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CHAPTER 1

An Information Theoretic Approach to
Ecological Estimation and Inference

George Judge
University of California, Berkeley

Douglas J. Miller
Purdue University

Wendy K. Tam Cho
University of Illinois at Urbana-Champaign

1.1 Introduction

In the social sciences, much of the data used for estimation and inference are
available only in the form of averages or aggregate outcomes. Given this type
of data restriction, researchers often use probabilities to represent information
concerning the unknown and unobservable parameters of the underlying decision
process. As a case in point, political scientists often face the question of how
to process and recover information concerning voter behavior from precinct- or
district-level data. These data are in many cases limited to aggregate vote counts,
and individual specific information about voters in a precinct is seldom available.

Efforts to recover micro information from aggregate data generally result in ill-
posed inverse problems which yield a multitude of feasible “solutions” due to
the lack of sufficient information. In other words, ill-posed problems are funda-
mentally indeterminate because there are more unknowns than data points. Con-
sequently, there is not enough information available from the data to uniquely
solve the problem using traditional rules of logic. Seminal developments for cop-
ing with this long standing methodological challenge include Robinson (1950),
Goodman (1953, 1959), Duncan and Davis (1953), Freedman, Klein, Sacks, Smyth,
and Everett (1991), Achen and Shively (1995), and King (1997). Ill-posed inverse
problems are not unique to political science and the literature is littered with pos-
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sible solutions to related estimation and inference problems in economics and
other fields (see for example Golan, Judge, and Miller, 1996).

Given the existence and importance of ecological estimation and inference prob-
lems in political science, we propose information theoretic procedures to recover
estimates of the unknown conditional probabilities used as a basis for understand-
ing voter behavior. In these problems, it is often possible to select feasible so-
lutions or estimates that conform to the observed data, but the question lurking
in the background is “what do these estimates mean or what question are they
answering?”

Because the information theoretic and other formulations are based entirely on
aggregate data that are limited, partial, and incomplete, the recovered conditional
probabilities may not be appropriate for answering a range of important voter be-
havior questions. Hence, to make efficient use of aggregate election data, we must
find some way to introduce additional structure into the modeling and informa-
tion recovery process. One way to proceed is to specify a conceptual framework
that provides a plausible basis for the underlying data generation process. Toward
this end, in the second part of the paper, we suggest moment-based formulations
that exploit the theoretical underpinnings of voter behavior and introduce impor-
tant behavior parameters that facilitate the presentation and interpretation of the
results. One purpose for adding this information or model structure is to provide a
basis for converting a fundamentally ill-posed inverse problem into a well-posed
problem. By reformulating the problem, we recover information at the appropri-
ate level of aggregation on important voter response parameters along with the
unknown conditional probabilities. The resulting formulations are semiparamet-
ric in the sense that the joint distribution of the underlying data is unspecified,
apart from a finite set of moment conditions. These components form the basis
for recovering the unknown response parameters and corresponding conditional
probabilities and are used as standard operational tools in econometric informa-
tion processing and recovery problems (Mittelhammer, Judge, and Miller, 2000).
There certainly are many possible ways to approach ill-posed problems, so we
emphasize that one must proceed cautiously when considering the significance of
the estimates.

The paper proceeds as follows: In Section 1.2, we develop the notation consistent
with the basic problem and develop a corresponding basis for modeling the aggre-
gate data that focuses on the unknown conditional probabilities. In Section 1.3,
we model the data as both a pure and a noisy inverse problem, suggest a solution,
and interpret the recovered conditional probabilities. In Section 1.4, we suggest
moment-based formulations that exploit the theoretical underpinnings of voter
behavior and introduce important behavior parameters that facilitate the presenta-
tion and interpretation of the results. In Section 1.5 , we discuss the implications of
the models and the proposed solutions as a basis for learning about voter behavior.
Some examples based on real and synthetic data are presented in the Appendix.
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1.2 Notation and Basic Inverse Model

To develop a model that will reflect the characteristics of voter response, consider
the observed outcomes for a particular election acrossi = 1; : : : ;m electoral units
(e.g., precincts or districts). Each unit hasj = 1; : : : ; g types of individual voters
andk = 1; : : : ; c vote choices (e.g. candidates for office or propositions, including
perhaps an abstention or no-vote category). For convenience and without loss of
generality, we will adopt a framework where the election units are precincts and
the vote choice is a set of candidates. For each precinct, the observed data are the
number of votes for each candidate,N i�k =

Pg
j=1Nijk , and the number of voters

in each group,Nij� =
Pc

k=1Nijk . The total number of ballots cast in the precinct
isNi =

Pg
j=1

Pc
k=1Nijk. For any secret ballot, the total number of votes cast by

each group for particular candidates in the election is unknown andunobserved.
Given the observed data, our initial objective is to formulate an inverse model that
will permit us to estimateNijk , the unobserved number of votes cast in precinct
i by voters of typej for candidatek, from the sample of voters who voted in the
election.

For the purposes of formulating the basic inverse model, the data may be stated
in terms of the observed row or column proportions, i.e., for precincti, n i�k =
Ni�k=Ni or nij� = Nij�=Ni. The inverse problem may be equivalently stated in
terms of the proportion of voters in each category,� ijk = Nijk=Nij� = nijk=nij�,
where

Pc
k=1 �ijk = 1 for eachi andj. In this context,�ijk may be interpreted as

the conditional probability that voters in precincti and groupj voted for candidate
k, where the conditioning indices arei andj. For example, in a study of split-
ticket voting, the indexj may represent votes for each ofg national candidates
from different parties, and the indexk may represent the local candidates. The
objective in this case would be to estimate the conditional probability that voters
selected candidatek in the local election given that they voted for candidatej in
the national election. In another application such as a study of polarized voting,
the conditioning indexj may represent characteristics of the electorate such as
race or gender.

1.2.1 Modeling Voting Behavior as an Inverse Problem

The components of this information recovery problem for a particular precinct (i
suppressed) are summarized in Table 1.1. The observed number of ballots cast by
registered voters in each group (Nj�) are the row sums, and the observed number
of votes received by each candidate (N �k) are the column sums. What we do not
know and cannot observe is the number of votes cast by each group,N jk, or the
proportion of votes cast by each group for each candidate,n jk . If the conditional
probabilities�jk were known, we could derive the unknown number of voters as
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Njk = �jkNj�. However, the conditional probabilities are unobserved and not ac-
cessible by direct measurement. Thus, we are faced with the cross-level inference
problem, an inverse problem where we must use indirect, partial, and incomplete
macro measurements as a basis for recovering the unknown conditional prob-
abilities. The probability space interpretation gives the problem some minimal
structure and provides a basis for learning from the data in a highly ambiguous
situation.

The symbols in Table 1.1 and the corresponding data provide a limited basis for
understanding voter behavior. If we are to improve our basis for recovering voter
response information from partial-incomplete data we must introduce some struc-
ture into the modeling process. One bit of structure comes from the realization that
the conditional probabilities�jk must satisfy the row sum,

Pc
k=1 �jk = 1, and

column sum,
Pg

j=1 �jkNj� = N�k, conditions. Some additional structure may be
imposed based on a substantive theory about the particular behavior being exam-
ined and the elicitation of prior-nonsample information, and we can exploit this
model structure to facilitate presentation and interpretation.

If we make use of the column sum conditions, we have the relationship

ni�k =

gX
j=1

nij��ijk ; (1.1)

for i = 1; : : : ;m andk = 1; : : : ; c. To formalize our notation, we letx(i) =
(ni1� ni2� � � � nig�)0 represent the(g � 1) vector of proportions for each of the
groupsj = 1; : : : ; g in precincti, and lety(i) = (ni�1 ni�2 � � � ni�c)0 represent the
(c�1) sample outcome vector of vote proportions for each candidatek = 1; : : : ; c
in precincti. Then, the relationship among the observed marginal proportions and
unknown conditional probabilities may be written as

y0(i) = x
0(i)B(i) : (1.2)

The componentB(i) = (� i1 �i2 � � � �ic) is an unknown and unobservable(g�
c) matrix of conditional probabilities and� ik = (�i1k �i2k � � � �igk)0 is the
(g � 1) vector of conditional probabilities associated with precincti and can-
didatek. If we rewriteB(i) in (gc � 1) vectorized form as�(i) = vec(�(i)) =�
�0

i1 �
0

i2 � � � �0

ic

�
0

, then we may rewrite (1.2) as26664
y1(i)
y2(i)

...
yc(i)

37775 =

26664
x
0(i) 0 � � � 0

0 x
0(i) � � � 0

...
...

. . .
...

0 0 � � � x
0(i)

37775
26664
�i1
�i2

...
�ic

37775 (1.3)

or more compactly asy(i) = (Ic 
 x0(i))�(i) = X(i)�(i) whereX(i) =
(Ic 
 x0(i)) and
 denotes the Kronecker product. We may extend the formu-
lation to include observations form � 2 precincts by stacking they(i) and�(i)
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Table 1.1 Known and Unknown Components of the Voter Problem

Candidate
Group 1 2 3 4 Count

1 �11N1� �12N1� �13N1� �14N1� N1�

2 �21N2� �22N2� �23N2� �24N2� N2�

3 �31N3� �32N3� �33N3� �34N3� N3�

N�1 N�2 N�3 N�4 N

vectors to form26664
y(1)
y(2)

...
y(m)

37775 =

26664
X(1) 0 � � � 0

0 X(2) � � � 0

...
...

. . .
...

0 0 � � � X(m)

37775
26664

�(1)
�(2)

...
�(m)

37775 (1.4)

or y = X�.

Given relationships (1.2) to (1.4) as a way of modeling the underlying data pro-
cess, we view each election as an experiment. The sample data underlying Ta-
ble 1.1 is viewed as the outcome of an election-experiment. Consequently, we
represent these sample data as having a systematic component (1.2) and a ran-
dom component"ik and write the statistical model expressing the data sampling
process as

ni�k =

gX
j=1

nij��ijk + "ik (1.5)

or
y = X� + � ; (1.6)

where the noise vector� is supported on a non-empty and bounded set and is
assumed to have mean E[�] = 0, and finite covariance matrix�. The errors
represent sampling variation in the observed column sums (n ik) relative to the
true but unobserved marginal probability that voters in precincti vote for can-
didatek. Using this weak model specification, we initially solve the problem by
using the observed data outcomesy = X� to represent the population moments,
E [y] = E [X� + �]. Under this form, the absence of sampling errors and other
stochastic noise components in (1.2)–(1.4) implies that the problem of recovering
� from observedy andX is a pure inverse problem. For each precinct-specific
problem (1.3), note that the matrixX(i) has dimension(c � gc) and is underde-
termined and generally not invertible. Thus, under traditional mathematical inver-
sion procedures, the voter pure inverse (VPI) problem is said to be ill-posed, and
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the solution space for the problem contains arbitrary parameters. The question we
now face is whether or not there is a plausible basis for reasoning in situations like
this where the information we possess specifies only a feasible set of functions.
Moving in the direction of a plausible solution basis, we note that the unknown
conditional probabilities must satisfy some additional conditions such as additiv-
ity and non-negativity, and the solution to the pure inverse problem (1.2) must
satisfy the estimating functionsy = X�.

1.3 Some Information Theoretic Solutions

1.3.1 Choosing the Criterion Function

Given the inverse model specified in Section 1.2.1, the long journey in defining
a solution begins with the selection of a goodness-of-fit criterion. If we recog-
nize and maintain the distinction that the unknown elements� ijk are conditional
probabilities rather than joint probabilities, then our pure voting inverse model
is similar to allocating values to each of the cells in a contingency table. Conse-
quently, the Cressie-Read power-divergence (CRPD) statistic (Cressie and Read,
1984; Read and Cressie, 1988; Baggerly, 1998) is a pseudo-distance measure that
may be used to compare elements in the set of feasible conditional probabilities
implied by the available data. For a discrete probability distributionw defined
with respect toi = 1; : : : ; n possible outcomes, the CRPD statistic

I(w; q; �) =
2

�(1 + �)

X
i

wi

"�
wi
qi

��
� 1

#
; (1.7)

measures the pseudo-distance betweenw (i.e., conditional probabilities in the VPI
problem) and a set of reference weightsq. The reference weights may be based on
additional or prior information that the researcher may want to bring to bear upon
the estimation. The discrete weights must satisfy(wi; qi) 2 (0; 1)� (0; 1) 8 i andP

i wi =
P

i qi = 1. Read and Cressie note that (1.7) encompasses a family of
empirical likelihood estimation objective functions that includes

1. Kullback-Leibler directed divergence or discrimination information statistic
(Kullback, 1959; Gokhale and Kullback, 1978)

I(w; q; �! 0) /
nX
i=1

wi ln

�
wi
qi

�
(1.8)

and

I(w; q; �! �1) /
nX
i=1

qi ln

�
qi
wi

�
(1.9)

Note thatI(w; q; �! 0)+I(w; q; �! �1) is a symmetric distance function.
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2. Pearson’s chi-square statistic (Pearson, 1900)

I(w; q; � = 1) =
nX
i=1

(wi � qi)
2

qi
(1.10)

3. Modified chi-square statistic (Neyman, 1949)

I(w; q; � = �2) =
nX
i=1

(qi � wi)
2

wi
(1.11)

4. Squared Matusita or Hellinger distance

I(w; q; � = �1=2) /
nX
i=1

(
p
wi �pqi)2 (1.12)

Read and Cressie note that the CRPD statistic is strictly convex in its arguments
and may be used as a criterion function for minimum distance estimation. Given
uniform reference weightsqi = n�1; 8 i, the negative of (1.7) also encompasses
other prominent statistics:

1. Empirical likelihood statistic (Owen, 1988, 1990)

�I(w; q; �! �1) /
nX
i=1

ln(wi) (1.13)

2. Shannon’s entropy (Shannon, 1948) or exponential empirical likelihood (Di
Cicco and Romano, 1999; Corcoran, 2000) statistic

�I(w; q; �! 0) / �
nX
i=1

wi ln(wi) (1.14)

3. Simpson or Gini statistic

�I(w; q; � = 1) = 1�
nX
i=1

w2

i (1.15)

In these cases, the minimum distance estimation problem is solved by maximizing
the criterion function with respect tow.

1.3.2 Solution to a Pure Inverse Problem

Under the minimum CRPD estimation criterion, an estimator for the VPI problem
may be derived by minimizing the estimation criterion (1.7) for this problem

2

�(1 + �)

mX
i=1

gX
j=1

cX
k=1

�ijk

"�
�ijk
qijk

��
� 1

#
; (1.16)
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(given some�) subject to the column-sum condition (1.1) and the row-sum (ad-
ditivity) condition

cX
k=1

�ijk = 1 8 i; j : (1.17)

The Lagrange expression for this constrained minimization problem is

L(�;�;
) =
2

�(1 + �)

mX
i=1

gX
j=1

cX
k=1

�ijk

"�
�ijk
qijk

��
� 1

#

+
mX
i=1

cX
k=1

�ik

0@ni�k � gX
j=1

nij��ijk

1A
+

mX
i=1

gX
j=1


ij

 
1�

cX
k=1

�ijk

!
; (1.18)

where�ik and
ij are Lagrange multipliers for constraints (1.1) and (1.17), re-
spectively. The necessary condition forb�ijk is

@L

@�ijk
=

2

�

 b�ijk
qijk

!�

� 2

�(1 + �)
� b�iknij� � b
ij = 0 ; (1.19)

and the solution for the conditional probabilities is

b�ijk = qijk

�
1

1 + �
+
�

2
(b�iknij� + b
ij)�1=� : (1.20)

In general, the solution does not have a closed-form expression and must be stated
in intermediate form as a function of the optimal Lagrange multipliers,b� ik andb
ij . Consequently, the optimal values of the Lagrange multipliers must be nu-
merically determined. We note that as� ! 0 in (1.16), the estimating criterion
is

mX
i=1

gX
j=1

cX
k=1

�ijk ln

�
�ijk
qijk

�
; (1.21)

and the intermediate solution for the constrained optimal� ijk is

b�ijk =
qijk exp (b�iknij�)Pc
k=1 qijk exp (b�iknij�) : (1.22)

The elementsb�ik are the optimal values of the Lagrange multipliers on constraint
(1.4). Under uniform reference weights (q ijk = c�1; 8 i; j), the negative criterion
is proportional to

�
mX
i=1

gX
j=1

cX
k=1

�ijk ln (�ijk) ; (1.23)
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and the minimum CRPD problem is known in the information theory literature
as Jaynes’ method of maximum entropy (Jaynes, 1957a, 1957b) for pure inverse
problems. Illustrative examples using real and synthetic data are given in Ap-
pendix A.

1.3.3 Incorporating Bounds on the Conditional Probabilities

Given the high degree of ambiguity resulting from the aggregate data, we can
follow Duncan and Davis (1953) and use (1.1) to refine the constraint set on the
conditional probabilities by placing upper and lower bounds on each� ijk . As in-
dicated by King (1997), the constraint (1.1) implies that the lower bound on� ijk

is Zijk1 = max (0; (ni�k � (1� nij�)) =nij�), and the upper bound isZijk2 =
min (1; ni�k=nij�). Given the bounds,�ijk may be expressed as a convex combi-
nation,�ijk =

P
2

h=1 'ijkhZijkh for 'ijkh � 0 such that'ijk1 + 'ijk2 = 1.
In this case, we may specify reference weightsqijkh on each of the upper and
lower bounds such that�0ijk =

P
2

h=1 qijkhZijkh is a pre-sample estimate of the
unknown�ijk .

After incorporating the bounding information, the reformulated VPI problem may
now be solved by minimizing

2

�(1 + �)

mX
i=1

gX
j=1

cX
k=1

2X
h=1

'ijkh

"�
'ijkh
qijkh

��
� 1

#
; (1.24)

subject to reparameterized versions of (1.1) and (1.17)

ni�k =

gX
j=1

nij�

2X
h=1

'ijkhZijkh ; (1.25)

1 =

cX
k=1

2X
h=1

'ijkhZijkh ; (1.26)

plus the additivity constraint on the new weights

'ijk1 + 'ijk2 = 1 : (1.27)

Setting up and solving the first order conditions leads to the solution

b'ijkh = qijkh

�
1

1 + �
+
�

2
(b�iknij�Zijkh + b
ijZijkh + �ijk)

�1=�
; (1.28)

where the point estimator of the bounded conditional probability is

b�ijk =

2X
h=1

b'ijkhZijkh : (1.29)



12 An Information Theoretic Approach

If we let � ! 0 in the criterion function (1.16), we are led to the constrained
minimization problem

mX
i=1

gX
j=1

cX
k=1

2X
h=1

'ijkh ln

�
'ijkh
qijkh

�
; (1.30)

subject to the constraints (1.25) to (1.27). The intermediate solution for the con-
strained optimal'ijkh may be expressed as

b'ijkh =
qijkh exp (b�iknij�Zijkh + b
ijZijkh)P
2

h=1 qijkh exp (b�iknij�Zijkh + b
ijZijkh) ; (1.31)

and the estimator of the conditional probabilities is (1.29). Illustrative examples
for these formulations using real and synthetic data are given in Appendix A.

1.3.4 The Noisy Voter Inverse Problem

The pure voter inverse problem of Sections 1.3.2 and 1.3.3 is one plausible way
to model information recovery from aggregate election data. However, if we view
each election as an experiment, then Table 1.1 represents the outcome of an
election-experiment. Because it may be unrealistic to assume that the vote counts
and the shares (proportions) are perfectly observed, in the spirit of much of the re-
search in the ecological inference area, we turn to the following sampling model
that has both systematic and stochastic components that represent the sampling
process as in (1.5)

ni�k =

gX
j=1

nij��ijk + "ik ; (1.32)

or in the form of a linear statistical model

y = X� + � : (1.33)

The random(mgc � 1) noise vector� is assumed to have mean E[�] = 0 and
finite covariance matrix�. At this point, we assume that theX’s are measured
without error. We refer to the resulting estimation problem as the voter noisy
inverse (VNI) problem.

1.3.4.1 Incorporating Bounds on the Characteristics of the Noise

The properties of"ik 2 [0; 1] may be derived from the known properties ofn i�k

in (1.5) or (1.32). First, we may be able to refine the plausible subset of the error
space for a given sample by using the method of bounds to determine the plausible
upper and lower bounds on" ik. The largest possible positive difference between
ni�k and the systematic component occurs if the conditional probabilities assigned
to each groupj in columnk are zero (i.e.,� ijk = 0), and the upper bound is
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simplyni�k . Accordingly, the largest possible negative difference occurs if� ijk =
1 for eachj in columnk, and the lower bound isn i�k � 1.

Second, we may refine the bounds to reflect the statistical properties of�. Un-
der the standard sampling conditions commonly assumed for the problem,� is
a mean zero process with finite covariance�. Further,n i�k is a

p
Ni-consistent

estimator of the marginal probability�i�k such thatni�k
p! �i�k and is asymp-

totically normal as
p
Ni (ni�k � �i�k)

d! N (0; �i�k(1� �i�k)). Consequently, we
know the bounds should be centered about zero. LetV ik1 = Æik (ni�k � 1) =

p
Ni

be the lower bound andVik2 = Æikni�k=
p
Ni be the upper bound for each er-

ror term (whereÆik > 0 may be distinct for eachi andk). To directly impose
the mean-zero property of�, we may specify symmetric (about zero) bounds,
Vik1 = �Æikmax (ni�k; 1� ni�k) =

p
Ni andVik2 = �Vik1.

Given the error bounds, each"ik may be expressed as a convex combination

"ik = wik1Vik1 + wik2Vik2 ; (1.34)

wherewikr > 0 for r = 1; 2 andwik1 +wik2 = 1. Then, (1.32) may be reformu-
lated as

ni�k =

gX
j=1

nij�

2X
h=1

Zijkh'ijkh +

2X
r=1

Vikrwikr : (1.35)

By construction, there exist simplex-valued weightsf' ijkhg andfwikrg such that
(1.35) holds for the observed sample. Through (1.35), the VNI problem may now
be based on the linear statistical model (1.33) plus the bounding information on
�ijk and"ik . Thus, the VNI problem may be solved by formulating it as a mini-
mum distance estimation problem and determining an appropriate set of weights
for the unknown conditional probabilities and error components. As before, the
problem specification allows for reference weights on the unknown parameters,
qijkh for 'ijkh andqwikr for wikr .

1.3.4.2 The Solution

As in Sections 1.3.2 and 1.3.3, we solve the extended VNI problem by minimizing
the CRPD criterion subject to the complete set of constraints. In particular, we
minimize

mX
i=1

gX
j=1

cX
k=1

2X
h=1

'ijkh ln

�
'ijkh
qijkh

�
+

mX
i=1

cX
k=1

2X
r=1

wikr ln

�
wikr
qwikr

�
; (1.36)

subject to (1.35) plus

cX
k=1

2X
h=1

'ijkhZijkh = 1 ; (1.37)
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'ijk1 + 'ijk2 = 1 ; (1.38)

wik1 + wik2 = 1 : (1.39)

The necessary conditions yield the intermediate solutions for the weights

b'ijkh =
qijkh exp (b�iknij�Zijkh + b
ijZijkh)P
2

h=1 qijkh exp (b�iknij�Zijkh + b
ijZijkh) ; (1.40)

bwikr =
qwikr exp (b�ikVikr)

qwik1 exp (b�ikVik1) + qwik2 exp (b�ikVik2) : (1.41)

After the optimal Lagrange multipliersb�ik andb
ij are numerically determined,
the estimatesb�ijk are computed as in (1.29). In Appendix A, a data set is used to
illustrate the noisy inverse formulation and compare it to the pure inverse formula-
tion. In general, the introduction of the noise components weakens the constraints
and moves the estimate in the direction of the initial unbounded pure outcome.

The ill-posed and underdetermined character of the pure and noisy inverse prob-
lems implies that a unique solution does not exist. Each “solution” is merely an
algorithm for inferring a function (conditional probabilities) that is consistent with
the available information (constraints) and the estimation criterion. Accordingly,
we have developed a feasible solution method based on information theoretic-
empirical likelihood concepts and tools. Under the noise inverse formulation, it is
possible to demonstrate that under standard regularity conditions onn i�k (stated
in Section 1.3.4.1) that̂�jk is a

p
Ni–consistent and asymptotically normal esti-

mator. The large-sample properties of the estimator presents a basis for inference
about the minimum CRPD model of voting behavior.

1.3.5 Remarks

One of the great queries of political science revolves around the ideal of repre-
sentation. Do our political institutions promote or inhibit fair representation of
the masses? This is a difficult question to answer, and there are few mechanisms
through which we can gain insight into this query. One mechanism, however, is
the election process. Elections can be seen as natural experiments where we are
able to observe repeatedly the behavior of the citizenry and its response to po-
litical institutions over time. Although it is difficult to make large-scale changes
in our political structures, policies and platforms certainly change in response to
each election, and this process is ongoing. To gain maximal insight, we would
ideally like to know how preferences map to choices in a variety of contextual
settings. Surveys usually cannot capture these varieties of settings, whereas ag-
gregate returns can. Moreover, an analysis of aggregate data allows us to study
those more rare instances in which institutions do shift and we want to see how
that change in structure alters the mapping of preferences to choice. The formula-
tions in this section allow us to tap into these types of questions on a macro level.
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We can observe how a macro unit such as a precinct behaves across elections and
through time. We can, moreover, through the information theoretic formulations,
observe how this behavior changes as a function of precinct characteristics such
as urban/rural or minority composition or the strengths of major party affiliations.

These formulations are based on aggregate data, and so the results necessarily
apply directly to the aggregate units only. The connection to individual-level be-
havior is clearly indirect. Nonetheless, if one needs to provide an interpretation
of individual behavior based on aggregate data, the estimated conditional proba-
bilities from the information theoretic approach is a plausible basis. These con-
ditional probability estimates are admittedly only one way to summarize the ag-
gregate data, but using this trajectory to arrive at a “solution” is attractive in sev-
eral senses. First, the information theoretic procedure provides a solution to the
ill-posed inverse problem that is consistent with the possible underlying data gen-
erating process. Second, this procedure provides an especially appealing solution
because the outcomes represent voter counts that could have occurred in the great-
est number of ways given the data constraints (see Section 2.2 in Golan, Judge,
and Miller for details). Third, political science theories rarely provide an adequate
basis for specifying the random mechanism by which the observed data are gen-
erated. As previously noted, the proposed approach is semiparametric and does
not require a fully specified likelihood function. Fourth, the information theoretic
procedures allow one to stay within the general framework while using additional
non-sample information to condition the solution.

1.4 Recovering Information on Individual Behavior

In the approach to information recovery for the inverse problems in Section 1.3,
we only use the observed macro data relating to voter groups and candidates.
Since one uses aggregate data as an input, one gets information relevant at the
aggregate level as output. For many voter behavior questions, these aggregated
estimates may not provide an adequate basis for inference in either a positive or
normative sense. Ultimately, we are interested in micro-individual voter behavior,
and this is the topic to which we now turn.

Viewing each election as an experiment, we use (1.32) and (1.33) as a basis for
modeling the sampling process. We noted that it may be unrealistic to assume that
the vote counts and voter group shares (i.e., then ij�’s or thex’s) are measured
without error. If we letx� be the observed voter group shares from (1.33) andx

be the true unobservable voter shares, then we may modelx
� as

x
� = x+ u ; (1.42)

whereu is an unobserved noise vector. Therefore, the underlying statistical model
is

y = x� + � ; (1.43)
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but the observable version of (1.33) is

y = x
�� + �� ; (1.44)

where
�� = �� u� : (1.45)

If the measurement errors inx are independent of� and mutually uncorrelated,
then�� is a mean zero noise vector with covariance� + �� 0�2uI = 
. In the
statistical model based on the observable data,x

� is correlated with the random
matrix��. Thus, the usual linear model condition that the right-hand-side explana-
tory variables are orthogonal in expectation to the error process is violated. Fur-
ther, traditional estimation rules based on E

�
x
�0��
�
= 0 will have questionable

statistical properties when this condition does not hold.

To mitigate the impact of the measurement errors, we use additional information
that we identify in the form of instrumental variables. This source of information
makes use of the fact that precincts may vary in terms of their individual demo-
graphic characteristics and that this variation may be related to the correspond-
ing unknown and unobservable voter group shares and conditional probabilities.
Given the economic, political, and social differences between precincts, it seems
likely that the group shares and conditional probabilities� ijk may vary over in-
dividuals, precincts, and/or time. To reflect this potential heterogeneity in the mi-
cro behavior, we assume that the�ijk ’s are conditional on a set of explanatory-
instrumental variables, and that these covariates reflect the individual, spatial, or
temporal differences in voter decisions. As such, the instrumental variable (IV)
approach provides a method for estimating causal effects in a measurement error
or simultaneous equation model framework. The covariates may include measures
of economic performance such as the local level of unemployment, political char-
acteristics such as incumbency, or demographic variables such as average age of
the electorate. Using this information, along with the observed macro data dis-
cussed in Section 1.3, it is possible to form a set of estimating equations as a basis
for recovering the unknown conditional probabilities and identifying the impact
of the explanatory variables on the corresponding conditional probabilities. The
ultimate success of the moment-based specification depends on a plausible theory
of micro voter behavior that helps to identify the important behavior conditioning
factors.

Returning to the statistical model (1.42) where the observedx
�’s are now stochas-

tic explanatory variables that are correlated with the noise vector� �, one useful
way to model the data sampling process is to considery andx � as endogenous-
jointly determined random variables. In this context, the statistical model becomes
a system of relations

y = x
�� + �� ; (1.46)

and
x
� = A� + u ; (1.47)
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whereA is a set of instrumental variables that are correlated withx
� but un-

correlated with�� andu. Under this formulation, the simultaneous or structural
equation statistical model results, and traditional estimation and inference proce-
dures apply directly to the model (see Chapter 17 in Mittelhammer, Judge, and
Miller for more details).

In practice, the source of measurement error is varied and specific to the appli-
cation being considered. In general, we expect that some measurement error will
be evident in theX variable. For example, in the Voting Rights context, errors
in theX variable are commonplace, since the variable of interest, racial turnout
proportions, is rarely attainable. Instead, one must reply on a proxy variable such
as racial registration proportions or racial population proportions. Using a proxy
variable leads to the type of measurement error mentioned above.

1.4.1 Moment-Based Model Formulation

To link the�ijk to the explanatory-instrumental variables, we rewrite the noisy
inverse statistical model (1.32) as

A
0y = A

0
X� +A0� : (1.48)

The explanatory variablesA in (1.48) are assumed to be uncorrelated with the
noise components. Consequently, we can form the following set of estimating
equations

E [A0 (Y �X�)] = 0 ; (1.49)

and the sample analog

T�1
A

0 (Y �X�) p! 0 as T !1 : (1.50)

The individual components of the moment conditions may be stated in scalar form
as

T�1

TX
t=1

A
0

ti

24nti�k � gX
j=1

ntij��tijk

35 = 0 ; (1.51)

for eachi andk. To allow for heteroskedasticity across precincts and possible
temporal correlation, we assume regularity conditions on� such that (1.51) holds
under an appropriate weak law.

The moment condition (1.51) may be extended to include the reparameterized
conditional probabilities�tijk and noise components"tik as in Section 1.3. The
voter inverse problem with noise and time-varying conditional probabilities may
be solved by minimizing the CRPD objective function

I (';w; �) =
2

�(1 + �)

TX
t=1

mX
i=1

gX
j=1

cX
k=1

2X
h=1

'tijkh

"�
'tijkh
qtijkh

��
� 1

#
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+
2

�(1 + �)

TX
t=1

mX
i=1

cX
k=1

2X
r=1

wtikr

"�
wtikr
utikr

��
� 1

#
;(1.52)

subject to the estimating equations

TX
t=1

A
0

ti

24nti�k � gX
j=1

ntij�

2X
h=1

Ztijkh'tijkh �
2X

r=1

Vtikrwtikr

35 = 0 ; (1.53)

plus the additivity conditions
cX

k=1

'tijkhZtijkh = 1 ; (1.54)

'tijk1 + 'tijk2 = 1 ; (1.55)

wtik1 + wtik2 = 1 : (1.56)

The intermediate solution may be stated in terms of the Lagrange multipliers

b'tijkh =
qtijkh exp

�b�0

ikAtiZtijkhntij�
�P

2

h=1 qtijkh exp
�b�0

ikAtiZtijkhntij�
� : (1.57)

The minimum CRPD estimator of the time-varying conditional probability is

b�tijk =

2X
h=1

b'tijkhZtijkh : (1.58)

The Lagrange multiplierb�ik provides a basis for evaluating the impact of the
instrumental variables on the solution.

In general, the estimators for the moment-based model formulation will also be
consistent and asymptotically normal under standard regularity conditions. For
example, the consistency result stated in Equation (1.50) and a related assump-
tion regarding the asymptotic normality ofT �1=2

A
0(Y � X�) may be used to

establish the asymptotic properties. To illustrate the basic statistical properties of
the moment-based formulation, we conduct a series of Monte Carlo simulation
exercises for a cross-sectional version of the model withm = 20 andm = 50
precincts or districts. Overall, the replicated estimates of the model parameters
exhibit smaller sample bias and variance as the number of precinctsm increases.
We discuss further details regarding the composition of the replicated sampling
process and the simulation results in the Appendix.

1.4.1.1 Remarks

Applications of the ecological inference problem are often in areas where the es-
timates are highly consequential. For instance, in the Voting Rights arena, the de-
cision of a judge to grant or deny relief under the Voting Rights Act turns entirely
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on an ecological inference. How the system of representation plays out in our
democracy is closely tied to how this type of legislation is enforced. Hence, not
accounting for measurement error in this context especially could have great ram-
ifications. Moreover, this is a circumstance where measurement error is known
to pose a problem. In particular, the voter group shares are often based on reg-
istration rates (which can be attained for a small set of localities) or populations
figures (which are easily attainable), but the variable of interest is racial turnout
rates (which are very difficult to obtain). Using one as a proxy for the other may
be necessary, but also clearly problematic.

Some scholars have suggested a “double regression” approach to alleviate this
problem (Kousser 1973; Grofman, Handley, and Niemi 1992). This method sports
the same idea as the minimum CRPD method, but does not take any additional
information into account. The proposed instrumental variables approach allows
one to incorporate the large literature on voter turnout to help mitigate the impact
of the undisputed measurement error. Although the success of this formulation
is dependent on a plausible theory of micro-level behavior, the uncertainty can
be assuaged by the reliance on solid empirical studies in an extensive substan-
tive literature. While the formulations proposed here are at the macro level, they
incorporate information that has been empirically verified at the micro level.

1.4.2 The Discrete Choice Voter Response Model

In this section, we focus on obtaining and using micro data about individual vot-
ers in a precinct. Our objective is to use this micro data to estimate the impact
of political, social economic, and demographic variables on voter behavior and to
recover the corresponding marginal (conditional) probabilities. We envision a sit-
uation where detailed survey data are collected on variables that characterize the
voters in the precinct and indicate how each person voted in a particular contest.
Given micro data that reflects the individual characteristics of a sample of voters,
we model voter response as a discrete binary choice problem.

To develop this model, we use the unordered multinomial statistical response
model. In this context, consider an unordered multinomial discrete choice prob-
lem with an experiment (survey) consisting ofN trials (voters in a precinct), bi-
nary random variablesy1j ; y2j ; : : : ; yNj are observed. The binary outcomesfy ijg
are observed for votersi = 1; : : : ; N and candidatesj = 1; 2; : : : ; J in a given
precinct. The candidate indices may be reordered without loss of generality such
that the candidates representJ unordered categories. The observed outcome is
yij = 1 if and only if voteri casts a vote for candidatej, andy ij = 0 otherwise.

Let the probability that voteri casts a vote for candidatej be p ij and assume
that the voting decision is related to a set of explanatory variablesa i through the
model

pij(�) � P
�
yij = 1 j ai;�j

�
= G

�
a
0

i�j
�
> 0 ; (1.59)
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for eachi andj. In particular,a 0

i = (ai1; ai2; : : : ; aiK), �j is a (K � 1) vec-
tor of unknown response parameters, andG(�) is a function that links the prob-
abilities pij with the linear combinationa0

i�j such thatG
�
a
0

i�j
� 2 [0; 1] andPJ

j=1G
�
a
0

i�j
�
= 1.

Suppose the observed outcomes ofy ij are noisy such that the underlying binary
random variables may be modeled as

Yij = G
�
a
0

i�j
�
+ "ij = pij + "ij ; (1.60)

where the"ij are noise components. The binary response model may be written
in matrix form as

Y = p+ � ; (1.61)

where each component is an (NJ � 1) vector. We assume E[�] = 0 and that
cov (�) is a finite positive semidefinite matrix. Note that this matrix is rank-
deficient due to the additivity property of the choice probabilities,

PJ
j=1 pij = 1.

If we follow McFadden (1974), Manski and McFadden (1982), or Maddala (1983),
we may solve the problem with the traditional maximum likelihood approach. Un-
der the log-likelihood function

ln L (�; a) =

NX
i=1

JX
j=1

yij ln
�
G
�
a
0

i�j
��

; (1.62)

the solution is the multinomial logit estimator ifG is the logistic CDF and the
multinomial probit estimator ifG is the multivariate normal (Gaussian) CDF.

Rather than adopt a fully parametric specification, we extend the ideas outlined in
Section 1.3 and use a moment-based approach for estimation and inference. In this
context, we use the observed outcomes ofy and the (N�K) matrix of explanatory
variablesa to recover information about theunknown andunobservable model
componentsp and�. For the multinomial choice problem, this information may
be written as an inverse problem with noise that is linear inp

(IJ 
 a0) y = (IJ 
 a0)p+ (IJ 
 a0) � : (1.63)

The inverse problem hasKJ moment relations andNJ unknown conditional
probabilities. Assuming the orthogonality condition E[(IJ 
 a0) �] = 0 holds,
we can form an unbiased estimating function

E [(IJ 
 a0) (Y � p)] = 0 ; (1.64)

with sample analog
N�1 (IJ 
 a0) (Y � p) = 0 : (1.65)

If N > K (as is often the case), the inverse problem based on this set of estimating
equations is ill-posed.

One way to solve the ill-posed inverse problem and recover information about
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the unknown model components is to use the CRPD criterion introduced in Sec-
tion 1.3. For expositional simplicity, we focus on the special case of CRPD that
results in Shannon’s entropy functional. Under this information criterion, we can
solve the following extremum problem

max
p

�p0ln (p) ; (1.66)

subject to the moment constraints

(IJ 
 a0)y = (IJ 
 a0)p ; (1.67)

and the additivity constraints�
IN IN � � � IN

�
p = 1 ; (1.68)

where the matrix on the left-hand-side is(N � NJ) and1 is an(N � 1) unit
vector.

The information theoretic solution to the inverse problem may be derived from
the necessary conditions for this inverse problem. The intermediate form of the
solution is

bpij = exp
�
�a0ib�j�


i

�b�� =
exp

�
a
0

i
b�j�


i

�b�� ; (1.69)

whereb�j is the (K�1) vector of optimal Lagrange multipliers for thej th moment
constraint. The expression represents only an intermediate solution to the inverse
problem becausebpij is a function ofb�j , which must be numerically determined.
As indicated, the inverse problem may also be stated in terms of the response
parametersb�j = �b�j . Finally, the denominator component or partition function
takes the form


i

�b�� =
JX
j=1

exp
�
a
0

i
b�j� : (1.70)

Thus, by making use of the micro data in this multinomial context, we can recover
estimates of the response parameters�j and the corresponding marginal probabil-
ities. Further, the solution to the inverse problem has the same mathematical form
as the logistic multinomial probability model (Mittelhammer, Judge, and Miller,
Chapter 20).

The intermediate solution may be substituted back into the Lagrange expression
to form a concentrated objective function

M(�) = y0 (IN 
 a)�+

JX
j=1

ln (
i (�)) ; (1.71)

which is identical to the log-likelihood function for the multinomial logit problem
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(Maddala, 1983, p. 36). Consequently, the asymptotic properties of the multino-
mial logit estimator also apply to the information theoretic solution in this inverse
problem, and the sampling results may be used to form inferences regarding voter
response to changes in the explanatory variables. The solution to the inverse prob-
lem will not coincide with the multinomial logit case if we use other members
of the CRPD criterion family as the objective function. However, related large-
sample properties may be derived under comparable regularity conditions.

1.4.2.1 Remarks

Precincts represent an aggregate unit, which, moreover, is aggregated at an ar-
bitrary level. Precinct behavior is interesting in some contexts, but another chal-
lenge is reconstructing individual-level behavior. Knowing how people vote is in-
strumental to understanding the dynamics and impact of our political structures.
Surveys provide one means of accomplishing this task. However, surveys have
clear weaknesses that could be overcome with aggregate data. The discrete choice
formulations developed here provide a method for utilizing survey information in
conjunction with the aggregate data, and thus allow one to draw from the strengths
of both levels of data. For a discussion of this type of model in an epidemiology
context, see Wakefield and Salway (2001).

The discrete choice formulations provide but one way to bridge the chasm be-
tween the macro and micro estimates. They enable us to condition on a set of
covariates to make this link from the macro to the micro. There have been many
studies seeking to link covariates to voter choice at the micro level. We look to
these studies to guide the choice of explanatory variables for the discrete choice
formulations in Section 1.4. In particular, many of these studies have established a
clear empirical link between voter preferences and socio-economic variables such
as age, income, and education. In addition, the socio-economic variables can be
used to design a survey that would elicit information on individual attitudes and
how these characteristics map to attitudes. Indeed, we are more generally inter-
ested in mapping attitudes to characteristics rather than the more narrow question
of how attitudes map to vote preferences. The former mapping is much more
general and would allow us to engage in a wider range of prediction. Campaign
strategists, after all, are most interested in forming effective targeting strategies
based on individual characteristics, not individual vote preferences per se.

Although there are many ways to transform this problem into a well-posed inverse
problem, our formulation here is attractive because it has many of the same nice
features as the one discussed in Section 1.3. In particular, the procedure has an
information theoretic–empirical likelihood base that permits semiparametric in-
ference and allows, when available, the incorporation of non-sample information.
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1.5 Implications

Ecological inference problems provide an interesting challenge for polimetri-
cians. The secret ballot is designed to maintain an air of secrecy around indi-
vidual vote preferences, and it has very successfully done so. As a result, the data
generated from any election are partial and incomplete. Consequently, the corre-
sponding estimation and inference models present themselves as underdetermined
and ill-posed inverse problems. While our goal is to obtain information in terms
of conditional probabilities as a basis for expressing the micro processes under-
lying the macro outcome data, these conditional probabilities are unobserved and
unobservable. This means few, if any, bets on the values of the unknowns, will
ever be collected.

Although many theories about voting behavior seem to exist, there does not ap-
pear to be one overarching micro theory that encompasses all of the empirical and
theoretical research on the topic. Few have even discussed, or even seem willing to
discuss, the prospects of constructing a micro foundation for aggregate outcomes.
This lack of model structure creates presentational and interpretational problem
and results in insufficient information on which to specify a data sampling pro-
cess that might be consistent with the observed data outcomes. Hence, traditional
estimation and inference procedures appear to be ill-suited to deal with ecolog-
ical data. The use of creative assumptions to achieve tractability and well-posed
mathematical and statistical models leads in many cases to erroneous interpreta-
tions and conclusions. No one ever said ecological inference was easy.

Building on the productive efforts of many polimetricians, in an effort to make
some progress on these interesting problems and challenges, we have considered
non-traditional methods of thinking about this problem. This approach recognizes
that the problem of sorting out voter behavior that is modeled in terms of un-
known probabilities while making use of only aggregate data constraints results
in an ill-posed inverse problem. In seeking a basis for reasoning in this logically
indeterminate situation, we have modeled the ecological inference problem as a
pure or a noisy inverse problem. In this context, to choose a “solution” from the
set of feasible solutions, the Cressie-Read statistic was used to identify a family of
goodness-of-fit or psuedo distance measures. This solution provides a useful way
to summarize a micro system that is consistent with the observed macro counter-
part. This formulation is also attractive in that it provides a straightforward way to
include prior non-sample information, is amenable to a multiplicity of precincts,
can easily include spatial and intertemporal aspects, and is easy to implement.
This approach also allows one to alleviate problems such as measurement er-
ror by incorporating an instrumental variables framework that may be employed
along with the moment conditions to provide a basis for recovery estimates of
response parameters and the corresponding marginal probabilities related to voter
preferences. Finally, in order to bridge these estimates to the micro-level, we view
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the ecological inference problem as a discrete choice problem. This permits the
recovery of response parameters related to voter characteristics, and again recov-
ery of corresponding marginal (conditional) probabilities. It is worth noting that
the application of maximum entropy methods has been explored in the ecological
inference context (Johnston and Pattie 2002). However, extensions of the method
which we explore (i.e. cross-entropy) and the introduction of information theo-
retic techniques is novel to the study of ecological inference.

Under the instrumental variables and discrete choice formations, estimation and
inference proceeds in the context of sampling theory and provides a sampling
basis for evaluating performance. To a large extent, the information processing
and recovery rules described are non-traditional in nature and does not assume in-
formation about the underlying sampling distributions, which is unknown. These
nonparametric/semiparametric formations permit one to stay within the realm of
sampling theory but allow one to avoid the rigidity of likelihood functions and
proceed based only on a finite set of moment conditions.

In looking ahead in terms of ways to think about ecological inference problems,
semiparametric and nonparametric formulations of the random coefficient models
seem to be promising avenues. In this framework, one may replace unknown func-
tions with reasonable nonparametric estimators rather than the maximum likeli-
hood estimator that constrains the parametric setting. One possibility in this con-
nection is sieve empirical likelihood estimation and testing procedures. Alterna-
tively, the Bayesian method of moments offers a basis for recovering conditional
probabilities without the usual Bayesian likelihood and prior distributions.

The writing of this paper, which led to a trek into the world of ecological infer-
ence, has been a very rewarding experience. It has reminded us that aggregate
analyses that lead to invalid micro inferences also have implications and conse-
quences other than those of the statistical ilk. It is also refreshing for economists to
be reminded that the problem of recovering micro level effects from an aggregate
counterpart is not unique to economic data.
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Appendix A: Illustrative Examples

Information-Theoretic Formulation

To illustrate the properties of the information theoretic approach, we consider a
special case of the VPI problem based on an election withk = 4 candidates
in some precinct. Suppose thatN votes were cast for the candidates, and that
we record the individual votes asxi = j for i = 1; : : : ; N andj = 1; : : : ; 4.
Because of the secret ballot, individual records are unknown and thus we only
have the average vote outcome from the election,�x. Further, suppose we believe
that the candidates are equally likely to win the electionex ante. The objective
of our VPI problem is to estimate the proportion�k of votes that each candidate
received based on this very limited information. Within the context of Section 1.3,
we solve the problem by maximizing the CRPD objective function with uniform
reference weights and�! 0

�
4X

k=1

�k ln (�k) ; (A.1)

subject to

4X
k=1

�kxk = �x ; (A.2)

4X
k=1

�k = 1 ; (A.3)

by choice of�k � 0. The intermediate solution to the VPI problem is

b�k =
exp (�b�xk)P
4

k=1 exp (�b�xk) ; (A.4)

whereb� is the optimal Lagrange multiplier for the constraint (A.2).

Although the problem is stated as a constrained maximization, the computational
burden may be reduced by concentrating the estimation problem. Following the
discussion of (1.71) for the discrete choice problem in Section 1.4.2, we can sub-
stitue the intermediate solution (A.4) back into the Lagrange equation for the
problem defined by (A.1) to (A.3). The resulting concentrated objective function

M(�) = ��x+ ln

"
4X

k=1

exp (��xk)
#
; (A.5)

is strictly convex in�, and the optimal value of the Lagrange multiplier may be
computed by minimizingM(�). We can then evaluate (A.4) atb� to determine the
estimated vote shares. Thus, the estimates for the VPI problem may be computed
with any software package that solves unconstrained optimization problems (e.g.,
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Table A.1 Solutions to the Simple VPI Problem

Candidate
�x 1 2 3 4

1.5 0.648 0.235 0.086 0.031
2.0 0.421 0.277 0.182 0.120
2.5 0.250 0.250 0.250 0.250
3.0 0.120 0.182 0.277 0.421
3.5 0.031 0.086 0.235 0.648

maximum likelihood or nonlinear least square estimation). In general, we can
form concentrated objective functions for any of the minimum CRPD problems
stated in this chapter, and we provide additional examples in the following sub-
section.

The simple VPI problem is very similar to Jaynes’ famous dice problem in which
we must assign probabilities to the six faces of a die based on the observed average
outcome ofN rolls. In our case, we have four unknown probabilities� k and only
two pieces of available information. To demonstrate the solution to our simple
VPI problem, we report the conditional probabilities for five different values of�x
in Table A.1. Note that all of the minimum CRPD solutions to this problem based
on uniform reference weights are discrete uniform when�x = 2:5. Otherwise, the
estimated conditional probabilities are monotonically increasing if�x > 2:5 and
monotonically decreasing if�x < 2:5.

Variants of the King Ohio Voter Problem

To further demonstrate the minimum CRPD procedure, we consider the simple
problem presented by King (1997) in his Table 1.2. For a particular Ohio precinct,
King reports the number of votes for the two major parties plus the number of
non-voters (c = 3) in the 1990 Ohio State House election. King also reports the
number of registered black and white voters in the Ohio precinct (g = 2). The
data provided by King are the row and column sums in Table A.2. For example,
there are 221 black registered voters in the precinct, and 92 votes were cast for the
Republican candidate. The associated VPI problem is to estimate the number of
votes cast for each party (including no-votes) conditional on the race of the voter.
In effect, we haveg(c � 1) = 4 unknown probabilities and(g � 1) = 2 pieces
of information (after normalization), and King’s Ohio voter problem is clearly
underdetermined.

The Ohio voter problem is solved using the minimum CRPD estimator with uni-
form reference weights and� ! 0. The objective function is (1.23), and the
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intermediate solution for the constrained optimal� ijk is a special case of (1.22)

b�jk =
exp (�b�knj�)P
3

k=1 exp (�b�knj�) : (A.6)

To compute the optimal Lagrange multipliersb�k, we minimize the concentrated
objective function

M(�) =

3X
k=1

n�k�k +

2X
j=1

ln

"
3X

k=1

exp (��knj�)
#
: (A.7)

The predicted vote counts appear in the individual cells in the table, and the es-
timated conditional probabilities are reported in parentheses. Without access to
the individual ballots, we cannot know the true values of the� ijk elements in this
example. However, we do know that the solution is consistent with a reasonable
set of regularity conditions and with what is known about the set of feasible con-
ditional probabilities,�ijk . Further, the estimated voter counts have maximum
multiplicity under the Shannon entropy criterion. That is, the conditional distribu-
tion that maximizes (1.23) is coincident with the set of cell-specific vote outcomes
that may be realized in the largest number of ways given the row and column sum
constraints (see Section 2.2 in Golan, Judge, and Miller for more details).

To demonstrate the impact of the bounds on� ijk , we solve the bounded VPI
problem and present the results in Table A.2. For this version of the VPI problem
stated in Section 1.3.3, the weights on the bounds are special cases of (1.31)

b'jkh =
exp (�b�knj�Zjkh � b
jZjkh)P
2

h=1 exp (�b�knj�Zjkh � b
jZjkh) ; (A.8)

The concentrated objective function for this problem

M(�;
) =
3X

k=1

�kn�k +

gX
j=1


j

+

2X
j=1

3X
k=1

ln

"
2X

h=1

exp (��knj�Zjkh � 
jZjkh)

#
; (A.9)

is derived by substituting the intermediate solution back into the Lagrange equa-
tion, and the optimal Lagrange multipliersb�k andb
j are computed by uncon-
strained minimization ofM(�;
). The solution values of� ijk are computed
from the optimal weightsb'jkh as in (1.29), and the estimates appear in parenthe-
ses below the estimated vote counts. The associated Duncan-Davis bounds appear
below estimate in brackets. In five of six cells, the upper or lower bounds narrow
the feasible set to a proper subset of [0,1]. Also, the estimated conditional proba-
bilities are near (but not exactly at) the center of the bounded intervals. Relative to
the unbounded results, note that the bounding information has effectively shifted
votes from the no-vote category to the Democrat (Republican) columns for black
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(white) voters. Of course, we do not know that this solution is better than the
unbounded pure solution because the cell values are unobservable.

To illustrate the case with bounds and� ! 0 from Section 1.3.4.2, we solve the
Ohio voting example in terms of the extended VNI problem with bounds on� ijk

and"ik . We use the bounds on�ijk stated in Table A.2, and the upper and lower
bounds appear below the estimates in the table. The error bounds are selected to be
symmetric about zero withÆik = 1. The upper and lower error bounds are stated
below the column counts at the bottom of Table A.2. The intermediate solution
for 'jkh takes the same form as in the bounded VPI problem, but the optimal
values of� and
 for this problem will be different due to the presence of the
noise term. The concentrated objective function is

M �(�;
) = M(�;
) +

3X
k=1

ln [exp (��kVk1) + exp (��kVk2)] ; (A.10)

and the term added toM(�;
) represents the presence of the noise terms. Rela-
tive to the two preceding demonstrations, note that the estimates for the bounded
VNI problem represents an intermediate case—some of the mass shifted to form
the bounded VPI estimates has reverted to the unbounded VPI case. In effect, the
noise components weaken the constraints for the VNI problem, and the solution
can move closer to the unbounded outcome. Although the column sums are not
strictly required to match the observed values, note that this property is satisfied
by this solution. Further, the use of wider error bounds reduces the tendency for
the column sums to be satisfied by the estimated conditional probabilities.

This is a fairly simplistic example that could be extended easily in several ways.
For instance, under the usual scenarios, candidates are far from equally likely
to win the electionex ante. This assumption can be weakened so that we can
incorporate our fairly accurate ability to predict election outcomes much before
they occur. In an actual application of this problem, we will be able to capital-
ize on the information provided by a larger number of precincts. This example
supplies estimates for just one precinct. Presumably, the numerous precincts that
would comprise a data set would supply additional information. We could perhaps
take advantage of information underlying some manifested spatial autocorrelation
among the precincts (see work in this area, Anselin and Cho 2002, Calvo and Es-
colar 2002, Gotway and Young 2002, and Haneuse and Wakefield 2002).

Given the large degree of uncertainty that surrounds these estimates, it is diffi-
cult to choose between these three demonstrations. One might be inclined to tend
toward the VNI formulation with bounds simply because the bounds are deter-
ministic information that one would like to incorporate and the errors certainly
seem to be important and plausible features as well. Interestingly, however, none
of these demonstrations produces substantively different results. And even with-
out explicitly incorporating the bounds, the estimates for the VPI problem are
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within the bounds. This lack of variation in the estimates is especially true for the
Republican candidate where the range of vote counts is minuscule (45–47) as is
the range of vote proportions. The range for the Democratic candidate is larger,
but still not big enough to be substantively interesting. The bounds in this case are
relatively narrow, so it is especially surprising that they would not have a greater
effect.

Lastly, we note that the estimates in these cases, especially when the bounds are
incorporated, appear to tend toward the “center” of the possible range of values,
and that the estimates for the white group and the black group tend to be more sim-
ilar than not. This is not particularly surprising, as one might initially guess that
the estimated voter counts would have maximum multiplicity toward the center
rather than toward either end of the range of possibilities. In this sense, one might
believe that this estimator is more inclined to imply that different groups of voters
tend to act more similarly rather than less similarly. The implications for using
this estimator in a Voting Rights case, then, can be quite consequential, since the
charge in those cases is to determine whether there is polarized voting among the
groups in the electorate and the inclination of the estimator is to provide group
estimates that are more similar than not.

Moment-Based Formulation

We now demonstrate the sampling properties of the estimator for the moment-
based model formulation in Section 1.4.1. In particular, we consider a cross-
sectional version of the model based onm = 20 andm = 50 precincts with
g = 3 voter types andc = 4 candidates. Three instrumental variablesA i are
used for each precinct, and these include a constant (i.e., vector of ones) and
two non-constant instruments generated as pseudo-random standard normal vari-
ables (fixed in repeated samples). We also simplify the formulation stated in Sec-
tion 1.4.1 by using uniform reference weights for the conditional probabilities
and by ignoring the bounds on the conditional probabilities. Following the nota-
tion in (1.57), we denote the associated Lagrange multipliers for this version of
the model as�kh wherek = 1; : : : ; 4 andh = 1; : : : ; 3. The row-sum values
are the same for each precinct,ni1� = 0:3, ni2� = 0:25, andni3� = 0:45. The
mean values of the column-sum valuesn i�k are derived from (1.1) based on a set
of “true” conditional probabilities that are functions of the observed instrumental
variablesAi and the true values of the Lagrange multipliers�kh (see Table A.3
for the true values). To represent sampling variability in the candidate shares as
in (1.5), we add Gaussian noise components with mean zero and variance 0.0001
to the mean values ofni�k for k = 1; 2; 3. The noisy value ofni�4 is recovered by
normalization,ni�4 = 1� ni�1 � ni�2 � ni�3.

The sampling process is replicated form = 20 andm = 50 precincts over 500
Monte Carlo trials. The estimated Lagrange multipliers are saved from each trail,
and the sample mean and standard deviation of the estimates for each� kh are
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Table A.2 Estimates for the Ohio Voter Problem

VPI Problem
Candidate

Group Democrat Republican No-Vote Count

black 56.8 46.0 118.2 221
(0.2570) (0.2080) (0.5350)

white 73.2 46.0 364.8 484
(0.1512) (0.0951) (0.7536)

130 92 483 705

VPI Problem with Bounded Probabilities
Candidate

Group Democrat Republican No-Vote Count

67.0 47.0 107.0
black (0.3030) (0.2130) (0.4840) 221

[0, 0.588] [0, 0.416] [0,1]
63.0 45.0 376.0

white (0.1300) (0.0930) (0.7770) 484
[0, 0.269] [0, 0.190] [0.541, 0.998]

130 92 483 705

VNI Problem with Bounded Probabilities and Errors
Candidate

Group Democrat Republican No-Vote Count

64.9 45.9 110.2
black (0.2940) (0.2080) (0.4990) 221

[0, 0.588] [0, 0.416] [0,1]
65.1 46.1 372.8

white (0.1350) (0.0950) (0.7700) 484
[0, 0.269] [0, 0.190] [0.541, 0.998]

130 92 483 705
[-0.031, 0.031] [-0.033, 0.033] [-0.026, 0.026]
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Table A.3 Simulation Results for the Moment-Based Formulation

Parameter True m = 20 m = 50
value Average Std. dev. Average Std. dev.

�11 0.1 0.1288 0.94 0.1378 1.13
�12 0.2 0.1559 1.49 0.1890 1.64
�13 0.3 0.2795 1.87 0.3002 0.25
�21 0.4 0.4296 0.95 0.4385 1.12
�22 0.5 0.4580 1.49 0.4886 1.63
�23 0.6 0.5998 1.87 0.5997 0.24
�31 0.7 0.7276 0.94 0.7381 1.13
�32 0.8 0.7570 1.49 0.7890 1.64
�33 0.9 0.8826 1.87 0.9001 0.26
�41 1.0 1.0303 0.95 1.0394 1.13
�42 1.1 1.0578 1.50 1.0856 1.62
�43 1.2 1.1795 1.86 1.1988 0.23

reported with the true parameter values in Table A.3. Given that this is a cross-
sectional sample(T = 1), the regularity conditions stated in Section 1.4.1 do
not directly apply to this case. However, we find that the sample means of the
�̂kh’s are relatively close to the true parameter values and the simulated standard
errors are stable. The sampling results are especially encouraging because we are
not relying on time series observations(T = 1) and the largest value ofm is
small relative to typical number of precincts. Further, the relative efficiency of the
moment-based estimator may be improved by accounting for spatial correlation
among the precincts.




