
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Interconnection networks synthesis and optimization

Permalink
https://escholarship.org/uc/item/7kb5x2xt

Author
Zhu, Yi

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kb5x2xt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Interconnection Networks Synthesis and Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Yi Zhu

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Fan Chung Graham
Professor Bill Lin
Professor Michael Taylor
Professor Steven Swanson

2008

.

Copyright

Yi Zhu, 2008

All rights reserved.

The dissertation of Yi Zhu is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2008

iii

To My Parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita, Publications, and Fields of Study . xi

Abstract of the Dissertation . xiii

I Introduction . 1
1. Motivation . 2
2. Review of On-Chip Interconnection Networks 4
3. Review of Interconnection Networks in Supercomputers 5
4. Review of Network Topologies . 6
5. Dissertation Organization . 9

II Multi-commodity Flow Algorithms . 11
1. Introduction . 11
2. Previous Works . 14

A. Flow Rerouting Algorithms . 16
B. Flow Augmenting Algorithms . 20

3. Algorithms . 23
A. Overview . 23
B. Baseline MCF Algorithms . 24
C. MCF Algorithms with Pairwise Latency Constraints 29
D. Interval Estimation Heuristic . 30

4. Discussion . 33

III On-chip Interconnect Synthesis and Optimization 36
1. Overview . 36
2. Problem Statement . 38
3. Design Methodology . 40

A. Latency Constrained Minimum Power MCF Formulation 40
B. Isomorph-Free Exhaustive Topology Generation 44
C. Power and Delay Models . 47

4. Experimental Results . 49

v

A. Wire Style Optimization . 50
B. Power Consumption and Latency Tradeoffs 51
C. Topology Selection . 53
D. Pairwise Latency Constraints . 55
E. MCF Performance Improvement . 56

5. Summary . 58

IV Supercomputer Interconnection Networks Synthesis and Optimization . 59
1. Overview . 59
2. General Design Flow & Formulation . 60
3. Topology Synthesis in Blue Gene/L: An Example 64

A. Overview . 64
B. Graph Models & Topology Generation 65
C. Delay Models . 67
D. Physical Constraints . 67

4. Experimental Results . 69
A. Experiments on Randomly Generated Instances 69
B. Experiments on Benchmark Instances 77

5. Summary . 79

V Conclusion . 81
1. Summary . 81
2. Future Directions . 83

vi

LIST OF FIGURES

Figure I.1: Five Classic Topologies . 7

Figure II.1: A Maximum Concurrent Flow Example 13
Figure II.2: The Basic Idea of the Primal-Dual Based Algorithms . . . 15
Figure II.3: Length Function on Edge . 28
Figure II.4: Interval Estimation . 31

Figure III.1: Tile-based Noc Architecture with Wire Style Optimization 38
Figure III.2: Design Flow . 40
Figure III.3: Flow Graph with Wire Style Optimization 42
Figure III.4: Example of Linear Placements 45
Figure III.5: Link Bit Vector to Represent a Placement 46
Figure III.6: Impact of Wire Style Optimization 50
Figure III.7: Details of Wire Style Optimization 51
Figure III.8: NoC power and latency tradeoffs 52
Figure III.9: Power latency tradeoffs among various topologies 53
Figure III.10: Optimal topologies under various areas 55
Figure III.11: NoC Power and latency tradeoffs with pairwise latency con-

straints . 56

Figure IV.1: Design Flow . 61
Figure IV.2: Blue Gene/L Node Card and Topology 66
Figure IV.3: Blue Gene/L Midplane and Topology 67
Figure IV.4: Physical Constraints on Node Card and Midplane 68
Figure IV.5: Latency-Throughput Tradeoff Curves with Fixed Commu-

nication Distribution . 71
Figure IV.6: Optimal Topologies with Different Parameters 73
Figure IV.7: Low-Level Latency-Throughput Tradeoff Curves with Dif-

ferent Communication Distribution . 74
Figure IV.8: High-Level Latency-Throughput Tradeoff Curves with Dif-

ferent Communication Distribution . 75
Figure IV.9: Average Latency vs. Number of Pins in a Node Card . . . 76
Figure IV.10: Optimal Topologies with Different Number of Pins 76
Figure IV.11: The Traffic Pattern for Benchmark Instance MG 77
Figure IV.12: Latency-Throughput Tradeoff Curves for the Aggregated

Benchmark Instance . 80

vii

LIST OF TABLES

Table II.1: Analogous Results in the Theories of the Single Commodity
Flow and the Concurrent Flow . 18

Table III.1: Description of Symbols . 41
Table III.2: # of Isomorph-Free Topologies 45
Table III.3: # of Regular Topologies on nxn NoC 46
Table III.4: Comparison of Different On-Chip Wiring Technologies . . . 48
Table III.5: Delay Model of Wires . 49
Table III.6: Power Model of Routers . 49
Table III.7: Topology Comparison . 54
Table III.8: MCF Performance Improvement 57

Table IV.1: Router Delay . 67
Table IV.2: Comparison of Optimal and 3D Torus Topologies 73
Table IV.3: Characteristics for Five NAS Parallel Benchmarks 77
Table IV.4: Latency Comparison on NAS Parallel Benchmarks 78

viii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Chung-Kuan

Cheng, for his constant support and help. Without his help and encouragement, I

could not go through all the difficulties and have such a proud achievement in my

life. Besides his help, I am also impressed by his confidence, persistence, diligence,

passion, and smartness. It has been a great honor to have the opportunity to work

with him and learn from him.

I wish to thank my dissertation committee members, Professor Fan Chung

Graham, Professor Bill Lin, Professor Michael Taylor and Professor Steven Swan-

son for technical discussions and their advices and reviews of this dissertation.

I am grateful to all the graduate students in the UCSD VLSI CAD group

for making the group a friendly and fun place to work. Among them, special thanks

to Bo Yao, Hongyu Chen, Zhengyong Zhu, Shuo Zhou, Jianhua Liu, Yuanfang Hu,

Haikun Zhu, Rui Shi, He Peng, Ling Zhang, Wanping Zhang, Renshen Wang,

Amirali Shayan, Yulei Zhang, Xiang Hu and many others.

In addition, I would like to thank Kian Win Ong and Thomas Weng for

their valuable suggestions on this work.

Finally my special thanks go to my parents, for their support during my

education and for their understanding and tolerance during the last couple of years.

Chapter III includes the contents of two published papers.“Communication

Latency Aware Low Power NoC Synthesis,” by Y. Hu, Y. Zhu, H. Chen, R. Gra-

ham, C.K. Cheng, in Proceedings of 43rd ACM/IEEE Design Automation Con-

ference. “Physical Synthesis of Energy-Efficient NoCs Through Topology Explo-

ration and Wire Style Optimization,” by Y. Hu, H. Chen, Y. Zhu, A. A. Chien,

C.K. Cheng, in Proceedings of 23th IEEE International Conference of Computer

Design. The dissertation author was the researcher and co-author of both papers.

Chapter IV includes the contents of one paper “Advancing Supercom-

puter Performance Through Interconnection Topology Synthesis”, by Y. Zhu, M.

ix

Taylor, S. B. Baden, C.K. Cheng, to appear in Proceedings of International Con-

ference on Computer Aided Design, 2008. The dissertation author was the primary

researcher and co-author of the paper.

x

VITA

2003 B.Comp. (1st class honors) in Computer Science
National University of Singapore, Singapore

2006 M.S. in Computer Science
University of California, San Diego

2008 Ph.D. in Computer Science
University of California, San Diego

PUBLICATIONS

Yi Zhu, Amirali Shayan, Wanping Zhang, Tzyy-Ping Jung, Jeng-Ren Duann, Scott
Makeig and Chung-Kuan Cheng, “Analyzing High-Density ECG Signals Using
ICA”, IEEE Transactions on Bio Medical Engineering (TBME), accepted

Yi Zhu, Thomas Weng and Chung-Kuan Cheng, “Enhancing Learning Effective-
ness in Digital Design Courses Through the Use of Programmable Logic Boards”,
IEEE Transactions on Education (TE), accepted

Yi Zhu, Yuanfang Hu and Chung-Kuan Cheng, “Energy and Switch Area Opti-
mizations for FPGA Global Routing Architectures”, ACM Transactions on Design
Automation of Electronic Systems (TODAES), accepted

Yi Zhu, Michael Taylor, Scott B. Baden and Chung-Kuan Cheng, “Advancing
Supercomputer Performance Through Interconnection Topology Synthesis”, In-
ternational Conference on Computer Aided Design (ICCAD 2008)

Rui Shi, Wenjian Yu, Yi Zhu, Chung-Kuan Cheng and Ernest S. Kuh, “Efficient
and Accurate Eye Diagram Prediction for High Speed Signaling”, International
Conference on Computer Aided Design (ICCAD 2008)

Yi Zhu, Jianhua Liu, Haikun Zhu and Chung-Kuan Cheng, “Timing-Power Op-
timization for Mixed-Radix Ling Adders by Integer Linear Programming”, 13th
Asia and South Pacific Design Automation Conference (ASPDAC 2008)

Wanping Zhang, Yi Zhu, et al., “Finding the Worst Case of Voltage Violation in
Multi-Domain Clock Gated Power Network with an Optimization Method”, 7th
Design, Automation and Test in Europe (DATE 2008)

Renshen Wang, Evangeline F. Y. Young, Yi Zhu, Fan Chung Graham, Ronald
Graham and Chung-Kuan Cheng, “3-D Floorplanning Using Labeled Tree and
Dual Sequences”, International Symposium on Physical Design (ISPD 2008)

xi

Jianhua Liu, Yi Zhu, Haikun Zhu, John Lillis and Chung-Kuan Cheng, “Optimum
Prefix Adders in the Space of Timing, Power and Area”, 12th Asia and South
Pacific Design Automation Conference (ASPDAC 2007)

Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu, et al., “Efficient Timing Analysis
with Known False Paths Using Biclique Covering”, IEEE Transactions on CAD
(TCAD), 26(5), 959–969, 2007

Yuanfang Hu, Yi Zhu, Hongyu Chen, Ronald Graham and Chung-Kuan Cheng,
“Physical Synthesis of Communication Latency Aware Low Power NoCs”, 43rd
Design Automation Conference (DAC 2006)

Yuanfang Hu, Yi Zhu, Michael Taylor and Chung-Kuan Cheng,“FPGA Global
Routing Architecture Optimization Using a Multicommodity Flow Approach”,
25th International Conference of Computer Design (ICCD 2007)

Haikun Zhu, Yi Zhu, David Harris and Chung-Kuan Cheng, “An Interconnect-
Centric Approach to Cyclic Shifter Design Using Fanout Splitting and Cell Order
Optimization”, 12th Asia and South Pacific Design Automation Conference (AS-
PDAC 2007)

Shuo Zhou, Yi Zhu, Yuanfang Hu, Ronald L. Graham, Mike Hutton and Chung-
Kuan Cheng, “Timing Model Reduction for Hierarchical Timing Analysis”, Inter-
national Conference on Computer Aided Design (ICCAD 2006)

Yi Zhu, Tong Lee Chen, Wanping Zhang, Tzyy-Ping Jung, Jeng-Ren Duann, Scott
Makeig and Chung-Kuan Cheng, “”Noninvasive Study of the Human Heart using
Independent Component Analysis”, 6th IEEE Symposium on Bioinformatics and
Bioengineering (BIBE 2006)

Yuanfang Hu, Hongyu Chen, Yi Zhu, Andrew A. Chien and Chung-Kuan Cheng,
“Physical Synthesis of Energy-Efficient Networks-on-Chip Through Topology Ex-
ploration and Wire Style Optimization”, 23th International Conference of Com-
puter Design (ICCD 2005)

Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu, et al., “Improving the Efficiency of
Static Timing Analysis with False Paths”, International Conference on Computer
Aided Design (ICCAD 2005)

FIELDS OF STUDY

Major Field: Computer Science
Studies in VLSI CAD
Professor Chung-Kuan Cheng

xii

ABSTRACT OF THE DISSERTATION

Interconnection Networks Synthesis and Optimization

by

Yi Zhu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Professor Chung-Kuan Cheng, Chair

The advent of new technologies brings revolutions in the fields of VLSI

design and high performance computing. On one hand, the increasing number

of processing elements, both in on-chip multi-core systems and supercomputer

systems, demands high bandwidth communications. On the other hand, the per-

formance of the system, usually measured by the latency and power consumption,

is gradually being dominated by the interconnection networks. These facts raise

challenges in synthesizing and optimizing interconnection networks.

In this dissertation, we study methodologies and algorithms to perform

the interconnection network synthesis and optimization in both on-chip networks

and supercomputer systems. We explore a wide range of network topologies and

physical implementations, and evaluate the performance of multi-commodity flow

(MCF) algorithms. We design efficient approximation schemes to solve different

variations of MCF problems, which incorporate different practical constraints. The

automated design flows discover much larger design space than the traditional

methods and therefore achieve promising results.

In the study of Network-on-Chip (NoC), we are optimizing the communi-

cation latency and power consumption, which are two competing design objectives.

With an improved fully polynomial approximation algorithm, power optimal de-

sign of a structured 8× 8 NoC can be found for given average latency constraints

xiii

with certain communication bandwidth requirements. Our methodology explores

a large number of topologies, introduces a variety of wire styles into NoC design,

and incorporates latency constraints and power minimization objectives into a uni-

fied MCF model, with simultaneous optimization on network topologies, physical

embedding, and interconnect wire styles. The results demonstrate the strengths of

the optimized networks and indicate the clear trend of power and latency tradeoffs.

In the synthesis and optimization of networks in supercomputer systems,

we use the packaging framework of the Blue Gene/L supercomputer as an example

to demonstrate the advantages of our design flow, which has incorporated real

design issues, such as board dimensions and pin numbers. Using real benchmark

traces, the experiments show that the best topologies identified by our algorithm

can achieve better average latency compared to the existing 3-dimensional torus

networks.

xiv

I

Introduction

Interconnection networks have become the core component of modern

digital systems. According to [14], a digital system consists of three basic building

blocks: logic, memory and communication. Logic transforms and combines data,

memory stores data for later retrieval, and communication moves data from one

location to another. The performance of most digital systems today is limited by

their communication or interconnection. That is because as technology advances,

according to Moore’s Law, processors and memory are becoming smaller, faster

and cheaper. The speed of light, however, remains unchanged. Therefore, most of

the clock cycles are spent on wire delay instead of gate delay, and most of the power

is used to drive the wires. Therefore, in order to improve the system performance,

designers have to make efficient use of scarce interconnection resources, such as pin

density and chip/board dimensions. Thus the study of interconnection networks

has been considerably important.

We notice the following two categories of interconnection networks among

processors and other system components, which have been extensively studied in

literature: the networks for on-chip interconnection architectures, and the networks

in computer clusters. The first category is usually considered as Network-on-Chip.

The applications in the second category are usually the modern supercomputers,

e.g. IBM Blue Gene/L, or Cray BlackWidow. Although the design objectives are

1

2

usually similar between these two categories, e.g. high performance and low power,

different design issues should be addressed. For example, the on-chip interconnec-

tion networks usually have fewer processing elements and wires, and constrained

routing areas. The networks in a supercomputer, on the other hand, contain a large

number of processors, and are more constrained by the board pins. There have

been a lot of case studies on the interconnection networks in these two categories.

In this dissertation, we propose a generic algorithmic approach to syn-

thesize and optimize the interconnection networks, both for on-chip architectures

and multi-processor systems. This approach formulates the problem using a multi-

commodity flow (MCF) model and evaluates the networks with different topologies

using efficient algorithms. Different design issues are reflected as constraints in the

formulation. This methodology enables us to explore a wide variety of topologies

instead of several regular ones. Network topology is a crucial factor that affect

the performance of interconnection networks. We show two case studies in this

dissertation, which involve NoC and supercomputer respectively.

Section I.1 will explain the motivation of this work. Section I.2 to Sec-

tion I.4 will review the previous works in different areas, including the on-chip

interconnection networks, the supercomputer interconnection networks, and the

interconnection network topologies. Section I.5 will sketch the organization of the

dissertation.

I.1 Motivation

In the past decades, Moore’s Law continues to be valid and semiconductor

technology keeps scaling down. This allows processors and memories to become

faster and smaller. On the other hand, as the speed of light remains unchanged, and

wiring density is scaling at a slower rate than the components, the interconnection

in most digital systems have become the bottleneck [14]. Prior to the early 1990s,

delay and power consumption of logic gates dominated, and on-chip wires were

3

considered as purely capacitive loads of logic gates in chip design. Nowadays,

growing wire resistance coupled with shrinking native gate speed have made wire

delays and power consumption increasingly important.

Thus, a good design of interconnection networks is essential to guarantee

the performance in most digital systems. In literature, there have been a lot of

case studies on different interconnection networks, in both on-chip systems, and

clustered supercomputers (see Section I.2 and Section I.3 respectively). However,

designers are still facing quite a few challenges:

1. The design space of interconnection networks is huge. The network topology,

as one of the most important factors in interconnection network synthesis, has

a large number of choices (see Section I.4). Thus, it is a challenging question

for designers to make a good choice. The wire style, which is another design

choice, is also critical: different wires, such as RC wires and transmission

lines, possess different properties in terms of delay, power and width, and

therefore have a large impact on the system performance. To take all the

factors into consideration will be a tough challenge for system designers.

2. The limiting resources for interconnection networks add difficulties in de-

signing efficient networks. Based on Moore’s Law, the area of components

become smaller while the number of elements keep increasing. Thus, an in-

creasing number of wires need to be planned on a decreasing routing area.

The same issue exists for processors among boards and clusters. the pins, as

the interfaces of the boards, are scarce resources. Thus, careful planning of

wires is necessary.

3. There is no general framework to synthesize and optimize interconnection

networks with different parameters, such as the scale of networks, the physical

constraints, and the communication patterns. Although there are a lot of

successful case studies, most of them could not be transplanted to other

applications, which prevents their methodologies from being widely adopted.

4

In this work we will propose a general methodology which makes use of

algorithmic approaches to address the above issues.

I.2 Review of On-Chip Interconnection Networks

Network-on-Chip (NoC) has been proposed [49] [13] [36] as an attractive

alternative to traditional dedicated wires to achieve high performance and modu-

larity. With the advance of semiconductor technology, we have observed that more

IP blocks, such as processors, memory subsystems and DSPs, are integrated on a

single chip and interconnected by NoCs [26].

Power efficiency and communication latency are two main concerns in

NoC design. On one hand, we hope to deliver packets to their destinations within

the shortest possible period. Adding long shortcut links to regular mesh based

topology is an effective approach to achieve this by reducing the number of traf-

fic hops in NoC [42]. On the other hand, power consumption has become one of

the first order design considerations of the nano-scale VLSI designs. Extra short-

cut links will lead to more complicated router architecture, which can potentially

worsen the NoC power consumption. Our work studies the tradeoffs between NoC

power efficiency and its average communication latency.

We focus on two design choices. NoC topology selection and intercon-

nect wire style optimization, to optimize NoC power consumption and latency

simultaneously. At the same time, the design satisfies given constraints, such as

communication bandwidth requirements and physical on-chip area resource con-

straints.

The choice of network topology is important in NoC design. Different

NoC topologies can dramatically affect the network characteristics, such as number

of hops, total wire length, and communication flow distributions. These charac-

teristics in turn determine the latency and power efficiency of NoC architectures.

Wire style optimization also plays an important role. Optimized wire

5

styles for the critical NoC links can significantly reduce NoC power consumption

and latency. Recent advances in signaling interconnect technologies, such as wave-

pipelined RC wires with repeated buffers, low-swing differential pairs, and on-chip

transmission lines, provide us with wiring schemes to optimize aggressively. These

technologies along with traditional minimal separated RC wires display different

tradeoffs between wire resources, wire delay and power consumption.

In recent years, researchers have studied NoC design issues to improve

latency and power consumption. In [26], Hu et al. proposed a branch and bound

algorithm to map the processing cores onto a tile-based mesh NoC architecture to

satisfy bandwidth constraints and minimize total energy consumption. In [41] [40],

Murali et al. designed topology mapping to minimize the average communication

delay while satisfying bandwidth constraints, and presented a tool named SUN-

MAP to select the best topology for a given application. In [54], a variety of NoC

topologies are designed and the effect of topology on NoC power consumption is

studied. In [42], Ogras et al. inserted a few application-specific long-range links

to regular mesh based topology to reduce average packet latency.

I.3 Review of Interconnection Networks in Su-

percomputers

Interconnection networks play an important role in the multiprocessor

system. Currently, massively parallel computer systems have become popular,

where the interconnection networks consist of a lot of processing cores. For ex-

ample, IBM Blue Gene/L has 65,536 processors located in 64 racks [16] and the

Cray Black Widow networks scales up to 32K processors [47]. Thus, the inter-

connection networks in these systems have become more of a critical factor in the

performance of a computer system than the computing or memory modules [12].

Communication latency, which largely depends on the interconnection network, is

of great concern in these current multiprocessor systems and has become crucial

6

with the growth of system sizes and the shrinking of clock cycles [47].

Most interconnection networks in the current multiprocessor systems make

use of regular low-radix topologies, among which the k-ary n-cube [11] and torus

topologies are the most often used [47]. The examples includes the SGI Origin2000

hypercube [37], the Cray X1’s dual-bristled, sliced 2D torus [3], the Cray T3E and

XT3’s 3D torus [48] [4], the Alpha 21364’s torus networks [39], and recently, the

Blue Gene/L’s 3D torus networks [18]. In the recent Cray BlackWidow system,

the network uses a high-radix folded Clos and fat-tree topology with side links [47].

In all the aforementioned systems, the topologies of their interconnection

networks are limited to several well-known regular structures and determined by

the designers. Although the simpler topologies imply simpler design and manufac-

ture, they are probably unable to capture the bottleneck of the communications

among processors and fully utilize the limited interconnect resources (e.g. wires,

pins, connectors), therefore affecting the performance of the entire system. For ex-

ample, if similar communication patterns often occur, a special designed topology

is always preferred. For instance, topologies with long links are preferred when

there are a lot of communications among processors located far away from each

other, since the number of hops among these processors can be reduced. In partic-

ular, because high-radix routers appear more often these days [34], we have more

flexibility to design the interconnection topologies to enhance the performance.

I.4 Review of Network Topologies

Network topology refers to the static arrangement of channels and nodes

in an interconnection network [14]. The choices of topologies are of importance for

interconnection network synthesis, since the topology is not only related to the type

of the network, but also the details, such as the radix of routers and the bandwidth.

Thus, we have to choose a topology based on the cost and performance.

Various kinds of topologies have been studied and applied in literature.

7

���������
	 ������������ �������������

������ "!#	%$ ��!&��'��#!#!

Figure I.1: Five Classic Topologies

Generally, there are the following several classic topologies:

1. Bus: A bus network topology is a network architecture in which a set of

clients are connected via a shared communications line (Figure I.1(a)). Bus

networks are the simplest way to connect multiple clients, but often have

problems when two clients want to transmit at the same time on the same

bus. Buses are easy to implement and extend, and consume less cable and

therefore is cheaper than other topologies. Taking the above features into

consideration, buses are usually suitable for temporary or small networks

which do not require high speeds.

2. Star : A star network is composed of one central switch, hub or computer,

which acts as a conduit to transmit messages (Figure I.1(b)). The star topol-

ogy reduces the chance of network failure by connecting all of the systems to

a central node. Compared with buses, stars have better performance, good

isolation of each device, and are easy to scale by adjusting the capacity of

8

the central hub. On the other hand, the biggest disadvantage of stars is the

high dependence of the central hub.

3. Ring : A ring network is a network topology in which each node connects to

exactly two other nodes, forming a circular pathway for signal (Figure I.1(c)).

It is a very orderly network where every device has access to the token and

the opportunity to transmit. It also performs better than a star topology

under heavy network load, and no network server is required. However, one

malfunctioning workstation or bad port can create problems for the entire

network. In addition, moving, adding, or changing of devices can affect the

network.

4. Mesh: A mesh network is a type of network setup where each of the com-

puters and network devices are interconnected with one another, allowing

for most transmissions to be distributed, even if one of the connections go

down. In a full mesh network, nodes are all connected to each other is a

fully connected network (Figure I.1(d)). In a partial mesh network, some of

the nodes are connected to more than one other node in the network with

a point-to-point link — this makes it possible to take advantage of some of

the redundancy that is provided by a physical fully connected mesh topology

without the expense and complexity required for a connection between every

node in the network.

5. Tree: A Tree Network consists of star-configured nodes connected to switch-

es/concentrators, each connected to a linear bus backbone (Figure I.1(e)).

In a tree network, we are able to use point-to-point wiring for individual seg-

ments. It is supported by several hardware and software venders. However,

the overall length of each segment is limited by the type of cabling used. The

robustness is also an issue in tree networks: if the backbone line breaks, the

entire segment goes down.

Among these topologies, the mesh topology is widely used in traditional

9

networks, because of the simple connection and easy routing provided by adjacency

[11]. Furthermore, as high-radix routers are more and more desired [12], topologies

with high node degrees, such as k-ary n-dimensional mesh or k-ary n-dimensional

torus, are well studied [11].

There are also other types of network topologies: De Bruijn graph [15],

Kautz graph, Circulant graph, butterfly graph, pyramid graph, and clos net-

work [10]. All of them are regular topologies that could be generated in systematic

ways. Recently, in both on-chip architectures and supercomputers, new variations

of classic topologies were developed, for example, a flattened butterfly in NoC [33],

and a high-radix folded Clos and fat-tree topology with side links in the Black-

Widow supercomputer [47]. They possess different properties and have different

advantages/disadvantages.

In literature, these topologies were all proposed and applied individually

in different case studies, i.e. no one has ever made a comprehensive comparison

using real applications. In this work, we are able to evaluate a large number of

different network topologies, besides the ones mentioned above. The topology

generation scheme will be described in detail in Section III.3.B.

I.5 Dissertation Organization

In this dissertation, we describe an algorithmic methodology that per-

forms the interconnection network synthesis and optimization among processors in

chips as well as among clusters. This work makes contributions both in algorithm

theory and in system designs.

Chapter II discusses the theoretical issues of this work. The MCF algo-

rithms, which form the core of our methodology, are depicted in detail. We first

give the formulation of the MCF problem and then review the prevailing algo-

rithms in literature. Then we introduce our polynomial approximation schemes,

which take the practical constraints into consideration. We also propose an inter-

10

val estimation heuristic to improve the performance, without compromising the

accuracy of the algorithms.

Chapter III and IV study the applications of our approach in on-chip

networks and supercomputers respectively. In Chapter III, the objective is to find

the most power efficient NoC topologies and their wire style assignments, where

the latency and bandwidth requirements are met. With efficient MCF algorithms,

power optimal design of a structured 8 × 8 NoC can be found for given average

latency/pairwise constraints with certain communication bandwidth requirements.

Our methodology not only introduces a variety of wire styles into NoC design, and

incorporates latency constraints and power minimization objectives into a unified

MCF model, but also explores a large design space of network topologies.

In Chapter IV, we show a design flow to discover the best topology in

terms of communication latency and physical constraints. First a set of represen-

tative candidate topologies are generated for the interconnection networks among

computing chips. Afterwards an efficient multi-commodity flow algorithm is de-

vised to evaluate the performance. The experiments show that the best topologies

identified by our algorithm can achieve better average latency compared to the

existing networks.

Finally, Chapter V summarizes this dissertation, discusses the strengths

and weaknesses of our methodologies, and sketches some promising research direc-

tions.

II

Multi-commodity Flow

Algorithms

In this section, we will introduce the algorithms for multi-commodity flow

(MCF) problems, which are the core of our solvers in interconnection synthesis and

optimization. Section II.1 will introduce the basic formulation. Section II.2 will

discuss the previous efforts on this problem. In Section II.3 we shall introduce the

algorithms we develop to tackle the synthesis and optimization. Finally, Section

II.4 will discuss the future work in this theoretical direction.

II.1 Introduction

Multi-commodity flow (MCF) problems are considered as fundamental

graph problems and have received much attention from researchers since the 1960s.

The pioneers were Ford and Fulkerson [21], and Hu [27]. After that, a lot of

algorithms were proposed to solve MCF either optimally or approximately. Here,

the word MCF only denotes a category of problems, and various notations and

formulations are used in the literature. To present the problems and algorithms

clearly, we first unify the basic notations as follows:

• The given directed graph network is G(V, E), where the number of nodes is

11

12

|V | = n, and the number of edges is |E| = m;

• Each edge in G has a capacity u(e) and a cost c(e). u(e) and c(e) are also

denoted as uij and cij if e = (i, j);

• There are K commodities, each has a source sk and a sink tk, and a demand

d(k).

If different constraints and objectives are imposed, different versions of

MCF can be obtained. The following problems are the most often used:

• maximum multi-commodity flow problem: when there are no commodity de-

mands and edge costs, and the total flow of the K commodities needs to be

maximized;

• maximum concurrent flow problem: each commodity k is routed λd(k) units

under the capacity constraints, the throughput λ needs to be maximized;

• min-cost multi-commodity flow problem: d(k) units are needed to be routed

for each commodity k under the capacity constraints, and the objective is to

minimize the total cost;

There are also variants in addition to the above. For instance, a simpler

version of the maximum concurrent flow problem has the same capacities for all the

edges, which is called uniform capacity maximum concurrent flow problem. And in

many research papers, the min-cost multi-commodity flow problem is formulated

as the maximum concurrent flow problem with a cost budget constraint. We will

discuss these in details in the later sections.

Figure II.1 shows an example of the maximum concurrent flow: assume

there are two commodities, one flow from s1 to t1, the other flow from s2 to

t2, each has the demand 1; the edge capacities are shown in the edges. The

optimal throughput should be 1.5 — there are 1.5 multiples of commodity 1 and

1.5 multiples of commodity 2 routed and the middle edge with capacity 3 saturated.

13

s2

s1 t1

t2

2

2
3

2

2

Figure II.1: A Maximum Concurrent Flow Example

All the aforementioned variants can be solved in polynomial time. A

simple observation is that all of them can be formulated as linear programs. For

example, let xk
ij denote the flow of commodity k in the edge (i, j), the maximum

concurrent flow can be formulated as follows:

Maximize

λ

Subject to
∑

1≤k≤K

xk
ij ≤ uij (II.1)

∑

j:(i,j)∈E

xk
ij −

∑

j:(j,i)∈E

xk
ji ≥ λd(k), ∀i = sk (II.2)

∑

j:(i,j)∈E

xk
ij −

∑

j:(i,j)∈E

xk
ji = 0, ∀i ∈ V − {sk, tk} (II.3)

∑

j:(i,j)∈E

xk
ij −

∑

j:(i,j)∈E

xk
ji ≥ −λd(k), ∀i = tk (II.4)

The other versions can be formulated in a similar manner. We know

that optimal solutions of linear programs can be found in polynomial time, so are

these variants. However, the practical complexities of the linear programming (LP)

algorithms prevent themselves from being used in practice when the problem scales

become moderate or large — the best LP methods to solve MCF is the interior

point method due to Vaidya [52] and has the complexity O(K2.5n2m0.5 log(nB)),

where B is the largest demand/capacity value. This is much slower than the

algorithms we will introduce later.

14

II.2 Previous Works

In this section, we shall discuss the existing approximation schemes for

MCF problems. As mentioned in the introduction part, these algorithms are able

to achieve a certain error bound — for instance, an approximation scheme for the

maximum concurrent flow problem is able to find a solution which is no smaller

than (1− ε) of the real optimal solution. Therefore, any proposed approximation

algorithm has to be shown that the solution it produces can reach such a bound in

a certain number of iterations (bounding the running time can usually be achieved

by bounding the number of iterations). So based on the methods used to prove the

bounds, the existing available approximation algorithms can be divided into two

categories: the first category of algorithms make use of the primal-dual theory in

LP and the second category of algorithms borrow the concepts of “potential” from

physics to complete the proof. The primal-dual algorithms were developed well in

recent years and become prevailing. Thus we would only introduce them here.

The first category of algorithms were originated from the early 1990s and

constitute the mainstream of current MCF algorithms, due to its accuracy and

efficiency. The core idea of these algorithms are from the primal-dual theory in

LP: for a maximization problem like maximum concurrent flow, a primal feasible

solution λ is always no greater than the optimal solution OPT , and a dual feasible

solution D is always no less than the optimal solution OPT — so we have λ ≤

OPT ≤ D. The algorithms start from a feasible primal solution a feasible dual

solution, update iteratively — increase the primal solution and decrease the dual

solution — till the gap between the primal and dual solutions are within a certain

small bound. Figure II.2 shows the basic idea. Note that in a minimization

problem, the positions of primal and dual values will be reversed. ε is usually

called the duality gap and uses relative measure (D − λ)/D. Furthermore, in the

process we do not require the primal (dual) values be monotonically increasing

(decreasing) with the iterations, as shown in the figure. In fact, oscillations do

happen in many circumstances. We just need to ensure the gap ε is small enough

15

Value

Iterations

Dual

Primal

Optimal 3

Figure II.2: The Basic Idea of the Primal-Dual Based Algorithms

when algorithms terminate.

To illustrate the concept more clearly, let’s give the primal and dual for-

mulations of the maximum concurrent flow problem. In these formulations, the

path-based formulation is always adopted instead of the edge-based formulation

presented in section 1. The decision variable x(P) represents the flow amount in

path P , and the notation Pk represents the set of paths for commodity k. The

primal formulation is shown as follows:

Maximize

λ

Subject to
∑

P :e∈P

x(P) ≤ u(e), ∀e (II.5)

∑

P∈Pk

x(P) ≥ λd(k), ∀k (II.6)

The corresponding dual formulation can be written as follows, where the

dual variables l(e) correspond to constraint (II.5), and zk correspond to constraint

(II.6).

16

Minimize
∑

e∈E

u(e)l(e)

Subject to
∑

e∈P

l(e) ≥ zk, ∀k, ∀P ∈ Pk (II.7)

K∑

k=1

d(k)zk ≥ 1 (II.8)

The dual variables l(e) can be treated as the lengths of the edges. In

each iteration, the flows on the paths X(P) and the edge lengths l(e) are updated

accordingly so that the primal and dual solutions are guaranteed to converge to a

small gap in limited number of iterations.

The algorithms in this category can be further divided into two types

according to the two milestones: Shahrokhi and Matula [50] first proposed this

idea and reroute flows in each iteration to achieve the objective; Garg and Kone-

mann [22] made the breakthrough by augmenting flows instead of rerouting them

therefore ended up with a much simpler algorithm. In the following we shall discuss

these two types of works respectively.

II.2.A Flow Rerouting Algorithms

The first paper that starts the research of combinatorial polynomial time

approximation algorithms was by Shahrokhi and Matula [50]. This paper has two

major contributions: first, it sets up the duality theory of the maximum concurrent

flow problem; second, it provides a rerouting flow approximation algorithm to solve

the uniform capacity maximum concurrent flow problem.

Based on the primal-dual theory, Shahrokhi and Matula derived the fol-

lowing three lemmas, assuming f is a maximum concurrent flow and l is an optimal

distance function:

1. all active paths for f are shortest paths under l;

17

2. edges assigned nonzero distance by l are saturated by f ;

3. any optimal distance function l assigns nonzero distances only on critical

edges.

To complete the duality theory for the maximum concurrent flow problem,

the authors further introduce two definitions:

• Let G = (V, E) be a graph; denote by (A1, A2, . . . , Ak) for k ≥ 2, the set

of all edges in G whose end vertices are in distinct elements of the partition

{A1, A2, . . . , Ak} of V , then (A1, A2, . . . , Ak) is called a k-partite cut in G.

• The density of the k-partite cut (A1, A2, . . . , Ak) is defined by

den(A1, A2, . . . , Ak) = min
l

∑
1≤i<j≤k lijU(Ai, Aj)∑
1≤i<j≤k lijD(Ai, Aj)

Then they prove the following important theorem called Max-concurrent

flow Min k-partite cut Theorem: For any maximum concurrent flow problem, the

maximum throughput of any concurrent flow equals the minimum density of any

k-partite cut, and in particular, equals the density of the k-partite cut of critical

edges. It can be proven by the previous three lemmas.

Based on the above theory, the comparison is made between the single

commodity flow and the concurrent flow problems, as summarized in Table II.2.A.

Now we briefly sketch the rerouting algorithm proposed in [50], assuming
∑K

k=1 d(k) = 1 and c = 1 without loss of generality.

1. Determine the initial feasible solution: set l(e) = 1/m for all edges

e ∈ E. For each demand k, set f(p) = d(k) for one shortest path p from the

source to the sink. Set f(e) =
∑

p:e∈p f(p) for all e ∈ E. And set σ0 = ε2

32
m3.

2. Compute new distance function and find shortest path: Set

l(e) =
e(2m2/ε)f(e)

∑
e′∈E e(2m2/ε)f(e′)

for all e ∈ E. And for each commodity k, find the shortest path distance

dist(k) under this distance function l.

18

Table II.1: Analogous Results in the Theories of the Single Commodity Flow and

the Concurrent Flow

Properties Single Commodity Flow Concurrent Flow
Objective Maximize value of source-

to-sink flow
Maximize throughput of
concurrent flow

Cut Inequality Flow value less than or
equal to capacity of any cut

Throughput less than or
equal to density of any cut

Critical Saturated
Edges

Edges saturated by every
maximum flow contain a
minimum cut

Edges saturated by every
maximum concurrent con-
stitute k-partite cut

Duality Theorem The maximum value of flow
equals the minimum capac-
ity of cut

The maximum throughput
of concurrent flow equals
the minimum density of k-
partite cut

Proof/Algorithm
Paradigm

Flow augmentation proves
duality and provides an ef-
ficient algorithm

Flow rerouting proves dual-
ity and provides an efficient
algorithm

3. Compute the throughput, distance upper bound, and check for

termination: Set f ∗ = max{f(e)|e ∈ E}, λ = 1/f ∗, d =
P

e∈E l(e)
PK

k=1 dist(k)d(k)
. If

(d− λ)/d ≤ ε, output and halt.

4. Reroute flow: Find a particular active path pk such that

d(pk)− dist(k) = max{d(pk′

)− dist(k′)|1 ≤ k′ ≤ K, d(k)′ ≥ σ0} (II.9)

Let p∗ be a particular shortest path between the source and sink of commod-

ity k. Let the notation pk−p∗ indicate those edges in pk but not in p∗. Then

set l1 =
∑

e∈pk−p∗
l(e) and l2 =

∑
e∈p∗−pk l(e). Set

σ =
ε

4m2
log

l1
l2

If f(pk) ≥ σ + σ0, then reroute σ units of flow from pk to p∗; otherwise,

reroute all the flow on pk to p∗. Go to step 2.

To explain the algorithm succinctly, step 1 supplies the flows to satisfy

the demand; step 2 assigns much larger distances to the edges hosting larger flows,

19

which makes the paths containing highly utilized edges less attractive for future

flow assignments, since rerouted flow is always sent on a shortest distance path;

step 3 simply checks the termination condition that primal and dual solutions are

close enough; in step 4, the algorithm generally reduces the flow on high utilized

edges and increases the flow on poorly utilized edges.

Regarding the complexity of this approximation algorithm, assuming

there exist demands among all pairs of nodes in the graph, i.e. k = n(n−1)/2, step

2 and step 4 take O(n3) and O(n|P |) in each iteration respectively, where P is the

active path set. Actually, |P | = O(m3ε−2) — the number of active paths is limited

because of the σ condition in the algorithm — therefore each iteration takes the

time O(nm3ε−2). Furthermore, the authors prove that the total number of itera-

tions is bounded by O(m4ε−3). Hence the total complexity of the approximation

algorithm is O(nm7ε−5).

Following this innovative work, there were several papers that improved

the complexity or extended the algorithm to general concurrent flow problem.

The first improvement was by Klein et al. [35]. The algorithms they proposed

still follow the same framework as that in [50], while the major modification is

in Step 4 of the aforementioned algorithm, which involves the paths selected to

reroute flows as well as the rerouted amount. In [50], the algorithm always chooses

a flow path that has the largest difference from the shortest path between the

source and the sink, as seen in Equation (11). In [35], the paths selected are

not necessary to be so restricted. Later, Goldberg [23] simplified the random-

ized process and reduced the complexity of the randomized algorithm by ε−1 to

O(ε−2Knm log k log3 n). Following their approach, Radzik [46] proved that choos-

ing the commodities randomly can be replaced by choosing in the round-robin

fashion, therefore complexity of the deterministic algorithm matches that of the

randomized algorithm O(ε−2Knm log k log3 n).

The idea was continuously used in [45], but extended to solve more gen-

eralized problems. The flow rerouting algorithms achieve the best results by the

20

incremental modifications of the following two papers: Karger and Plotkin [30]

used the round-robin idea in [46] to modify the algorithms in [45] so that the de-

terministic algorithm has the bound O∗(ε−3Kmn); Grigoriadis and Khachiyan [24]

improved the approximation computations for the single minimum-cost flow prob-

lems and achieved the bound O∗(ε−2Kmn). However, after that, the rerouting

algorithms were replaced by augmenting algorithms, which we shall discuss in the

next part.

II.2.B Flow Augmenting Algorithms

The flow augmenting algorithms were originated from [56]. In that paper,

Young proposed oblivious rounding algorithms to solve general fractional packing

and covering problems, which includes multi-commodity flow problems. Particu-

larly, for the multi-commodity flow problems, Young’s algorithm repeatedly aug-

ments one unit flow along a shortest path, where the length of an edge is initially

1 and is multiplied by 1 + εf(e)/u(e) each time the edge is used. The first pa-

per that made use of the idea in [56] to derive combinatorial MCF approximation

algorithms was due to Garg and Konemann [22]. In that paper, simple and fast

algorithms were proposed for maximum multi-commodity flows, maximum con-

current flows, and minimum cost multi-commodity flows. Here we discuss the

maximum concurrent flow algorithm in more detail.

As shown in the previous section, the dual objective of the maximum

concurrent flow problem is equivalent to D(l)/α(l), where D(l) =
∑

e∈E u(e)l(e)

and α(l) =
∑K

k=1 d(k)dist(k), dist(k) is the shortest path between the source

and sink of demand k under the distance function l. The dual to the maximum

concurrent flow problem can be viewed as an assignment of lengths to edges, such

that D(l)/α(l) is minimized. Let β be the minimum.

The algorithm in [22] runs in t iterations till D(t) ≥ 1. Each iteration we

route the K commodities one by one. Particularly, d(k) units of commodity k are

routed in a sequence of steps. Let ls−1
i,k be the length function before the sth step

21

and let P s
i,k be the shortest path between sk and tk, the source and sink of demand

k. In this step we route f s
i,k = min{u, ds

i,k} units of flow along P s
i,k, where u is the

capacity of the minimum capacity edge on this path. After routing, the length of

each edge e in the path is modified as lsi,k = ls−1
i,k (e)(1 + ε

fs
i,k

u(e)
). Then the amount

to be routed is reduced by f s
i,k. The iteration ends after p steps when all the d(k)

are routed.

Since the length function is monotonically increasing, after routing all

flow of commodity k, we have

D(lpi,k) ≤ D(l0i,k) + ε · d(k)distk(l
p
i,k)

and after routing all commodities in the ith iterations we have

D(li,K) ≤ D(li,0) + ε
K∑

k=1

d(k)distk(li,k)

which is

D(i) ≤ D(i− 1) + εα(i)

Since D(i)
α(i)
≥ β we have

D(i) ≤
D(i− 1)

1− ε/β

If the initial length of each edge is δ, then D(0) = mδ. Then we can derive

D(i) ≤
mδ

(1− ε/β)i
≤

mδ

1− ε
e

ε(i−1)
β(1−ε)

The procedure stops at D(t) ≥ 1, therefore,

1 ≤ D(t) ≤
mδ

1− ε
e

ε(t−1)
β(1−ε)

which implies
β

t− 1
≤

ε

(1− ε)ln1−ε
mδ

Furthermore, the primal solution λ after t−1 iterations can be proven to

be greater than t−1
log1+ε 1/δ

. Consider an edge e, for every u(e) units of flow routed

through e, we increase its length by at least a factor 1 + ε. Initially, its length

22

is ε/u(e) and after t − 1 iterations, since D(t − 1) < 1, the length of e satisfies

lt−1,k(e) < 1/u(e). Therefore the total amount of flow through e in the first t − 1

iterations is strictly less than log1+ε
1/u(e)
δ/u(e)

= log1+ε 1/δ times its capacity. Scaling

the flow by log1+ε 1/δ implies the claim. Then the duality gap β/λ can be proven

to be bounded by (1− ε)−3. And, by the weak duality theorem, the authors show

that the total number of steps is at most (2K log K + m)d 1
ε
log1+ε

m
1−ε
e and each

of these involves one shortest path computation.

However, the above proof is only valid when assuming β ≥ 1. If β < 1,

the demands need to be scaled up in order to make β ≥ 1. The estimation of

β requires to compute K maximum single-commodity flows. Hence, the overall

complexity is O∗(ε−2m(m + K) + K max flows).

After this innovative work, there are two papers later on that incremen-

tally improve the complexity by following the framework. Fleischer [20] noticed

that for the maximum multi-commodity flow problem, one can use (1 + ε) ap-

proximate shortest paths, in order to avoid recalculations of shortest paths for

commodities with a common source. Therefore the complexity for the maximum

multi-commodity flow problem is reduced from O∗(ε−2Km2) to O∗(ε−2m2), which

is independent of the number of commodities. Unfortunately, this technique does

not apply to the maximum concurrent flow. Nevertheless, with a smarter way

to estimate the value β, the computation of K maximum single-commodity flows

is greatly reduced; the complexity to calculate the maximum concurrent flow is

reduced to O∗(ε−2m(m + K)). Recently, Karakostas [29] further improved the

maximum concurrent algorithms. He found that in each step, we can route the

commodities which have the same source together, without affecting the conver-

gence. Hence the complexity is further improved to O∗(ε−2m2), which is indepen-

dent of the number of commodities K. This is the current best approximation

algorithm for the maximum concurrent flow problem.

In addition, these three papers handle the minimum-cost multi-commodity

flow in the similar way: given a cost budget B, the algorithms can be converted

23

to handle the maximum concurrent flow with cost budget. And then the optimal

cost can be found by binary search with a log M factor, where M is the largest

number used to specify capacities, demands or costs.

II.3 Algorithms

II.3.A Overview

This section will introduce the MCF algorithms we propose to perform the

interconnection synthesis and optimization. Usually, the interconnection networks

are modeled using the graph, the communications are represented by commodities,

the wiring area is modeled using capacity constraints, and the latency and power

are usually reflected as edge costs. Our algorithms are based on the approximation

schemes proposed in [20] and [29]. However, our algorithms are differentiated from

the previous works in the following aspects:

1. The capacity constraints are imposed on a bundle of edges instead of one

edge. This new constraint is raised because in the interconnection synthesis,

a bunch of wires usually share a common wiring/routing area. We propose

an approximation scheme based on the one proposed in [29] and prove the

convergence.

2. In interconnection network synthesis, instead of the global average latency,

sometimes we do care the individual latency of several communications (com-

modities). Thus, reflected in the formulation, each individual commodity has

a specific cost constraint. We show that the scheme is applicable with this

extension.

3. We also propose an interval estimation technique to speed up the binary

search process when solving minimum cost MCF problems. Although it is

a heuristic method, we prove that it does not affect the accuracy of the

produced solutions, while significantly improves the speed.

24

In the following three subsections, we shall introduce the baseline algo-

rithms with general capacity constraints, the algorithms with individual commod-

ity constraints, and the interval estimation method respectively.

II.3.B Baseline MCF Algorithms

First, our baseline algorithm finds the largest λ such that there is a multi-

commodity flow which routes at least λdi units of commodity i, where each edge is

associated with a triple of unit cost (Ae, Pe, De) (which represent the unit width,

unit power, and unit delay of a wire respectively in the real world context). A is

the capacity constraint which is imposed on a set of edges S(q), and PW and LT

are the total power and latency constraints. Hence, the problem formulation can

be described as follows.

Primal :

Max : λ

∀j :
∑

p∈pj
f(p) ≥ λdj

∀q :
∑

e∈S(q) Ae

∑
p:e∈p f(p) ≤ A

∑k
i=1

∑
p∈pi

∑
e∈p f(p)Pe ≤ PW

∑k
i=1

∑
p∈pi

∑
e∈p f(p)De ≤ LT

∀p : f(p) ≥ 0

The following is the dual problem. Besides a variable Xe for each grid

area constraint and a variable Zj for every commodity demand constraint, the

dual problem has another two variables, φp corresponding to the power budget

constraint, and φd corresponding to the latency budget constraint:

25

Dual :

Min : A
∑n

q=1 Xq + PWφp + LTφd

∀j, ∀P ∈ ρ :
∑

e∈P Ae

∑
e∈S(q) Xq +

∑
e∈P Peφp

+
∑

e∈P Deφd ≥ Zj

∑k
j=1 djZj ≥ 1

∀q : Xq ≥ 0

∀j : Zj ≥ 0

Assume the subroutine mcf(G, d, LT, PW) could return such a λ, the

power minimization MCF algorithm finds the minimum power that satisfying λ ≥ 1

by recursively binary search, as shown in Algorithm 1, where we use λmax to denote

the concurrent value without power budget constraint, i.e. PW =∞.

Algorithm 1 Power Minimization MCF Algorithm

1: Input: graph G, demand d, latency constraint LT , threshold ε

2: Output: (1 + ε) optimal power

3: set λmax ← mcf(G, d, LT,∞)

4: set lower bound lb← 0

5: upper bound ub← total power under λmax

6: while (ub− lb)/ub > ε do

7: λ← mcf(G, d, LT, (lb + ub)/2)

8: if λ ≥ 1 then

9: ub← (lb + ub)/2

10: else lb← (lb + ub)/2

11: end if

12: end while

13: Output ub

mcf(G, d, LT, PW) subroutine iteratively updates the primal and dual

26

values till the gap is small enough. The primal value λ is updated by adjusting

the flows. To calculate dual values, we define edge length as:

l(e) := Ae

∑

q:e∈S(q)

Xq + PW · φp + LT · φd (II.10)

So dual is equivalent to:

Min :
A

∑n
q=1 Xq + PWφp + LTφd
∑k

j=1 dj · dist(j)
(II.11)

where dist(j) is the shortest path from the source to the sink of com-

modity j under the length function l(e). The process is described in Algorithm

2.

Algorithm 2 proceeds in phases and each phase is composed of k itera-

tions. In iteration j of the ith phase we route dj units of commodity j in a sequence

of steps. In each step, a shortest path P from source sj to sink tj is computed

using the current length function. The dual variables Xq are updated as

Xq = Xq(1 +
δ

3
·

∑
e∈S(q) Aef(e)

A
) (II.12)

and φp and φd are updated in the similar fashion.

Regarding the convergence of Algorithm 2, by carefully choosing the ini-

tial values X0, we have the following theorems:

Theorem 1 When the algorithm terminates, λ
D
≥ 1− δ.

Theorem 2 The algorithm runs in O(δ−2|E|2).

Theorem 1 guarantees the (1 − δ) optimality and Theorem 2 shows the

efficiency. The proofs are similar to those in [22] and [29]. However, the formu-

lations in the previous works all treat the capacity constraints are on the edges;

while here, the constraints are on a set of edges. Therefore to update the dual

variables, we need to modify the original formula in [22] and [29]

l(e) = l(e)(1 +
δ

3
·
f(e)

c(e)
) (II.13)

27

Algorithm 2 (1− δ) Maximum Concurrent Flow Algorithm

1: Input: graph G, demand d, latency constraint LT , power budget PW , thresh-

old δ

2: Output: (1− δ) optimal maximum concurrent value λ

3: ∀q, set f(e)← 0, Xq ← X0, φp ← X0, φd ← X0

4: l(e)← Ae

∑
q:e∈S(q) Xq + PW · φp + LT · φd

5: while A
∑n

q=1 Xq + PWφp + LTφd ≤ 1 do

6: for each commodity j do

7: rdj ← dj

8: while rdj > 0 do

9: Route f units of flow from si to tj along the shortest path P

10: f(e)← f(e) + f , ∀e ∈ P

11: Xq ← Xq(1 + δ
3
·

P

e∈S(q) Aef(e)

A
)

12: φp ← φp(1 + δ
3
·

P

power
PW

), φd ← φd(1 + δ
3
·

P

latency
PW

)

13: l(e)← Ae

∑
q:e∈S(q) Xq + PW · φp + LT · φd

14: rd← rd− f

15: end while

16: end for

17: compute primal λ by scaling down all f(e) subject to area, power and latency

constraints

18: compute dual D ←
A

Pn
q=1 Xq

Pk
j=1 dj ·dist(j)

19: end while

20: return λ

28

where f(e) is the total flow on edge e and c(e) is the edge capacity, to the one

in Equation (II.12). This is from the intrinsic spirit of the dual variable updating

scheme: the dual variables reflect the congestion level of the edge or a set of edges,

therefore we always update it using the ratio of the flow versus the total available

resource. In addition, the power and latency constraints can be viewed as two

“pseudo edges” with capacities PW and LT , so φp and φd have the similar update

formula.

It is worth noting that the dual variables Xq are associated with a set

of edges instead of a single edge, therefore we need to apply formula (II.14) to

further compute the edge lengths. Sometimes this results complicated cases. Refer

to Figure II.3, consider a path consisting of two edges (a, e) and (e, c), the lengths

should be updated as

l((a, e)) = A · (X1 + X2 + X3 + X4) + Wφp + Lφd

l((e, c)) = A · (X3 + X4) + Wφp + Lφd

Note that X3 and X4 do need to be counted twice in the path, since

the path crosses them twice and each time the flow contributes to the congestion

individually. This issue is carefully handled in the implementation.

Grid(1) Grid(2) Grid(3) Grid(4)

X1 X2 X3 X4

a b c d e

Figure II.3: Length Function on Edge

29

II.3.C MCF Algorithms with Pairwise Latency Constraints

This section discusses a variation of the MCF problem where the latency

constraint is imposed on each individual commodity. Let LTi represents the latency

constraint on commodity i, the problem formulation is as follows:

Primal :

Max : λ

∀j ∈ [1, k] :
∑

p∈pj
f(p) ≥ λdj

∀q :
∑

e∈S(q) Ae

∑
p:e∈p f(p) ≤ A

∑k
i=1

∑
p∈pi

∑
e∈p f(p)Pe ≤ PW

∀i ∈ C :
∑

p∈pi
f(p)

∑
e∈p De ≤ LTi

∀p : f(p) ≥ 0

The following is the dual problem. Besides that Xe, Zj, φp keep the same

meaning, each individual critical commodity i has a dual variable Yi corresponding

to the latency budget constraint on that commodity:

Dual :

Min : A
∑n

q=1 Xq + PWφp +
∑

i∈C LTiYi

∀j, ∀P ∈ ρ :
∑

e∈P Ae

∑
e∈S(q) Xq +

∑
e∈P Peφp

+
∑

e∈P DeYj ≥ Zj

∑k
j=1 djZj ≥ 1

∀q : Xq ≥ 0

∀j : Zj ≥ 0

∀i : Yi ≥ 0

30

The algorithms to solve the MCF problem with pairwise latency con-

straints share the same ideas with the aforementioned algorithms, except for the

edge length. Since there is an array of latency constraints on a group of criti-

cal commodities, now each edge has an array of lengths instead of only one edge

length. When flow of a certain critical commodity goes through an edge, only the

edge length that corresponds to the specific critical commodity will be used and

updated for shortest path searching. The following is the length function for l(e)i

on edge e.

l(e)i := Ae

∑

q:e∈S(q)

Xq + Peφp + DeYi (II.14)

And the update function for dual variable Yi is:

Yi = Yi(1 +
δ

3
·

∑
e Def(e)

LTi

) (II.15)

II.3.D Interval Estimation Heuristic

In Section II.3.B, while Algorithm 1 needs to obtain MCF solutions with

(1 + ε) optimal power values, Algorithm 2 returns us (1 − δ) optimal concurrent

flow. Therefore the values of ε and δ are associated “pseudo polynomially”: δ has

to be determined by both the value of ε and the unit edge cost Pe, which leads to

extremely slow convergence in some pathological cases.

Thus, we propose a heuristic interval estimation technique to speedup

the process. The idea is to estimate the new lower bound lb′ and upper bound

ub′ while performing the approximation algorithms, and terminate the search once

ub′ − lb′ ≤ (ub− lb)/2 in each step of the binary search scheme.

We define a function monotonically increasing P (λ), where λ is the con-

current flow and P (λ) is the minimum power under this concurrent flow (therefore

P (1) is the target optimal value). The curve is shown in Figure II.4. Furthermore,

we have the following lemma:

Lemma: P (λ) is a convex function.

31

W

D1 max

P()max

P()

(a)

Pm

Q1

Q2

P2

P1

P4

P3

W

D1 max

P()max

P()

Pm

(b)

Q1

Q3

P1

P2

Figure II.4: Interval Estimation

Proof: For a specific λ1, the minimum power should be P (λ1); scaling

down all the flows by half, the concurrent flow would be λ1

2
, and the power is P (λ1)

2
.

On the other hand, when the concurrent flow is λ1

2
, the minimum power should be

P (λ1

2
), therefore we have P (λ1

2
) ≤ P (λ1)

2
, ∀λ1 ≤ λmax. So the function is convex. �

We use the following theorem to estimate the lower bound lb′ and upper

bound ub′:

Theorem 3 Given a feasible primal value λ and a feasible dual value D under the

power budget PW , we have

PW − s · (D − 1) ≤ P (1) ≤ PW + s · (1− λ) (II.16)

where s = P (λmax)−PW
λmax−D

. Hence, lb′ ← max{lb′, PW − s · (D − 1)}, ub′ ←

min{ub′, PW + s · (1− λ)}

We sketch the proof for P (1) ≤ PW + s · (1 − λ) here. Refer to Figure

II.4 (a), let the lines x = λ, x = 1, x = D and x = λmax intersect the function

curve at P3, Q2, P2 and Pm, and x = 1, x = 1 and x = D intersect y = PW at P4,

Q1 and P1 respectively (we use x and y to denote the two axes). We then have

32

P (1) = PW + SP4Q2 · (1− λ) (II.17)

where SP4Q2 is the slope of the line P4Q2. And, it is easy to identify that

SP4Q2 ≤ SP3Q2 ≤ SP2Pm
≤ SP1Pm

, by the property of the convex function. And

since s = SP1Pm
, we have P (1) ≤ PW +s·(1−λ). Similarly, PW−s·(D−1) ≤ P (1)

can be proven by the similar approach, as shown in Figure II.4 (b). �

Consider in a certain iteration of the approximation algorithm, we have

a feasible primal value λ and a feasible dual value D, where λ < 1 and D > 1

(otherwise the process will terminate). To approximate the range of the optimal

solution P (1), We need to consider two cases:

1. When P (1) ≥ PW , as shown in Figure II.4 (a), then line x = 1 intersects

y = PW and the function curve at Q1 and Q2 respectively (we use x and

y to denote the two axes). Then P (1) = PW + |Q1Q2|. Assume x = λ

intersects the function curve and y = PW at P3 and P4 respectively, we can

easily compute |Q1Q2| = SP4Q2 · |P4Q1| = SP4Q2 · (1− λ),where SP4Q2 is the

slope of the line P4Q2. Then,

P (1) = PW + SP4Q2 · (1− λ) (II.18)

Unfortunately, we do not know the exactly value of SP4Q2; therefore we use

the following method to approximate the slope:

We know that the primal feasible solution λ has the power at most PW ,

consequently P (λ) ≤ PW , since P (λ) denotes the optimal power value.

Therefore P3 is below P4 (or equal), and then SP3Q2 ≥ SP4Q2 . Let x = D

intersect y = PW and the function curve at P1 and P2, and x = λmax

intersect the function curve at Pm, we can conclude that SP2Pm
≥ SP3Q2,

since all the four points are in the curve and the function is convex. Finally,

SP1Pm
≥ SP2Pm

since P1 is below P2 (or equal), which are symmetric to P3

and P4. Substitute the inequalities to Equation (II.18), we have

P (1) ≤ PW + SP1Pm
· (1− λ) (II.19)

33

2. When P (1) < PW , as shown in Figure II.4 (b), using the similar derivation,

we can get

P (1) = PW − SQ3P1 · (D − 1) (II.20)

And because SP1Pm
≥ SP2Pm

≥ SP1P2 ≥ SP1Q3, we obtain that

P (1) ≥ PW − SP1Pm
· (D − 1) (II.21)

In fact, inequalities (II.19) and (II.21) hold in both cases, as in the first

case, P (1) ≥ PW and in the second case P (1) < PW . Since SP1Pm
can be easily

computed as P (λmax)−PW
λmax−D

, we can compute the new lower bound lb′ and upper

bound ub′ as:

lb′ = PW − SP1Pm
· (D − 1) (II.22)

ub′ = PW + SP1Pm
· (1− λ) (II.23)

According to Theorem 3, Algorithm 1 and Algorithm 2 can be improved

as Algorithm 3 and Algorithm 4. The new algorithms run much faster than the

original ones, but the accuracy is not compromised.

Algorithm 3 Modified Power Minimization MCF Algorithm

1: Input: graph G, demand d, latency constraint LT , threshold ε

2: Output: (1 + ε) optimal power

3: As in Algorithm 1 Steps 3–5

4: while (ub− lb)/ub > ε do

5: (lb′, ub′)← mcf(G, d, LT, (lb + ub)/2)

6: lb← lb′; ub← ub′

7: end while

8: Output ub

II.4 Discussion

In this chapter, we discussed the algorithms for MCF problems, which are

the core of our design flow for interconnection network synthesis and optimization.

34

Algorithm 4 Modified Maximum Concurrent Flow Algorithm

1: Input: graph G, demand d, latency constraint LT , power budget PW , thresh-

old δ

2: Output: new lower bound lb′ and upper bound ub′

3: As in Algorithm 2 Steps 3–4

4: lb′ ← lb; ub′ ← ub

5: repeat

6: As in Algorithm 2 Steps 6–18

7: lb′ ← max{lb′, PW − s · (D − 1)}

8: ub′ ← min{ub′, PW + s · (1− λ)}

9: if ub′ − lb′ ≤ (ub− lb)/2 then

10: return (lb′, ub′)

11: end if

12: end repeat

Although there have been a lot of approaches in literature in this classic prob-

lem, we explored the fully polynomial approximation schemes due to its accuracy

and also efficiency. We augmented the existing algorithms by incorporating more

practical constraints and also improving the running speed. This chapter built the

theoretical foundation of the dissertation.

Regarding the MCF algorithms, however, there are still a lot of things to

be explored in the theoretical aspects. We highlight a few of them as follows:

1. Currently, exponentiation functions like (1 + ε f(e)
u(e)

) updates are used in the

flow augmenting algorithms (it is indeed very similar to exponentiation func-

tions). The choices of these functions facilitate the analysis proof but there

are no evidence to show how the theoretical goodness of these functions. If

we could build the relation between the length function and the convergence

rate (also the algorithm complexity), experimental work would be reduced

and the performance would be improved by choosing the suitable length

function.

35

2. The parameter ε controls the convergence speed: the larger ε is, the larger

difference between more congested edges and less congested ones. One one

hand, larger ε may achieve faster convergence if it increases lengths on the

correct critical edges; on the other hand, larger ε may update on the wrong

(non-critical) edges so that more troubles would be created. Under this

circumstance, smaller ε is preferred to adjust the flows and lengths more

smoothly to avoid oscillations. The existing algorithms all use a constant

ε all the way. In the experiments we conduct, however, a dynamic ε can

achieve a better performance: a larger ε is used in the beginning to quickly

identify critical edges and smaller ε values are used later to adjust the flows

and lengths in a more smooth and accurate manner. But we have not figured

out the optimal way to dynamically change ε so that the fastest convergence

can be guaranteed.

3. In the current analysis, the duality gap 3ε can be guaranteed when the up-

dating parameter is ε. But the experimental experience tells us that normally

the gap can be much smaller than 3ε. A tighter bound is important in prac-

tice because we could use a larger ε to reach the same accuracy therefore the

convergence could be faster. Observing that the existing analysis is done by

assuming extreme cases in quite a few places, we guess that a tighter analysis

may be possible.

III

On-chip Interconnect Synthesis

and Optimization

III.1 Overview

In this chapter, we focus on structured NoC design in multicore archi-

tectures. In a structured multicore architecture, processing cores are arranged on

chip in a regular manner, and each core contains a router for communicating with

other cores. Structured multicore architectures have been proposed and imple-

mented by various research efforts, such as MIT RAW architecture [51], and UT

Austin TRIPS architecture [32], etc.

In the previous work [28], Hu et al. proposed an MCF based scheme

to optimize NoC network topology and interconnect circuit styles simultaneously.

However, none of the previous works considered power and latency as the design

objectives simultaneously and studied their relations. In this chapter, we propose

a design methodology that selects NoC topologies and the corresponding inter-

connect wire styles, so that power consumption is minimized subject to average

communication latency constraints. With the improved MCF approximation algo-

rithm, we are able to search for the optimal NoC designs with size up to 12× 12.

Our main contributions are as follows:

36

37

• We introduce a variety of wire styles into NoC design, and incorporate la-

tency constraints and power minimization objectives into a unified MCF

model, with simultaneous optimization on network topologies, physical em-

bedding, and interconnect wire styles. For any given average node to node

communication latency requirement, our algorithm finds the best NoC im-

plementations. Experiments show that for 8 × 8 NoC, an optimized design

can improve the power-latency product by up to 52.1%, 29.4% and 35.6%, if

compared with mesh, torus and hypercube topologies, respectively. Further-

more, by sacrificing 2% of latency constraints, power consumption of that

optimized design can be improved by up to 19.4%. Carefully balancing be-

tween NoC power efficiency and communication latency is important in NoC

design.

• We generate a wide range of NoC topologies. The generated topologies not

only include most of the currently studied classic network topologies, such

as two-dimensional mesh and torus, high-dimensional mesh and torus [54],

hypercube, octagon [31], and twisted cube, etc., but also extend far beyond

the range of these popular NoC topologies.

• We implement the MCF solver using approximation algorithms, which are

significantly faster than the commercial linear programming solver CPLEX.

We further optimize the solver by applying the interval estimation technique.

Experiments show that this heuristic optimization can improve the conver-

gence time by more than 300 times for NoC of size 7x7.

The rest of this chapter is organized as follows: Section III.2 will formulate

the latency aware low power NoC synthesis problem. Section III.3 will briefly

describe our design methodology. In Section III.4 we will give the experiment

results. The summary of this chapter will be given in Section III.5.

38

III.2 Problem Statement

We assume a regular tile based structured NoC with n×n tiles. Each tile

consists of a processing core and a router. Each tile can be regarded as a grid with

certain area and dimension, and the total wiring area across a grid cannot exceed

grid dimension. Each network link can be implemented with multiple wire styles,

which have varying properties in terms of their area usage, power efficiency, and

signaling latency.

Figure III.1 shows an example of a 4× 4 tile based structured NoC. The

network is linked by various types of wire styles with different capacities (Figure

III.1a). The topology is a folded torus (Figure III.1b).

�
�
�
�
�
�

� ���	�
�	�
�� ��
� �����

� ��������� � � ���������� �
�� ����� � � �
! ���"� ��� ��#�� � � ��� �$�
�$����� � ��� �$� � � ���

% �&� �'��� �(�$�# � �*) � ���) � � ��+ � !,! ���
� ��$�(� � � ��� ! �(�-� �	�
�.�/�$�	�(� �	� � � �����

0�1325476�8.9": ;�1=<(98?>�@A6&B39-: 9�CD: @E6*;":GF�;-H-: @?9�@I8J< BLK=M	@N: OP: Q&1-@R: K=> 0TS&2JUWVXK=< Y-B?YP@ZK[FAH�9\@XK=M�K]< K3^38

Figure III.1: Tile-based Noc Architecture with Wire Style Optimization

We adopt source routing algorithms to route packets over NoC. Packets

belonged to the same message can be routed through different paths to the des-

tination tile, where software mechanisms take care of resembling packets together

to rebuild the original message according to packet header information. When

routing data packets to adjacent tiles, routing mechanism may dispatch packets to

different types of wires according to their wire capacities. Since we use network

39

flow models to formulate the NoC synthesis problem, our work is within the static

flow scope. For applications with dynamic communications, queuing mechanisms

and flow control mechanisms are needed to resolve the network contentions, and de-

tailed simulations are required to observe the network dynamic behaviors. Though

detailed simulation is a good approach for accurate network behavior estimation,

it suffers from long evaluation time and high development efforts. On the contrary,

though our static network flow model approach bypasses these important network

design issues and loses some accuracy, it has merits of providing quick evaluation

and useful guidance in the initial stages of NoC design.

In our work, we define an NoC topology graph as a directed graph G =

(V, E), where, each node vi ∈ V represents a tile, and each edge ei,j ∈ E represents

a point to point interconnection between tile i and tile j.

An implementation of an NoC topology is a mapping from each edge to a

particular wire style, T (e) : E → S, and a mapping from each edge to the amount

of wiring resources assigned to that edge, C(e) : E → R+. A particular wire style

has three properties associated with it: the per edge routing area usage, the per

bit energy, and the wire delay.

We formulate the problem as the following communication latency aware

minimum power NoC synthesis problem:

Latency-constrained minimum power NoC synthesis problem:

We have an n×n array of tiles, a library of interconnect wire components

of certain lengths:

Input: The communication demand matrix between each pair of tiles

Output: The most power-efficient NoC topology G = (V, E), and its

physical implementation T (e), C(e), ∀e ∈ E

Constraints: (1) The communication latency requirements are satisfied;

(2) The cross section wiring area can not exceed the grid dimension.

40

III.3 Design Methodology

As shown in Figure III.2, for a structured n×n NoC, we first automatically

generate the topology library. Then, based on power and delay libraries, we use

an MCF model to evaluate latency constrained NoC power consumption for each

topology in the topology library.

���������
	
���� ������� �

�������� �����
��� �

���� ��� "!#�%$&$'��(�� �)�
* ��� �����,+.-" �/�
-0���,$&�� �1��� � *

2436587:9�56;=<)>@?A>6B�CD>FEHG@I
JLKNMPORQF>87 3DG@ITS

�1�1�0� * !U�WVX� *�Y ���:��� * �
(
 �#�Z�/�/������[D�
V\�]� �"^

�]� �_� Y �`�� �
������� $W� a/�1��� � *

Figure III.2: Design Flow

In the following subsections, we describe our latency constrained low

power MCF model, topology generation, and power and delay models, respec-

tively. The MCF solver has been introduced in detail in Chapter II.

III.3.A Latency Constrained Minimum Power MCF For-

mulation

Since many notations are used in MCF formulations and approximation

MCF algorithms in the rest of the chapter, Table III.1 summarizes them for quick

reference.

For a given NoC topology graph G = (V, E), we construct a flow graph.

For each link between any two nodes, it consists of t edges, where t is the number of

candidate wire styles of the link. Figure III.3 shows an example flow graph. There

41

Table III.1: Description of Symbols
Symbol Description

V Node set
E Edge set
G Graph, G = (V, E)
k Number of commodities
di Communication demand of commodity i
si Source node of commodity i
ti Sink node of commodity i
p A path in G
pi Set of paths for commodity i

f(p) Flow amount on path p
p Set of paths for all commodities, p := ∪ipi

Grid(q) Set of all vertical or horizontal dimensions
A Area constraint on grid dimension
Pw Per-bit wire energy on a certain edge
Pr Per-bit router energy on a certain edge
Pe Per-bit total energy on edge e, Pe = Pw + Pr

Dw Wire delay on a certain edge
Dr Router delay on a certain edge
De Total delay on edge e, De = Dw + Dr

Ae Routing area usage on edge e
LT Global latency bound
PW Global power consumption bound
C Set of critical paths

LTi Pairwise latency bound on commodity i
λ Fraction of communication demand
ε Accuracy of approximation MCF algorithm

Xq Dual variable for each grid dimension
φp Dual variable for global power consumption
φd Dual variable for global latency
Zj Dual variable for communication demand
l(e) Edge length regardless critical commodity
l(e)i Edge length for critical commodity i

42

are t edges from node vm to node vn. Each edge e is associated with the wire style

(Pe, Ae, De). Pe, Ae, and De are the per-bit energy, routing area usage, and wire

delay of edge e, respectively. The estimation of Pe and De will be described in

Subsection III.3.C. Ae is measured for an edge with unit capacity.

Figure III.3: Flow Graph with Wire Style Optimization

Assume there are k commodities among all pairs of nodes. For each com-

modity i, which starts at node si and ends at node ti, we are given a communication

demand di > 0 which is the required bandwidth. We define critical commodities

as those commodities, which have timing requirements on latencies between source

and sink nodes. Assume C is the set of all critical commodities. For each vertical

or horizontal dimension Grid(q), we are given a grid dimension constraint A so

that the sum of all the edge width on this grid is no more than A. Let pi be the

set of paths for commodity i, and let p := ∪ipi. Variable f(p) denotes the amount

of flow sent along path p, for every p ∈ p.

In our work, we study two types of communication latency constraints in

NoC design. One is global average latency constraint, which is suitable for those

applications without critical path timing requirements. Therefore, we assume the

overall latency, which is the sum of the latencies for each flow, to be bounded by LT .

So the average latency is LT/
∑k

i=1 di. On the other hand, for applications that

have tight timing requirements on critical commodities, we set latency constraints

to each specific critical commodity. We call this case pairwise average latency

43

constrained low power NoC synthesis problem. We assume LTi is overall latency

constraint on individual commodity i, so the average latency is LTi/di. We have

formulations for each of the above two scenarios, respectively.

The following is the MCF formulation for global average latency con-

strained minimum power NoC synthesis.

Min :
k∑

j=1

∑

p∈pj

∑

e∈p

f(p) · Pe (III.1)

s.t.
k∑

j=1

∑

p∈pj

∑

e∈p

f(p) ·De ≤ LT (III.2)

∀1 ≤ j ≤ k :
∑

p∈pj

f(p) ≥ dj (III.3)

∀q :
∑

e∈Grid(q)

Ae ·
∑

p:e∈p

f(p) ≤ A (III.4)

∀p : f(p) ≥ 0 (III.5)

The objective is to minimize total NoC power consumption, which is

the sum of all the communication flows over per-bit power consumption of all

the edges (as in Equation (III.1)). In constraint (III.2), we ensure that global

latency requirement is satisfied. NoC average latency can be derived by dividing

global latency by total communication demands. Constraint (III.3) guarantees

that communication demand for each sender/receiver pair is satisfied. Constraint

(III.4) states that the total routing channel dimension is limited by area budget A

on every grid area Grid(q) of the routing channel.

The following formulation is for pairwise average latency constrained min-

imum power NoC design. It is very similar to the global average latency constrained

formulation, except for constraint (III.7), which formulates that the average laten-

cies of critical commodities are less than the corresponding latency bounds.

44

Min :
k∑

j=1

∑

p∈pj

∑

e∈p

f(p) · Pe (III.6)

s.t. ∀j ∈ C :
∑

p∈pj

∑

e∈p

f(p) ·De ≤ LTj (III.7)

∀1 ≤ j ≤ k :
∑

p∈pj

f(p) ≥ dj (III.8)

∀q :
∑

e∈Grid(q)

Ae ·
∑

p:e∈p

f(p) ≤ A (III.9)

∀p : f(p) ≥ 0 (III.10)

III.3.B Isomorph-Free Exhaustive Topology Generation

The search space of NoC topologies is extremely huge. Even excluding

those topologies who are isomorphic, the number of the possible topologies still

approaches O(2n2
) for n nodes. In our methodology, we restrict the topology search

space to regular topologies, where each row and column have identical connections.

In this way, the number of combinations is significantly reduced, and this regularity

makes circuit design and layout easier.

Regular topologies cover a wide range of popular network topologies. We

find that any 2n-dimensional binary hypercube can be mapped to a regular topol-

ogy, by proving Theorem 4.

Theorem 4 A 2n dimensional binary hypercube can be mapped to a 2n by 2n array

with regular topology.

Proof: For a node on the ith column and the jth row of an n× n array,

assign a binary number (i − 1)2(j − 1)2 as the id of that node, where (i − 1)2 is

the binary representation of the number i− 1. We connect two nodes if and only

if their id differs by only one bit. The resulted graph is both a 2n dimensional

binary hypercube and a regular topology.

Most of the popular NoC topologies, such as two-dimensional mesh and

45

torus, high-dimensional mesh and torus, octagon, and twisted cube, etc., can be

mapped to regular topologies.

We generate connected topologies on n nodes using nauty [38] [1]. We

set MAX DEGREE as an upper bound on node degree. The maximum node

degree limits network router input/output ports, since excess number of ports

may dramatically increase the network router area and its power consumption.

Table III.2 lists the number of connected topologies on n nodes with

different MAX DEGREE. For a set of 8 nodes, when MAX DEGREE equals to 4,

there are 1929 distinct topologies.

Table III.2: # of Isomorph-Free Topologies
MAX DEGREE n = 4 n = 5 n = 6 n = 7 n = 8

3 6 10 29 64 194
4 6 21 78 353 1929

After we generate all connected isomorph-free topologies on n nodes, we

enumerate all linear placements of them. Figure III.4 shows an example of two

mappings of a ring structure onto a row of four tiles. Different linear placements

lead to different NoC power consumption and delay time.

Figure III.4: Example of Linear Placements

Due to symmetry of certain subgraphs, different placements may corre-

46

spond to the same mapping. We use link bit vector to remove duplicated place-

ments. As shown in Figure III.5, there are six possible links on four nodes, hence

a 6-bit link bit vector can represent a placement on four nodes. We then use an

array of link bit vectors to keep track of all exist placements and remove those

duplicated ones in our mapping algorithm.

Link Bit Vector: 010111

Figure III.5: Link Bit Vector to Represent a Placement

Since total wire length is tightly correlated to NoC power consumption,

we only consider the placements with good quality, i.e. with small total wire

length. When generating placements, we set an upper bound for total wire length.

We map a topology to only those placements whose total wire length is no more

than the threshold (as seen in Table III.3) times the minimum wire length of that

topology. Our experiments show that this heuristic strategy works fine, for a 4× 4

NoC, the placements with minimum wire length always consume minimum power.

Once we generate all the placements on a row/column of on-chip tiles, we

can duplicate it to all rows/columns to generate the final NoC topologies. Table

III.3 gives the number of final NoC topologies with MAX DEGREE=3 for one

dimensional and maximum node degree of 6 for two dimensional n× n NoC. Our

following power evaluation experiments are all based on these topologies.

Table III.3: # of Regular Topologies on nxn NoC
size 4× 4 5× 5 6× 6 7× 7 8× 8

threshold 2.0 1.5 1.2 1.1 1.0
of regular topo 36 254 534 1306 2092

47

III.3.C Power and Delay Models

Interconnects and network routers are two main contributors to NoC

power consumption and communication latency. We adopt the concept of bit

energy proposed in [55] to represent energy consumption when one bit of data

is transported through the interconnects or routers. For each network link e, we

assume Pe represents bit energy on link e and the corresponding router, and De

represents delay on link e and the corresponding router.

Pe = Pw + Pr; De = Dw + Dr

where Pw and Pr are bit energy on interconnects and routers, Dw and Dr are delay

of unit flow on interconnects and routers, respectively. When a flow of amount f

passes the link and the corresponding router, the power consumption is: P = Pe ·f ,

and latency is: D = De · f .

Interconnect Wires

To achieve high performance low power, many wire technologies have been

proposed for on-chip interconnects, such as RC wires with repeated buffers, and

on-chip transmission lines, etc. Table III.4 reviews the comparative advantages of

three on-chip wire styles.

RC wire with appropriately spaced repeaters is the most common and

simplest means of global interconnect [25]. With inserted buffers, its wire delay

is improved to linear with total wire length, and the wire bandwidth is increased

substantially. However, power consumption of RC wires with repeated buffers

increases linearly with the total wire length, hence it is not power-efficient for long

distance on-chip interconnects. Increasing the spacing between wires can reduce

power consumption, but costs more on-chip area resources.

Transmission line is appropriate for long distance inductance-dominant

high-frequency on-chip interconnects. For length of 20mm, transmission line is five

times faster and consumes 50% less power than that of RC wires with repeated

48

Table III.4: Comparison of Different On-Chip Wiring Technologies

Wire styles Pros. Cons.

Buffered RC Wire
with Minimum Spac-
ing

highest wiring density,
most area efficient

highest per-bit energy,
longest latency

Buffered RC Wire
with Large Spacing

shorter latency, lower
per-bit energy com-
pared with minimum
spaced RC wires

more routing area
usage than minimum
spaced wire

On-Chip Transmission
Line

shortest latency, low
per-bit energy for
long-distance commu-
nication

largest routing area,
large initial power,
largest design effort

buffers [8]. However, due to its complexity at transmitter and receiver circuits,

transmission line has a large setup power overhead, hence not suitable for short

distance interconnects. Transmission line also requires much wider wire pitch to

transfer signals, taking more on-chip area resources.

Since different types of interconnect wire styles have different trade-offs

on power consumption, communication latency and area resources, we assume that

each on-chip network link can be composed of multiple types of wire styles. We

assume four types of wire styles are available for interconnects, namely, RC wires

with repeated buffers with wire pitch varying from 1×, 2×, and 4× minimum

global wire pitch, and on-chip transmission line with 16um wire pitch.

For RC wires with repeated buffers, we assume Pw and Dw are propor-

tional to wire length, i.e. Pw = per grid length big energy × wire length and Dw =

per grid length delay × wire length. For on-chip transmission line, comparatively

large setup costs should be added to Dw and Pw. We use transmission line model

proposed by Chen et al. [9] to estimate transmission line bit energy and delay.

Table III.5 lists bit energy and delay per grid length (2mm) of these

four types of wire styles in 0.18um design technology. The supply voltages, wire

49

geometries and device parameters are from ITRS [2]. For RC wires with repeated

buffers, the repeaters are inserted to minimize wire delay. Setup costs of 50ps and

4.4pJ/bit are added to Dw and Pw for transmission lines.

Table III.5: Delay Model of Wires
wire type RC-1x RC-2x RC-4x T-line

Pw (pJ/bit) 2.68 2.15 1.99 0.15
Dw (ns) 0.127 0.112 0.100 0.020

Network Routers

To estimate router bit energy Pr, we use a power simulator Orion [53].

We assume 1GHz frequency, 4-flit buffer size, 128-bit flit size. When the number

of router input/output ports increases, Pr increases almost linearly. We use the

router delay model proposed by Peh et al. [43] to estimate NoC router delay.

Table III.6 shows bit energy and latency of routers in 0.18um technol-

ogy node. When the number of router input/output ports increases, Pr increases

almost linearly, and Dr increases in a slower pace.

Table III.6: Power Model of Routers
ports 3 4 5 6 7 8

Pr (pJ/bit) 0.33 0.44 0.55 0.66 0.78 0.90
Dr (ns) 0.662 0.709 0.756 0.788 0.819 0.835

III.4 Experimental Results

Our experiments are on NoC in 0.18um design technology. We assume

that grid length are 2mm, and communication demands are evenly distributed,

i.e., the bandwidth requirements between every pair of tiles are 1Gb/s. The exper-

iments are based on power/delay parameters described in subsection III.3.C. We

50

use the topology library generated in subsection III.3.B as candidate topologies

for design selection. In the MCF approximation algorithms, we set error tolerance

ε to 1%. In following subsections, we show the impact of wire style optimiza-

tion, topology selection and tradeoffs between power/latency optimization in NoC

design. Since each grid has the same vertical and horizontal dimension, for con-

venience, we use only the vertical dimension to represent the area budget. This is

why the unit of area in our experiments is um.

III.4.A Wire Style Optimization

We first demonstrate the power/latency improvement by wire style op-

timization. Without wire style optimization, we assume only the basic RC wires

with repeated buffers available for on-chip interconnects, whose wire pitch is 1×

minimum global pitch. With wire style optimization, other three types of wires

(see Table III.5) are also available for on-chip interconnects.

50

55

60

65

70

75

80

3000 4000 5000 6000 7000 8000 9000 10000 11000

Area (um)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

w/o wire opt. w/ wire opt.

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3000 4000 5000 6000 7000 8000 9000 10000 11000

Area (um)

A
ve

ra
ge

 C
om

m
. D

el
ay

 (n
s)

w/o wire opt. w/ wire opt.

Figure III.6: Impact of Wire Style Optimization

For 8x8 torus networks, Figure III.6 shows its power/latency improve-

ment under various on-chip area resource. When more area is available for wire

style optimization, more power/latency savings can be seen. The lower bound of

area resource is 3000um so that all communication demands be satisfied; when

area resource increased to 11000um, wire style optimization reaches the maximum

impact, up to 30.7% power improvement (from 76.2W decreases to 52.9W) and up

51

to 15.6% latency improvement (from 3.72ns to 3.14ns) can be achieved. When area

resource decreases to the bottleneck, 3.8% power saving and 1% latency saving are

still seen from wire style optimization. We observe that at flow congested area,

minimal pitch wire style is used. However, at uncongested on-chip area, we still

can use power efficient wire styles to reduce NoC power consumption and latency.

��������� 	
��� ���
������� ��� ������ ��������
��
� ��!#"���� ���$	
��%	&
��'��(�	&"'
%� �)�$*�(���+��$�'

��*����,� 	
��� ���
������� ��� ������ �$�-����
 �
�$��!#"���� ���$	
$�%	
����$(�	&"�
.� �/�� 0���
���

Figure III.7: Details of Wire Style Optimization

Figure III.7 shows details of wire style optimization, e.g. the types of wire

styles for interconnects and their capacities. The different types of lines represent

different wire styles, as shown in the legend. The line width represents the wire

capacity. For a 4× 4 torus, Figure III.7(a) shows the wire style assignment under

loose area constraints. Due to the relatively large available on-chip area resources,

transmission lines are selected for long interconnects, and RC wires with repeated

buffers with largest spacing (wire pitch is equal to four times minimum pitch) are

selected for short connections. Figure III.7(b) shows the wire style assignment

under tightest area constraints. Since the communication reaches the maximum

capacity, for all interconnects on the two congested cuts shown by dot lines, only

the RC wire with minimum pitch is selected because it provides the highest cross-

section bandwidth. For those uncongested links, wider wires with lower power

consumption are selected.

52

III.4.B Power Consumption and Latency Tradeoffs

To demonstrate tradeoffs between power consumption and average la-

tency in 8× 8 NoC design, we show power savings when a small amount of com-

munication latency is sacrificed. First, we use MCF model to search the topologies

with the minimum latency (no power optimization), then loosing this latency con-

straint by up to 10% and optimize NoC power consumption. Figure III.8 shows the

results. The x-axis represents average latency. The y-axis represents power con-

sumption. Each curve represents latency constrained minimum power consumption

under certain area budget.

���
���
� �
���
� �
���

��	
� �
	�� �
	�� �
	�� ��	� ��	
�
�������������������
�������! "�$#�%

& '(
)*
+ ', -
./0
12 '
,3 4
5

687�986;:�<>=8=>=8?;@ 687�986;:8A�=>=B=;?8@ 6;7�9C68:�DB=>=B=;?E@
687�986;:�F>=8=>=8?;@ 687�986;:�G;=>=B=;?8@ 6;7�9C68:�HB=>=B=;?E@
687�986;:�I>=8=>=8?;@ 687�986;:
JK=>=B=>=8?;@ 6;7�9C68:�JBJK=B=>=E?;@

Figure III.8: NoC power and latency tradeoffs

As area budgets increase, the curves move toward left-bottom due to wire

style optimization, because those aggressively optimized but area-consuming wire

styles, such as transmission lines, can be adopted to optimize both power and

latency. When area increases from 3000um to 11000um, minimum latency drops

18.3%, from 2.95ns to 2.41 ns; average power consumption drops 28.3%, from

71.4W to 51.2W.

The slopes of the curves indicate the power consumption reduce rate

when communication latency is increased. Take the curve with area 11000um as

example, when latency constraint is loosened 2%, from 2.41ns to 2.46 ns, the power

53

consumption is reduced from 63.2W to 50.9W, which is a 19.4% improvement.

When area is small (3000um), the curve is almost flat. This is because area

resource becomes bottleneck and flow is congested on chip, so that loosing latency

constraint will not bring much benefit.

III.4.C Topology Selection

In this section, we compare these optimal topologies found by our de-

sign flow in the topology library with traditional topologies, such as mesh, torus

and hypercube. Same as in subsection III.4.B, we set the latency constraints by

loosening the minimum latency by up to 10%.

���
� �
� �
� �
���
� �

�	��
 �	� �
���

�� � � ��

��	�����	���������	����������� �"!

#%$&
'(
) $
* +,-.
/0 $
*1 2
3

465676598"5:764<;>=�?<@ 46567A5B89=�C6D:E 46567659864659F6G<D 465676598"E9H67ICJF"K9G:L<C

Figure III.9: Power latency tradeoffs among various topologies

Figure III.9 shows comparison among these four types of topologies under

different budgets. The x-axis represents average latency. The y-axis represents

power consumption. Each group includes 3 curves, 11000um, 7000um, and 3000um,

which represents loose, moderate and tight area constraints, respectively.

For a certain topology, since larger latency constraints lead to smaller

power consumption, and vice versa, we pick the point with minimum power latency

product for a quantitative comparison, as shown in Table III.7.

54

Table III.7: Topology Comparison
area topo L P P*L Impv.
(um) (ns) (W) (W*ns) (%)

mesh 4.34 72.7 315.2 26.7
3000 torus 3.74 76.1 284.7 18.9

cube 3.23 92.8 299.8 23.0
optimal 3.25 71.1 230.9
mesh 4.25 63.0 267.9 44.5

7000 torus 3.37 56.3 189.6 21.5
cube 3.04 76.0 231.2 35.6

optimal 2.69 55.4 148.8
mesh 4.22 61.2 258.3 52.1

11000 torus 3.33 52.7 175.3 29.4
cube 2.76 62.6 173.1 28.5

optimal 2.48 49.8 123.8

The first two columns list area budgets and topologies. Column 3-5 show

latency, power consumption, and power latency product for certain topology under

given area budgets. The sixth column of the table lists the improvement in terms

of power latency production, when compare our selected optimal topology with

mesh, torus and hypercube.

From the table, we observe that mesh is not a desirable topology for NoC

of size 8x8. Compared with other topologies, its latency is quite large, because

data packets need many hops to arrive the destinations. Also it lacks of long

global links and doesn’t make fully use of wire style optimization, so that when

area budgets increase, its power consumption is not as good as torus. Torus and

hypercube have their own advantages. In general, torus is better in terms of power

consumption, since it has simpler network router architecture; hypercube is better

in terms of latency, since it has a lot of shortcut links.

Our selected optimal topologies show big advantages over the other three

traditional topologies. They have small power consumption and latency. In terms

of power latency production, they achieve an improvement up to 52.1% compared

to mesh and 29.4% compared to torus (area = 11000um), and 28.5% compared to

hypercube (area = 7000um). Figure III.10 shows the connections on one raw of our

55

���������
	��������	��������������������� ���!"�#�%$'&#()(#(�*)

��+
���,�
	�����-�.	/�0�����1�2���3������ ���!��2�4$65�(�(2(�*�

��78�����9	:�;����<	����=���������>������ ��-!��#�%$@?2?9(�(2(�*�

Figure III.10: Optimal topologies under various areas

selected optimal topologies under each area budget. Duplicating these connections

to every row and column will generate the final topology design.

III.4.D Pairwise Latency Constraints

We also conduct the experiments which include pairwise latency con-

straints. Thus instead of giving a global latency constraint, we set latency con-

straint for each communication between a pair of nodes. In practice, the com-

munications between a pair of nodes which are close usually have a low latency

since there are less number of hops as well as shorter wires between them; how-

ever, the communications which separated further tend to have larger latencies

therefore become the “critical commodities”. Consequently, in our experiments

on 8× 8 NoCs, we regard those commodities whose separation distance is 7 units

of grid length or further as critical commodities. Also, we use another parameter

called “latency constraint coefficient” γ to set the latency for each specific critical

56

commodity: first we calculate a “base latency” for each commodity. The base

latency is computed by assuming 1x RC wire is used, the distance is Manhattan,

and routers have minimum degrees. Then we set the latency as γ × base latency.

Note that γ could be less than 1 as RC wires with larger pitches or transmission

lines could achieve faster speed.

Figure III.11 shows the power and latency tradeoffs with pairwise con-

straints when the routing area is 3000 um, 5000 um 6000 um and 7000 um respec-

tively. The x-axis represents the latency constraint coefficient γ and the y-axis

represents power consumption. It is observed that γ could be reduced as small as

0.8 except for the tightest area constraint 3000 um. When γ is 0.8, all the three

curves converge to one point, which indicates that the topologies with short cuts

among the critical commodities must be used with the tightest constraint; how-

ever, when γ becomes larger, more alternative topologies could be chosen, therefore

larger routing area could achieve smaller power consumption.

���

���

� �

� �

���

���

� �

� �

�	� � �
� � � � ��� � ��
�	�	�����
�����	��������������� �!�	�
��"�"#�$���%��� �

& '
()
*
+ '
, -
. /
01
2 '
,
3 45

��������6�7
��������6�7
	������6�7
8 ������6�7

Figure III.11: NoC Power and latency tradeoffs with pairwise latency constraints

57

III.4.E MCF Performance Improvement

To demonstrate the efficiency of the proposed algorithm, we conduct ex-

periments to compare its CPU time with the linear programming (LP) solution

produced by CPLEX, a commercial LP solver. We choose torus as the representa-

tive topology to make the comparison. We test the performance on 3000, 7000 and

11000 as small, moderate and large grid area, by scaling down them by the factor

of k4/84 for the k × k case, by approximating the communication demands to be

k4. All the experiments are conducted in a PC with 2.8 GHz CPU and 784MB

memory, and CPLEX 9.1 is used. The detail results are shown in Table III.8,

where columns 3–6 show the result values and CPU time (in seconds) of CPLEX

and our approximation algorithm respectively, column 7 shows the gap between

the approximate results and the optimal solutions, (col5− col3)/col3, and column

8 shows our speedup, col4/col6.

The table shows that our proposed algorithm can obtain correct results

within the 1% threshold, which is our input settings. Also, it is much faster than

the LP solver, and becomes more and more significant when the size becomes

larger: in the 7× 7 cases, it has been more than 100 times faster than CPLEX. In

8× 8 cases, the approximation method also runs fast, while CPLEX is too slow to

produce any results.

III.5 Summary

We study the tradeoffs between NoC power efficiency and average latency.

By adopting an MCF formulation, we are able to reduce power consumption of

NoC under given latency constraint, through simultaneous optimization of network

topologies and wire styles. Experimental results suggest that for NoC of size 8 × 8

(1) Power and latency co-optimization is critical in NoC design. With 2% latency

overhead, up to 19.4% power savings can be seen. (2) compared with mesh, torus

and hypercube topologies, our optimized design can improve power latency product

58

Table III.8: MCF Performance Improvement
Size Area CPLEX Approx. Err Speedup

Obj CPU Obj CPU (%)
473 6611 105 6652 11 0.62 9.55

5× 5 1069 5389 104 5430 11 0.76 9.45
1679 5193 10 5234 12 0.78 0.83
950 16830 1496 16955 65 0.74 23.02

6× 6 2215 13195 1910 13298 29 0.78 65.86
3481 12580 291 12683 29 0.82 10.03
1759 36860 9963 37156 78 0.80 127.73

7× 7 4104 28405 15040 28641 46 0.83 325.96
6488 27464 8280 27689 56 0.82 147.86
3000 N/A N/A 73315 113 N/A N/A

8× 8 7000 N/A N/A 56207 48 N/A N/A
11000 N/A N/A 52915 62 N/A N/A

by up to 52.1%, 29.4% and 35.6%, respectively.

Chapter III includes the contents of two published papers.“Communication

Latency Aware Low Power NoC Synthesis,” by Y. Hu, Y. Zhu, H. Chen, R. Gra-

ham, C.K. Cheng, in Proceedings of 43rd ACM/IEEE Design Automation Con-

ference. “Physical Synthesis of Energy-Efficient NoCs Through Topology Explo-

ration and Wire Style Optimization,” by Y. Hu, H. Chen, Y. Zhu, A. A. Chien,

C.K. Cheng, in Proceedings of 23th IEEE International Conference of Computer

Design. The dissertation author was the researcher and co-author of both papers.

IV

Supercomputer Interconnection

Networks Synthesis and

Optimization

IV.1 Overview

In this chapter, we propose a design methodology that is able to select

the best interconnection network topology among a large number of candidates so

that the average communication latency is minimized. The major contributions of

our work are as follows:

1. We propose a fully automated design flow that is able to evaluate thousands

of network topologies and find the best candidate according to the available

technology, physical constraints and applications. All these conditions, such

as unit wire latency, router latency, board dimensions, pin numbers, or com-

munication patterns, are the input and parameters of the flow, and thus can

be specified and modified by users. This feature enables our methodology to

be applicable for different supercomputer systems, with little modification.

2. We demonstrate our flow by using the the packaging framework of Blue

59

60

Gene/L supercomputer. We conduct the experiments using different input

parameters. The optimal designs we find in a midplane under different cir-

cumstance can improve 12% – 56% of the average communication latency

compared to the original 3D torus design, which shows the effectiveness of

our methodology.

3. We develop a topology generation scheme which is able to cover a large design

space without loss of the regularity. Here, it is applied to the networks on the

two-level graph model of the 512 processors and able to produce more than

2000 representative topologies, offering great freedom for designers. Further-

more, The link capacity (the number of wires needed in each link) can also

be determined accordingly.

4. The current design flow is also easy to extend to minimize the power con-

sumption, or perform the latency-power co-optimization, with appropriate

power models for routers and wires. The power consumption is also an im-

portant concern for supercomputers. Knowing the tradeoffs between the

latency and power enables designers to make correct decisions to build su-

percomputers.

The rest of this chapter is organized as follows. Section IV.2 will intro-

duce our design flow and the general formulation to evaluate the performance of

interconnection networks. In Section IV.3, we will use the packaging framework

of Blue Gene/L as a concrete example to demonstrate our design flow; the gener-

alized models and parameters described in Section IV.2, such as wire and router

delay models, and physical constraints, will be specified using practical data. The

experimental results will be presented in Section IV.4. Summary will be given in

the last section.

61

IV.2 General Design Flow & Formulation

Figure IV.1 shows the general design flow of our methodology. Users need

to provide four categories of inputs to perform the topology synthesis:

1. Topology Pool: The topology pool contains all candidate topologies users

want to use. They can be created by the users or generated by other tools,

either regular or irregular. The pool can contain as many candidates as

designers wish since our evaluation algorithms are very efficient (in the ex-

periments we evaluate more than 2000 topologies). The best topology will

be selected based on our evaluation.

2. Delay Models: Users need to specify the wire and router delay models,

based on the wires they use and the router architectures. They are used to

calculate the communication latency, which is our objective.

3. Communication Patterns: The communication patterns among proces-

sors will be fed into our evaluation algorithm so that the synthesized network

is able to satisfy the communication demands.

4. Physical Constraints: Users also need to discover the physical constraints

which must not be violated, including the board dimensions, number of lay-

ers, number of pins, and number of connectors.

All these inputs are fed into the MCF solver to evaluate the performance

and the best topology will be selected according to the communication latency.

The number of wires on each link will also be determined by the solver, with all

the communication demands and physical constraints satisfied.

The entire flow is automated. The MCF solver is able to take all the

inputs, perform the evaluation, and provide the synthesis results which can be used

by the designers. As the core component of our flow, we introduce the formulation

of the MCF evaluation solver.

62

�������������
	���
���

� �����������������������
������� �"!#�%$

&'�(���)	+*,��-����.$

�%/
	0$1� �2�"�
� ���%$.��!3�����
�#$

46587:9<;>=�?�@A=�B1C�D�EGF%D�?H;>I2J KML2N2OAP
QSRMQ�T�Q(U(VXW�Y�Z[�\H] L�^<N)N \ U%Y�_�L"Y>O N

Figure IV.1: Design Flow

We model a given interconnection network topology as a graph G(V, E),

where |V | = n, |E| = m. Each node represents a computing module (processor)

and each edge (a, b) represents a link between processors a and b. A set of k

communication demands are given, i.e. dj represents the demand from processors

(nodes) sj to tj, ∀1 ≤ j ≤ k. The communication demands represent the demand

for bandwidth between each pair of nodes; this quantity becomes the injection rate

when averaged over the lifetime of the network that we profiled. Our task is to

determine how many wires need to be assigned for each link, so that the physical

constraints are satisfied and the overall average latency is minimized.

The above statement can be formulated as the MCF problem [5] if we

consider the communication demand from s to t as a commodity with source node

s to sink node t, and the number of wires for link e ∈ E as the flow f(e). The

average communication latency consists of two portions: the router delay and the

wire delay. If we assume there is a router with each node, our objective can be

written as follows:
∑

e∈E

f(e) ·DR
g(e) +

∑

e∈E

f(e) ·DW
e (IV.1)

where DR
g(e) represents the delay for the router in node g(e) that is the starting

node of edge e, and DW
e represents the delay for link e. Therefore the first part

63

of the objective denotes the total latency on routers and the second part is the

latency on wires.

The primary constraint is that communication demands must be satisfied.

Let f j(e) denote the amount of flow dedicated for communication j (1 ≤ j ≤ k)

from node sj to node tj, then the following constraints must be satisfied:

k∑

j=1

f j(e) = f(e), ∀e ∈ E (IV.2)

∑

e∈Ein
i

f j(e)−
∑

e∈Eout
i

f j(e) = −dj, i = sj, 1 ≤ j ≤ k (IV.3)

∑

e∈Ein
i

f j(e)−
∑

e∈Eout
i

f j(e) = dj, i = tj, 1 ≤ j ≤ k (IV.4)

∑

e∈Ein
i

f j(e)−
∑

e∈Eout
i

f j(e) = 0, i ∈ V − {sj, tj}, 1 ≤ j ≤ k (IV.5)

where Ein
i represents the set of edges that point to node i and Eout

i represents

the set of edges that start from node i, and sj and tj are the source and sink

nodes of the commodity j, respectively. Constraint (IV.2) means the flow on an

edge is the sum of the flow of all commodities crossing over that edge; constraints

(IV.3) – (IV.5) indicate the difference of flow amount that arrives and leaves node

i, for commodity j: for the source node sj, it is −dj; for the sink node tj, it is dj;

and the difference is 0 for the rest of the nodes. These are the conventional flow

conservation constraints for MCF [5].

The physical constraints restrict the number of wires we are able to use.

In our general formulation, we consider two types of physical constraints:

• Intra-board constraints: a set of wires that link the nodes in different regions

in one board must not exceed the cross section of the board. The resource

used for each wire can be estimated by the wire pitches and the available

cross section can be calculated by the board dimension and the number of

signal layers:
∑

e∈Ecross
q

f(e) · pitch ≤ Wq · Lq (IV.6)

64

where Ecross
q is the set of edges that pass over the cross section q, Wq is the

available cross section width and Lq is the number of signal layers in the

board.

• Inter-board constraints: the number of wires connecting nodes on different

boards are usually constrained by the number of pins in the board connectors.

Similarly, we can write the following constraint:

∑

e∈Epin
r

f(e) ·Kpin
r ≤ Cr · V

pin
r (IV.7)

where Epin
r is the set of edges that cross over the connector r, Kpin

r is the

number of pins needed for each wire, Cr is the number of available connectors,

and V pin
r is the number of pins in each connector.

The above is a very general formulation to evaluate the communication

latency in a supercomputer system with the given topology. It is applicable to any

multiprocessor interconnection network by deriving the delay models and setting

the parameters accordingly. In Section IV.3, we will give a concrete example

using Blue Gene/L supercomputer, by presenting the delay models and physical

constraints.

IV.3 Topology Synthesis in Blue Gene/L: An Ex-

ample

In this section, we will use our design flow to perform the topology syn-

thesis on the interconnection network in one midplane of the Blue Gene/L super-

computer. We shall first give an overview on the system, then describe the details

of the important components in our design flow.

65

IV.3.A Overview

Blue Gene/L computer is a massively parallel supercomputer based on

IBM system-on-chip technology. It is designed to scale to 65, 536 dual-processor

nodes (computer ASICs) [7] [16]. The entire system is organized as 2 nodes per

compute card, 16 compute cards per node card, 16 node cards per 512-node mid-

plane, 2 midplanes in a 1024-node rack, and totally 64 racks. The nodes are

connected using 3-dimensional torus networks. Each 32-node node card contains

a 4 × 4 × 2 torus and each 512-node midplane contains an 8 × 8 × 8 torus. Link

ASICs are used to construct the networks connecting different midplanes [19]. In

this work, we will consider the networks within one midplane, i.e. the topologies

that connect 512 nodes.

In our work, we make the following assumptions:

• We follow the same hierarchical structure of midplane/node card/compute

card in our design. The number of nodes in each board remains the same

too.

• The properties of the boards, including dimensions, number of layers and

dielectric keep unchanged;

• We will seek better topologies than the existing 3D torus to implement the

networks in the Blue Gene/L midplane.

IV.3.B Graph Models & Topology Generation

We use a 512-node graph to model a midplane, where each node in the

graph represents a computer ASIC. Since the ASICs in a midplane are organized

hierarchically, we also build a two-level graph model that captures the topologies

in one node card (low-level) and the entire midplane (high-level) respectively. The

low-level graph therefore consists of 32 nodes, as one node card contains 16 compute

cards and one compute card has 2 nodes. The 32 nodes are arranged in 8 × 4 grids,

according to their locations in a node card, as shown in Figure IV.2 (a) [19].

66

���������	�
������������ ����	������������
����������

���

������

Figure IV.2: Blue Gene/L Node Card and Topology

Therefore, we also arrange our low-level graph as 8 × 4 grids when per-

forming the topology generation. We make the following two assumptions. First,

taking the regularity into consideration, we assume that all the rows have the same

topology, as well as columns. Second, because the 4 nodes in a row are composed

by 2 compute cards, they usually have more communications. Also, since there are

only 4 nodes spreading in the horizontal direction, there should be ample space to

route the wires. Consequently, we assume these 4 nodes are strongly connected.

For the topology in a column, we follow the method in [28] to generate all topolo-

gies of 8 nodes, with the limitation that the degree of each node is no more than

3. There are totally 192 isomorph-free topologies. Then we place each topology

in a line, which results 2092 different linear placements. They are duplicated to

each column. Figure IV.2 (b) shows the organization of the low-level graph. We

highlight one row and one column, where we could plug in different topologies and

duplicate them to all rows and columns.

In the higher level, there are 16 node cards plugged in the midplane.

They are arranged in 8 rows vertically, where each row contains 2 node cards. If

67

… … … …

… … … …

Node Card 1 … … … …

… … … …

Node Card 2M i dp l an e

Figure IV.3: Blue Gene/L Midplane and Topology

Table IV.1: Router Delay
Radix 2 3 4 5 6 7 8

Delay (ns) 1.1008 1.3318 1.4958 1.6229 1.7268 1.8147 1.8908

two nodes in different node cards want to communicate, they must go through the

midplane.

Thus, in the midplane there will be 64 nodes (4 for each node card),

arranged in 8 rows and 8 columns. To generate the topologies in this graph, we

still follow the method in [28] to obtain the topology for 8 nodes and duplicate it

for both the row and column to impose the regularity.

IV.3.C Delay Models

We should derive the delay models for both wires and routers. We assume

that differential wires are used in the Blue Gene/L boards. We estimate the unit

length delay as the speed of light in the card dielectrics FR4. Therefore the unit

length delay is roughly 7.1 ns/m.

The router delay is related to the radix of routers. We make use of the

formula derived in [44] which is based on the logical effort, and assume 90nm

design technology is used. The delay of routers with different radixes are shown in

Table 1.

68

(b) Midplane(a) N o de C ar d
Connector

Connector

H - cu t

H - cu t

V - cu t

V - cu t

Figure IV.4: Physical Constraints on Node Card and Midplane

IV.3.D Physical Constraints

We should consider two types physical constraints: the available routing

area for wires in cards, and the number of pins in the connectors among cards.

The first factor is determined by the board dimensions, number of layers and wire

pitches, and the second one is determined by the number of connectors and the

number of pins per connector, as discussed in Section IV.2. In a compute card,

there are only two nodes and there is ample space for routing, so we focus on

the constraints on node card and midplane. We demonstrate how the physical

constraints are calculated in a node card as follows:

• In a node card, the wires are usually short and the width is 190um to 215um

[19] (in the experiments we choose 200um). The pitch is set as twice as the

width, thus is 400um. The board dimension is 0.46m × 0.61m [19], where

the 4 × 8 grid of nodes are located. Therefore we estimate the horizontal

distance between two nodes is 0.1 m and the vertical distance is 0.07 m. A

node card has 6 signal layers [19], 3 are used to route horizontal wires and

3 are used for vertical wires. Hence the horizontal wire capacity, which is

constrained by the vertical width, in a row is 0.07*3 = 0.21 (as shown in

69

“V-cut”) in Figure IV.4 (a). In the vertical direction, we should consider

two nodes together since they are from the same compute card, as shown in

“H-cut” in Figure IV.4 (a), so that will be 0.1*2*3 = 0.6.

• There are 6 FCI Metral 4000 connectors between a compute card and node

card, each of which consists of 36 pins [19]. So the total number of wires

connected from/to a compute card is constrained by the total pins of these

6 connectors, as shown in the right bottom part in Figure IV.4 (b). We

assume half of the pins are used for power ground, and 20% are used for

other networks, so the total available pins are 6*36*(1-0.5-0.2) = 64. Because

differential pairs are used for wires, there will be 32 wires in total that can

be escaped out.

We make the similar estimation on the midplane, as shown in Figure IV.4

(b). Note that when we consider the “H-cut” and connector constraints, 4 nodes

are grouped together since they are the 4 virtual nodes for one node card and

therefore share the same capacity.

The above estimated parameters are just used in our experiments. In

practice, designers can easily change the numbers if more information is available,

and therefore obtain customized solutions using their settings.

IV.4 Experimental Results

We implemented the MCF solver using the C language to test the design

flow we proposed in a Linux machine with a 2.8GHz CPU and 2GB memory. We

generated several sets of test cases with different characteristics to demonstrate the

strengths of our methodology and also show the tradeoffs among the constraints

and objective. The experiments were conducted on two groups of test cases: the

instances in the first group were randomly generated with different characteristics

to display the tradeoffs among communication latency, throughput, distribution

and physical resources; the instances in the second group were extracted from the

70

NPB parallel benchmarks to show the strengths of our design flow over practical

instances.

IV.4.A Experiments on Randomly Generated Instances

We generate test cases which are the communication pairs among pro-

cessors. The communication patterns are randomly generated; however, they are

controlled by the following parameters:

• Total number of communication demands (T): Not all pairs of nodes need to

communicate, if proper processor assignments are performed. It is reasonable

to assume there are only O(n) pairs of communications, as the examples in

the benchmark suites in [17].

• Communication amount/coefficient (d): Without loss of generality, we as-

sume all the communications have uniform traffic. However, the traffic

amount may vary, which will affect the congestion level of the links and

average latency.

• Communication distribution probability : During the processor task assign-

ment, we know that the tasks which need to communicate with each other

will be assigned to processors that are close together [17]. Consequently, the

nodes within one compute board tend to have more communications than

the nodes outside the board, and the nodes within one node card would have

more communications than the ones located in different node cards. We use

two parameters p1 and p2 to control the communication distributions: p1 is

the probability that communications happen within one compute card: p2

is the probability that communications happen within one node card (but

different compute cards); and thus 1 − p1 − p2 is the probability that com-

munications happen across the node cards.

We conducted the experiments with three categories of test cases. First

we fix the communication distribution probability and study the tradeoffs between

71

the latency and communication throughput; then we adjust the probability of

communication distribution and show the change of average latency; finally we

want to relax the physical constraints to see how much more we can improve in

the future. Meanwhile, we will compare the optimal topologies we found with the

3D torus topology which is currently used by Blue Gene/L.

Latency and Throughput Tradeoffs

To demonstrate the tradeoff between latency and communication through-

put, we first fix the communication distribution as p1 = 0.4 and p2 = 0.5; i.e. 40%

of the communications happen within a compute card, 50% of the communications

happen crossing compute cards but within a node card, and the rest 10% happen

across node cards. We use three groups of cases where the total number of commu-

nication demands T = 2048, 3072 and 4096 respectively (4x, 6x and 8x of the total

number of nodes). The latency-throughput tradeoff curves with optimal topology

selection are shown in Figure IV.5. The X-axis is the traffic demand coefficient

(throughput) for each communication demand (all are uniform); the Y-axis is the

average latency, which is the total latency on wires and routers divided by the

total amount of communications. Different points indicate that different topolo-

gies are used. We also compare the latency values of 3D torus networks and our

optimal topologies. The results are shown in Table 2, where “Capacity” means the

maximum number of demand amount it can accommodate; “Min Latency” and

“Max Latency” denote the average latency when the demand has minimum and

maximum values. For 3D torus topology, these two values are the same since there

are no topology optimizations.

By analyzing the results, we have the following observations:

• (i) Given fixed number of communication demands and patterns, different

topologies will be selected with different communication amounts, after the

links are congested. We can see the curve is a straight line with low traffic but

becomes super linear with the growth of traffic amount. We always prefer a

72

���

�

���

���

���

���

�

���

� ��� 	 	�� � ���

����������������

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�

�����������

�����������

�����������

Figure IV.5: Latency-Throughput Tradeoff Curves with Fixed Communication

Distribution

topology with less number of hops and also less detours, since such a topology

will incur less router and wire delays. When the traffic increases, however,

this topology is no longer feasible since it will cause congestion in some

nodes/links. Therefore those topologies with more even link distributions

will be chosen. Figure IV.6 shows the optimal column topologies in a node

card with communication coefficients of 1.5 and 1.9 respectively, when there

are 2048 communications. Notice the cut shown between node 4 and node

5: the topology in the above has 3 links across it, while the one below has 4

links. When traffic is less, three links are enough to utilize the flows across

the cut; with more traffic, node 3 must be used to share the burden, which

will result in more uniform traffic, but sacrifice the local link between node

1 and node 3, and end up with 8.36% more average latency.

• (ii) The commonly used 3D torus topology has two weaknesses. First, it

cannot accommodate large communication traffic. For example, the maxi-

mum coefficient is 1.1 with 2048 communications in a 3D torus network while

the optimal topology we find can accommodate a coefficient as large as 2.

Second, with the same communication coefficient, the latency in a 3D torus

73

Table IV.2: Comparison of Optimal and 3D Torus Topologies
#Comm Top Capacity Min Lat (us) Max Lat (us)

2048 Optimal 2 5.86 6.49
3D Torus 1.1 6.63 6.63

3972 Optimal 1.3 6.05 6.56
3D Torus 0.7 10.54 10.54

4096 Optimal 0.8 6.59 6.99
3D Torus 0.3 15.06 15.06

� � � � � � � � � � � � � � � �
�
	����������������������! #" $ ��	��������������%���&�'�! (")

Figure IV.6: Optimal Topologies with Different Parameters

is worse than the optimal topology, especially when there are many commu-

nications. As we can see, with 4072 communications, the average latency in

a 3D torus network is more than twice as large as that in the network with

the optimal topology. This is because the torus does not have enough long

links, which results in more hops and detours. Thus, it is of importance to

look for better alternative topologies.

• (iii) Comparing the latency values for different number of communications

with the same communication demand, we find the difference is not much if

we use the optimal topologies found by our design flow. This is because we are

able to select different topologies and assign flows in order to fully utilize the

resources. In contrast, in the 3D torus network, there are large differences

among the latency values for different number of communications, which

indicates that a fixed topology is easy to become congested and therefore

negatively impact the performance.

74

Latency and Communication Distribution Relations

We study the relations between latency and communication distribu-

tion by fixing the number of communications to be 2048, and adjust the frac-

tions of total distributions to generate 3 groups of test cases, with the probability

40%/50%/10%, 40%/40%/20% and 40%/30%/30% respectively, i.e. the fraction

of communications that are within a compute card is fixed to be 40%, those ex-

ist within a node card vary from 50% to 30%, and 10% – 30% of them happen

across different node cards. We also adjust the demand traffic amount to plot the

latency-throughput curves. In order to see the trend in different levels clearly, the

latency values in low-level (node card) and high-level (midplane) are plotted in

separate curves, as shown in Figure IV.7 and IV.8.

Comparing the curves in the two figures, we can see that the 40%/50%/10%

curve in the low-level and 40%/30%/30% curve in the high-level demonstrate the

super linear property. As mentioned in the previous section, this property im-

plies that different topologies are selected due to the congestion of communication

traffic. Therefore this phenomenon indicates that in the 40%/50%/10% cases, the

bottleneck occurs in the low-level, while in the 40%/30%/30% cases, the traffic

in the high-level is the bottleneck. For the 40%/40%/20% cases, both curves are

quite flat, which indicates that they have quite balanced loads in the low level

and high level. Hence, following this methodology, besides finding the optimal

topologies and flow distributions, we can also identify the bottleneck of the traf-

fic, and therefore adjust the resources accordingly in order to further improve the

performance.

Physical Constraints Impacts

In all the above experiments we define the physical constraints by using

the board dimensions, connectors and pin numbers used in Blue Gene/L packaging

[19]. According to our analysis, the flows are saturated due to the limited number

of pins in the connectors between compute cards and node cards, and between

75

�����������	
�������������
�������

���

���

���

���

���

���

���

���

���

���

���

� ��� � ��� � ���

�� 	�!����""#�#��

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�

$�%�&���%�&���%

$�%�&�$�%�&���%

$�%�&���%�&���%

Figure IV.7: Low-Level Latency-Throughput Tradeoff Curves with Different Com-

munication Distribution

���������	
�����������������
������

�

���

�

���

��

����

� ��� � ��� � ���

����
���!!�����

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�

"�#
$
��#
$
��#

"�#
$
"�#
$
��#

"�#
$
%�#
$
%�#

Figure IV.8: High-Level Latency-Throughput Tradeoff Curves with Different Com-

munication Distribution

76

node cards and midplane. In this part of the experiment, we would like to relax

this physical constraint and assume we have more pins available for routing.

We choose a case which has 2048 communications, with the distribution

40%/30%/30%, and demand coefficient 1.6. The previous experiment reports that

the average communication latency in midplane is 10.00 with 200 pins (15 con-

nectors) between node cards and midplane. We gradually increase the number of

pins and compute the average latency values. The results are shown in Figure

IV.9. We find that we can reduce the latency by 14% when the pin number is

increased to 320; particularly, latency is reduced by 8% if we only add 20 pins,

and 13% with only 40 additional pins. This indicates that when the networks are

congested, latency can be greatly improved by adding relatively small amount of

routing resources. In fact, when the number of pins is small, we have fewer choices

for topologies; when it is increased, the previous optimal topologies become sub-

optimal in terms of communication latency. The corresponding topologies for the

three points in Figure IV.9 are shown in Figure IV.10: when pins are limited,

long links are essential to reduce the intermediate traffic; with the increase of pin

number, the long links are no longer preferred since they will increase the degree

of routers therefore add the routing complexity. Hence, using this approach, we

are able to know which resources are needed in order to improve the latency, and

their marginal impacts on the performance.

IV.4.B Experiments on Benchmark Instances

We also demonstrate the strengths of our design flow using the NAS

parallel benchmarks [6]. We run the class B benchmarks with 121 processes (for

BT and SP) or 128 processes (for other six benchmarks). The traffic patterns are

then extracted using Intel Trace Analyzer and Collector 7.1 in Linux platform.

Among the eight benchmarks, we exclude EP, FT and IS in our experiments,

because there are too few communications among the processes. Table IV.3 lists

the characteristics of the rest five benchmarks which are used in the experiments.

77

���

���

���

�

���

���

���

���

��

����

��� ��� ��� ��� ��� ��� 	�� 	�� 	��

��������	�
��

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�

Figure IV.9: Average Latency vs. Number of Pins in a Node Card

�� � � � � � �

�� � � � � � �

�� � � � � � �

�
	�	�������

���
	�������

�
��	�������

Figure IV.10: Optimal Topologies with Different Number of Pins

78

Benchmark code Size # Proc # Comm
Block tridiagonal solver (BT) 1023 121 726
Conjugate gradient (CG) 75000 128 640
LU solver (LU) 1023 128 466
Multigrid (MG) 2563 128 920
Pentadiagonal solver (SP) 1023 121 720

Table IV.3: Characteristics for Five NAS Parallel Benchmarks

Receiver

S en d er

Figure IV.11: The Traffic Pattern for Benchmark Instance MG

We can see that each process communicates with 4 – 6 other processes in average.

As an example, Figure IV.11 shows the traffic pattern for the benchmark instance

MG, where the color denotes the magnitude of average transfer rate.

Before running the experiments, we use a simulated annealing (SA) algo-

rithm to perform the task placement. The SA algorithm optimizes the estimated

latency (i.e. estimating the latency by the distance but ignoring the traffic con-

gestion). Then we feed the communication patterns based on the placement result

to our design flow. The results are shown in Table IV.4. The latency values are in

the unit of us, and the values in the brackets are the latencies normalized to the

“Optimal” column. We run our design flow on the five benchmarks in the following

three ways.

79

Table IV.4: Latency Comparison on NAS Parallel Benchmarks
Benchmark Optimal Aggregate Uniform 3D Torus

(us) (us) (us) (us)
BT 1.30 (1) 1.44(1.11) 1.67(1.29) 2.00(1.54)
CG 0.96 (1) 1.01(1.05) 1.36(1.41) 1.76(1.84)
LU 1.05 (1) 1.38(1.32) 1.60(1.59) 1.69(1.60)
MG 0.89 (1) 0.90(1.02) 1.15(1.29) 1.65(1.83)
SP 2.24 (1) 2.49(1.11) 2.73(1.22) 3.60(1.61)

First, we assume the interconnection network can be customized for each

benchmark, therefore obtain the optimal topology for each benchmark. The la-

tency is shown in the “Optimal” column in Table IV.4. Secondly, only one fixed

interconnection network is allowed for all the benchmarks. In this case, we ag-

gregate all five traffic patterns by adding them together and feed into the design

flow. After the optimal solution for this aggregate traffic pattern is obtained, it

will be evaluated for the five instances separately. The latency values are shown

in the “Aggregate” column in Table IV.4. Thirdly, we assume the dimension and

pin resources are uniformly distributed to all the wires, which is much less flexible

design choices than our design flow. The latency values obtained are shown in the

“Uniform” column in Table IV.4. We also obtain the latency results of 3D torus

structure, which are shown in the last column.

Table IV.4 shows that the optimal topology found by the design flow can

achieve much smaller average latency than the 3-D torus. It also indicates that the

aggregate traffic pattern is representative, as the optimal topology identified using

the aggregate traffic achieves similar latency values to the individual ones. In ad-

dition if we compare the latency values in the “Uniform” column with those in the

“Optimal” and “Aggregate” columns, we find that it is essential to enable the non-

unform resource allocation for wires, since the flexible choices could accommodate

particular traffic patterns and reduce the average latency.

Lastly, to demonstrate the tradeoff between the throughput and latency,

we manually increase the communication traffic by multiplying the coefficients

80

�

�

��

��

��

��

��

��

�	

�

��� � ��� � ��� � ���

Demand Coefficient

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Optimal
3D Torus

Figure IV.12: Latency-Throughput Tradeoff Curves for the Aggregated Benchmark

Instance

to all the communications uniformly. We compute the average latency for the

aggregated case. The results are shown in Figure IV.12, the two curves represent

the latency values for the optimal topologies selected by the design flow, and the

3D torus topology respectively. Similar to the curves in Figure IV.5, the curve

for optimal topologies is also super linear, which indicates that different optimal

topologies are selected with the increase of communication demands. Comparing

the two curves, we observe that much lower latencies could be achieved when

optimal topologies are used. Also, with the flexibility of the topologies, the system

is able to accommodate much larger traffic throughput. This again shows the

strength of our design flow over fixed topologies.

IV.5 Summary

We propose a design methodology to synthesize the supercomputer in-

terconnection topologies according to the communication patterns, traffic amount,

and physical constraints. Users generate a large pool of candidate topologies and

81

provide the physical constraints, and our MCF solver is able to identify the best

topology in terms of average latency by evaluating all the topologies. In the ex-

ample that we demonstrated, we are able to find different good network topologies

on a midplane of the Blue Gene/L supercomputer, each of which has better per-

formance than its original 3D torus. In addition, we are able to correctly identify

the bottleneck of the communication, and therefore can provide useful information

for designers to further enhance the performance.

This chapter includes the contents of one paper “Advancing Supercom-

puter Performance Through Interconnection Topology Synthesis”, by Y. Zhu, M.

Taylor, S. B. Baden, C.K. Cheng, to appear in Proceedings of International Con-

ference on Computer Aided Design, 2008. The dissertation author was the primary

researcher and co-author of the paper.

V

Conclusion

Motivated by the increasing importance of interconnection networks in

both on-chip architectures and computer clusters due to the advancing technology

trends, we study the synthesis and optimization of interconnection networks by al-

gorithmic approaches in this dissertation. Two comprehensive case studies, which

are Network-on-Chip and supercomputer, are presented to support our study. In

the following, Section V.1 will summarize the contributions of this work, and Sec-

tion V.2 will present several future research directions to extend this study.

V.1 Summary

In this dissertation, we propose a general design methodology to synthe-

size and optimize interconnection networks among processors, both on-chip and

across boards. We explore a large variety of topologies, and design several effi-

cient variations of multi-commodity flow algorithms to solve our problems. Our

contributions are summarized as follows:

1. First, we improve the multi-commodity flow algorithms, which are the core

component of our methodology. Chapter II presents the detailed contri-

butions from a theoretical aspect. We devise efficient polynomial time ap-

proximation schemes to deal with the network synthesis problems raised in

82

83

interconnections among processors. Although there were several approxima-

tion algorithms available in the literature, they were not able to handle the

practical constraints in practice. Our new algorithms can solve the formu-

lations which incorporate these constraints, with proved convergence speed.

In addition, we also devise an interval estimation heuristic to speed up the

searching process, without compromising the accuracy of algorithms.

2. The Network-on-Chip problem is first investigated from a practical aspect

in Chapter III. We study the tradeoffs between NoC power efficiency and

average latency. By adopting a MCF formulation, we are able to reduce

power consumption of NoC under given latency constraints through simul-

taneous optimization of network topologies and wire styles. We conduct the

experiments for 8 × 8 NoCs. The results show that power and latency co-

optimization is critical in NoC design. With 2% latency overhead, up to

19.4% power savings can be seen. Regarding the comparison among mesh,

torus and hypercube topologies, our optimized design can improve power

latency product by up to 52.1%, 29.4% and 35.6%, respectively.

3. We also perform a case study on supercomputer interconnection networks

in Chapter IV, which is in a different domain but can be solved using our

methodology too. We synthesize the supercomputer interconnection topolo-

gies according to the communication patterns, traffic amount, and physical

constraints. Users generate a large pool of candidate topologies and provide

the physical constraints, and our MCF solver is able to identify the best

topology in terms of average latency by evaluating all the topologies. In the

example that we demonstrated, we are able to find different efficient network

topologies on a midplane of the Blue Gene/L supercomputer, each of which

has better performance than its original 3D torus. In addition, we are able

to correctly identify the bottleneck of the communication, and therefore can

provide useful information for designers to further enhance the performance.

84

V.2 Future Directions

The work done in this dissertation, though having achieved satisfying

results, could still be improved in several aspects. We shall mention several possible

directions as follows:

1. As mentioned in Section II.4, there is still a large room to improve the per-

formance of the MCF algorithms we discovered. If we are able to find better

length update functions or prove a tight bound, the convergence speed would

be greatly improved. It will also benefit the practitioners. For example, with

the increase in the number of cores in on-chip networks and supercomput-

ers, we need to use more efficient MCF algorithms to facilitate the synthesis

and optimization of their interconnection networks. Hence, inventing and

improving the algorithms are the common interests of both theorists and

practitioners.

2. Regarding the research in NoC, one of the future research directions is to

extend this work to the NoC designs where tiles may have different sizes and

irregular locations. These NoC architectures enable more efficient design

space exploration, but brings much more computational complexity. We will

study efficient algorithms for such MCF formulations.

3. Several research directions could be carried in supercomputer research. A

direct extension of this work is to take the power consumption into con-

sideration. Designers are interested in topologies that achieve low power

consumption along with good performance in terms of latency. Our MCF

formulation is easy to modify for this case, with provided accurate wire and

router power models. We are going to work on this task and believe that

the power-latency tradeoffs are very useful for supercomputer designers. The

other direction is to apply this methodology on other supercomputers, e.g.,

Cray Black Widow, to further show the strengths of our flow. This requires

us to find out more physical data about these supercomputers. With more

85

concrete instances, we may further improve our formulation and algorithms

so that it could become a powerful synthesis tool for supercomputer archi-

tects.

Bibliography

[1] http://cs.anu.edu.au/ bdm/nauty.

[2] http://public.itrs.net.

[3] http://www.cray.com/products/x1/.

[4] http://www.cray.com/products/xt3/.

[5] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Tech-
nical Report NAS-95-020, NASA Ames Research Center, 1995.

[7] The BlueGene/L Team. An overview of the BlueGene/L supercomputer. In
The 15th Annual SC conference, 2002.

[8] R. Chang, N. Talwalkar, C.P. Yue, and S.S. Wong. Near speed-of-light sig-
naling over on-chip electrical interconnects. IEEE J. of Solid-State Circuits,
38(5):834–838, 2003.

[9] H. Chen, R. Shi, C.K. Cheng, and D. Harris. Surfliner: A distortionless electri-
cal signaling scheme for speed of light on-chip communications. In Proceedings
of IEEE Intl. Conf. on Computer Design, pages 497–502, 2005.

[10] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32(5):406–424, 1953.

[11] W. Dally. Performance analysis of k-ary n-cube interconnection networks.
IEEE Transactions on Computers, 39(6):775–785, 1990.

[12] W. Dally. Interconnect-centric computing. Keynote Speech, IEEE 13th Inter-
national Symposium on High Performance Computer Architecture, 2007.

86

87

[13] W. Dally and B. Towles. Route packets, not wires: On-chip interconnection
networks. In Proceedings of ACM/IEEE Design Automation Conf., pages
684–689, 2001.

[14] W. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Elsevier, 2005.

[15] N. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie
v. Wetenschappen, 49:758–764, 1946.

[16] A. Gara et al. Overview of the Blue Gene/L system architecture. IBM Journal
of Research and Development, 49(2/3):195–212, 2005.

[17] G. Bhanot et al. Optimizing task layout on the Blue Gene/L supercomputer.
IBM Journal of Research and Development, 49(2/3):489–500, 2005.

[18] N. R. Adiga et al. Blue Gene/L torus interconnection network. IBM Journal
of Research and Development, 49(2/3):265–276, 2005.

[19] P. Coteus et al. Packaging the Blue Gene/L supercomputer. IBM Journal of
Research and Development, 49(2/3):213–248, 2005.

[20] L. Fleischer. Approximating fractional multicommodity flow independent of
the number of commodities. SIAM Journal of Disrete Math, 13(4):505–520,
2000.

[21] R. Ford and D. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

[22] N. Garg and J. Konemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. In Proceedings of the 39th
IEEE Annual Symposium on Foundations of Computer Science, pages 300–
309, 1998.

[23] A. V. Goldberg. A natural randomization strategy for multicommodity flow
and related algorithms. Technical Report STAN-CS-91-1372, Department of
Computer Science, Stanford University, 1991.

[24] M. Grigoriadis and L. Khachiyan. Approximate minimum-cost multicommod-
ity flows. Mathematical Programming, 75:477–482, 1996.

[25] R. Ho, K. W. Mai, and M. Horowitz. The future of wires. Proceedings of
IEEE, 89(4):490–504, 2001.

[26] J. Hu and R. Marculescu. Energy-aware mapping for tile-based noc architec-
tures under performance constraints. In Proceedings of Asia and South Pacific
Design Automation Conference, pages 233–239, 2003.

88

[27] T. C. Hu. Multi-commodity network flows. Operations Research, 11:344–360,
1963.

[28] Y. Hu, H. Chen, Y. Zhu, A. Chien, and C.K. Cheng. Physical synthesis
of energy-efficient networks-on-chip through topology exploration and wire
style optimization. In Proceedings of International Conference on Computer
Design, to appear, 2005.

[29] G. Karakostas. Faster approximations schemes for fractional multicommodity
flow problems. In Proceedings of the 13th Annual ACM/SIAM Symposium on
Discrete Algorithms, pages 166–173, 2002.

[30] D. Karger and S. Plotkin. Adding multiple cost constraints to combinatorial
optimization problems, with applications to multicommodity flows. In Pro-
ceedings of the 27th Annual ACM Symposium on Theory of Computing, pages
18–25, 1995.

[31] F. Karim, A. Nguyen, S. Dey, and R. Rao. On-chip communication archi-
tecture for oc-768 network processors. In Proceedings of ACM/IEEE Design
Automation Conf., pages 678–683, 2001.

[32] S. W. Keckler, D. Burger, C.R. Moore, R. Nagarajan, K. Sankaralingam,
V. Agarwal, M.S. Hrishikesh, N. Ranganathan, and P. Shivakumar. A wire-
delay scalable microprocessor architecture for high performance systems. In
Proceedings of Intl. Solid-State Circuits Conf., pages 1068–1069, 2003.

[33] J. Kim, J. Balfour, and W. Dally. Flatterned butterfly topology for on-chip
networks. In Proceedings of 40th IEEE/ACM International Symposium on
Microarchitecture, pages 172–182, 2007.

[34] J. Kim, W. Dally, B. Towles, and A. Gupta. Microarchitecture of a high-radix
router. In Proceedings of the 32nd International Symposium on Computer
Architecture, pages 420–431, 2005.

[35] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster approximation algorithms
for the unit capacity concurrent flow problem with applications to routing and
finding sparse cuts. SIAM Journal on Computing, 23:466–487, 1994.

[36] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, M. Forsell J. P. Soininen,
K. Tiensyrja, and A. Hemani. A network on chip architecture and design
methodology. In Proceedings of IEEE Symp. on VLSI, pages 117–124, 2002.

[37] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server.
In Proceedings of the 24th Annual International Symposium on Computer Ar-
chitecture, pages 241–251, 1997.

[38] B. D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26:306–324, 1998.

89

[39] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364
network architecture. In Hot Chips 9, pages 113–117, 2001.

[40] S. Murali and G. De Micheli. Bandwidth constrained mapping of cores onto
noc architectures. In Proceedings of Asia and South Pacific Design Automa-
tion Conf., volume 2, pages 896–901, 2004.

[41] S. Murali and G. De Micheli. Sunmap: A tool for automatic topology selection
and generation for nocs. In Proceedings of ACM/IEEE Design Automation
Conf., pages 914–919, 2004.

[42] U. Y. Ogras and R. Marculescu. Application-specific network-on-chip archi-
tecture customization vis long-range link insertion. In Proceedings of Intl.
Conf. on Computer Aided Design, pages 246–253, 2005.

[43] L. S. Peh. Flow control and micro-architectural mechanisms for extending the
performance of interconnection networks. Ph.D. Thesis, Stanford University,
2001.

[44] L. S. Peh and W. Dally. A delay model for router microarchitectures. IEEE
Micro, 21(1):26–34, 2001.

[45] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for frac-
tional packing and covering problems. Mathematics of Operations Research,
20:257–301, 1995.

[46] T. Radzik. Fast deterministic approximation for the multicommodity flow
problem. In Proceedings of the 6th Annual ACM/SIAM Symposium on Dis-
crete Algorithms, pages 486–492, 1995.

[47] S. Scott, D. Abts, J. Kim, and W. Dally. The blackwidow high-radix clos
network. In Proceedings of the 33rd annual international symposium on Com-
puter Architecture, pages 16–28, 2006.

[48] S. Scott and G. Thorson. The cray T3E network: Adaptive routing in a high
performance 3D torus. In Hot Interconnects 4, 1996.

[49] C. Seitz. Let’s route packets instead of wires. In Advanced Research in VLSI:
Proceedings of the Sixth MIT Conference, pages 133–138, 1990.

[50] F. Shahrokhi and D. Matula. The maximum concurrent flow problem. Journal
of ACM, 37:318–334, 1990.

[51] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, and F. Ghodrat et. al. The raw mi-
croprocessor: A computational fabric for software circuits and general purpose
programs. IEEE Micro, 2002.

90

[52] P. M. Vaidya. Speeding up linear programming using fast matrix multiplica-
tion. In Proceedings of the 30th Annual Symposium on Foundations of Com-
puter Science, pages 332–337, 1989.

[53] H. Wang, L. S. Peh, and S. Malik. Orion: A power-performance simulator for
interconnection network. In Int. Symp. on Microarchitecture, pages 294–305,
2002.

[54] H. Wang, L. S. Peh, and S. Malik. A technology-aware and energy-oriented
topology exploration for on-chip networks. In Proceedings of Design, Automa-
tion and Test in Europe, volume 2, pages 1238–1243, 2005.

[55] T. T. Ye, L. Benini, and G. De Micheli. Analysis of power consumption
on switch fabrics in network routers. In Proceedings of ACM/IEEE Design
Automation Conf., pages 524–529, 2002.

[56] N. Young. Randomized rounding without solving the linear program. In Pro-
ceedings of the 6th Annual ACM/SIAM Symposium on Discrete Algorithms,
pages 170–178, 1995.

