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Decomposition of Prediction Error in Multilevel Models!

David Afshartous
School of Business Administration, University of Miami,
Coral Gables, FL 33124-8237
Jan de Leeuw

Department of Statistics, Unwversity of California,
Los Angeles, CA 90095-155/

ABSTRACT: We present a decomposition of prediction error for the multi-
level model in the context of predicting a future observable y,; in the jth group
of a hierarchical dataset. The multilevel prediction rule is used for prediction
and the components of prediction error are estimated via a simulation study
that spans the various combinations of level-1 (individual) and level-2 (group)
sample sizes and different intraclass correlation values. These components of
prediction error provide information with respect to the cost of parameter es-
timation versus data imputation for predicting future values in a hierarchical
data set. Specifically, the cost of parameter estimation is very small compared
to data imputation.

KEY WORDS: prediction error components, Monte Carlo, multilevel model

1 Introduction

Consider the problem of predicting a future observable y,; in the jth group of a hierarchical
data set. Various prediction rules may be employed to produce predictions for this future
observable. For example, given covariates at the individual or group level, one may cast
the problem within the framework of the multilevel model and produce predictions based
on OLS, prior, or multilevel approaches. In an earlier study, the performance of these
prediction rules was assessed via a large scale simulation study (Afshartous & de Leeuw,
2002). The prediction rule employing a shrinkage estimator proved to be the most accurate.
However, this study did not provide any assessment of the components of prediction error
for estimating the various parameters that are employed by these prediction rules.

Harville (1985) presented such a decomposition of prediction error framework for the
case of the general linear model. We extend this framework to the multilevel model to
assess the cost of parameter estimation; in addition, we also consider the cost of data
imputation at both the individual and group level. In other words, we are interested in the
following two questions: 1) how is our ability to predict y,; affected by the estimation of
the model parameters, and 2) how is our ability to predict y.; affected by missing data at
either the group level or individual level? Hill & Goldstein (1998) examined the handling of
educational data with students belonging to multiple groups and also the case where group
membership itself is unknown.? Although slightly similar to Hill & Goldstein’s problem,

! This research was supported by a grant from the National Institute for Statistical Sciences
2His method involved developing a cross-classified multilevel model with weights reflecting probabilities
of group membership.



our problem centers around unknown information with respect to parameters, individual
and group covariates, and its affect on prediction.

In section 1.1 and 1.2 we review the notation and results of the multilevel model. In
section 2 we present the decomposition of prediction error framework for the case of the
multilevel model. In section 3 we describe the simulation study for estimating the various
components of prediction error. Finally, in section 4 we discuss the main results, and in
section 5 we present a brief summary and directions for future research.

1.1 The Multilevel Model

Multilevel modeling is a statistical technique designed to facilitate inferences from hierarchi-
cal data. A given data point y;; represents the 7th case in the jth unit, e.g., the sth student
in the jth school for educational data. The multilevel model prediction problem—in its
simplest form—consists of predicting a future observable y,;, i.e., a future case of the jth
group. For a full review of the multilevel model see Raudenbush & Bryk (2002). We shall
restrict this discussion to the simple case of primary units grouped within secondary units
and periodically refer to the applied example of students (level-1) grouped within schools
(level-2). For example, we may have J schools, where the jth school contains n; students.
The basic multilevel model has the following level-1 model equation:

Y; = X;B; + 1y, (1)

Each X; has dimensions n; X p, and r; ~ N(0,0%¥;), with ¥; usually taken as I,;. In
multilevel modeling, some or all of the level-1 coefficients, §;, are random variables, and
may also be functions of level-2 (school) variables:

ﬂj = Wﬂ + Uy, (2)

Each W; has dimension p x ¢ and is a matrix of background variables on the jth group, and
u;j ~ N(0, 7). Clearly, since 7 is not necessarily diagonal, the elements of the random vector
B; are not independent. For instance, there might exist a covariance between the slope and
intercept for each regression equation.

Combining equations (1) and (2) yields the single equation model:

Yj = X;Wy + Xju; + 15 (3)

which may be viewed as a special case of the mixed linear model, with fixed effects
and random effects u;.*> Thus, marginally, y; has expected value X;W;y and dispersion
V; = X;7X;' 4+ 0*I. Observations in the same group have correlated disturbances, and this
correlation will be larger if their predictor profiles are more alike in the metric 7. (de Leeuw
& Kreft 1995). Thus, the full log-likelihood for the jth unit is

n; 1 1 _
Li(o%,1,7) = _EJ log(27) — 3 log |V;| — Ed;.V;. 'd;, (4)

3For an excellent review of estimation of fixed and random effects in the general mixed model see
Robinson, 1991



where d; = Y; — X;W;~. Since the J units are independent, we write the log-likelihood for
the entire model as a sum of unit log-likelihoods, i.e.,

J

L(o?,7,7) = ZLJ'(O'Q,T, Y). (5)

i=1

1.2 Estimation

Raudenbush & Bryk (2002) discuss estimation in multilevel models by casting the multilevel
model as a particular case of the general Bayes linear model and hence present estimates of
B; as posterior means of their corresponding posterior distribution. Other approaches focus
on the James-Stein “borrowing-of-strength” aspect of multilevel modeling when presenting
estimates of the level-1 coefficients.

Another alternative is to focus on the likelihood established by equation 5, where full
or restricted maximum likelihood estimates for the three parameters o2, 7, and v are ob-
tained. Regardless, the main result is that the estimates of 8; may be expressed as a linear
combinations of the OLS estimate Bj = (X';X;) 'X,y; and—given an estimate of y—the
prior estimate W;% of §;, the weights being proportional to the estimation variance in the
OLS estimate and the prior variance of the distribution of ;. Thus, this may be viewed
as a compromise between the within-group estimator which ignores the data structure and
the between-group estimator which models the within-group coefficients as varying around
a conditional grand mean. More formally, assuming for now that the variance components
and v are known, the multilevel model estimate of 5; may be expressed as follows:

B = 0,8+ (I — 0,)Wyy (6)
where
0, =7(r+*(X;'X;) ) (7)

is the ratio of the parameter variance for §; () relative to the variance o*(X;'X;)~" for
the OLS estimator for §; plus this parameter variance matrix. Thus, if the OLS estimate is

unreliable, ,3j* will pull Bj towards W9, the prior estimate.” Indeed, a little bit of algebra

demonstrates that the shrinkage estimator in equation 6 is the expected value of 3; given

Z/j16

E(Bily;) = E(B;) + Cov(B;,y;) (Var(y;)) ™ (y; — E(y;))
=Wy +7X,'V; Hy; — X; W) (8)
=Wy +7X;'Vi y; — 7X'V T X Wy

“Recall that since the level-1 coefficient 3; is a random variable, the term “estimation” is being employed
somewhat pejoratively here.

5The shrinkage estimator in equation 6 is often referred to as a Bayes or posterior estimator.

6Recall that we have y; and 3; distributed multivariate normal with E(y;) = X;W;~, E(B;) = Wy
and Cov(B;,y;) = Cov(B;, X;B; +r;) = Cov(Bj, X;B;) = 7X;'. And, employing the well known result that
the conditional expectation in the normal case is equivalent to the linear regression of 3; on y; leads to the
result in equation 8.



Swamy (1971, p.101) presents the following formula for the inverse of V},
Vit = o [XG (X X)X+ X (XGXG) T A TG X)X (9)

where A; = 7 + 0?(X;'X;)"!. This implies that X;'V;7'X; = A;7" and that X;'V; 'y, =
Aj_lﬁj (de Leeuw & Kreft 1986). Substituting these two results into the previous equation
quickly leads to the desired result:

E@Bjly;) = Wiy +14;7 65— 1A Wy
TA;T B+ (I = 7AW,
= 0;8;+ I —06;)W;y

The conditional expectation representation of the shrinkage estimator is well known as the
minimum mean square linear estimator (MMSLE) of 8; (Chipman 1964, Rao 1965b).”

One may also write the multilevel estimate as 8; = Wjvy + 4;, where we recall that
u; may be interpreted in the mixed model sense as the random effect of the jth group.
From the literature on the estimation of random effects in mixed linear models, we have the
commonly employed estimator of random effects:

;= C; X' (y; — X;Wy) (10)
where
Cj :Xj,Xj+0'2T (11)

To be sure, the fixed effects v are usually unknown and must be estimated. The estimation
of the fixed effects is most easily discussed by ignoring the level-1 3;’s altogether. In doing
so, one focuses instead on the combined equation 3, where the problem then becomes one of
estimating the fixed effects v in a mixed linear model, the result of which is the well-known
formula:

J J
§=0_ WiX/ Vi X W) Y WXy (12)
Jj=1 7=1
where
V; = Var(y;) = X;7X; + o°I

One may interpret the above estimator of v as a generalized linear model (GLM) estimator.
In the case of unknown +, the shrinkage estimator of equation 6 employing this estimator
of 7 yields the minimum mean square linear unbiased estimator (MMSLUE) of 3; (Harville

"Since we are “estimating” a random variable, care must be taken with respect to notation. Given an
observed random variable y and an unobservable random variable w, let ¢(y) be an estimator of the realized
value of the random variable w. The MSE of #(y) is defined as E(t(y) — w)?, where all expectations are
taken with respect to the joint distribution of y and w. We say that t(y) is unbiased if E(¢(y)) = E(w).
Given that the prediction error of ¢(y) equals t(y) — w, we have that ¢(y) unbiased implies that the MSE of
t(y) equals the variance of its prediction error.



1976).8 de Leeuw & Kreft (1995) discuss alternative estimates of the fixed effects via a
two-step procedure, where one first obtains the OLS estimates of the 8; and then regresses
these values on the WW; values. Regardless, this approach of focusing on the estimation of
instead of 3; is preferred by some since we are actually estimating a parameter and do not
may blur the distinction that 3; is a random variable. Furthermore, casting the multilevel
model in the mixed model framework links multilevel model prediction to the more natural
prediction problems that occur in such areas as repeated measures studies (See Rao 1987).

The prior discussion assumes that the variance components are known. Although there
is considerable agreement with respect to the estimation of fixed effects, there is significantly
less agreement with respect to the variance components. The maximum likelihood estimates
of the variance components must be computed iteratively, via procedures such as Fisher
Scoring (Longford, 1987), iteratively reweighted generalized least squares (Goldstein, 1986),
or the EM algorithm (Dempster, Laird, & Rubin, 1977).°

1.3 Multilevel Prediction

Formally, let v,; be the unknown outcome measure for an unsampled observation in the jth
group, where group j is not necessarily in our sample or even known. The basic problem as
before is to predict y,;. In Afshartous et al. (2002) we assessed the relative performance of
three prediction rules in predicting a future observable y,;. The multilevel prediction rule
employed the shrinkage estimator above for the level-1 coefficients 3;. Formally:

G = XuBj (13)

Note that one may write the multilevel estimate as Bj* = W% + 4;, where we recall that
u; may be interpreted in the mixed model sense as the random effect of the jth group.

With respect to the prediction of y,;, the predicted value of y,; is X, Bj*, which may also
be written as ¢,; = X,;W;¥ + X,;u;. Taking this one step further, we note that Harville
(1976) showed that this may also be written as follows:

Gvj = X Wiy + Vig Vi Hy; — X;W,9) (14)

where

J J
o= Q_Wi/X, VI Xw) Y WXy,
P =1
Vy = Cov(y,y;) = Xyt X,

V, = Var(y)) = X;7X;' + 6%

80ne must restrict oneself to the class of unbiased estimators since a MMSLE does not exist for the
unknown v case (Pfefferman 1984).

9These and other procedures manifest themselves in several software packages: HLM (Raudenbush et
al., 2000), MIXOR (Hedeker & Gibbons, 1996), MLWIN (Rabash et al., 2000), SAS Proc Mixed (Littell et
al., 1996), and VARCL (Longford, 1988). In addition, the software package BUGS (Spriegelhalter et al.,
1994) incorporates fully Bayesian methods that have been introduced (Gelfand et al., 1990; Seltzer, 1993).
Note, although Lindley & Smith (1972) provided a general framework for hierarchical data with complex
error structures, the inability to estimate the covariance components for unbalanced data precluded using
such models in practice. The introduction of the EM algorithm provided a numeric solution to this problem
and paved the way to various other approaches mentioned above.




This representation illustrates the multilevel prediction rule as the conditional expectation
of y.; given the data y.'° In our previous study, the multilevel prediction rule outperformed
prediction rules based on OLS and prior estimators of the level-1 coefficients. Moreover,
these results were robust over a very wide simulation design that extensively covered the
parameter and sample size space at both level-1 and level-2.

In this paper we take extend these results by applying a decomposition of prediction error
framework for the multilevel prediction rule; this extends the results of Harville (1985) for
the general linear model. This framework is described in the next section.

2 Decomposition of Multilevel Prediction Error

The questions regarding levels of information with respect to both parameters and data
that were discussed earlier are now examined: 1) how is our ability to predict y.; affected
by the estimation of the model parameters, and 2) how is our ability to predict y.; affected
by missing data at either the group level or individual level? In essence, with respect to the
data, the answers to these questions will provide information regarding the relative worth
of data at the individual and group level, in addition to the relative costs of estimating the
model parameters. We adopt the framework of Harville (1985) in order to examine these
questions.

Harville (1985) considered the general problem of predicting of a scalar random variable
w from a vector random variable y. Information state 1 is defined as the case where the
joint distribution of w and y is known, whereupon the predictor of w is taken as E(w|y),
which has minimum MSE among all predictors. In information state 2, where the first and
second moments are known but the joint distribution is unknown, the predictors of w is
taken as the linear regression of w on y, which would equal E(w|y) if the distribution were
normal. Harville goes on to develop more predictors of w for additional information states.
For example, in information state 3 the second moments are known and the first moments
are unknown, and in information state 4 both the first and second moments are unknown.

Below, these states of information are delineated for the the multilevel prediction rule.
In addition, the case of “unknown” or missing data is introduced to this framework.'! For
higher information states, unless otherwise specified, parameter estimates are the same as
in the previous lower information state.

Info State 2: First and Second Moments Known

Gvj = X Wiy + Vi Vi (y; — X;Wiy) (15)

This corresponds to the ideal case where all the necessary parameters are known. As
noted earlier, in the normal case one can view this as a conditional expectation. Thus, the
parameters that are required by the multilevel prediction rule are known and estimation is

0Furthermore, for the case of known « and known variance components, Rao (1973) showed that g,; has
minimum MSE among all linear predictors. When 7 is estimated as in equation 14 with known variance
components, §,; has minimum MSE among all linear unbiased predictors, i.e., it is the best linear unbiased
predictor (BLUP) (Goldberger, 1962).

"' Note that for the multilevel model we have information state 1 and information state 2 identical due to
the normality assumption, thus we skip information state 1.



unnecessary. For the ensuing simulation study, these parameters are specified beforehand
and thus may indeed be substituted into the multilevel prediction rule.

Info State 3: Only Second Moments Known

Jej = X Wi + Vig Vi~ (g5 — X;W5) (16)
where
J J
7= QoWIXSVTIXGW) T Y WXy
j=1 =1

Here, the coefficient v must be estimated. However, the estimate should be close to the
actual value since the matrices V; and Vj_l are known. The difference between the perfor-
mance of the multilevel prediction rule between Info State 2 and Info State 3 may be viewed
as an indicator of how well 7 is estimated.

Info State 4: First and Second Moments Unknown

;= X WiA + Vi Vit (y; — X;W59) (17)

where

J J

o= O _W/X/ VX W) T Y WXV Ny,
7j=1 7j=1

Vij = Cov(ys,y;) = Xy X'

Vi = Var(y) = X;7X, +5°1

The above corresponds to the situation encountered in practice, i.e., all of the model param-

eters must be estimated from the observed data. The difference between the performance

of the multilevel prediction rule between Info State 3 and Info State 4 may be viewed as an
indicator of how well the variance components are estimated.

Info State 5: WW; Unknown

G = X W4+ Vig Vi (y; — X;W9) (18)

where

W o= W,

J
=1

1
J 4
J

With respect to the school example, this corresponds to having missing school data for the
student whose outcome variable we wish to predict. We “estimate” or impute this data
with the average of the level-2 variables for all the groups. The change in the performance



of the multilevel predictor between Info State 4 and Info State 5 is an indicator of how well
this missing data is imputed.

Info State 6: X,; Unknown

Gy = X, WA + Vig Vi (y — X;W4) (19)

where

With respect to our school example, this would correspond to having missing student data
for the student whose outcome we wish to predict. We “estimate” or impute this data as
the average of the observations in that particular group. The change in the performance of
the multilevel predictor between Info State 4 and Info State 6 is an indicator of how well
this missing data is imputed.

Each of the information states presented above may be viewed with respect to penalties
for missing information. For instance, the difference in prediction between Info State 2 and
Info State 3 may can be viewed as the cost of estimating «. The difference in prediction
between Info State 3 and Info State 4 may be viewed in terms of the cost of estimating the
variance components. Furthermore, two additional information states have been added to
those considered by Harville. How valuable is the level-1 or student level data with respect
to prediction? How valuable is the level-2 or school level data with respect to prediction?
Insight into these questions may be obtained by examining the performance of the multilevel
prediction rule in Info State 5 and 6. To be sure, in all of the above cases, the cost will
be underestimated since the correct model is estimated in all cases and thus we have not
accounted for how much worse the prediction would have been if our model had been mis-
specified.!? By viewing these five information states as yielding five multilevel prediction
rules, we investigate the performance of these prediction rules via a simulation study in order
to study the aforementioned penalties. The design of the simulation study continues that
of our previous design (Afshartous & de Leeuw, 2002), except for the fact that the J = 300
and n = 100 conditions have been omitted.'> Note, where before three different prediction
rules were compared, now five variations of the same prediction rule are compared. The
presentation of results is divided into two sections, one for parameters (Info States 2,3,4)
and one for data (Info States 5,6).

3 Simulation Study Design

We measure the components of prediction error via a large scale simulation study. Multi-
level data is simulated under a variety of design conditions, closely following the simulation

12This model uncertainty issue will be examined in the sequel.
13These conditions proved to be unnecessary in the initial simulations, in addition to severely increasing
the required computer time.



study of Busing (1993) where the distribution of level-2 variance component estimates was
examined. As in Busing (1993), a simple 2-level multilevel model with one explanatory
variable at each level and equal numbers of units per group is considered. A two-stage sim-
ulation scheme is employed. At the first stage the level-1 random coefficients are generated
according to the following equations:

Boj = Yoo+ Y1 Wj + uo;
Bij = mo+ W+ uy

The ~’s are the fixed effects and are set to a predetermined value; they are set all equal
to one as in Busing (1993). W, is a standard normal random variable, while the error
components, ug; and u,;, have a bivariate normal distribution with mean (0,0) and a 2 x 2
covariance matrix 7. The two diagonal elements of 7, 799 and 711, are equal in each design
condition. The off-diagonal covariance term 7y; will then determine the correlation between
the intercept and slope:

701
frosg (T00711)"/? (20)
Another parameter of interest in the simulation design is the intraclass correlation p. The

intraclass correlation is defined as follows:

700
p= Too + O 2 (21)
and thus measures the degree to which units within the same unit are related. Intraclass
correlations of 0.2 and above are common in educational research; a range of intraclass
values of 0.2, 0.4, 0.6, and 0.8 is examined in order to provide information for both high
and low intraclass correlation conditions.
The second stage of the simulation concerns the first level of the multilevel model, where
observations are generated according to the following equation:

Yij = Boj + B1;Xij + € (22)

The level-2 outcome variables, the 3’s, were determined at the first stage of the simulation.
The level-1 explanatory variable, X;;, is simulated as a standard normal random variable,
while the level-1 error ¢;; is a normal random variable with mean 0 and variance o specified
as .5. Since only the balanced data case is considered, where there are n units grouped
within J groups, a total of Jn outcomes are simulated. In order to study prediction, an
extra (n + 1)st observation is simulated for each of the J groups; this observation is set
aside and is not used for estimative purposes; this is the future observable y,; for which the
prediction rules are applied.

Simulations are also conducted under various sample size combinations for the number
of groups (J) and the number of observations per group (n). Information concerning the
effects of J and n with respect to the performance of prediction rules is of practical interest
at the design or data gathering phase. To be sure, given one’s research interests, one would
want to know the appropriate values for the number of groups and number of elements per
group to sample, especially given the increased cost of including an additional group in one’s

9



study. We take n ranging from 5 to 100 and J ranging from 10 to 100. For a full description
of the entire simulation design, see Appendix A.

Each design specification depends on the level of the parameters and the J X n sample
sizes. There are twenty possible J X n combinations and twelve possible parameter spec-
ifications, yielding a total of 240 design conditions. As mentioned above, one additional
observation per group is simulated which is used to assess the prediction rules. Thus, when
J = 10 there will be 10 predictions for a given dataset. In addition, for each design condition
100 replications are performed, i.e., 100 multilevel data sets are simulated for each design
condition and prediction is assessed within each of these replications. Thus, since there are
240 design conditions, a total of 24,000 multilevel data sets will be generated.

This next phase of this simulation study represents a comparison of the components of
prediction error mentioned earlier. Recall that the goal is to predict a future observable
Yx; in each of our J groups and replicate this process 100 times to account for variability.
The adequacy of prediction is measured via predictive mean square error (PMSE), where
the popular technique of taking the average of the sum the squared errors (SSE) of the
observed and predicted values is employed. Thus, for each of the 240 design conditions
there are 100 replications of the predictive mean square error for each prediction rule. Note
that this PMSE is constructed from a different number of items in the different sample size
combinations. For instance, when J = 10 each replication consists of predicting 10 future
observables and thus the PMSE is the average of 10 squared difference, while for J = 100
each replication consists of predicting 100 future observables and thus the PMSE is the
average of 100 squared differences. To be sure, since 100 replications are taken, the average
of PMSE over the replications should be fairly reliable and enable the comparison across
design conditions for variability in PMSE.

4 Results

4.1 Parametric Results

The tables in Appendix B include the results for the performance of the multilevel prediction
rule under Info States 2,3, and 4 under all design conditions. Aside from when n = 5,
however, the prediction rules produce average PMSEs that agree to the second decimal
place in almost all the design conditions, i.e., there is little penalty for the estimation of the
fixed effects and variance components when the group size is 10 or greater. Thus, only the
n = b case is examined in isolation. Table 1 presents the results for the n = 5 for various
levels of J across the twelve parametric design conditions.

J n=>

State 2, State 3, State 4
10 0.3757, 0.3873, 0.4133
25 0.3812, 0.3851, 0.3952
50 0.3833, 0.3853, 0.3897
100 | 0.3814, 0.3793, 0.3819

Table 1: Mean MSE for Info States 2,3,4

10



Table 1 clearly indicates the gradual increase in PMSE for the multilevel prediction rule
as the information state changes from Info State 2 to Info State 4. This results hold for
all levels of J, where there is a slight increase in PMSE across the information states, the
magnitude of which decreases as J increases. Indeed, when J = 100 there is no difference
between the performance of the multilevel prediction rule under these three information
states. In fact, there is even an unexpected decrease in PMSE between Info State 2 to Info
State 3. Furthermore, note that in all cases the rise in PMSE is quite small, exhibiting a
difference in the first decimal place only when J = 10 and n = 5. Figures 1 - 2 illustrates
these results via side-by-side boxplots. In Figure 1, the results are plotted separately for each
level of J such that the cases may be studied in isolation. Note that the greatest relative
penalties for the multilevel prediction rule occur in the leftmost figure, where J = 10.
Figure 2 displays the same plot, but this time plotting all of the boxplots on the same scale,
allowing one to more easily compare the rise in PMSE across the various levels of J. In
addition, this last plot clearly displays the narrow variability of the multilevel prediction
rule under each of these information states. Indeed, the variability would be even less for
the higher values of group size n (See Appendix B).

il
il
il
Il
il
il

—
3
35
3

3
3
3

Figure 1: n=>5; J=10,25,50,100, MSE for Info States 2,3,4

| e

Figure 2: n=>5; J=10,25,50,100, MSE for Info States 2,3,4

4.2 Data Results

The results in the previous section indicated little penalties for estimation of unknown
parameters. For missing data, however, the results are quite different. The tables in Ap-
pendix C display the results for the performance of the multilevel prediction rule under Info
States 5 and 6 under all design conditions. In contrast to the results of the previous section,
there is a clear increase in the PMSE of the multilevel prediction rule as the information
state changes from Info State 4 to Info State 5 and 6. Moreover, this result holds strongly

11



for all levels of J x n and all twelve parametric design conditions. The results across design
conditions for all levels of J and n are shown in Table 2. Info State 4 is included again
to enable comparison to the base case which usually exists, i.e., all parameters must be

estimated and there is no missing data.

J n=> n=10 n=25 n=>50

State 4, State 5, State 6 | State 4, State 5, State 6 | State 4, State 5, State 6 | State 4, State 5, State 6
10 0.4133, 0.7603, 3.4766 0.3159, 0.4790, 3.1769 0.2725, 0.3051, 2.9417 0.2564, 0.2670, 2.9365
25 0.3952, 0.6057, 3.4129 0.3114, 0.3810, 3.1251 0.2757, 0.2810, 3.0541 0.2571, 0.2607, 2.9028
50 0.3897, 0.5714, 3.4079 0.3120, 0.3645, 3.2233 0.2745, 0.2835, 2.9996 0.2620, 0.2642, 2.8855
100 | 0.3819, 0.5570, 3.4319 0.3091, 0.3562, 3.1530 0.2714, 0.2792, 3.0019 0.2617, 0.2635, 2.9158

Table 2: Mean MSE for Info States 4,5,6

Table 2 indicates that the cost of missing level-1 information is clearly higher than the
cost of missing level-2 information for all levels of J and n. This result is more apparent in
the side-by-side boxplots presented in Figures 3 - 6. The PMSE produced by the multilevel
prediction rule with missing level-2 information (Info State 4) has a distribution similar in
level and spread to that produced by the multilevel prediction rule in the base case (Info
State 4), while that produced with missing level-1 information (Info State 6) exhibits both
a higher level and spread in the boxplots; this last result holds even for large n where one
would expect a fairly reliable imputation of the missing level-1 information with the many
level-1 observed units.

Table 2 indicates that although there is clearly a large cost for missing level-2 informa-
tion, this cost decreases monotonically with n for each level of J. The monotonic reduction
of the cost of missing information as n rises also holds for missing level-1 information (Info
State 6)—as one would expect since the imputation of the missing data relies on more
data—albeit the proportional reduction is not as much as that which is exhibited for the
missing level-2 information case. From the perspective of data imputation, this is somewhat
of a surprise since one would expect the missing level-1 information to be better imputed
as n rises, whereas one would expect the missing level-2 imputation to be independent of
n since there is only one level-2 observation per group. A possible explanation is the fol-
lowing: as n increases, so does the reliability of our OLS estimate and hence its relative
weight with respect to the prior estimate and, since the OLS estimate doesn’t involve W;,
this explains the result of the decreased cost of missing W; as n increases.'* The effect of
increased n on the performance of the multilevel prediction rule under missing level-1 and
level-2 information is presented via side-by-side boxplots in Figures 7 - 8. In addition to
illustrating the aforementioned results, the boxplots nicely add the information not included
in the table: The spread of the PMSE produced by the multilevel prediction rule in the
presence of missing level-2 information (Info State 5) decreases as n rises, whereas such is
not the case in the case in the presence of missing level-1 information (Info State 6), once
again slightly counter-intuitive given the manner in which the missing information has been
imputed in both cases.

Table 2 also indicates that for each level of n an increase in J provides a slight reduction

14Recall that the multilevel estimate of 3; is a weighted average of the OLS and prior estimate, withe the
weights depending to the reliability of the OLS estimate and the prior variance of j;.
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Figure 3: J=10; n=>5,10,25,50; MSE for Info States 4,5,6
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Figure 4: J=25; n=5,10,25,50; MSE for Info States 4,5,6

Figure 5: J=50; n=5,10,25,50; MSE for Info States 4,5,6

Figure 6: J=100; n=>5,10,25,50; MSE for Info States 4,5,6
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Figure 7: J=10,25,50,100; MSE for Info State 5 as n=5,10,25,50
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Figure 8: J=10,25,50,100; MSE for Info State 6 as n=>5,10,25,50

in the PMSE produced by the multilevel prediction rule with missing level-2 information
(Info State 5), although this result is negligible when n = 50. For the multilevel prediction
rule with missing level-1 information (Info State 6), however, this result does not hold,
i.e., for fixed n an increase in J does not produce appreciable reductions in PMSE. The
effect of increased J on the performance of the multilevel prediction rule under missing
level-1 and level-2 information is presented via side-by-side boxplots in Figures 9 - 10. In
addition to illustrating the aforementioned results, the boxplots once again nicely add the
information about the spread of the PMSE produced by the multilevel prediction rule with
missing level-2 information (Info State 5). While the spread of PMSE produced by the
multilevel prediction rule with missing level-2 information is reduced as J increases, such is
not the case with missing level-1 information. Furthermore, the boxplots demonstrate that
the effect of J in reducing PMSE seems to be less than that of n for both situations.
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Figure 9: n=>5,10,25,50; MSE for info state 5 as J=10,25,50,100
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Figure 10: n=5,10,25,50; MSE for info state 6 as J=10,25,50,100

The use of a three-dimensional display provides additional insight into this disparity
between the performance of the multilevel prediction rule with missing level-1 and missing
level-2 information with respect to the effect of J and n. In the three-dimensional plots of
Figure 11, we see the aforementioned results illustrated in three dimensions. For instance,
for the missing level-2 data case (Info State 5), the slope of the surface is greater than
that for the missing level-2 case (Info State 5) in the direction of increased n. Also, there
is little slope in the direction of increased J for the missing level-1 data case while there
is a noticeable slope for this direction for the missing level-2 data case. The display for
Info State 4 is included for comparative purposes, giving a sense of how the original base
situation gets distorted.
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5 Summary

We have presented a decomposition of prediction error for the multilevel model in the
context of predicting a future observable y,; in the jth group of a hierarchical dataset.
The multilevel prediction rule is used for prediction and the components of prediction error
are estimated via a simulation study that spans the various combinations of level level-
1 and level-2 sample sizes and different intraclass correlation values. These components
of prediction provide information with respect to the cost of parameter estimation versus
data imputation for predicting future values in a hierarchical data set. Namely, the cost of
parameter estimation is very small compared to data imputation. To be sure, these results
are specific to our design space and may vary across other design spaces. Specific results
are enumerated below:

1. The performance of multilevel prediction rule exhibits little variation across Info States
2,3, and 4 under all design conditions. The only exception being when group size
n = 5, where a slight increase in PMSE occurs for estimating both the fixed effects
and variance components.

2. The magnitude of the increase in PMSE across the information states 2,3, and 4
decreases as the number of groups J increases.

3. There is a clear increase in the PMSE of the multilevel prediction rule as the informa-
tion state changes from Info State 4 to Info States 5 and 6 for all design conditions.
In other words, data imputation is much more costly than parameter estimation.

4. The cost of missing level-1 information is higher than that of missing level-2 informa-
tion for all levels of J and n. Thus, with respect to prediction, it is much more costly
to have individual level info missing than group level information.

16



5. The multilevel prediction rule is more responsive to increases in group size n in the
presence of missing of level-2 data (Info State 5) than in the presence of level-1 data
(Info State 6), a somewhat counter-intuitive result. In other words, if data is missing
at the group level, prediction is more improved as n increases as compared to the case
when data is missing at the individual level.

6. An increase in the number of groups J provides a slight reduction in the PMSE
produced by the multilevel prediction rule with missing level-2 information (Info State
5); The corresponding result does not hold for missing level-1 information (Info State
6). In other words, if data is missing at the group level, prediction improves as the
number of groups increases, whereas if data is missing at the individual level this is
not the case.’

To be sure, in all of the above cases, the costs will be underestimated since the correct
model is estimated; thus, we have not accounted for how much worse the prediction would
have been if our model had been mis-specified. This model uncertainty issue will be exam-
ined in future research, where we investigate the impact of mis-specifying both the level-1
and level-2 model equation.

15To be sure, this and the previous result are affected by the manner in which the missing data is imputed.
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Simulation Design

Intra-class correlation p 0.200 0.400 0.600 0.800

Variance 7y, 711 0.125 0.333 0.750 2.00
Table 3: P Too, T11
Correlation intercepts-slopes
Variance | 0.25000 | 0.5000 | 0.75000
0.125 0.03125 | 0.0625 | 0.09375
0.333 0.08330 | 0.1667 | 0.25000
0.75 0.18750 | 0.3750 | 0.56250
2.0 0.50000 | 1.0000 | 1.50000
Table 4: 79,
n;
J 5 10 25 50 100
10 50 100 250 500 1000
25 | 125 250 625 1250 2500
50 | 250 500 1250 2500 5000
100 | 500 1000 2500 5000 10000
Table 5: Sample sizes
Design number | 799, 711 | To1 Tug;ui; | P
1 0.125 | 0.03125 | 0.25000 | 0.200
2 0.333 | 0.08330 | 0.25000 | 0.400
3 0.75 0.1875 | 0.25000 | 0.600
4 2.0 0.50000 | 0.25000 | 0.800
5 0.125 | 0.0625 | 0.5000 | 0.200
6 0.333 | 0.1667 | 0.5000 | 0.400
7 0.75 0.3750 | 0.5000 | 0.600
8 2.0 1.0000 | 0.5000 | 0.800
9 0.125 | 0.09375 | 0.75000 | 0.200
10 0.333 | 0.25000 | 0.75000 | 0.400
11 0.75 0.56250 | 0.75000 | 0.600
12 2.0 1.50000 | 0.75000 | 0.800

Table 6: Design numbers
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B PE Decomposition: Info States 2,3,4

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3562, 0.3733, 0.3981
0.3579, 0.3598, 0.3743
0.3582, 0.3616, 0.3636
0.3481, 0.3485, 0.3505

0.2885, 0.2909, 0.3004
0.2878, 0.2916, 0.2952
0.2962, 0.2971, 0.2989
0.3114, 0.3120, 0.3131

0.2415, 0.2424, 0.2461
0.2490, 0.2489, 0.2492
0.2778, 0.2779, 0.2784
0.2746, 0.2745, 0.2749

0.2703, 0.2708, 0.2718
0.2490, 0.2489, 0.2492
0.2585, 0.2587, 0.2589
0.2655, 0.2655, 0.2657

Table 7: Design #1: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3554, 0.3541, 0.3708
0.4031, 0.4081, 0.4231
0.3969, 0.4026, 0.4061
0.3935, 0.3943, 0.3975

0.3136, 0.3128, 0.3301
0.3115, 0.3119, 0.3140
0.2994, 0.3000, 0.3022
0.3076, 0.3080, 0.3088

0.2650, 0.2644, 0.2662
0.2639, 0.2639, 0.2644
0.2752, 0.2751, 0.2753
0.2658, 0.2658, 0.2657

0.2819, 0.2817, 0.2822
0.2605, 0.2605, 0.2609
0.2634, 0.2634, 0.2633
0.2581, 0.2581, 0.2582

Table 8: Design #2: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3414, 0.3580, 0.3899
0.3957, 0.3935, 0.4071
0.3776, 0.3765, 0.3794
0.3828, 0.3841, 0.3876

0.3098, 0.3107, 0.3249
0.3253, 0.3238, 0.3273
0.3133, 0.3133, 0.3163
0.3049, 0.3054, 0.3067

0.2749, 0.2748, 0.2753
0.2664, 0.2659, 0.2665
0.2769, 0.2767, 0.2775
0.2769, 0.2769, 0.2771

0.2630, 0.2635, 0.2637
0.2543, 0.2544, 0.2547
0.2620, 0.2620, 0.2620
0.2621, 0.2622, 0.2622

Table 9: Design #3: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3830, 0.4069, 0.4245
0.4002, 0.4058, 0.4136
0.3856, 0.3871, 0.3922
0.3776, 0.3794, 0.3821

0.3008, 0.3044, 0.3122
0.3121, 0.3125, 0.3171
0.3139, 0.3140, 0.3157
0.3128, 0.3128, 0.3135

0.2886, 0.2883, 0.2899
0.2764, 0.2760, 0.2768
0.2755, 0.2754, 0.2758
0.2651, 0.2650, 0.2652

0.2334, 0.2336, 0.2332
0.2543, 0.2544, 0.2546
0.2607, 0.2608, 0.2609
0.2555, 0.2556, 0.2555

Table 10: Design #4: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3929, 0.4103, 0.4427
0.3948, 0.4007, 0.4084
0.3823, 0.3855, 0.3918
0.3846, 0.3848, 0.3871

0.3002, 0.3037, 0.3119
0.3032, 0.3029, 0.3093
0.3189, 0.3184, 0.3197
0.3074, 0.3077, 0.3082

0.2793, 0.2787, 0.2825
0.2713, 0.2710, 0.2725
0.2743, 0.2742, 0.2746
0.2743, 0.2742, 0.2739

0.2377, 0.2381, 0.2384
0.2571, 0.2569, 0.2570
0.2649, 0.2648, 0.2649
0.2610, 0.2609, 0.2610

Table 11: Design #5: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3719, 0.3894, 0.4189
0.3786, 0.3874, 0.4019
0.3799, 0.3806, 0.3863
0.3754, 0.3767, 0.3788

0.3117, 0.3120, 0.3182
0.3002, 0.3005, 0.3049
0.3140, 0.3144, 0.3167
0.3137, 0.3137, 0.3143

0.2839, 0.2865, 0.2889
0.2711, 0.2714, 0.2714
0.2722, 0.2724 ,0.2724
0.2708, 0.2707, 0.2708

0.2550, 0.2547, 0.2560
0.2559, 0.2562, 0.2567
0.2552, 0.2551, 0.2551
0.2637, 0.2637, 0.2638

Table 12: Design #6: Mean MSE for 2,3,4 Info States
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n=>5

n=10

n=25

n=50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3962, 0.4174, 0.4534
0.3572, 0.3648, 0.3758
0.3755, 0.3779, 0.3826
0.3829, 0.3840, 0.3864

0.3050, 0.3089, 0.3181
0.2925, 0.2924, 0.2954
0.3154, 0.3161, 0.3180
0.3109, 0.3110, 0.3119

0.2573, 0.2564, 0.2567
0.2846, 0.2846, 0.2851
0.2656, 0.2657, 0.2665
0.2728, 0.2728, 0.2729

0.2615, 0.2620, 0.2629
0.2549, 0.2544, 0.2546
0.2563, 0.2563, 0.2564
0.2608, 0.2608, 0.2609

Table 13: Design #7: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.4265, 0.4268, 0.4473
0.4189, 0.4216, 0.4306
0.4370, 0.4356, 0.4426
0.4243, 0.4240, 0.4265

0.3136, 0.3146, 0.3189
0.3192, 0.3195, 0.3205
0.3084, 0.3083, 0.3088
0.3124, 0.3121, 0.3122

0.2731, 0.2733, 0.2734
0.2908, 0.2907, 0.2910
0.2811, 0.2811, 0.2812
0.2714, 0.2714, 0.2714

0.2746, 0.2746, 0.2749
0.2535, 0.2536, 0.2535
0.2565, 0.2564, 0.2564
0.2620, 0.2620, 0.2620

Table 14: Design #8: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3306, 0.3457, 0.3694
0.3092, 0.3097, 0.3151
0.3252, 0.3273, 0.3315
0.3177, 0.3201, 0.3221

0.2998, 0.3059, 0.3194
0.2985, 0.3019, 0.3061
0.2975, 0.2982, 0.3007
0.2986, 0.2989, 0.2997

0.2560, 0.2557, 0.2590
0.2622, 0.2629, 0.2634
0.2718, 0.2719, 0.2725
0.2670, 0.2673, 0.2680

0.2458, 0.2457, 0.2456
0.2673, 0.2673, 0.2683
0.2779, 0.2781, 0.2785
0.2622, 0.2623, 0.2625

Table 15: Design #9: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3652, 0.3634, 0.3768
0.3804, 0.3860, 0.3951
0.3543, 0.3565, 0.3595
0.3551, 0.3564, 0.3579

0.2926, 0.2933, 0.3009
0.3003, 0.3009, 0.3049
0.3085, 0.3085, 0.3108
0.3068, 0.3069, 0.3079

0.3013, 0.3000, 0.3030
0.2770, 0.2776, 0.2784
0.2693, 0.2695, 0.2701
0.2679, 0.2678, 0.2682

0.2530, 0.2526, 0.2533
0.2580, 0.2576, 0.2583
0.2692, 0.2695, 0.2697
0.2637, 0.2637, 0.2636

Table 16: Design #10: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=>50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.4125, 0.4191, 0.4479
0.3843, 0.3868, 0.3966
0.3916, 0.3906, 0.3942
0.3824, 0.3823, 0.3863

0.2972, 0.2984, 0.3087
0.3155, 0.3148, 0.3175
0.3107, 0.3103, 0.3105
0.3070, 0.3064, 0.3071

0.2719, 0.2727, 0.2745
0.2746, 0.2747, 0.2756
0.2701, 0.2703, 0.2702
0.2730, 0.2729, 0.2728

0.2322, 0.2326, 0.2330
0.2600, 0.2600, 0.2600
0.2558, 0.2557, 0.2557
0.2645, 0.2645, 0.2645

Table 17: Design #11: Mean MSE for 2,3,4 Info States

n=>5

n=10

n=25

n=50

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

State 2, State 3, State 4

10
25
50
100

0.3770, 0.3834, 0.4200
0.3942, 0.3973, 0.4049
0.4359, 0.4416, 0.4461
0.4169, 0.4169, 0.4196

0.3234, 0.3241, 0.3273
0.3208, 0.3217, 0.3241
0.3236, 0.3235, 0.3252
0.3060, 0.3060, 0.3065

0.2534, 0.2532, 0.2546
0.2694, 0.2693, 0.2696
0.2815, 0.2815, 0.2817
0.2764, 0.2765, 0.2765

0.2611, 0.2612, 0.2617
0.2575, 0.2574, 0.2574
0.2626, 0.2626, 0.2626
0.2603, 0.2604, 0.2603

Table 18: Design #12: Mean MSE for 2,3,4 Info States
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C PE Decomposition: Info

States 5 and 6

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

1.0482, 2.9057
1.0054, 2.9095
0.8999, 2.7029
0.8377, 2.8926

0.8515, 3.0813
0.5537, 2.5652
0.4821, 2.6432
0.4903, 2.6157

0.3955, 2.6252
0.2632, 2.3924
0.3167, 2.3791
0.3100, 2.4805

0.3032, 2.1040
0.2632, 2.3924
0.2670, 2.2713
0.2735, 2.3967

Table 19: Design

#1: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.8152, 2.9450
0.6186, 3.0928
0.6111, 3.0499
0.5667, 3.0512

0.4835, 2.7549
0.3730, 2.9041
0.3393, 2.6320
0.3572, 2.9353

0.2856, 2.4425
0.2726, 2.7537
0.2815, 2.7032
0.2715, 2.7411

0.2940, 2.9652
0.2641, 2.8561
0.2658, 2.5886
0.2596, 2.6266

Table 20: Design

#2: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.7858, 2.6833
0.6040, 3.3108
0.5781, 3.0962
0.5626, 3.2118

0.5668, 2.9422
0.3978, 3.0486
0.3627, 2.9070
0.3505, 2.8562

0.2932, 2.7693
0.2761, 2.8535
0.2829, 2.7210
0.2839, 2.7679

0.2672, 2.6462
0.2569, 2.5755
0.2638, 2.6045
0.2636, 2.6896

Table 21: Design

#3: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.8526, 3.1785
0.6771, 3.1804
0.5847, 3.0764
0.5813, 3.0149

0.4570, 2.5396
0.3733, 2.8898
0.3632, 2.9765
0.3544, 2.7939

0.3123, 2.7564
0.2889, 2.8760
0.2836, 2.7159
0.2704, 2.7171

0.2425, 2.4545
0.2571, 2.4261
0.2616, 2.7238
0.2568, 2.6450

Table 22: Design #4: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.8365, 3.4764
0.6373, 3.0595
0.6139, 3.0994
0.5752, 3.2387

0.4015, 2.6129
0.3794, 2.6843
0.3698, 2.9366
0.3505, 2.7525

0.3060, 2.6831
0.2850, 2.8196
0.2826, 2.7131
0.2786, 2.7424

0.2448, 2.5641
0.2584, 2.6241
0.2669, 2.7036
0.2620, 2.6515

Table 23: Design

#5: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.7669, 3.1023
0.6273, 2.7814
0.5586, 2.8606
0.5366, 3.1509

0.5422, 2.7693
0.3675, 3.0117
0.3693, 3.0082
0.3588, 2.8363

0.3228, 2.5093
0.2852, 2.4778
0.2791, 2.7565
0.2768, 2.7731

0.2668, 2.3932
0.2606, 2.4933
0.2566, 2.4491
0.2653, 2.6713

Table 24: Design #6: Mean MSE for 5,6 Info States
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n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.8981, 3.5148
0.5796, 2.6011
0.5669, 3.0529
0.5732, 3.1577

0.4551, 2.6276
0.3534, 2.7101
0.3636, 2.8203
0.3534, 2.8705

0.2754, 2.6399
0.2928, 2.5903
0.2733, 2.6932
0.2783, 2.6753

0.2757, 2.5360
0.2585, 2.6046
0.2588, 2.6806
0.2624, 2.6161

Table 25: Design

#7: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.4890, 5.0581
0.4494, 5.5024
0.4571, 5.0561
0.4396, 5.1122

0.3299, 5.1909
0.3224, 4.6908
0.3112, 4.7566
0.3143, 4.7095

0.2755, 4.2158
0.2917, 4.7966
0.2818, 4.5092
0.2714, 4.3030

0.2756, 4.8460
0.2535, 4.1796
0.2565, 4.1857
0.2621, 4.2673

Table 26: Design

#8: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.8671, 2.8750
0.6995, 2.7996
0.6407, 2.6910
0.6422, 2.7105

0.5744, 2.4527
0.4588, 2.6434
0.4225, 2.6848
0.3949, 2.5877

0.3366, 2.3921
0.2872, 2.2678
0.2952, 2.4095
0.2879, 2.4460

0.2803, 2.1780
0.2777, 2.4261
0.2838, 2.4429
0.2675, 2.4873

Table 27: Design

#9: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.6950, 3.1905
0.5136, 3.1256
0.4583, 3.1620
0.4589, 2.9972

0.3990, 2.8337
0.3382, 2.8513
0.3432, 2.8083
0.3289, 2.8156

0.3206, 2.8883
0.2822, 2.6964
0.2727, 2.6806
0.2717, 2.7593

0.2579, 2.9453
0.2605, 2.5714
0.2707, 2.5665
0.2645, 2.6963

Table 28: Design #10:

Mean MSE for 5,6 Info States

3 n=>5 n=10 n=25 n=>50
State 5, State 6 State 5, State 6 State 5, State 6 State 5, State 6
10 0.5385, 3.5950 0.3503, 3.504 0.2814, 3.0082 0.2335, 3.2013
25 0.4396, 3.5683 0.3292, 3.2032 0.2778, 3.3571 0.2608, 3.4623
50 0.4425, 3.6504 0.3205, 3.6368 0.2711, 3.2156 0.2564, 3.0163
100 0.4221, 3.5693 0.3137, 3.2499 0.2737, 3.1242 0.2645, 2.9907

Table 29: Design #11: Mean MSE for 5,6 Info States

n=>5

n=10

n=25

n=>50

State 5, State 6

State 5, State 6

State 5, State 6

State 5, State 6

10
25
50
100

0.5305, 5.1948
0.4174, 5.0258
0.4452, 5.4005
0.4336, 5.0754

0.3400, 4.8137
0.3257, 4.2982
0.3273, 4.8774
0.3070, 4.8129

0.2562, 4.3705
0.2698, 4.7673
0.2815, 4.4988
0.2765, 4.5083

0.2627, 4.4045
0.2576, 4.2259
0.2625, 4.3936
0.2603, 4.2580

Table 30: Design #12: Mean MSE for 5,6 Info States
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