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Ahstract E02-315

There is increasing evidence that aggregate housing price are predictable. Despite this, a
random walk in time and independence in space are two maintained hypotheses in the empirical
models for housing price measurement used by government agencies and by commercial companies
as well. This paper examines the price discovery process in individual dwellings over time and
space by relaxing both assumptions, using a unique body of data from the Singapore private
condominium market. We develop a model that tests directly the hypotheses that the prices of
individual dwellings follow a random walk over time and that the price of an individual dwelling is
independent of the price of a neighboring dwelling. The model is general enough to include other
widely used models of housing price determination, such as Bailey, Muth, and Nourse (1963), Case
and Shiller (1987) and Redfearn and Quigley (2000), as special cases. The empirical results clearly
support mean reversion in housing prices and also diffusion of innovations over space. Our estimates
of the level of housing prices, derived from a generalized repeat sales model, suggest that serial and
spatial correlation matters in the computation of price indices and the estimation of price levels. The
finding of mean reversion may suggest that housing prices are forecastable and that excess returns
are possible for investors. We use the monthly price series derived from condominium sales to
investigate this issue. We compute gross unleveraged real returns monthly. When returns are
computed from models which assume a random walk without spatial autocorrelation, we find that
they are strongly autocorrelated. When returns are calculated from more general models that permit
mean reversion, the estimated autocorrelation in investment returns is reduced. Finally, when they
are calculated from models permitting mean reversion and-spatial autocorrelation, predictability in
aggregate investment returns is completely absent.




I. Introduction

The durability, fixity and heterogeneity of dwellings imply that transaction costs are
significant in the housing market. Certainly in comparison to financial markets, and in
comparison to the markets for most consumer goods, housing purchases require costly search to
uncover the prices and attributes of commodities. Given the many frictions associated with the
purchase of housing, it is hardly surprising that price behavior deviates from that predicted by

simple models of economic markets.

Case and Shilfer (1990) report that both real and excess returns in the housing market
were forecastable; subsequently several other researchers (for example, Guntermann and
Norrbin, 1991; Gatzlaff, 1994; and Malpezzi, 1999) have documented predictable returns in
housing markets by demonstrating that aggregate price series exhibit inertia in percentage
changes. Less is known about the dynamics of house prices at the individual level. Englund,
Gordon, and Quigley (1999) and Quigley and Redfearn (2000), using very different techniques,
rejected a random walk in individual housing prices by examining repeat sales of single family
dwellings. This suggests that the inertia reported in the aggregate may also characterize micro

behavior.

But in this geographical market, price signals exist in space as well as time. Many of the
features which can lead to autocorrelation in the time domain could have analogous effects over
space. Price information diffuses over space as well as time, and information costs alone can

cause prices to deviate from random fluctuations.

This paper examines price discovery over time in a spatial market using a body of data
almost uniquely suited to the problem. We examine the prices of condominium dwellings in

Singapore using all sales reported in the country during an eleven-year period. Multiple sales of




the same condominium unit are observed, and all dwellings with market transactions are
geocoded. We develop a model of housing prices that more faithfully represents the temporal
and spatial features unique to housing markets, and we incorporate a more general and more

appropriate structure of prices at the level of the individual dwelling.

The model and the data support a direct test of the hypotheses that the prices of individual
dwellings follow a random walk over time and that the price of an individual dwelling is
independent of the price of a neighboring dwelling. We link these results to movements in

aggregate measures of housing prices and their spatial and temporal properties.

The model is more general than other widely used methods of measuring aggregate
housing prices. Indeed, the method used by government agencies (e.g., OFHEO) and
commercial firms (e.g., MRAC, Inc.) to estimate the course of house prices is a special case of
the mode! developed below. The framework presented supports tests of the assumptions implicit

in more conventional models.

There are a few studies that use spatial econometric methods in analyzing housing prices,
but none of them are based on a theory of price diffusion. For example, Can and Megbolugbe
(1997) estimated hedonic house price models incorporating lagged values of neighborhood house
prices to reflect spatial dependencies in prices. Goetzmann and Spiegel (1997) developed a
“distance-weighted-repeat-sales procedure,” where distance is defined in terms of geographical
and socio-economic factors (such as neighborhood income, education attainment and racial
composition) and where “distance weights” are estimated using an ad hoc procedure. Dubin
(1998) postulated a specific form for a correlogram relating the correlation between housing

prices as a function of distance. The estimates of an empirical correlogram were used to in




hedonic models of housing prices to reflect spatial dependencies. A more sophiscated hedonic
model relying upon empirical semivariograms was estimated by Basu and Thibodeau (1998).

Pace et al (1998) developed an empirical model for house prices which evolves thorough
time and space. Their model specified an autoregressive structure of house prices and a spatial
dependency among prices. Given an irregular panel of house prices (in which there are few
transactions in any period), ad hoc procedures were used to filter house price sales by time and
location. (Indeed, different results are obtained depending upon the ordering of filtering
process.)

Reliance upon ad hoc procedures to analyze the spatial and temporal pattern of housing
prices is understandable, given the infrequency of transactions on dwellings. This means that a
panel of houses typically contains a relatively small and irregular number of observations on the
sales prices of these houses. The temporal correlation in prices depends upon the time interval
between sales, and with irregular intervals, inference in a model which also accounts for spatial
dependence may be quite difficult. (See, for example, Pace et al, 1998: 18-22.)

The model developed in this paper employs an explicit model of the spatial and temporal
dependence of housing prices, and estimates the importance of spatial and temporal factors in the
estimation of the course of housing prices. We do this using a repeat sales model of price
determination, not a hedonic model. Not surprisingly, the introduction of an explicit micro
model presents certain computational difficulties in estimation.

We devote considerable attention to the implications of our statistical findings for investment
in the housing markets. In particular we demonstrate the importance of these findings for
investor returns using a variety of investment rules. We also investigate the link between spatial

and temporal dependence in prices and aggregate indices of house prices.




Section IT develops a general model of housing prices that supports explicit tests for the
spatial and temporal pattern of price movements. This section links our model to the widely
employed method for measuring housing prices proposed almost forty years ago by Bailey,
Muth, and Nourse (1963), as well as its subsequent extensions (e.g., Case and Shiller, 1987).
The data are described tersely in Section III. Our empirical results are presented in Sections IV
and V. We test for random walks in space and time, against the alternative of mean reversion,
and we examine the link between pricing deviations at the individual level and aggregate price
movements. We also investigate investor behavior in some detail. Section VI is a briefl

conclusion.

II. A Micro Model of House Prices

The objects of exchange in the housing market are imperfect substitutes for one another.
Indeed, the fixity of housing implies that dwellings with identical physical attributes may differ
in price simply because the price incorporates a complex set of site-specific amenities and access
costs. But few dwellings have identical physical characteristics; thus comparison shopping is

more difficult and more expensive than in most other markets.

Moreover, housing transactions are made only infrequently, so households must
consciously invest in information to participate in this market. As a resuli, the market is
characterized by a costly matching process. Market agents, buyers and sellers, are heterogeneous
and differ in information and motivation; commodities are themselves heterogeneous.
Consequently an observed transaction price for a specific unit may deviate from the price

ordained in the fully informed perfect market of the intermediate micro textbook.




Buyers, sellers, appraisers, and real estate agents estimate the “market price” of a
dwelling by utilizing the information embodied in the set of previously sold dwellings. The
usefulness of these sales as a reference depends upon their similarity across several dimensions:
physical, spatial, and temporal. Inferences about the “market price” of the dwelling can be
drawn only imperfectly from the set of past sales, because dwellings differ structurally, enjoy
different locational attributes, and are valued under different market conditions by different
actors over time. Because housing trades infrequently, the arrival of new information about
market values is slow. From an informational standpoint, the closest comparable sale across
these various dimensions may be the last sale of the same dwelling. Alternatively, the closest
comparable sale may be the contemporaneous selling price of another dwelling in close physical

proximity.

An attempt to uncover the market value of a dwelling is further complicated by the fact
that an observed sales price is not only a function of observable physical characteristics, but also
of unobserved buyer and seller characteristics such as their urgency to conclude a transaction
(Quan and Quigley, 1991). For any given sale, all that is known is that an offer was made by a

specific buyer that was higher than a specific seller’s reservation price.

We develop a model with spatially and temporally correlated errors in a repeat sales
framework. Innovation processes over time are assumed to be continuous, but sales are obtained
at irregular intervals. At any point in time, the prices of houses are dependent over space. In the
determination of the price of a house, the weights attributable to neighboring houses are fixed
and depend upon their distances from that house. Again, the prices of neighboring houses are
observed infrequently.

Let the log sale price of dwelling / at time t be




(1) V,=P+Q,+e,=P +X B+e,,
where ¥}, is the log of the observed sales price of dwelling 7 at ¢, and P, is the log of aggregate
housing prices. Oy is the log of housing quality, and can be parameterized by X, , the set of
housing attributes and by a set of coefficients, B, which price those aftributes. If a sale is
observed at two points in time, ¢ and T, and if the quality of the dwelling remains constant
during the interval, then
@ Ve-Ve=PB-P+(X, - X )B+e, —ep
=B, P +e,—e,.

With constant quality, (2) identifies price change in the market.

Let the error term, e, consist of two components that are reaiized for each individual
dwelling at the time of sale: 1),, an idiosyncratic innovation without persistence, and ¢, an

idiosyncratic innovation with persistence, €, = Ag,,, +1L, . In addition, assume that the value of

any particular dwelling depends also on innovations that occur to other dwellings

contemporaneously. We assume this spatial correlation depends on the distance between units.
N N N
(3 e = pzwijejr +§it = PZ wye, +€,+M, = PZ w;e, + M;‘,H +n, + 1,
j=1 =1 =t
where w; is some function of the distance between unit / and j and N is the number of dwellings

in the economy. Let Efn,n,)=0 and Ele,¢, )=0, E(nf,):cf], E(?)

"

2
O,.

The value of a particular dwelling depends, not only on its own past and
contemporaneous innovations, but aiso on innovations of other dwellings, past and

contemporaneous. Note that the model of housing prices in (2) and (3) specializes to that of




Bailey, Muth and Nourse (1963) when A =p =0, and to that of Case and Schiller (1987) when
A=1, p=0, and to that of Quigley and Redfearn (2000) when p = 0.

In vector notation, expression (3) is
@ e =pWe +g,
where e, is a vector of e, for all the dwellings, Wis a weight matrix, some measure of the
distance between dwellings, and &, a vector of §, =Ag,,_, +n, +1,, for all the dwellings. By
solving for e, and taking the difference between two sales at times ¢ and s, we have
(5)  e—e,=(1-pW) (€ ~E,).
The variance-covariance matrix of (5) is

© e e —e) [-a-pWIH &, -8 )6 ~5) J-pw)”

Transactions on dwellings occur only irregualrly. Consider the covariance in errors

between a dwelling i sold at + and s and another dwelling & sold at T and ¢,

Elle, ~e, e~ e, )} Let ¥=E &, -2, )& - 5, | and = (1-pW)". Thus

(7) E[(er —es)(et—e;)’:l =YL = :2 [‘l’l Wy WN][ﬂl m,- TI:N].

The elements of this expression are,
8) E[(en - )(erc: — € )J: 7‘; ¥Yr,.

Now consider an element of the covariance matrix, ¥. Note that

&) E(é,-,i,-,)= M""[:—“f]u(t =1)ol, ifi=j




=0 , otherwise.

where I{e} is an indicator function. For sales of a given dwelling at time t, s, T and ¢,

(10) E[(E,u‘r - E.u's )(&n - &!Q )] = (llHE - )él_gl - 7\‘Es-1; + lESid {%J

+({t=1)-I{t=c)-I{s=1)+I(s =¢))o2.

Therefore, the variance-covariance matrix is
an  w=gE -8 - | = Ele, -8 . g

Finally, the variance-covariance matrix of innovations between a dwelling 7 sold at ¢ and s and

another dwelling % sold at Tand ¢ 1s,

(1 2) E[‘(e;‘r — € )(ekt 7% )}: ‘.l'lf: ¥ = ﬂ; {E[(F:nr - E.us )(gi‘r - E.lig )]X I}“k

_ (MHE_ pl=s _pl=d _HL[H;}) __E,_z;_ +
-3

[ =1)~1(t=¢)~Ils =)+ I{s =c)|o? [n/m, .
Equation (12) indicates how the variance-covariance matrix of residuals from the regression
specified in (2) can be used to identify the temporal and spatial components of house price

persistence, A and p, respectively. Identification requires observing at least two transactions for

each dwelling and observing the distance of each dwelling from all others in the market.

HL Data
The data uitilized in this paper have been compiled by the Singapore Institute of
Surveyors and Valuers (SISV) and consist of all transactions involving dwellings in multifamily

housing during the period from Jan 1, 1990 to Dec 31, 2000. SISV gathers transactions data




from a variety of sources including legal registration records and developers’ sales records. The
dataset is complete — each condominium sale in the entire country is recorded. In addition, an
extensive set of physical characteristics of dwellings is recorded. The date of the sale 1s recorded
as well as the date of occupancy. In addition, the address, including the postal code, is reported.
The postal code identifies the physical location, often the specific building. A matrix of
distances among Singapore’s fifteen hundred postal codes permits each dwelling to be located
spatially. The data set includes transactions among dwellings in the standing stock, sales of
newly constructed dwellings, and presales of dwellings under construction (where the contract
date may be several months before the date construction is completed).

The panel nature of the data permits us to distinguish dwellings sold more than once, and
the multiple sales feature of the data identifies the models specified in section I. By confining
the sample to dwellings in multifamily properties, we e.sliminate types of dwellings for which
additions and major renovations are feasible. The sample of multifamily dwellings is thus less
likely to include those for which the assumption of constant quality between sales is scriously
violated.

Singapore data offer another advantage in estimating the mode! of housing prices,
namely a spatial homogeneity of local public services (e.g., police protection, neighborhood
schools), especially when compared to cities of comparable size in North America. During the
decade of the 1990s, there was no discernible trend in the quality of neighborhood attributes of
the bundle of housing services.'

Table 1 presents a summary of the repeat sales data used in the empirical analysis

reported below. There are several points worth noting in the table. First, confirming the

! One possible exception to this may be accessibility, where improvement in the transport system and its pricing may
have altered the workplace access of various neighborhoods.




infrequency of housing transactions, the number of dwellings sold more than once is less than
twenty percent of the population of the dwellings sold during the eleven year period. Only three
percent of the 52,337 dwellings were sold more than twice in the eleven year period.

Second, the average selling prices tend to be higher for dwellings sold more frequently.
The rate of appreciation is also higher. On average, dwellings sold five times appreciate almost
twice as fast as dwellings sold only twice. For the dwellings sold more frequently, price
appreciation tends to be more volatile. Transactions involving high-turnover dwellings are
apparently riskier, but this risk is compensated by higher returns.

Third, the intervals between sales are longer for dwellings sold infrequently. In part, this
is an artifact of the fixed sampling framework. For presold dwellings, the average length of time
between sale and completion of construction is highest for those sold least frequently, which is
not consistent with popular belief that presales are associated with speculation in the housing
market.

Fourth, there are some differences in the characteristics of dwellings sold more frequently.
They tend to be larger in area, containing more rooms, and they are more centrally located to the
CBD, but their transit access is similar to the dwellings sold less frequently.

The data on condominium sales supports a regression model of the form
(13) ¥, =V, =ED,-BD, +Y5, — Yk, ¢, = ¢y,

where D, is a variable with a value of 1 for the month ¢ in which condominium 7 is sold and

zero in other months and P, is the estimated coefficient for this variable. There are 132 of these

time variables, one for each month between 1990 and 2000. If dwelling i has been presold, x,

is the time interval between the transaction and the completion of construction. For dwellings

sold after completion of construction, K, is set to zero. Thus, v, the estimated coefficient for

10




K.

ir 2

measures the monthly discount rate for presold dwellings, i.c., the discount for unrealized

service flows from presold dwellings. The purchase of a dwelling before completion, or even
before construction, is not uncommon in Singapore. One aspect of this institution may, however,
be uncommon — namely that the entire purchase price is paid at the time the contract is signed,
not at the time the dwelling is first occupied.

Of the 11,883 pairs of transactions noted in Table 1, 305 consist of presale pairs. For another

5,024 pairs, the first sale was made before the property was compieted.

1V.  The Diffusion of House Price Innovations

The mode! can be estimated by maximum likelihood methods. In particular, if we

assume the error terms in equation (3), 1, and W, , are normally distributed, the log likelihood

function for the observed sample of condominium sales is
(14)  log L(P,1,hp.0%,0% )= —log(])- [ =),
where Z=[n/¥n,] and 8=V, -V, -PD, +P.D, — YK, + 1K, .
Note that the parameters in the T matrix are A, p, cf’l and Gi . Conditional on values for
A and p, the consistent estimates of the error variances, Gi and O'f] , can be obtained from the

regression

2
(15)  (e,-¢,) = 2(1-7\5-’)[10“ j+2a,ﬁ,

where the vector (¢, —é, ) is the set of residuals from a first-stage regression. Then, the

it

remaining parameters of the repeat sales model, equation (13), can be estimated by generalized

least squares. The vector of residuals, 5, and the matrix Z, computed from A and p, are

11




sufficient to compute the values of the log likelihood function. The function can be maximized

by a grid search over A and p.

Consider the matrix . It is the product of three submatrices, n; ,'¥ and m,. The matrix
¥ is large, with rows and columns equal to the number of dwellings in the sample, but it is
diagonal.  The elements of the matrix are computed from the time intervals between sales,

given A, according to Equation (10). Absent spatial correlation, i.e., when p =0, the matrix
7, is the i-th vector of the identity matrix. Sois &,. Thus the matrix X is block diagonal. The

size of each block is determined by the number of paired sales for a given house. Using a variety
of techniques for large sparse matrices, the inverse, T, can be computed.

As noted in Section I, there is ample reason to expect mean r;eversion in house prices.
We begin by assuming no spatial dependence and analyze antocorrelation. Figure 1A presents
the maximized value of log likelihood function, equatioﬁ (14), assuming p =0, and hence the
matrix ¥ is block diagonal and sparse. The estimation is based on 11,883 observations on repeat
sales on 10,288 dwellings sold two or more times. The likelihood function is well behaved with
a maximum at A =0.72. Likelihood ratio tests reject a random walk in house prices (A =1) and
serially uncorrelated house prices (A=0) by a wide margin, x* =2,489.68, and x’ =32,129
respectively. The estimated value of A suggests that the half life of a one unit shock to housing
prices is about 33 days.”

We now estimate the parameters of spatial and temporal autocorrelation simultaneously.
As noted above, when p # 0, the T matrix is no longer block diagonal. The appendix illustrates

the nature of the numerical problems encountered. One way of addressing these problems is to

2 This half life is considerably shorter than the values reported by Quigley and Redfeam (2000) in analogous
quarterly models of the price movements of single family housing in eight Swedish housing markets.
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note that 7, is the i-th row of (I1—pW)™, and when W is sparse, most of elements of , will be
zeros. This, in turn, will make X matrix sparse, since X = [n/¥=x,]. One inconsequential way of

making W sparse is to set small values of weights to zero, implying that when two dwellings are
sufficiently far apart, then there is no spatial correlation between them. In the following, we
assume that the elements of the weight matrix are the reciprocals of the distance between
dwellings and that dwellings further than 250 meters apart are not spatially correlated.

Figure 1B presents the ML estimates of the likelihood values for different values of A and
P The values of A and p that maximize the log-likelihood values are 0.78 and 0.55,
respectively. The ML estimate of the serial correlation coefficient, A, is rather similar to that
reported in Figure 1A, but the half life of a unit shock is now estimated to be 53 days, more than
60 per cent longer. The value of 0.55 for the spatial correlation coefficient, p, is quite modest.
Figure 2 shows the contemporancous impact of a unit shock over a grid where the distance
between houses is 30 meters, when the spatial correlation coefficient is 0.55. This illustrates
how a unit shock at point 0 diffuses over the grid. The impulse quickly dissipates over the space;
most of the impulse completely dissipates within 100 meters.

Appendix Table 1 presents estimates of the price index, Equation (13), under different
assumptions on the error structure. Price index estimates for early years tend to be
insignificantly different from each other while those for later years are significant. In part, this
arises from the sampling design: there are more observations for later years, which allows more
precise estimation of coefficients for later years. Among three indices, the two that allow
stationary processes for error terms tend to move more closely. Figure 3A, B and C report the
estimated price indices with January of 1990 as a basis year. The three indices generate a similar

course of aggregate prices for private condominiums in Singapore during the period.
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The estimated coefficients in Appendix Table 1 for the period between sale and dwelling
completion (for presold units) are around 11 basis points; this is between a 1.2 percent and 1.5
percent discount for an incomplete dwelling unit sold today for occupancy a year hence. The
magnitude of the discount is not trivial: aggregate housing prices rise, on average, by 0.3 percent

monthly and the presales discount reduces monthly increases by one third.

V. The course of Condominium Prices and Investment Returns

Figure 3A through 3C present apparently similar patterns for the course of housing prices
for Singapore dwellings during the period 1990-2000. However, a closer examination of returns
implied by these housing indices reveals substantial differences among them. In other words,
while the different assumptions about the error structure do not yield substantial differences in
estimated prices, the real return series implied by the estimates are quite different.

The economic returns from investment in housing depend upon the course of real prices

and rents. In particular, ignoring transaction costs and leverage, the real return in any period, R,,

is the change in the value plus the dividend (i.e. the rental stream, 7,, enjoyed during the period)

(16) Rt=(—-‘p‘”’]("'—"],
Pa N,

where I, is an index of the cost of living, less housing.

Figure 4 uses the estimates presented in Figure 3 and the monthly CPI in Singapore to
chart the course of investment returns during the eleven-year period. The estimated returns are
strikingly different. Table 2 reports the forecastability of investment returns. There is no

apparent trend in the data. Tables 2A, B and C report more explicit information on trends in real

14




gross returns. The table reports the forecastability of monthly returns based upon lags of returns
of one, two, three and four months,

As reported in the table, there is considerable disparity in the forecastibility of returns
estimated by the three procedures. With a random walk and no spatial correlation (Table 2C),
there is a considerable evidence of overshooting in monthly returns, so a contrarian investment
policy would maximize investment returns: sell on price increases, buy on price decreases.
There is no evidence that a more complicated lag structure improves the forecastibility of
investment returns. With mean reversion but no spatial antocorrelation, there is again evidence
of overshooting, and also weaker evidence that a more complicated lag structure improves
forecastability. Using the maximum likelihood estimates, ( A=0.78; p=0.55 ) there is no
evidence of forecastability in aggregate house prices at all. There is no predictability in

aggregate returns.

V. Investment performance

These results may have significant implications for investment in the housing market.
Consider an investment decision in housing based on housing price determination models such
as (1). Tn this context, a better specification of error structure can lead to superior investment
decisions in two ways. First, improvement comes through better estimates of aggregate housing
price trends. In the regression models graphed in Figure 3, different assumptions about error
structure have relatively small effects on the large sample properties of slope coefficients, but
they do have large effects on efficiency of those parameters. Therefore, investment decisions
based on the correct error structure are more important when investment horizons are relatively

short. Second, additional improvement comes from basing the investment decision on more

15




complete information. In other words, when etrors are spatially correlated, knowledge of past
and present innovations in neighboring dwellings may provide valuable information, useful for
predicting the future course of prices for other dwellings. If one assumes there is no spatial
correlation and does not use information from housing transactions in neighborhood, the investor
may lose important information in making price forecasts.

This section highlights the consequences of different assumptions on error structures on
measured investment performance in housing market. We use investment rules which depend
upon forecasts of future housing returns. These forecasts depend on investor’s assumptions
about the underlying housing price generating processes.

The investment rule applied in this section is quite simple. Given assumptions on error
structures and the consequent parameter values for underlying house price processes, we make
forecasts for housing returns using all the available current information. The investor is
instructed to “Buy” if the expected retumn is greater than some preset threshold. The threshold
may be interpreted to as the known transaction costs in the housing market.

The sizes of actual transaction costs vary with housing market characteristics, financial
market characteristics and tax systems and it is difficult to present a particular number as a
universal estimate for the cost. We use 0 percent , 5 percent and 10 percent thresholds,
comparable with a range of plausible transaction costs’.

The investment holding period is set arbitrarily at 24 months.

When spatial correlations exist among dwellings, error distributions of individual
dwelling prices are heterosckedastic since dwellings have different neighborhoods. Further, the
variance-covariance matrix of error terms depends on distances to neighbors, so this varies

across dwellings. In this exercise, we consider a housing development, where each dwelling is

16




located at a point on a 51 by 51 grid, and each house is 30 meters away from its nearest
neighbors. It is possible to consider the investment performance all 2601 dwellings, but for
convenience, we chose the dwelling at the center of the town.

In the simulation, the time series prices of each individual dwelling are generated twice
for 24 months by using the parameter values obtained in the maximum likelihood estimation
along with an appropriate weight matrix. The first set of prices is assumed to be observed by the
investor, who uses this information together with his estimates of parameter values to make a
precise forecast for next 24 months. If the forecasted return is greater than the threshold, then he
will buy the house. The second set of prices is then used to evaluate the performance of
investment.

We consider three investors with differing amounts of information. Investor A is armed
with the ML estimates that p = 0.55 and A = 0.78 reported in Figure 1B. She uses this
information together with 24 months of history on housing prices to generate a price forecast for
the given house at the end of the next 24 months. Figure SA through D report the probability
distribution of the investor’s returns. Part A reports the returns from the naive rule: always
invest. Part B reports the distribution of returns for the same investor using the rule: invest if the
expected return exceeds zero. Part C reports the distribution under a more stringent five percent
rule, and part D imposes a ten percent rule.

Investor B is armed with less complete information. Based upon the results reported in
Figure 1A, she assumes p = 0 and A = 0.72. Figure 6A through C report the distribution of

returns to this investor using the 0, 5 and 10 percent rules respectively.

? For more thorough examination of such costs, see Stderberg (1995).
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Finally, Figures 7A and B report the distribution of returns for an investor who assumes
no spatial correlation and a random walk in house prices, i.e, p =0 and A = 1. The performance
of this investor is almost as bad as that of the person who always invests.

It is quite clear that the best econometrician is the richest investor.

V1. Cenclusions

Because of the special features of the housing market, we may anticipate that price
discovery and the diffusion of price information is more complicated than in many other
markets. In this paper, we test the departures from instantaneous diffusion of price information
over time and space. Using information on all condominium sales in Singapore during an eleven
year period, we test for random walks, mean reversion and serial correlation in house prices. We
rely upon multiple sales of more than ten thousand dwellings over the period to analyze the
structure of pricing errors.

Our empirical results quite clearly support mean reversion in house prices. Our statistical
tests reject the hypothesis of a random walk and they also reject the hypothesis of no serial
correlation against the alternative hypothesis of mean reversion. We also find significant spatial
dependence in prices.

The maximum likelihood estimate of serial correlation, 0.78 per month, suggests rapid
dissipation of any innovation in housing prices. After two months, about 39 percent of any
mispricing error is dissipated (i.e., 1-.78%). After six months, 77 percent is dissipated, and after a
year 98 percent is dissipated.

Our estimates of the level of housing prices, derived from the repeat sales model, do

suggest that there are only small differences in the house price levels estimated when serial and

18




spatial correlation is recognized. However, there are substantial differences in the estimated
returns to housing investment.

The finding of mean reversion may suggest that housing prices are forecastable and that
excess returns are possible for investors in this market. We use the monthly price series derived
from condominium sales to investigate this issue. We compute gross unleveraged real returns
monthly. In misspecified models, we do find evidence of a one period lag in real returns, i.e.,
real returns today are negatively related to real returns last month. When aggregate house prices
are calculated from micro models that permit mean reversion and spatial autocorrelation,
predictability in investment returns is completely absent.

Finally, we investigate the economic value of information about the spatial and temporal
autocorrelation in house prices in affecting investment returns in the housing market. Cur
analysis suggests that recognition of spatial and temporal factors can substantially increase the

returns to investment in the housing market.
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Table 2A. Forecastability of Investment Returns,

Singapore Condominiums, 1990-2000

(A=0.78 and p = 0.55)

n
R, =0y+ Y OLR_ +&,
i

Constant

Riq

oRr
El
DW statistics
F test

0.00183
(0.5822)

-0.12501
(1.5106)

0.001245
0.00984

1.926854
2.289821

0.00162
(0.5151)

-0.09863
{1.0981)

0.08302
(0.9866)

0.001253
0.00427
1.978786
1.29469

0.00168
(0.5426)

-0.11468
(1.2959)

0.16707
(1.8771)

0.10402
(1.2529)

0.001209
0.0272
1.894373
2.23648

0.00111
(0.3579)

-0.12307
(1.3603)

0.18579
(1.7469)

0.11251
{1.2511)

0.13853
(1.6644)

0.001199
0.036564
1.972382
2.267443
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Table 2B. Forecastability of Investment Returns,

Singapore Condominiums, 1990-2000

(A=10.72 and p = 0)

n
R =ay+ Y 0R  +&
I

Constant

Ris

OR
}_{2
DW statistics
F test

0.002065
{0.5616)

-0.19596
{2.4396)

0.001718
0.036965
2.010751
5.998046

0.00224

{0.6090)

-0.20156
{2.2651)

-0.04686
(0.5654)

0.001741
0.023941
1.853312
2.610564

0.00238
{0.6590)

-0.18813
(2.2785)

0.05824
{0.6666)

0.12224
(1.5063)

0.001658
0.041281

| 2.022047

2.891094

0.00183
(0.50286)

-0.21006
(2.3438)

0.06439
{0.7249)

0.14232
(1.5981)

012797
(1.5651)

0.00185
0.04117
1.984458
2.429682
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Table 2C. Forecastability of Investment Returns,

Singapore Condominiums, 1990-2000
(A=1andp=0)

Ry=0,+) OR.  +8&;
i

0.00257 000297  0.00352  0.00239
Constant (05350)  (0.6204)  (0.7289)  (0.5022)
R -0.33200 -0.39925  -0.39656  -0.38875

1 (4.1575)  (4.5480)  (4.4443)  (4.4217)

R 016017  -0.13323  -0.10233

t-2 (1.8958) (1.3938) (1.0854)

R 001123 0.04448

-3 (0.1241)  (0.4633)

R 0.24902
4 (2.6255)

or 0.00298%  0.002047 0.002952  0.002826
R® 0112091 0128102 0.119128  0.15169
DW statistics | 2132056 1979492  1.974094  1.983217
F test 17.42017  10.56818  6.887789  6.850136
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Figure 1A. Values of Log Likelihood Function at various values of A

assuming p=0.
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Figure 1B. Loglikelihood Surface at various values of A and p
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Figure 2. Hlustration of a unit shock in house prices over a neighberhood
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Figure 4A. Estimated Monthly Investment Returns of Condominium Housing
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Figure 4B. Estimated Monthly Investment Returns of Condominium Housing
in Singapore, 1990 — 2000.
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Figure 4C. Estimated Monthly Investment Returns of Condominium Housing
in Singapore, 1990 — 2000.

(A=1andp=0)
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Figure 5A.
Distribution of Returns for Investor who knows A = 0.78 and p = 0.55.
Investment Rule : Always Invest
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Figure 5B.
Distribution of Returns for Investor whe knows A = 0.78 and p = 0.55.
Investment Rule : 0%
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Figure 5C.
Distribution of Returns for Investor who knows A = (.78 and p = 0.55.
Investment Rule : 5%
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Figure 5D.
Distribution of Returns for Investor who knows A = 0.78 and p = 0.55,
Investment Rule : 10%
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Figure 6A.
Distribution of Returns for Investor who estimates A =0.72 and p = 0.
Investment Rule: 0%
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Distribution of Returns for Investor who estimates A =0.72 and p=0.
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Figure 6B.
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Figure 6C.
Distribution of Returns for Investor who estimates A = 0.72 and p = 0.
Investment Rule : 10%
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Probability

Figure 7A.
Distribution of Returns for Investor who assumes A =1 and p = 0.
Investment Rule : 0%
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Probability

Figure 7B.
Distribution of Returns for Investor who assumes A=1and p=90.
Investment Rule : 5%
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Appendix

Difficulties of M1. Estimation when p = 0:
An Iliustration

This appendix illustrates the difficulties encountered in maximizing the likelihood function in
equation (14) in the presence of spatial as well as temporal autocorrelation. We consider a
simple example. Suppose there are three houses in the sample; house A has been sold twice at ¢

=1y, >, B three times at £ = £;, #5, tzand C four times at f = ¢/, £, £3, t4. Let A =0.5, p=0.5,

62 =0.06,06, =01, =06, =1,5, =3 and £, = 5. Also let the distance between house A and
house B be 1, between house B and house C be 2 and between house A and house C be 3.

To compute E [(ei, —e, )(ekT - e )J, the elements of the matrix %, we need E|(&, —&, )&, — €. )|

and mim, .
First, the values of E|(&, — £, ), — & )| using above numbers, are, from Equation (10):

E[( 4_g! )2j= 2(1— 2" Iff;f +262 =0.28.
E[(gf -~ )‘*: =2l A= 1 ci ~|+202 =0.28
E[(af —E? )zi =21~ ao" (1 f‘; _|+20% =032
Elfes —oF ]= 20— ¥ fi& +20% =028
El&? -&5 )zi =21 - {1 ff;ﬁ +207 =0.32
E:(ﬁf 3 ) |=20-n {:*; +20% =032

Elgs -gr)er e )l= o -1 xa-f'+xz-«{l°;] o2 =-0.13

Blles - g7 Yes -5 )= e —1-ne +N2“‘*{ i } 62 =—0.13

-
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2
Efgs — g5 Jes — &8 )= Qo 1 e {TSL} ~o2 =-0.145
2
Efles e Yes 8 )= (ren —aimn e g {%ﬁj =_0.0075

Let the weight on a neighboring house be the inverses of distance, i.e.,

0 1 I3 1.5169 0.8764 0.4719
w=|1 0 y2|. Thus, (I-pW)" =|0.8764 1.5736 0.5393].
/3 12 0 04719 0.5393 0.2135

For w/m s, we have

7,m, =3.2916,
' m, =2.9625,
w,m. =1.7611,
n,m, =3.5334,
w7 =1.9164 and
n.7m. =1.9861.

Now when there is no spatial dependency, p =0,
I ={I-pW)™ =1, which implies
nn, =1, when i =k and 0, otherwise.

Then,

El.(er‘t € )(elrc € )J = 75.,' {EI.(E.:.: - gis )(Em - &ig )JXIJ‘“.&

=E|E, -&, )(Zi,,.z & )|, when i = k and 0, otherwise.

When p=0, innovations among houses are uncorrelated.

The block diagonal elements of T are
2
v, =£les-& 7}

Joele-ay] e )
VB{E[(&?—&?X&?—; Efes - lq
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elec—eeP] lles ~eces —ge)] Elles —e€ e -&f)
v.olmlee e —es)  lec-eer]  mlle ~eskes g9,
ellec —eees —&9)) lle—eokes el mles —&<)

then,
v, 0 0
z =[E [(en €y )(eln: "€k )]]= 0V, 0
0 0 V.
028 0 0 0 0 0 ]
0 028 —0.13 0 0 0
0 -013 032 0 0 0
(HZ= i
0 0 0 028 -0.13 -0.0075
0 0 0 -0.13 032 -0.145
0 0 0 —0.0075 -0.145 032

When there is spatial dependency, i.e.,p # 0, then innovations in houses are all correlated, and

T is no longer block diagonal. Indeed, we have,

[ 0.28a"m, 028%'m, -0.13x'm, 028w,  —0.13,m —0.0075x" ®,, |
0.28x,m, 0.28n,m, -0.13n,x, 0.28=, 7. -0.13nm, —0.0075n,x,
- -0.13n%n, ~0.13xn,m, 0.32n,m, -0.137, . 0.32n,m, —0.145n,%,
0.28n.m, 0.28xn.7, -0.13xn 7, 0287 .7, ~0.13n,x, —0.0075%,7,
-0.13a,x, -0.137,.x, 032a.m, ~0.137 .7, 0.32a,.m, —0.1457.7:,
|~ 0.0075n,m, —00075a,m, -0.145m.m, - 00075, —0.145x.x, 0327 =m,
T 092 083 -039 049 -023 -0.01]
0.83 099 -046 054 -025 -0.01
-039 -046 113 -025 0.61 -028
2L =

049 054 -025 056 -026 -0.01
-023 —-025 061 -026 064 -029
| —0.01 -0.0f -028 -0.01 -0.29 0.64
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The inverse of the sparse block diagonal matrix, illustrated in (1), can be computed rather easily,
even when ¥ is large. The inverse of the general matrix, illustrated in (2), can be

computationally burdensome.
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Appendix Table Al.
Generalized Least Squares Estimates of Price Index

Equation (13)
Spatially Correlated
and Mean Reversion Mean Reversion Random Walk
Constant 0.0723 0.0885 0.0783
{20.2685) (24.0443) (29.8365)
Feb,1980 0.1558 0.1951 0.1803
{1.0329) {1.4461) {0.7027)
Mar, 1990 0.1209 0.1502 0.1501
(0.8252) {1.1889) (0.5804)
Apr,1990 0.0713 0.0647 0.0732
(0.5057) (0.5397) {0.2912)
May,1990 (.1063 0.1219 0.1534
(0.7670) (1.04786) {0.6255)
Jun,1920 0.1078 0.0952 0.1007
{0.7579) {0.7824) {0.3975)
Jul,1990 0.0549 0.0333 0.0221
(0.3770) (0.2651) (0.0841)
Aug, 1990 0.0971 0.0592 0.0235
{0.6488) {0.4568) {0.0882)
Sep,1990 0.0787 -0.0286 -0.0308
(0.5245) (0.2327) {0.1197)
Oct, 1990 0.0922 0.0127 0.0003
{0.6301) (0.1034) {0.0012)
Nov,1990 0.0498 0.0355 0.0127
(0.3309) {0.2742) (0.0477)
Dec,1980 -0.0107 -0.0185 0.0129
(0.0745) (0.1548) (0.0513)
Jan,1991 0.0256 -0.0048 -0.0341
(0.1662) {0.0360) (0.1257)
Feb,1991 0.0451 0.0154 -0.0012
(0.3126) (0.1258) (0.0048)
Mar, 1991 0.0608 0.0605 0.0793
{0.4353) (0.5163) (0.3228)
Apr,1991 0.0979 0.0879 0.0779
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May, 191

Jun,1991

Jul, 1891

Aug,1991

Sep,1951

Oct, 1991

Nov,1991

Dec,1981

Jan,1992

Feb,1982

Mar,1992

Apr,1992

May,1992

Jun, 1992

Jui, 1892

Aug,1992

Sep,1992

Oct, 1992

(0.7135)
0.0851
(0.6160)
0.0866
(0.6260)
0.0635
(0.4563)
0.0576
(0.4118)
0.1152
(0.8251)
0.0402
(0.2874)
0.0922
(0.6649)
0.1292
(0.9205)
0.1140
(0.8000)
0.0888
(0.6337)
0.1637
(1.1530)
0.1323
(0.9497)
0.1975
(1.4453)
0.2065
(1.5159)
0.2251
(1.6548)
0.2325
(1.7074)
0.2328
(1.7160)
0.2574
(1.9007)

(0.7690)
0.1380
(1.1978)
0.1258
(1.0934)
0.0956
(0.8233)
0.1110
(0.9482)
0.1448
(1.2364)
0.0895
(0.7597)
0.1114
(0.9552)
0.1741
(1.4721)
0.1077
(0.8965)
0.1028
(0.8692)
0.1610
(1.3559)
0.1128
(0.9653)
0.1861
(1.6271)
0.2154
(1.8875)
0.2323
(2.0379)
0.2529
(2.2157)
0.2342
(2.0608)
0.2616
(2.3065)

(0.3229)
0.1540
(0.6336)
0.1131
(0.4689)
0.0690
(0.2856)
0.0562
(0.2301)
0.0982
(0.4003)
0.0313
(0.1276)
0.0974
(0.3994)
0.1016
(0.4149)
0.0585
(0.2364)
0.0592
(0.2394)
0.1419
(0.5726)
0.0714
(0.2921)
0.1522
(0.6310)
0.1430
(0.5954)
0.2091
(0.8695)
0.1822
(0.7585)
0.2371
(0.9908)
0.2457
(1.0279)
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Nov,1992

Dec,1992

Jan,1993

Feb,1993

Mar, 1993

Apr,1993

May, 1993

Jun,1993

Jul, 1993

Aug, 1993

Sep,1993

Oct, 1993

Nov,1993

Dec,1993

Jan,1994

Feb,1894

Mar,1994

Apr,1994

May, 1894

0.2562
(1.8904)
0.2791
(2.0575)
0.2819
(2.0776)
0.2889
(2.1311)
0.3233
(2.3950)
0.3376
(2.5014)
0.3318
(2.4590)
0.3777
(2.7987)
0.3657
(2.7068)
0.3945
(2.9205)
0.3830
(2.8342)
0.4218
(3.1221)
0.4328
(3.2014)
0.4460
(3.2970)
0.4185
(3.0941)
0.4345
(3.2099)
0.4671
(3.4597)
0.5101
(3.7785)
0.5586

0.2602
(2.2918)
0.2842
(2.4990)
0.2863
(2.5166)
0.3026
(2.6637)
0.3378
(2.9889)
0.3589
(3.1782)
0.3445
(3.0512)
0.3978

" (3.5245)
0.3636
(3.2151)
0.4094
(3.6196)
0.3795
(3.3547)
0.4256
(3.7618)
0.4413
(3.8999)
0.4507
(3.9801)
0.4209
@.7171)
0.4335
(3.8250)
0.4734
(4.1892)
0.5121
(4.5339)
0.5687

0.2438
(1.0197)
0.2801
(1.1714)
0.2415
(1.0103)
0.2952
(1.2357)
0.3305
(1.3842)
0.3399
(1.4239)
0.3500
(1.4663)
0.3825
(1.6025)
0.3595
(1.5059)
0.3912
(1.6379)
0.3775
(1.5810)
0.4251
(1.7804)
0.4360
(1.8260)
0.4346
(1.8200)
0.4130
(1.7293)
0.4449
{1.8630)
0.4690
(1.9649)
0.5358
(2.2449)
0.5398
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Jun, 1994

Jul, 1994

Aug,1994

Sep,1994

Oct, 1994

Nov,1894

Dec,1894

- Jan, 1995

Feb,1995

Mar,1995

Apr,1995

May, 1895

Jun, 1895

Jul 1995

Aug,1995

Sep, 1995

Oct, 1995

Nov,1995

(4.1432)
0.5590
(4.1409)
0.5671
(4.2007)
0.5489
(4.0663)
0.5732
(4.2448)
0.5910
(4.3742)
0.6011
(4.4524)
0.6528
(4.8308)
0.6076
(4.4900)
0.6137
(4.5219)
0.6394
(4.7338)
0.7110
(5.2592)
0.6854
(5.0720)
0.6780
(5.0134)
0.6978
(5.1572)
0.6941
(5.1364)
0.7189
(5.3085)
0.6993
(5.1713)
0.7206
(5.3237)

(5.0423)
0.5525
(4.8913)
0.5683
(5.0288)
0.5454
(4.8276)
0.5746
(5.0857)
0.5984
(5.2896)
0.6107
(5.4084)
0.6602
(5.8353)
0.6040
(5.3301)
0.6096
(5.3602)
0.6437
(5.7066)
0.7134
(6.3037)
0.6679
(5.9184)
0.6880
(6.0811)
0.6919
(6.1082)
0.6859
(6.0623)
0.7107
(6.2658)
0.6899
(6.0904)
0.7010
(6.1835)

(2.2619)
0.5596
(2.3445)
0.5756
(2.4114)
0.5479
(2.2956)
0.5768
(2.4163)
0.6327
(2.6499)
0.6156
(2.5792)
0.6721
(2.8154)
0.6571
(2.7521)
0.6462
(2.7053)
0.6337
(2.6557)
0.6945
(2.9086)
0.6552
(2.7451)
0.7327
(3.0690)
0.7352
(3.0790)
0.7085
(2.9673)
0.7105
(2.9737)
0.7134
(2.9871)
0.7343
(3.0742)
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Dec,1995

Jan,1996

Feb,1996

Mar,1996

Apr, 1996

May,1996

Jun,1896

Jul, 1996

Aug,1996

Sep,1996

Oct, 1996

Nov,1996

Dec,1996

Jan,1997

Feb,1997

Mar,1997

Apr, 1997

May, 1897

Jun, 1897

0.7027
(5.1972)
0.7360
(5.4448)
0.7720
(5.7070)
0.7654
(5.6618)
0.7904
(5.8594)
0.8211
(6.0808)
0.7718
(5.6650)
0.7267
(5.3541)
0.8052
(5.9092)
0.7960
(5.8311)
0.8109
(5.9378)
0.8323
(6.0937)
0.8234
(6.0273)
0.8294
(6.0645)
0.7814
(5.7195)
0.8192
(6.0178)
0.8267
(6.0753)
0.8430
(6.2181)
0.8249

0.6778
(5.9881)
0.7458
(6.5930)
0.7750
(6.8448)
0.7606
(6.7207)
0.7854
(6.9563)
0.8034
(7.1100)
0.7466
(6.5290)
0.7025
(6.1729)
0.7931
(6.9342)
0.7977
(6.9524)
0.8351
(7.2746)
0.8263
(7.1921)
0.8265
(7.2052)
0.8244
(7.1604)
0.7749
(6.7468)
0.8300
(7.2674)
0.8233
(7.2133)
0.8347
(7.3594)
0.8086

0.7253
(3.0372)
0.7737
(3.2396)
0.7839
(3.2828)
0.7922
(3.3174)
0.7922
(3.3185)
0.8044
(3.3687)
0.7678
(3.2046)
0.7386
(3.0833)
0.7982
(3.3272)
0.7950
(3.3125)
0.8471
(3.5233)
0.8449
(3.5162)
0.8216
(3.4217)
0.8342
(3.4711)
0.7928
(3.2998)
0.8522
(3.5523)
0.8377
(3.4920)
0.8581
(3.5849)
0.8208
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Jul, 1997

Aug, 1997

Sep,1997

Oct, 1897

Nov, 1997

Dec,1997

Jan,1998

Feb,1988

Mar,1998

Apr,1998

May, 1998

Jun,1998

Jui, 1898

Aug, 1998

Sep,1998

Oct, 1998

Nov,1998

Dec,1998

(6.0618)
0.8150
(6.0277)
0.8123
(5.9580)
0.7973
(5.8366)
0.7525
(5.5050)
0.8333
(6.0622)
0.7338
(5.3464)
0.6894
(4.9434)
0.6089
(4.4021)
0.6070
(4.4081)
0.5562
(4.0845)
0.6077
(4.4521)
0.5513
(4.0406)
0.5016
(3.6672)
0.4324
(3.1531)
0.4279
(3.1124)
0.3843
(2.8180)
0.4056
(2.9822)
0.4267
(3.1459)

(7.0740)
0.7962
(7.0124)
0.8022
(7.0087)
0.7862
(6.8454)
0.7490
(6.5162)
0.8238
(7.1098)
0.7235
(6.2632)
0.6579
(5.5769)
0.5977
(5.1125)
0.6158
(5.3063)
0.5361
(4.6896)
0.6102
(5.3231)
0.5462
(4.7686)
0.4852
(4.2231)
0.4433
(3.8505)
0.4173

(3.6074)

0.3754
(3.2943)

0.3871
(3.3957)

0.4304
(3.7891)

(3.4205)
0.8350
(3.4871)
0.8281
(3.4502)
0.8038
(3.3434)
0.7653
(3.1824)
0.8049
(3.3305)
0.7599
(3.1583)
0.6879
(2.8396)
0.6346
(2.6186)
0.6404
(2.6553)
0.5332
(2.2219)
0.5963
(2.4830)
0.5893
(2.4565)
0.4900
(2.0423)
0.4544
(1.8870)
0.4548
(1.8873)
0.3837
(1.5995)
0.4386
(1.8309)
0.4662
(1.9480)
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Jan,1999

Feb,1999

Mar,1999

Apr,1999

May, 1999

Jun, 1899

Jul, 1998

Aug,1999

Sep,1999

Oct, 1999

Nov,1999

Dec,1999

Jan,2000

Feb,2000

Mar,2000

Apr,2000

May,2000

Jun,2000

Jul,2000

0.4441
(3.2724)
0.4647
(3.4311)
0.4715
(3.4818)
0.5208
(3.8550)
0.5865
(4.3449)
0.6364
(4.7103)
0.6522
(4.8237)
0.6785
(5.0168)
0.7098
(5.2428)
0.6892
(5.0844)
0.6741
(4.9755)
0.7126
(5.2601)
0.7398
(5.4596)
0.6888
(5.0800)
0.6989
(5.1530)

' 0.6763

(4.9850)
0.6927
(5.1093)
0.6436
(4.7392)
0.6122

0.4341
(3.8169)
0.4674
(4.1186)
0.4651
(4.1004)
05135
(4.5412)
0.5849
(5.1773)
0.6299
(5.5679)
0.6442
(5.6924)
0.6601
(5.8284)
0.6989
(6.1627)
0.6702
(5.8988)
0.6609
(5.8231)
0.6892
(6.0719)
0.7964
(7.0242)
0.6739
(5.9308)
0.6741
(5.9307)
0.6530
(5.7416)
0.6864
(6.0394)
0.6261
(5.4978)
0.6027

0.4804
(2.0048)
0.5177
(2.1627)
0.4311
(1.8023)
0.5649
(2.3637)
0.6322
(2.6460)
0.6414
(2.6832)
0.6526
(2.7291)
0.6705
(2.8037)
0.7720
(3.2269)
0.6753
(2.8215)
0.6578
(2.7504)
0.6564
(2.7431)
0.8203
(3.4278)
0.6945
(2.8994)
0.6833
(2.8506)
0.6605
(2.7525)
0.7060
(2.9456)
0.6414
(2.6707)
0.5442
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Aug,2000
Sep, 2000
Oct,2000
Nov,2000
Dec,2000

Presale

P

2
G
02

=

Log Likelihood

(4.5082)
0.6352
(4.6749)
0.6253
(4.6049)
0.6148
(4.5153)
0.5879
(4.1855)
0.5345
(2.9333)
-0.0012
(6.7099)

0.78
0.56
0.0077

0.0054
23743.95

(5.2867)
0.6191
(5.4318)
0.6112
(5.3657)
0.5902
(5.1643)
0.5592
(4.6844)
0.5794
(3.6423)
-0.0011
(7.5041)

0.72

0.0133

0.0016
22498.75

(2.2664)
0.4823
(2.0103)
0.7734
(3.2213)
0.5754
(2.3908)
0.5738
(2.3322)
0.5876
(1.8693)
-0.0010
(4.2092)

0.0009

7678.98

Note: The numbers in parentheses are t-statistics.
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