ(x) ≤ θ(y) whenever π(x) > π(y). Dybvig’s results therefore imply that

any derivative that provides the cheapest way to attain a given payoff distribution must
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pay more in less expensive states and less in more expensive states, where the relevant

notion of state prices is given by the pricing kernel. In particular, the optimal measure

preserving derivative must have this property.

In Section 2 of this paper we extend and formalize Dybvig’s results by providing an

explicit formula for ϑ in terms of µ and ν, or equivalently µ and π, and a formal proof of

its validity. Dybvig proved his results carefully in the case where µ concentrates on finitely

many states, but their extension to atomless µ omitted some details that are perhaps not

obvious. We give a formal and relatively straightforward demonstration of the validity

of our formula for ϑ in the atomless case using the Hardy-Littlewood rearrangement

inequality, which was introduced recently in the field of economics by Carlier and Dana

(2005) and other authors; see Remark 2.8 below. As one might guess from our discussion of

Dybvig’s results in the previous paragraph, our formula for ϑ in terms of µ and π depends

on π only insofar as it depends on the linear preorder induced by π. When π is a monotone

decreasing function, ϑ reduces to the identity function. In other words, when the pricing

kernel is monotone decreasing, the optimal measure preserving derivative corresponds to

a direct investment in the underlying asset. When π is not monotone decreasing, the

optimal measure preserving derivative provides a way to achieve a return distribution

that first-order stochastically dominates a direct investment in the underlying asset.

In Section 3 we develop the beginnings of an asymptotic theory for the estimation of

optimal measure preserving derivatives. Suppose we form an estimate of ϑ by substituting

estimates of µ and π into our formula for ϑ. We prove that if the estimates of µ and π

are consistent in a particular sense, then the implied estimate of ϑ will also be consistent

in a particular sense. The difficulty here lies in finding suitable notions of distance with

which to define consistency of the three estimates. For µ we define consistency in terms

of the total variation metric. For π we employ a pseudometric that depends only on the

linear preorders induced by π and its estimate. For ϑ we use a version of the deformed L1

pseudometric introduced in Beare (2009). We discuss conditions under which estimates

of µ and π will be consistent with respect to the relevant notions of distance.

In Section 4 we apply our results on optimal measure preserving derivatives to US

financial data from shortly before and after the stock market crash of 1987. Our ap-

plication builds directly on an important empirical study by Jackwerth (2000). Jackw-

erth constructed nonparametric estimates of the actual and risk neutral distributions of

monthly returns on the S&P 500 index using historical return data and option prices.

We focus on Jackwerth’s estimates for the dates October 21, 1986 and April 15, 1992.

Jackwerth observed that the pricing kernel implied by his estimated actual and risk neu-

tral distributions appeared to be monotone decreasing in the precrash sample period,
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but not monotone decreasing in the postcrash sample period. In particular, the pricing

kernel appeared to be increasing between -3% and +3% monthly returns. Similar non-

monotone behavior has been identified by a number of other authors using a variety of

postcrash sample periods; see Section 4 for references. The apparent nonmonotonicity of

the postcrash pricing kernel has been referred to variously as the pricing kernel puzzle,

risk aversion puzzle, or empirical pricing kernel paradox, as it appears to be inconsistent

with standard representative agent models of market behavior. In Section 4 we take Jack-

werth’s estimates of the pre- and postcrash distributions, with which he kindly supplied

us, and use them to compute estimates of the optimal measure preserving derivatives for

the two sample periods. Consistent with our theoretical results, we find that the precrash

optimal derivative largely coincides with a direct investment in the S&P 500 index, while

the postcrash optimal derivative does not. We estimate that the postcrash optimal deriva-

tive is priced at nearly half of one cent less than a $1 investment in the index, despite

delivering the same payoff distribution after one month.

We conclude the paper in Section 5 by discussing some directions in which our results

may be improved or extended. Proofs of all theorems are collected in the Appendix.

2 A formula for the optimal derivative

Let µ be a probability measure on the nonnegative real line R+ equipped with its

Borel σ-field B(R+). The measure µ represents the payoff distribution after one period of

an investment of one monetary unit in some underlying asset; say, a market index. We

are interested in the payoff distribution of derivative contracts written on the underlying

asset. Such contracts may be represented by Borel measurable functions θ : R+ → R̄+ :=

R+ ∪ {∞}. A derivative contract θ yields a payoff of θ(x) monetary units after one

period when the payoff from the underlying asset is x monetary units. Implicitly, we

confine our attention to contracts that expire after one period, with no possibility of early

exercise. Also, by requiring the payoff functions θ to be nonnegative, we restrict attention

to contracts that are “self-collateralized”. This rules out a derivative contract consisting

solely of a short position in the underlying asset, but does not necessarily rule out a

derivative contract formed from positions in several put or call options written on the

underlying asset, with some positions being short and others long.

Let ν be another probability measure on (R+,B(R+)). The measure ν represents

the risk neutral probability distribution used to price derivative contracts written on the

underlying asset. The price of a contract θ is equal to 1
1+r

∫
θdν, where r denotes the

one-period risk-free interest rate. This is simply the discounted expected payoff of θ under
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the risk neutral measure. The price of a contract θ will be infinite if θ is not ν-integrable.

The contract with payoff θ(x) = x corresponds to a direct investment of one monetary

unit in the underlying asset, so we must have 1 + r =
∫
xdν(x) <∞. Further, we require

that
∫
xdν(x) ≥ 1 to ensure that the risk-free interest rate is nonnegative. In fact, the

results given in this paper remain formally valid in the absence of these conditions on∫
xdν(x).

We place the following technical conditions on µ and ν.

Assumption 2.1. The probability measures µ and ν satisfy the following three condi-

tions:

1. µ and ν are atomless;

2. µ and ν are mutually absolutely continuous;

3. The Radon-Nikodym derivative of ν with respect to µ, denoted π : R+ → R+,

satisfies

µ{x : π(x) = y} = 0

for all y ∈ R+.

Remark 2.1. As measures on B(R+), µ and ν are atomless if and only if the probability

distribution functions they induce on R+ are continuous. This condition does not imply

the existence of probability density functions with respect to Lebesgue measure. Such

existence requires the absolute continuity of distribution functions.

Remark 2.2. The requirement that µ and ν are mutually absolutely continuous can be

interpreted as a no arbitrage condition. If µ was not absolutely continuous with respect

to ν, there would exist a set B ∈ B(R+) such that µB > 0 and νB = 0. One could then

write a derivative contract with payoff function equal to the indicator function for B, and

such a contract would have zero price but positive payoff with nonzero probability. A

similar arbitrage opportunity arises if ν is not absolutely continuous with respect to µ.

Remark 2.3. The Radon-Nikodym derivative π is defined uniquely only up to µ-a.e.

equivalence. This detail is of no importance to our results. We will refer to π as the

pricing kernel for the underlying asset. Dybvig (1988a) refers to (1 + r)π as the state-

price density, and does not use the term pricing kernel. In more recent literature (see

e.g. Aı̈t-Sahalia and Lo, 1998) the term state-price density is used to refer to the Radon-

Nikodym derivative of the risk neutral measure ν with respect to Lebesgue measure,

while the term pricing kernel is used to refer to π, the Radon-Nikodym derivative of ν
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with respect to µ. We follow the recent literature in our use of the term pricing kernel,

and avoid using the term state-price density.

Remark 2.4. The requirement that µ{x : π(x) = y} = 0 for all y ∈ R+ ensures that π

is not flat on any set of positive µ-measure. This is important because, following Dybvig

(1988a), we will use π to generate a ranking of the different points in R+. Intuitively,

π describes the Arrow-Debreu price of securities paying one unit in exactly one “state

of the world” x ∈ R+, normalized according to the probability of that state occurring.

The ranking induced by π orders states according to how cheaply a unit of payoff may

be obtained in that state, per unit of probability. Our nonflatness condition on π ensures

that the induced ranking is essentially unique.

Our interest in this paper concerns a particular family of derivative contracts. Specif-

ically, we are interested in derivatives that are measure preserving. A derivative θ is said

to be measure preserving if the payoff distribution of θ is the same as the payoff distribu-

tion of an investment of one monetary unit in the underlying asset; that is, µ. Formally,

for a Borel measurable map θ : R+ → R̄+ to be measure preserving (with respect to µ)

we require that µ = µθ−1, where µθ−1 is the measure on B(R+) that assigns measure

µ{x ∈ R+ : θ(x) ∈ B} to each set B ∈ B(R+). Let Θµ denote the set of all such measure

preserving maps. Note that the identity function on R+, which corresponds to a direct

investment of one monetary unit in the underlying asset, is necessarily an element of Θµ.

Though all measure preserving derivatives yield the same payoff distribution, it is in

general not the case that all measure preserving derivatives are priced equally by the

market. If a rational agent were to invest all his wealth in one of the measure preserving

derivatives written on some underlying asset, we would expect him to choose whichever

measure preserving derivative is the cheapest. We refer to the cheapest measure preserving

derivative as the optimal measure preserving derivative, or occasionally as simply the

optimal derivative. The price of the optimal measure preserving derivative is what Dybvig

(1988a) calls the distributional price of µ. If the distributional price of µ is less than

one, then the optimal measure preserving derivative costs less than one monetary unit

to purchase, and yields the same payoff distribution as an investment of one monetary

unit directly in the underlying asset. Thus, an agent who invests all his wealth in the

optimal measure preserving derivative will obtain a payoff distribution that first-order

stochastically dominates the payoff distribution he would obtain by investing all his wealth

directly in the underlying asset. We shall see shortly that the distributional price of µ is

less than one whenever the pricing kernel π is not monotone decreasing.

Before stating our main result, we require some additional notation. Given a finite
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measure m on B(R+), define the distribution function Fm : R̄+ → [0, 1] of m by

Fm(x) = m{y ∈ R+ : y ≤ x},

and define the quantile function Qm : [0, 1]→ R̄+ of m by

Qm(u) = inf{y ∈ R+ : Fm(y) ≥ u}.

Our main result is as follows.

Theorem 2.1. Let ϑ : R+ → R̄+ be given by

ϑ(x) = Qµ(1− Fµπ−1(π(x))). (2.1)

Then, under Assumption 2.1,

1. ϑ ∈ Θµ;

2.
∫
ϑdν = infθ∈Θµ

∫
θdν; and

3. (ϑ(x)− ϑ(y))(π(x)− π(y)) ≤ 0 for all (x, y) ∈ R2
+.

Remark 2.5. Theorem 2.1 gives an explicit formula for the optimal measure preserving

derivative ϑ in terms of the underlying measure µ and pricing kernel π. This is equation

(2.1). Note that empirical methods exist for estimating both µ and π; we will discuss

this issue further in subsequent sections. Part 1 of Theorem 2.1 says that ϑ is indeed a

measure preserving derivative. Part 2 of Theorem 2.1 says that ϑ achieves the minimum

price among all measure preserving derivatives. Part 3 of Theorem 2.1 says that ϑ and π

are countermonotone; that is, ϑ assigns payoffs to states in such a way that the payoff is

greater when the pricing kernel is lower. The fact that the cheapest measure preserving

derivative must assign payoffs in this fashion is the content of Theorem 1 of Dybvig

(1988a). Theorem 2.1 extends Dybvig’s result by giving an explicit formula for ϑ in terms

of µ and π, and a complete proof of its validity.

Remark 2.6. Theorem 3 of Dybvig (1988a) gives a formula for the cheapest price at which

a given payoff distribution may be obtained using a derivative written on the underlying

asset. This quantity is referred to as the distributional price of the payoff distribution in

question. Dybvig’s formula implies that the distributional price of the underlying payoff

distribution is 1
1+r

∫ 1

0
Qµ(u)Qµπ−1(1−u)du. It is straightforward to verify that our optimal
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measure preserving derivative achieves this price: using the change of variables π(x) 7→ y,

we can see that 1 + r times the price of ϑ is given by∫ ∞
0

ϑ(x)dν(x) =

∫ ∞
0

Qµ(1− Fµπ−1(π(x)))π(x)dµ(x) =

∫ ∞
0

Qµ(1− Fµπ−1(y))ydµπ−1(y).

With a second change of variables Fµπ−1(y) 7→ u, we obtain∫ ∞
0

Qµ(1− Fµπ−1(y))ydµπ−1(y) =

∫ 1

0

Qµ(u)Qµπ−1(1− u)du,

as claimed. This was pointed out to me by Dybvig in private communication.

Remark 2.7. Though our formula for the optimal measure preserving derivative ϑ de-

pends on both µ and π, the dependence of ϑ on π extends only to the linear preorder on

R+ induced by π. This linear preorder can be represented by the set

Lπ = {(x, y) ∈ R2
+ : π(x) ≤ π(y)}.

The quantity Fµπ−1(π(x)) appearing in equation (2.1) satisfies

Fµπ−1(π(x)) = µ{y ∈ R+ : π(y) ≤ π(x)} = µ{y ∈ R+ : (y, x) ∈ Lπ}

for each x ∈ R+, and therefore depends on π only through Lπ.

Remark 2.8. The main tool used to prove Theorem 2.1 is the Hardy-Littlewood inequal-

ity. The Hardy-Littlewood inequality was originally stated in chapter 10 of the classic

book on inequalities by Hardy, Littlewood and Pòlya (1934), and appears to have first

been explicitly applied in economics in the early 21st century: see e.g. Renou and Carlier

(2003), Carlier and Dana (2005), and Carlier, Dana and Galichon (2009). An earlier ap-

plication, made apparently without knowledge of the existing mathematical literature on

the subject, appears in Becker (1973): the results on optimal sorting in the first section

of the appendix to the paper constitute a version of the Hardy-Littlewood inequality for

discrete sums of smooth supermodular bivariate functions. Becker attributes the proofs

in that section to William Brock.

We now state a version of the Hardy-Littlewood inequality, which we will apply in

the proof of Theorem 2.1 given in the Appendix. Given nonnegative extended real valued

measurable functions f, g defined on (R+,B(R+),m), with m a finite atomless measure,
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define the nonincreasing rearrangement of f by

f∗(x) = Qmf−1(1− Fm(x)),

and the nondecreasing rearrangement of g by

g∗(x) = Qmg−1(Fm(x)),

where we let x range over R+. The Hardy-Littlewood inequality states that∫
f∗g
∗dm ≤

∫
fgdm.

We refer the reader to Chong and Rice (1971) for a more detailed account of monotone

rearrangements and the Hardy-Littlewood inequality; many other references also exist.

Remark 2.9. Theorem 2.1 is closely related to Ryff’s decomposition (Ryff, 1970; see also

Theorem 6.2 in Chong and Rice, 1971, and Proposition 2 in Carlier and Dana, 2005).

Ryff’s decomposition states that, for every extended real valued measurable function f

on (R+,B(R+),m), with m finite and atomless, there exists a measure preserving map

φf : R+ → R+ such that f = f∗ ◦ φf m-a.e. The optimal measure preserving derivative

ϑ in Theorem 2.1 is the measure preserving map φπ appearing in Ryff’s decomposition

of π, and satisfies π = π∗ ◦ ϑ µ-a.e. This fact is established in the proof of Theorem 2.1

given in the Appendix.

Remark 2.10. The optimization problem solved in Theorem 2.1 is a special case of the

Monge optimal transportation problem. Given measures m1 and m2 on the real line with

equal total mass, and a cost function c : R×R→ R̄+, the Monge optimal transportation

problem requires us to minimize
∫
c(x, T (x))dm1(x) over all measurable maps T such

that m1T
−1 = m2. This problem has a physical interpretation: it involves finding the

cheapest way to move a mass of particles distributed according to m1 so that it is instead

distributed according to m2, when the per-unit cost of moving mass from point x to point y

is given by c(x, y). Refer to Villani (2003) for further discussion of optimal transportation

problems. If we set m1 = m2 = µ and c(x, y) = π(x)y, the Monge optimal transportation

problem reduces to our own. No use of transportation theory is made in this paper; we

solve our optimization problem directly using the Hardy-Littlewood inequality.

As stated earlier, the identity function on R+ is necessarily an element of Θµ. Since

this derivative corresponds to a direct investment of one monetary unit in the underlying

asset, one might wonder under what conditions our optimal measure preserving derivative
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ϑ corresponds to the identity function. In fact, there is a very simple answer to this

question: neglecting qualifications about sets of measure zero, ϑ is the identity function

if and only if the pricing kernel is monotone decreasing. We will state this result as a

separate theorem.

Theorem 2.2. Under Assumption 2.1, the function ϑ defined in (2.1) satisfies

µ{x ∈ R+ : ϑ(x) = x} = 1

if and only if

µ⊗ µ{(x, y) ∈ R2
+ : (π(x)− π(y))(x− y) ≤ 0} = 1.

Remark 2.11. If the underlying asset with payoff distribution µ is taken to be a mar-

ket index, then a monotone decreasing pricing kernel is precisely what basic economic

intuition would suggest. Output is more scarce when the market index is low, so Ar-

row securities yielding payoffs in such states should command a high price per unit of

probability. Conversely, Arrow securities yielding payoffs when output is plentiful should

command a lower price per unit of probability. In this scenario, the pricing kernel is

monotone decreasing, and so Theorem 2.2 implies that the optimal measure preserving

derivative corresponds to a direct investment in the market index. Other measure pre-

serving derivatives are priced more highly because they allow an investor to hedge against

poor market performance.

Remark 2.12. As discussed in the first section of this paper, there is substantial recent

empirical evidence that the pricing kernel corresponding to monthly returns for a major

US market index – the S&P 500 – is not monotone decreasing. Jackwerth (2000) found

that the pricing kernel for monthly S&P 500 returns during 1988-1995 was nonmonotone,

exhibiting an increasing region around the middle of the return distribution. Similar find-

ings have been documented by other researchers, cited in Section 4, for various market

indices over a range of timeframes post-1987. If it is indeed true that the pricing ker-

nel for a market index is nonmonotone, Theorems 2.1 and 2.2 imply that the one-period

return obtained by investing one monetary unit in the index can be first-order stochas-

tically dominated by investing one monetary unit in derivatives written on the index in

accordance with equation (2.1). This will be discussed in more detail in Section 4.
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3 Asymptotic theory for optimal derivative

estimation

In the previous section we gave an explicit formula, equation (2.1), for the optimal

measure preserving derivative written on some underlying asset. The formula is deter-

mined entirely by two objects: the underlying measure µ and the pricing kernel π. Though

these objects are typically unknown, they are estimable. One may thus consider forming

an estimate for the optimal measure preserving derivative by substituting estimates of µ

and π into equation (2.1). In this section we will identify conditions on the estimates of µ

and π that are sufficient to ensure that the estimated optimal derivative is well behaved.

Readers bored by asymptotic theory may skip to Section 4 without loss of continuity.

Let (Ω,A, P ) be a probability space. LetM be the set of all probability measures on

B(R+), and suppose that for each n ∈ N we have a map µ̂n : Ω →M. The sequence of

maps µ̂n is intended to represent a sequence of estimates of µ. We also need to define a

sequence of estimates of π. Let F denote the set of all Borel measurable functions from

R+ to R̄+. Suppose that for each n ∈ N we have a map π̂n : Ω → F . The sequence of

maps π̂n is intended to represent a sequence of estimates of π. Note that we have not

required the maps µ̂n : Ω → M and π̂n : Ω → F to satisfy a measurability condition.

Our main result in this section, Theorem 3.3 below, is stated in terms of convergence in

outer probability.

One may interpret the subscript n as the sample size used to form the estimators µ̂n

and π̂n if this is helpful, but formally we abstract from the notion of data and define

our estimators directly on the underlying probability space. Note that in applications

the estimates µ̂n and π̂n are typically formed using both historical data on the payoff of

the underlying asset, and current data on the prices of options written on the underlying

asset at a range of strike prices, so it is not entirely clear that the size of the sample is

best described by a single number.

In order to characterize the approximation of µ and π by µ̂n and π̂n, we require a

notion of distance on M and F . We equip M with the total variation metric d1, which

assigns distance

d1(m1,m2) = sup
B∈B(R+)

|m2B −m1B|

to measures m1,m2 ∈ M. The notion of distance we attach to F is less standard.

Recall from Remark 2.7 that the optimal measure preserving derivative ϑ depends on π

only through the induced linear preorder Lπ. For this reason, we will not require our

estimated pricing kernel π̂n to directly approximate π. Rather, we will require that the
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linear preorder induced by π̂n provide a good approximation to Lπ, in the sense that

the symmetric difference of these two sets has µ ⊗ µ-measure tending to zero in outer

probability as n → ∞. The linear preorder induced by a function f ∈ F is the set

Lf := {(x, y) ∈ R2
+ : f(x) ≤ f(y)}. We equip F with the pseudometric d2 given by

d2(f1, f2) = µ⊗ µ(Lf14Lf2)

for f1, f2 ∈ F , where 4 is the symmetric difference operation. (F , d2) may be viewed as a

metric space rather than a pseudometric space if we identify functions in F that generate

linear preorders whose symmetric difference is of zero µ⊗ µ-measure.

The following assumption describes the way in which we require µ̂n and π̂n to approx-

imate µ and π.

Assumption 3.1. As n→∞, the maps µ̂n and π̂n satisfy

1. µ̂n  µ under d1, and

2. π̂n  π under d2,

where “ ” denotes convergence in outer probability.

Remark 3.1. We follow Definition 1.9.1(i) in van der Vaart and Wellner (1996) in defining

convergence in outer probability. Let P ∗ be the outer measure corresponding to P . The

statement that µ̂n  µ under d1 is equivalent to the claim that

P ∗ {ω ∈ Ω : d1(µ̂n(ω), µ) > ε} → 0

for any ε > 0, while the statement that π̂n  π under d2 is equivalent to the claim that

P ∗ {ω ∈ Ω : d2(π̂n(ω), π) > ε} → 0

for any ε > 0. Convergence in outer probability is equivalent to weak convergence to the

probability measure assigning unit mass to the limit point, with weak convergence defined

in the sense of Definition 1.3.3 in van der Vaart and Wellner (1996).

Remark 3.2. Requiring that µ̂n  µ in the total variation metric rules out some simple

estimators of µ, but is not a particularly strong condition. If µ̂n is the empirical measure

formed from a sample of n draws from µ, then we will not have µ̂n  µ because µ̂n

is concentrated on a finite set whereas µ is atomless. Consequently the total variation

distance between µ̂n and µ will be one for all n. Well specified parametric likelihood-

based estimates of µ will typically satisfy µ̂n  µ under standard conditions, as the total
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variation distance between probability measures is bounded by the square root of twice

their Kullback-Leibler divergence, by Pinkser’s inequality. The total variation distance

between probability measures that are absolutely continuous with respect to Lebesgue

measure is equal to half the L1 distance between their probability density functions, and

so if µ admits a density function then an estimate of µ formed from an L1-consistent

nonparametric estimate of the density of µ will satisfy µ̂n  µ. Scheffé’s theorem implies

that any estimate of the density of µ that is pointwise strongly consistent on a set of

µ-measure one will also satisfy L1-consistency.

Remark 3.3. The assumption that π̂n  π under d2 is also fairly mild, and likely to

be satisfied by reasonable estimators of π under standard conditions. In fact, under an

additional measurability condition, it suffices that π̂n is pointwise strongly consistent on

a set of µ-measure one. We state this result as a separate theorem.

Theorem 3.1. Suppose that, for each n ∈ N, (ω, x) 7→ π̂n(ω)(x) is a measurable map

from (Ω× R+,A⊗ B(R+)) to (R̄+,B(R̄+)). Suppose further that, for µ-a.e. x ∈ R+, we

have π̂n(ω)(x) → π(x) as n → ∞ for P -a.e. ω ∈ Ω. Then, under Assumption 2.1, we

have π̂n  π under d2 as n→∞.

The ability to move from µ-a.e. pointwise strong consistency to weak convergence under

d2 is very useful. For instance, under the assumption that ν and µ admit densities with

respect to Lebesgue measure, Jackwerth (2000) proposed to estimate π by taking the

ratio of individual estimates of those densities. The global asymptotic properties of such

a ratio are difficult to describe because of aberrant behavior in regions where the density

of µ is zero or close to zero. If, however, the two density estimates individually satisfy

pointwise strong consistency, then their ratio is pointwise strongly consistent for π on the

set where µ has positive density, which is automatically of µ-measure one.

Our main result in this section establishes the consistency of an estimate of ϑ formed

by substituting µ̂n and π̂n for µ and π in equation (2.1). The pseudometric d2 is not

suitable for characterizing the approximation of ϑ by ϑ̂n, as we seek to estimate more

than merely the linear preorder induced by ϑ, so we require a new notion of distance on

F . Define the pseudometric d3 on F by

d3(f1, f2) =

∫
R+

|Fµ(f2(x))− Fµ(f1(x))|dµ(x)

for f1, f2 ∈ F . Again, we may view (F , d3) as a metric space rather than a pseudometric

space if we identify functions f1, f2 ∈ F for which d3(f1, f2) = 0. A more general version
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of d3 has been employed by the author in a related context (Beare, 2009), where it is used

to characterize the approximation of a function that transforms one measure to another.

The suitability of d3 for the present problem lies in the following result.

Theorem 3.2. Suppose we have a sequence of functions ϑ1, ϑ2, . . . in F such that

d3(ϑn, ϑ)→ 0 as n→∞. Under Assumption 2.1, as n→∞ the following statements are

true:

1. The measure µϑ−1
n ∈M converges weakly to µ; and

2. µ{x ∈ R+ : |ϑn(x)− ϑ(x)| > ε} → 0 for any ε > 0.

Remark 3.4. The first part of Theorem 3.2 says that if d3(ϑn, ϑ)→ 0, then we can expect

ϑn to be approximately measure preserving for large n. The second part of Theorem 3.2

says that if d3(ϑn, ϑ) → 0, then ϑn converges in µ-measure to ϑ. Note that we have not

required ϑn or ϑ to be bounded or even µ-integrable. The pseudometric d3 allows us to

ignore this issue, as Fµ ◦ f is necessarily bounded and measurable for any f ∈ F .

Define the map h :M×F → F by

h(m, f)(·) = Qm(1− Fmf−1(f(·))).

Our sequence of estimated optimal measure preserving derivatives ϑ̂n : Ω→ F is defined

by

ϑ̂n(ω) = h(µ̂n(ω), π̂n(ω)).

The main result of this section establishes that ϑ̂n is a consistent estimator of ϑ, in a

particular sense.

Theorem 3.3. Under Assumptions 2.1 and 3.1, we have ϑ̂n  ϑ under d3 as n→∞.

Remark 3.5. Let d12 be the pseudometric on M×F given by

d12((m1, f1), (m2, f2)) = max{d1(m1,m2), d2(f1, f2)}

for (m1, f1), (m2, f2) ∈ M × F . In view of Assumption 3.1, the continuous mapping

theorem implies that ϑ̂n = h(µ̂n, π̂n) h(µ, π) = ϑ under d3 provided that h is continuous

at (µ, π) with respect to d12 on its domain and d3 on its range. The demonstration of

such continuity is the content of the proof of Theorem 3.3 given in the Appendix.
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4 Empirical illustration

In this section we apply our formula for the optimal measure preserving derivative

to monthly returns for the S&P 500 index. In an important paper, Jackwerth (2000)

applied nonparametric methods using option price data to study the actual and risk neu-

tral distributions of monthly S&P 500 returns. He found that the shape of the pricing

kernel changed dramatically around the time of the 1987 stock market crash: precrash,

the pricing kernel appeared to be monotone decreasing, while postcrash it appeared to

be increasing in a region around the center of the return distribution, and decreasing

elsewhere. This pattern appeared consistently across the postcrash sample period, span-

ning 1988-1995. Aı̈t-Sahalia and Lo (2000) found a similar pattern in the pricing kernel

for six month S&P 500 returns in 1993 (see Figure 3 in their paper), as did Rosenberg

and Engle (2002) for monthly returns in 1991-1995 (see Figures 5 and 6 in their paper;

note that the power specification in Figure 6 is decreasing by construction). Chabi-Yo,

Garcia and Renault (2008) re-examined Jackwerth’s original data set, confirming his find-

ings (Figure 4 in their paper). Jackwerth (2004) identified nonmonotone pricing kernel

behavior in 2003 for the S&P 500, German DAX 30, United Kingdom FTSE 100 and

Japanese Nikkei 225 indices (Figure 11 in his paper; note that the estimated pricing ker-

nel for the Nikkei 225 appears very different to the others, and is monotone decreasing

at non-extreme return levels.). Violations of pricing kernel monotonicity for the DAX 30

in the early 2000s have also been documented by Golubev, Härdle and Timonfeev (2008)

and Härdle, Okhrin and Wang (2010). For further discussion, see Brown and Jackwerth

(2004) and Constantinides, Jackwerth and Perrakis (2009).

The apparent nonmonotonicity of the pricing kernel for market indices has been re-

ferred to variously as the pricing kernel puzzle, risk aversion puzzle, and empirical pricing

kernel paradox. Nonmonotonicity is puzzling from a theoretical perspective because the

results of Dybvig (1988a) imply that a rational agent will not invest his entire wealth

in the market portfolio. The idea of a representative agent therefore seems paradoxical.

Jackwerth (2000) and other authors cited in the previous paragraph have observed that

the absolute and relative risk aversion coefficients implied by first-order conditions for

optimization by a representative agent are negative in regions where the pricing kernel

increases. Further, the implied risk aversion coefficients return to positive levels beyond

the region in which the pricing kernel is increasing, thereby contradicting the assumption

of nonincreasing absolute risk aversion that is basic to much of the theoretical literature

on choice under uncertainty; see e.g. Machina (1982).

Various explanations have been proposed for the pricing kernel puzzle. Brown and
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Jackwerth (2004) and Chabi-Yo, Garcia and Renault (2008) argued that nonmonotone

pricing kernel estimates may reflect a failure to condition on relevant state variables

used by investors to form their beliefs about the distribution of market returns. Ziegler

(2007) showed that a nonmonotone pricing kernel can arise in a model where agents have

heterogeneous beliefs about the distribution of market returns. Detlefsen, Härdle and

Moro (2007) and Härdle, Krätschmer and Moro (2009) proposed a model in which agents

switch between bullish and bearish attitudes about the market return depending on the

current market outcome, with the switching point differing between agents, and showed

that this model can generate a nonmonotone pricing kernel. On a more basic level, one

may question whether the S&P 500 index or other market indices can truly be thought

of as market aggregates in the stylized sense used in theoretical models.

In this section we present the optimal measure preserving derivatives corresponding

to the estimates given by Jackwerth (2000) for the actual and risk neutral densities of 31-

day S&P 500 returns before and after the 1987 stock market crash. Jackwerth’s estimates

for October 21, 1986, and April 15, 1992, displayed in Figures 1 and 2 of his paper, are

reproduced in Figure 4.1 of this paper. In Figure 4.2 we display the pricing kernels implied

by Jackwerth’s estimates, and in Figure 4.3 we display the implied optimal measure

preserving derivatives. In all our graphs, the horizontal axes measure the 31-day payoff

from a $1 investment in the index. In Figures 1 and 2 of Jackwerth (2000), the units of

the horizontal axes were normalized so that the pre- and postcrash actual distributions

implied an expected payoff of exactly 1. Here, we rescale the horizontal axes so that the

pre- and postcrash risk neutral distributions imply a risk neutralized expected payoff of

exactly 1+r, where the 31-day risk-free interest rate r is set equal to the one month LIBOR

rate for the appropriate date. This makes the distributions in Figure 4.1 consistent with

our definitions of µ and ν in this paper.

Panel (a) in Figure 4.1 shows the estimated actual and risk neutral distributions for

31-day S&P 500 returns on October 21, 1986. Jackwerth estimated the actual distribution

by applying a kernel smoother to nonoverlapping 31-day returns over the four years prior

to that date, and the risk neutral distribution by applying a variation of the method of

Jackwerth and Rubinstein (1996) to current 31-day option prices. Jackwerth’s estimates of

the same quantities for April 15, 1992, are shown in panel (b) of Figure 4.1. As observed

by Jackwerth, the risk neutral distribution appears to change shape substantially pre-

and postcrash, becoming left-skewed in the latter period. The actual return distribution

appears to concentrate more tightly around its mean in the postcrash period.

In Figure 4.2 we display the pricing kernels implied by the actual and risk neutral

distributions in Figure 4.1. Each pricing kernel in Figure 4.2 is simply the ratio of the
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Figure 4.1: Estimated actual and risk neutral distributions for the 31-day payoff from a
$1 investment in the S&P 500 index. Actual distributions are given by solid lines and risk
neutral distributions by dashed lines. Taken from Figures 1 and 2 in Jackwerth (2000).

risk neutral density to actual density from the corresponding panel in Figure 4.1. In

panel (a), we see that the estimated precrash pricing kernel appears to be nonincreasing,

consistent with standard economic models. In fact, the estimated pricing kernel increases

from approximately 1.15 to 1.16 between -8% and -5% 31-day returns, but this increase

is too small to be visually discernible and may plausibly be attributed to estimation

error. There is also a minor violation of monotonicity at very high return levels. In panel

(b), the estimated postcrash pricing kernel exhibits more pronounced nonmonotonicity.

The estimated pricing kernel rises from approximately 1.37 to 1.48 between -11% and

-9% 31-day returns, and from approximately 0.88 to 1.20 between -3% and +3% 31-day

returns. It is the increasing region between -3% and +3% that Jackwerth focuses on in

his discussion of the risk aversion puzzle. This region has also been identified by other

empirical studies, cited at the beginning of this section, using a variety of postcrash

sample periods and estimation methods. The smaller increasing region between -11% and

-9% 31-day returns does not appear to have been identified by other studies, and is not

discussed in the paper by Jackwerth.

In Figure 4.3 we display the optimal measure preserving derivatives implied by the

actual and risk neutral distributions in Figure 4.1, calculated using equation (2.1) in The-

orem 2.1 above. Numerical computation was implemented using Ox version 5.10; see

Doornik (2007). Panel (a) displays the precrash optimal derivative. If the pricing kernel
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Figure 4.2: Pricing kernels implied by estimated distributions in Figure 4.1.

in panel (a) of Figure 4.2 was monotone decreasing, the optimal derivative in panel (a) of

Figure 4.3 would be the 45◦ line, by Theorem 2.2. The minor departure of the estimated

precrash pricing kernel from monotonicity causes the estimated precrash optimal deriva-

tive to deviate slightly from the 45◦ line, with relatively small fluctuations appearing

around the regions where the pricing kernel increases. In panel (b), the estimated post-

crash optimal derivative exhibits much more substantial departures from the 45◦ line. In

particular, it decreases sharply in the region between -3% and +3% 31-day returns where

the estimated pricing kernel is increasing, and increases more rapidly than the 45◦ line to

either side of this region. There is also a smaller fluctuation corresponding to the more

mildly increasing segment of the pricing kernel between -11% and -9% 31-day returns.

By construction, the estimated optimal measure preserving derivatives in Figure 4.3

deliver the same payoff distribution as a direct investment in the S&P 500 index under

the actual return distributions given in Figure 4.1. The nonmonotonicity of the pricing

kernels in Figure 4.2 implies that the optimal derivatives in Figure 4.3 should be priced at

less than $1 under the risk neutral distributions given in Figure 4.1, by Theorem 2.1. We

can calculate the prices of the optimal derivatives in Figure 4.3 by taking their discounted

expected payoffs under the risk neutral distributions given in Figure 4.1. Doing so, and

rounding to four decimal places, we find that the precrash optimal derivative is priced at

$1.0000, while the postcrash optimal derivative is priced at $0.9954. The fact that the

precrash optimal derivative is effectively priced at $1 reflects the fact that the precrash

18



 

0.8

0.9

1.0

1.1

1.2

0.8 0.9 1.0 1.1 1.2

O
pt

im
al

 p
ay

of
f

Market payoff

(a) October 21, 1986

0.8

0.9

1.0

1.1

1.2

0.8 0.9 1.0 1.1 1.2

O
pt

im
al

 p
ay

of
f

Market payoff

(b) April 15, 1992

Figure 4.3: Optimal measure preserving derivatives implied by estimated distributions
in Figure 4.1. Dashed lines are 45◦ lines.

pricing kernel is effectively nonincreasing. By comparison, the price of the postcrash

optimal derivative is substantially less than $1, reflecting the pronounced nonmonotonicity

of the postcrash pricing kernel. To put the figure of $0.9954 in context, observe that the

price differential of $0.0046 represents nearly half a percentage point increase in monthly

returns, compared to a direct investment in the index. This is a very substantial gain.

It is natural to consider a piecewise linear approximation to the postcrash optimal

derivative using a portfolio formed from investments in the underlying index and in 31-

day European options. The most striking feature of the postcrash optimal derivative

is the N -shaped fluctuation around the middle of the return distribution. This feature

could be reproduced in an approximating portfolio by combining a direct investment in

the index with heavy short and long positions in 31-day call options with strikes at -3%

and +3% respectively, and more moderate long and short positions in 31-day call options

with strikes at -6% and +6% respectively. Of course, in-the-money call options are rarely

traded, but can be replicated by positions in out-of-the-money put options, the underlying

index, and risk-free bonds. A simple portfolio of this kind may be expected to perform

rather well in the presence of a pricing kernel of the kind shown in Figure 4.1(b).
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5 Conclusion

In this paper we have given an explicit formula for the optimal measure preserving

derivative written on some underlying asset. The formula depends on the pricing kernel

and payoff distribution for the underlying asset, and corresponds to a direct investment

in the asset if and only if the pricing kernel is nonincreasing. We have also given simple

sufficient conditions for consistent estimation of the optimal measure preserving derivative

using estimates of the pricing kernel and underlying payoff distribution. Building on an

empirical study by Jackwerth (2000), we estimated the optimal measure preserving deriva-

tive for the S&P 500 index in October 1986 and April 1992, using a 31-day time horizon.

Consistent with our expectations, we found that the precrash optimal derivative roughly

coincides with a direct investment in the index, while the postcrash optimal derivative

does not. The estimated price of the postcrash optimal derivative corresponds to nearly

half a percentage point increase in monthly returns compared to a direct investment in

the index.

We will conclude by discussing several directions in which our results may be extended.

In Section 2, we built our results in a framework where there is a single underlying

asset, so that the actual and risk neutral distributions are defined on the nonnegative

real line. It may be useful to consider a more general framework in which there are

multiple underlying assets, so that the actual and risk neutral distributions are defined

on the positive orthant of multidimensional Euclidean space. The objective would then

be to find the cheapest real valued function of several variables achieving some target

return distribution. Dybvig’s (1988a) results continue to apply in a multidimensional

setting, implying that the cheapest such function must be countermonotone with respect

to the multidimensional pricing kernel. Derivation of the precise form of the cheapest

function is, however, complicated by difficulties that arise in dealing with probability

integral transforms and quantile functions when working with a multivariate underlying

distribution.

In Section 3, we obtained conditions under which an estimate of the optimal measure

preserving derivative satisfies a version of consistency. This result is reassuring because

it suggests that good estimates of the pricing kernel and underlying payoff distribution

can be expected to yield a good estimate of the optimal derivative. It does not provide

any means by which confidence intervals for the optimal derivative may be obtained,

or hypotheses about the optimal derivative tested. The development of an asymptotic

distributional theory for optimal derivative estimation seems an important but difficult

task. Even the pointwise behavior of the estimated derivative must depend on the global
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behavior of the estimated pricing kernel and underlying payoff distribution. Much work

remains to be done in this direction.

In Section 4, a number of criticisms may be leveled at our empirical results. Our op-

timal derivative estimates were computed using Jackwerth’s (2000) estimates of the pre-

and postcrash actual and risk neutral return distributions for the S&P 500 index. Jackw-

erth obtained his estimates for the actual return distribution by applying a simple kernel

smoother to the previous four years of returns. His estimate is thus perhaps best regarded

as an estimate of the unconditional actual distribution, whereas the more relevant object

may be the actual distribution conditional on currently available information. In partic-

ular, an estimate that takes advantage of the well-known predictability of volatility may

be preferable to Jackwerth’s simple kernel estimate. We note, however, that Rosenberg

and Engle (2002) obtained postcrash pricing kernel estimates similar to those of Jack-

werth using an asymmetric GARCH specification for the actual return distribution; in

particular, they found that the pricing kernel was increasing around the middle of the

distribution. The issue of conditional versus unconditional estimation may therefore not

be of critical importance. Nevertheless, it would be desirable to use more sophisticated

methods to estimate the pricing kernel and return distribution. The development of such

methods is an active research area: see e.g. Gagliardini, Gouriéroux and Renault (2005).

Our empirical study may also be criticized because of the stylized nature of the model

it is based on. Specifically, we implicitly assume the presence of complete markets and

the absence of transaction costs. If a continuum of Arrow securities written on the S&P

500 index were somehow traded in real financial markets, an investor could purchase a

portfolio of those securities delivering the payoff function corresponding to our optimal

measure preserving derivative. Clearly this is not actually the case. A more realistic

approach would be to consider approximating the optimal derivative using a portfolio of

European put and call options written at a finite collection of strike prices, as discussed

briefly at the end of Section 4. Our formula for the optimal derivative could perhaps

be used as a starting point for constructing a portfolio of options delivering a return

distribution that first-order stochastically dominates that obtained by investing directly

in the index. Transaction costs could easily be incorporated in such a setting. This

seems a promising direction for future research. It would also be of interest to extend our

analysis to more recent sample periods. The results in Section 4 should be taken as a

first step towards more serious empirical research in this area, and largely illustrative in

nature.
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A Mathematical appendix

Proof of Theorem 2.1. We shall prove the three parts of Theorem 2.1 in turn.

1. To verify that ϑ ∈ Θµ we observe that, for any w ∈ R+,

µ{x : ϑ(x) ≤ w} = µ{x : Qµ(1− Fµπ−1(π(x))) ≤ w}

= µ{x : 1− Fµπ−1(π(x)) ≤ Fµ(w)}

= µπ−1{x : Fµπ−1(x) ≥ 1− Fµ(w)}.

Our assumption that µ{x : π(x) = y} = 0 for each y ∈ R+ is equivalent to the

statement that µπ−1 is atomless. Thus, the well-known property of probability

integral transforms ensures that the function x 7→ Fµπ−1(x) maps the measure µπ−1

to the uniform measure on [0, 1], and so

µπ−1{x : Fµπ−1(x) ≥ 1− Fµ(w)} = Fµ(w) = µ{x : x ≤ w}.

Consequently we have µ{x : ϑ(x) ≤ w} = µ{x : x ≤ w} for all w ∈ R+, and

hence µ = µϑ−1. ϑ is trivially Borel measurable and nonnegative, so it follows that

ϑ ∈ Θµ.

2. The measure preserving property of the functions in Θµ ensures that each of

them has nondecreasing rearrangement equal to the identity function. The Hardy-

Littlewood inequality (see Remark 2.8) thus implies that
∫
θπdµ ≥

∫
xπ∗(x)dµ(x)

for all θ ∈ Θµ, where π∗(·) = Qµπ−1(1− Fµ(·)). Observe that, for µ-a.e. x,

π∗(ϑ(x)) = Qµπ−1(1− Fµ(ϑ(x)))

= Qµπ−1(1− Fµ(Qµ(1− Fµπ−1(π(x)))))

= Qµπ−1(Fµπ−1(π(x)))

= π(x),

establishing the claim made in Remark 2.9 regarding Ryff’s decomposition. It fol-

lows that ∫
ϑπdµ =

∫
ϑ(x)π∗(ϑ(x))dµ(x) =

∫
xπ∗(x)dµϑ−1(x),

and so the measure preserving property of ϑ yields∫
ϑπdµ =

∫
xπ∗(x)dµ(x).
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This shows that ϑ achieves the Hardy-Littlewood lower bound for
∫
θπdµ over Θµ.

3. If (x, y) ∈ R2 is such that π(x) ≤ π(y) then the monotonicity of Fµπ−1 and Qµ imply

that ϑ(x) ≥ ϑ(y). Similarly, if (x, y) ∈ R2 is such that π(x) ≥ π(y) then we must

have ϑ(x) ≤ ϑ(y).

Proof of Theorem 2.2. Suppose first that ϑ(x) = x for µ-a.e. x. We then have

µ⊗ µ{(x, y) : (x− y)(ϑ(x)− ϑ(y)) > 0} = 1,

and so Part 3 of Theorem 2.1 implies that

µ⊗ µ{(x, y) : (x− y)(π(x)− π(y)) ≤ 0} = 1.

Suppose next that µ⊗µ{(x, y) : (x−y)(π(x)−π(y)) ≤ 0} = 1. In view of the nonflatness

condition on π, it must then be the case that µ{y : π(y) ≤ π(x)} = µ{y : y > x} for

µ-a.e. x by Tonelli’s theorem. Consequently, the atomless property of µ ensures that

Fµπ−1(π(x)) = µ{y : π(y) ≤ π(x)} = µ{y : y > x} = 1− Fµ(x)

for µ-a.e. x, and so ϑ(x) = Qµ(Fµ(x)) = x for µ-a.e. x.

Proof of Theorem 3.1. Under the hypotheses of the theorem we may choose a set B ∈
B(R2

+) with µ⊗ µB = 1 such that

P{ω : π̂n(ω)(x)→ π(x) and π̂n(ω)(y)→ π(y)} = 1

and π(x) 6= π(y) for all (x, y) ∈ B. The A ⊗ B(R+)-measurability of the maps (ω, x) 7→
π̂n(ω)(x) implies that the maps An : Ω× R2

+ → {0, 1} given by

An(ω, (x, y)) = |1(π̂n(ω)(x) ≤ π̂n(ω)(y))− 1(π(x) ≤ π(y))|

are A ⊗ B(R2
+)-measurable. It is easy to see that P{ω : An(ω, (x, y)) → 0} = 1 for

all (x, y) ∈ B. An application of the dominated convergence theorem therefore yields∫
An(ω, (x, y))dP (ω)→ 0 for each (x, y) ∈ B. Since µ⊗ µB = 1, a second application of

the dominance convergence theorem yields
∫∫

An(ω, (x, y))dP (ω)dµ ⊗ µ(x, y) → 0, and

so from Tonelli’s theorem we deduce that
∫∫

An(ω, (x, y))dµ⊗µ(x, y)dP (ω)→ 0. Noting

that An(ω, ·) is the indicator function of the set Lπ̂n(ω)∆Lπ, we may write d2(π̂n(ω), π) =
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∫
An(ω, (x, y))dµ ⊗ µ(x, y). Thus we have shown that

∫
d2(π̂n(ω), π)dP (ω) → 0, from

which it follows via Markov’s inequality that P{ω : d2(π̂n(ω), π) > ε} → 0 for all ε > 0.

This proves that π̂n  π under d2, as claimed.

Proof of Theorem 3.2. We shall prove the two parts of Theorem 3.2 in turn. The argu-

ments used to prove the first part are similar to those used to prove Theorems 2.2 and

2.4 of Beare (2009).

1. It suffices for us to show that Fµϑ−1
n

(x)→ Fµ(x) as n→∞, for each x ∈ R+. Begin

by observing that

Fµϑ−1
n

(x)− Fµ(x) = Fµϑ−1
n

(x)− Fµϑ−1(x)

= µ{y : ϑn(y) ≤ x < ϑ(y)} − µ{y : ϑ(y) ≤ x < ϑn(y)}

for each x ∈ R+. Since µ is atomless, Tonelli’s theorem implies that∫
µ{y : ϑn(y) ≤ x < ϑ(y)}dµ(x) =

∫
µ{x : ϑn(y) ≤ x < ϑ(y)}dµ(y)

=

∫
max{Fµ(ϑ(y))− Fµ(ϑn(y)), 0}dµ(y),

and similarly∫
µ{y : ϑ(y) ≤ x < ϑn(y)}dµ(x) =

∫
max{Fµ(ϑn(y))− Fµ(ϑ(y)), 0}dµ(y).

Consequently, we have∫
|Fµϑ−1

n
− Fµ|dµ ≤

∫
|Fµ(ϑn(y))− Fµ(ϑ(y))|dµ(y) = d3(ϑn, ϑ),

which tends to zero as n → ∞. We now prove by contradiction that
∫
|Fµϑ−1

n
−

Fµ|dµ → 0 implies Fµϑ−1
n
→ Fµ pointwise. Suppose Fµϑ−1

n
(c0) 9 Fµ(c0) for some

c0 ∈ R+. Then there must be a sequence of natural numbers n1, n2, . . . increasing

to infinity, and a real number ε > 0 (or ε < 0), such that Fµϑ−1
nk

(c0) ≥ Fµ(c0) + ε

(resp. Fµϑ−1
nk

(c0) ≤ Fµ(c0) + ε) for all k. Suppose ε > 0; we may use an analogous

argument when ε < 0. Since Fµ is continuous, we may choose c1 > c0 such that

Fµ(c1) = Fµ(c0) + ε/2. Monotonicity of Fµϑ−1
nk

and Fµ then ensures that Fµϑ−1
nk

(x) ≥
Fµ(x) + ε/2 for all x ∈ [c0, c1] and all k. Consequently, we have∫

|Fµϑ−1
nk
− Fµ|dµ ≥

ε

2

∫ c1

c0

dµ =
ε

2
(Fµ(c1)− Fµ(c0)) =

ε2

4
> 0
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for all k, implying that
∫
|Fµϑ−1

n
− Fµ|dµ9 0.

2. Markov’s inequality implies that, for any ε > 0,

µ{x : |Fµ(ϑn(x))− Fµ(ϑ(x))| > ε} ≤ ε−1d3(ϑn, ϑ)→ 0

as n → ∞. In this sense, Fµ ◦ ϑn converges in µ-measure to Fµ ◦ ϑ. The measure

preserving property of ϑ implies that

µ{x : Qµ is continuous at Fµ(ϑ(x))} = µ{x : Qµ is continuous at Fµ(x)}.

Since µ is atomless, this last quantity is simply the Lebesgue measure of the set of

points in [0, 1] at which Qµ is continuous, which must be one since Qµ is nonde-

creasing and therefore has at most countably many discontinuities. Thus, for x in a

set of µ-measure one, we have Qµ continuous at Fµ(ϑ(x)). The continuous mapping

theorem therefore implies that Qµ ◦ Fµ ◦ ϑn converges in µ-measure to Qµ ◦ Fµ ◦ ϑ.

Since Qµ(Fµ(x)) = x for µ-a.e. x, the measure preserving property of ϑ implies

that Qµ(Fµ(ϑ(x))) = ϑ(x) for µ-a.e. x. Consequently, Qµ ◦ Fµ ◦ ϑn converges in

µ-measure to ϑ. That is, for any ε > 0,

µ{x : |Qµ(Fµ(ϑn(x)))− ϑ(x)| > ε} → 0

as n→∞. We wish to show that ϑn converges in µ-measure to ϑ. Observe that

µ{x : |ϑn(x)− ϑ(x)| > ε} ≤ µ{x : |Qµ(Fµ(ϑn(x)))− ϑ(x)| > ε}

+µ{x : Fµ(ϑn(x)) = Fµ(y) for some y 6= ϑn(x)}.

We have shown that the first term on the right-hand side of the above inequality

converges to zero as n→∞. We wish to show that the second term also converges

to zero. This term satisfies

µ{x : Fµ(ϑn(x)) = Fµ(y) for some y 6= ϑn(x)}

= µϑ−1
n {x : Fµ(x) = Fµ(y) for some y 6= x}.

Since µ is atomless, the set {x : Fµ(x) = Fµ(y) for some y 6= x} is the union of at

most countably many closed intervals, and therefore has boundary µ-measure zero.
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Part 1 of this Theorem states that µϑ−1
n converges weakly to µ, so we must have

µϑ−1
n {x : Fµ(x) = Fµ(y) for some y 6= x} → µ{x : Fµ(x) = Fµ(y) for some y 6= x}

as n → ∞. Since µ is atomless, µ{x : Fµ(x) = Fµ(y) for some y 6= x} = 0. This

completes the proof.

Proof of Theorem 3.3. Recalling Remark 3.5, our desired result follows from Theorem

1.3.6 of van der Vaart and Wellner (1996), a version of the continuous mapping theorem,

if we can show that h is continuous at (µ, π) with respect to d12 on its domain and d3

on its range. Consider a sequence of elements (µn, πn) ∈ M × F , n ∈ N, such that

d12((µn, πn), (µ, π))→ 0 as n→∞. Clearly d1(µn, µ)→ 0 and d2(πn, π)→ 0 as n→∞.

Observe that

d3(h(µn, πn), h(µ, π))

=

∫
R+

|Fµ(Qµn(1− Fµnπ−1
n

(πn(x))))− Fµ(Qµ(1− Fµπ−1(π(x))))|dµ(x)

≤
∫
R+

|Fµnπ−1
n

(πn(x))− Fµπ−1(π(x))|dµ(x) + sup
u∈(0,1)

|Fµ(Qµn(u))− u|. (A.1)

We need to show that the two terms on the right-hand side of (A.1) converge to zero as

n→∞. The second term satisfies

sup
u∈(0,1)

|Fµ(Qµn(u))− u| ≤ sup
x∈R+

|Fµn(x)− Fµ(x)|+ sup
u∈(0,1)

|Fµn(Qµn(u))− u|. (A.2)

Since d1(µn, µ)→ 0, the first term on the right-hand side of (A.2) converges to zero. The

second term on the right-hand side of (A.2) is equal to the size of the largest discontinuity

in Fµn . This quantity must be converging to zero since d1(µn, µ) → 0 implies that Fµn

converges uniformly to Fµ, which is continuous since µ is atomless.

It remains to show that the first term on the right-hand side of (A.1) converges to

zero. We have ∫
R+

|Fµnπ−1
n

(πn(x))− Fµπ−1(π(x))|dµ(x)

≤
∫
R+

|Fµnπ−1
n

(πn(x))− Fµπ−1
n

(πn(x))|dµ(x)

+

∫
R+

|Fµπ−1
n

(πn(x))− Fµπ−1(π(x))|dµ(x). (A.3)
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For each x ∈ R+ the integrand in the first term on the right-hand side of (A.3) satisfies

|Fµnπ−1
n

(πn(x))− Fµπ−1
n

(πn(x))| = |µn{y : πn(y) ≤ πn(x)} − µ{y : πn(y) ≤ πn(x)}|

≤ sup
B∈B(R̄+)

|µn(B)− µ(B)|,

which converges to zero since d1(µn, µ) → 0. Thus the first term on the right-hand side

of (A.3) converges to zero by dominated convergence. We now need only show that the

second term on the right-hand side of (A.3) converges to zero. Using Tonelli’s theorem,

we have ∫
R+

|Fµπ−1
n

(πn(x))− Fµπ−1(π(x))|dµ(x)

=

∫
R+

|µ{x : πn(x) ≤ πn(y)} − µ{x : π(x) ≤ π(y)}|dµ(y)

≤
∫
R+

µ({x : πn(x) ≤ πn(y)} 4 {x : π(x) ≤ π(y)})dµ(y)

= µ⊗ µ({(x, y) : πn(x) ≤ πn(y)} 4 {(x, y) : π(x) ≤ π(y)}),

which is equal to d2(πn, π) and therefore converges to zero. We have now shown that

d3(h(µn, πn), h(µ, π))→ 0, which proves that h is continuous at (µ, π), as claimed.
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