Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A $K_{{u}}$ -Band CMOS FMCW Radar Transceiver for Snowpack Remote Sensing

Published Web Location

https://doi.org/10.1109/TMTT.2018.2799866
No data is associated with this publication.
Creative Commons 'BY-ND' version 4.0 license
Abstract

This paper presents a Ku -band (14-16 GHz) CMOS frequency-modulated continuous-wave (FMCW) radar transceiver developed to measure dry-snow depth for water management purposes and to aid in retrieval of snow water equivalent. An on-chip direct digital frequency synthesizer and digital-to-analog converter digitally generates a chirping waveform which then drives a ring oscillator-based Ku -Band phase-locked loop to provide the final Ku -band FMCW signal. Employing a ring oscillator as opposed to a tuned inductor-based oscillator (LC-VCO) allows the radar to achieve wide chirp bandwidth resulting in a higher axial resolution (7.5 cm), which is needed to accurately quantify the snowpack profile. The demonstrated radar chip is fabricated in a 65-nm CMOS process. The chip consumes 252.4 mW of power under 1.1-V supply, making its payload requirements suitable for observations from a small unmanned aerial vehicle.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item