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Abstract

Snacktime for Hungry Black Holes:
Theoretical Studies of the Tidal Disruption of Stars

by

Linda Elisabeth Strubbe
Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Eliot Quataert, Chair

A star that wanders too close to the massive black hole (BH) in the center of a galaxy is
headed for trouble: within a distance rT ∼ r⋆(MBH/M⋆)

1/3 (where r⋆ and M⋆ are the star’s
radius and mass, and MBH is the BH’s mass), the BH’s tidal gravity overcomes the binding
gravity of the star, and the star is shredded into a stream of stellar debris. Studying this
process of tidal disruption has the potential to give us insights into how central BHs and
their surrounding stellar population grow and evolve. Motivated by new and upcoming rapid-
cadence optical transient surveys, which should detect and allow study of tidal disruption
events (TDEs) in unprecedented detail, I make theoretical predictions of the observable
properties of these events to aid in their detection, identification, and interpretation. I find
that stellar debris falling towards the BH is likely driven off again by radiation pressure at
early times when the feeding rate is super-Eddington: this outflow has a large photosphere
and relatively cool temperature, producing a luminous (∼ 1043− few×1044 erg s−1) transient
event at optical wavelengths. I predict that new transient surveys such as the Palomar
Transient Factory are likely to find tens to hundreds of these events. I further predict the
spectroscopic signature of super-Eddington outflows—broad, blueshifted absorption lines
in the ultraviolet—which should help confirm and teach us more about TDE candidates.
Finding that the observable appearance of TDEs depends not only on BH mass but on
pericenter radius of the star’s last fateful orbit, I derive a theoretical expression for the
disruption rate as a function of pericenter and apply it to the galaxy NGC 4467 using real
observational data, laying the groundwork for more extensive studies in the future. Finally,
I also present my work on the debris disk surrounding the star AU Mic, in which I propose
an explanation for the physical processes of dust dynamics that give rise to the observed
disk profile.
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Chapter 1

Introduction

1.1 Overview: for non-scientists and scientists

Little did the star know, this was going to be its final orbit, ever. The star was just an
ordinary star, several billion years old, very similar to our sun, in the central region of an
ordinary galaxy similar to our own Milky Way. Only recently, small gravitational jostlings
from other stars in the neighborhood had succeeded in nudging this star’s orbit into the danger
zone surrounding the mighty black hole at the galaxy’s center. For its final year, the star
hurtled towards the black hole at close to the speed of light—feeling the black hole’s gravity
ever more intensely as the distance from the black hole diminished—until it arrived at a spot
no further from the black hole than our sun is from us here on earth: the edge of the danger
zone. As the star reached that spot, the difference in the black hole’s gravity between the
opposite sides of the star (nearest and furthest from the black hole) overwhelmed even the
star’s own gravity that had been holding the star together. The outer layers of the star began
to be ripped off, then stellar layers deeper and deeper inside, until there was no longer any
star at all—only a long stream of stellar gas stretching around the black hole.

Stellar gas now flowed swiftly towards the black hole. As the high-speed flow funneled in,
gas particles collided with each other, heating the gas to enormous temperatures and releasing
immense amounts of energy. Some stellar gas was pushed back out and away from the black
hole by that extreme release of energy. The remaining gas closely circled the black hole, the
circular path shrinking and shrinking like water spiraling down a drain, until gas started
spilling over the black hole’s edge. This gas released yet more energy as neighboring parcels
of gas rubbed past each other, like rubbing your hands together to warm them on a chilly day.
All in all, so much energy was released so quickly that for several weeks, the region around
the black hole lit up almost as bright as the entire galaxy, 100 billion times as bright as the
star had ever shone during its lifetime.
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This is the story of the tidal disruption of a star—a dramatic astronomical firework
that has the potential to reveal secrets about giant black holes and the inner workings of
galaxies.1 Just about every galaxy in the Universe—ours included—is thought to house a
giant black hole in its center. A black hole is a creature so incredibly dense that even light
can’t escape from it, so it looks black. We understand reasonably well how fairly small black
holes form—stars at the end of their lives run out of fuel and can collapse under their own
gravity—but there are major questions about how the giant black holes in the centers of
galaxies came about. The overall idea is that black holes form small but then grow over time
by eating nearby stuff in the galaxy: stuff like stars or gas, but mostly gas. An important
point is that when black holes eat, their meal heats up and shines very brightly, just before
they swallow it. Seeing the light from feasting black holes gives us a way of learning about
how black holes eat and grow. Black holes probably feast the most when two galaxies crash
into each other and merge into one: gas trajectories in the merging galaxy are thrown into
disarray, and so some of the gas ends up flying right into the black hole. The details of how
all of this works, though, are not yet understood very well.

One path to understanding this better is to watch closely while a black hole eats a star—
a mini-version of a black hole gorging on a galaxy’s worth of gas. If a star’s orbit carries it
too close to the black hole, the black hole’s gravity rips it apart, sending some of the star’s
gas down into the black hole. Just like bigger meals, the star’s gas should shine brightly as
the black hole eats it, and so we should be able to see it. Unfortunately, telescope surveys
of the sky haven’t been able to find many of these events so far, because the telescopes and
cameras haven’t been powerful enough. But now, with new technology, several new powerful,
fast-paced surveys are starting up. There’s a twist though: while everyone thought stellar
meals would be so hot that they’d shine at X-ray wavelengths, these new surveys are at
optical wavelengths (the kind of light we see with our eyes). Will the new surveys be able to
find black holes eating stars?

My thesis work says that they will. I have made theoretical calculations to predict
what it should look like when a black hole eats a star: how bright it should be, how long the
brightness should last, what color it should be, and what the spectrum should look like (when
the light is passed through an instrument like a prism, to separate the light into different
wavelengths). I made these calculations by building on previous work. Earlier studies used
simple physics to theorize how quickly stellar gas is fed to the black hole. Many other studies
have investigated black holes eating gas in other situations—small, medium and large black
holes eating gas quickly or slowly. The process is actually extremely complicated: magnetic
fields are created that help the gas drain into the black hole, while all that light created when
the gas heats up can push the gas around. Astronomers observe black holes eating, create
models to explain what they see, use the models to make predictions, test the predictions
by observing more black holes, refine the models, etc., improving our understanding all the
time. I adapted some of these results to the situation of a black hole eating a star, and

1To keep this section uncluttered, I’m refraining from giving references here; the technical introductory
sections §§1.2 and 1.3 contain references for the ideas and work mentioned here.
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used them to predict what we’ll see. Many of my calculations are simple—I can just write
down a few equations on a piece of paper—which makes them easier to understand than
complicated work on a computer. The art, though, lies in choosing the correct equations:
they’re simple because they capture only the most important physics—which means I have
to make sure I have a good idea of what’s important and what’s not, so I don’t end up
leaving out something important.

One of the most significant conclusions of my thesis is that, as I mentioned, these new
optical surveys have the potential to find lots of black holes eating stars. They could find
hundreds, compared with the handful we know about today. The reason is that after a star
is disrupted, its gas flows very quickly towards the black hole, heating up a lot and creating
lots of photons (particles of light). Photons can actually push back on gas particles, like
hurling tennis balls up at falling balloons, so that much of the star’s gas is blown back out
from the black hole. (It’s not an explosion, but you can picture the gas expanding out from
the black hole in all directions kind of like that.) Because the gas is now fairly far from the
black hole, it’s cooler in temperature than was previously thought, which means it shines in
optical light, not (just) X-rays. They shine very brightly, too—almost as bright as a whole
galaxy! And they appear and disappear on very human timescales (unusual for astronomy),
lasting a few days up to a few weeks.

Along the way, I also made calculations about how often we should expect black holes
to eat stars. Many people have studied this question before, but my work takes a different
slant: I wondered how often stars approach very close to the black hole on their last fateful
orbits, versus how often stars are only just torn apart as they graze the edge of the black
hole’s disruption zone. My earlier work showed that we should be able to tell the difference
between these two scenarios when we watch a star get eaten, because the former is more
violent. I concluded that the violent events are significantly less frequent than the gentler
ones. Another part of my research—unrelated to black holes eating stars—was studying a
disk of dust around a young star. The dust is probably created when rocks—baby planets—
collide as they orbit the star. I explained why we see the dust arranged the way it is, helping
give us a foundation for using disks like this to improve our understanding of how planets
form.

Back to black holes eating stars. Excitingly, after I published my first results a couple of
years ago, candidate black-holes-eating-stars have been identified using optical data for the
very first time! And the way these events look is quite consistent with my predictions. These
surveys are just getting underway, and are likely to find many more events soon, giving us
the chance to study black holes eating stars in far greater detail than ever before. Stars may
be just a little snack for a huge black hole, but learning about how black holes eat these
morsels will teach us about how black holes eat when a flood of gas comes their way—say,
when two galaxies merge together. Ultimately, my work will help us understand better how
black holes in the centers of galaxies—including the center of our own Milky Way—grew up
from baby black holes all the way into giants.
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1.2 Astrophysical context for studying

the tidal disruption of stars (technical)

Observational studies over the past decade have shown that the nuclei of all (or nearly
all) moderately massive galaxies host a massive black hole (BH) (e.g., Richstone et al. 1998),
and that the mass of the BH correlates with properties of the surrounding stellar bulge (e.g.,
Ferrarese & Merritt 2000; Gebhardt et al. 2000a; Häring & Rix 2004). The observed BH-
bulge correlations are quite surprising since the bulge extends far outside the region where
the BH’s gravity can be felt, and suggest that BHs and bulges evolve together, somehow
checking each other’s growth (e.g., Silk & Rees 1998; Di Matteo et al. 2005). However,
this “feedback” is poorly understood—and so “How do black holes work and influence their
surroundings?” is one of the 2010 Decadal Survey’s science frontier questions (National
Research Council; Committee for a Decadal Survey of Astronomy and Astrophysics 2011).
The connection between BH growth and bulge growth stands as one of the most important
questions in galaxy formation.

Studying the tidal disruption of stars offers promising avenues for investigating the BH-
bulge connection. An unlucky star that passes within rT ∼ r⋆(MBH/M⋆)

1/3 of a galaxy’s
central black hole (BH) will disrupt as the BH’s tidal gravity exceeds the star’s self-gravity.
(Here, r⋆ and M⋆ are the mass and radius of the star, and MBH is the mass of the BH.) For
BHs of mass MBH ≤ 108M⊙, the disruption of a solar-type star occurs outside the horizon
and is likely accompanied by a week- to year-long electromagnetic flare (e.g., Rees 1988).
Detecting and studying these flares (“tidal disruption events,” or TDEs) has the potential
to teach us about BHs in galactic nuclei in several ways, which we summarize quickly and
then elaborate on further through this section.

1. A TDE indicates the presence of a BH in a particular galaxy, and can offer an estimate
of the BH’s mass. Direct detections and mass measurements of BHs in galactic nuclei
are otherwise only possible in a very restricted set of galaxies.

2. The accretion of stellar gas onto the BH in the aftermath of a star’s disruption provides
a “clean lab” for observationally studying accretion physics, wherein we have an idea
of the mass and dynamics of the gas being fed to the BH. Understanding this accretion
process will help us better understand the physics of gas accretion onto BHs during
galaxy mergers as well.

3. Galaxy and BH mergers likely leave their mark on the structure of galactic nuclei,
but particularly on scales well below the resolution accessible to imaging studies. The
observed rate of TDEs may in future be able to indicate the structure of galactic nuclei
close to the BH as a function of larger galaxy properties.

4. The observed rate of TDEs will also indicate how important consumption of stars is
in the process of BH growth for different BH masses and galaxy types.
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Much of my thesis work has been to make detailed predictions for the observational
appearance of TDEs. Although attempts over the last ∼ 15 years to observationally find
and study TDEs have been challenged by sparse amounts of data, we are now entering a
new era of wide-field rapid-cadence transient surveys with the potential to detect and study
TDEs in unprecedented detail. I have made predictions to help these new surveys find and
interpret tidal disruptions—with the aim of using TDEs to improve our understanding of
BH and bulge co-evolution. In this section, I will describe in detail each of these four aspects
of how TDEs can teach us about BHs and their surrounding galactic nuclei, at the same
time highlighting physical concepts and phenomenology that inform our predictions about
TDEs.

1.2.1 The presence and masses of central black holes

Quasars (or quasi-stellar objects: QSOs), first uncovered by radio surveys in the 1950s
(see Krolik 1999, for review), were the first signposts to the presence of giant BHs residing
in very distant galaxies. The extreme luminosity of these objects could only plausibly be
explained by high rates of gas accretion onto very massive (∼> 108M⊙) BHs (e.g., Rees 1977).
In the decades since these first discoveries, more directly detecting and weighing BHs has
become possible via several methods—it proves to be a challenging undertaking, but tidal
disruption events should offer an important new approach.

The BH in the center of our Galaxy can be studied most directly, by monitoring (using
adaptive optics) the proper motion of stars around an unseen central object (almost certainly
a BH) of mass MBH ≈ 4 × 106M⊙ (e.g., Ghez et al. 2008; Genzel et al. 2010). In external
galaxies, however, direct imaging of individual stars in this way is not possible. A technique
similar in spirit is to image the central regions of moderately massive nearby galaxies at
very high spatial resolution, so that the BH’s radius of influence can be resolved. The BH’s
radius of influence, rinf ∼ GMBH/σ

2
b, is the location inside which the gravity of the BH

dominates the gravity of the surrounding stars (σb refers to the stellar velocity dispersion
in the bulge). This photometric information is accompanied by a long-slit spectrum across
the center of the galaxy, which gives the velocity dispersion as a function of radius. This
can be used to estimate a BH mass very simply [GMBH/r = σ2(r)], or to calculate MBH

more exactly by fitting families of stellar orbits to the surface brightness profile and velocity
dispersion data (e.g., Gebhardt et al. 2000b). This same technique can also be performed
using observations of gas rather than starlight (e.g., Atkinson et al. 2005). Most recently, BH
mass measurements are beginning to be undertaken using two-dimensional velocity dispersion
data with integrated field units (e.g., Shapiro et al. 2006; McConnell et al. 2011). Most of
these studies require the Hubble Space Telescope or adaptive optics, and are only possible for
our nearest dozens of moderately massive neighbor galaxies, because only in these galaxies
can we spatially resolve rinf .

Another technique to weigh BHs employs active galactic nuclei (AGN). (AGN are similar
to quasars, but less luminous relative to their host galaxy so that the host galaxy is actually
visible.) One method is called reverberation mapping (e.g., Peterson et al. 2004). AGN
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light curves often exhibit time variability, brightening temporarily presumably as the mass
accretion rate rises due to some instability. The variability is observed to occur at different
times in different emission components: the optical/UV/X-ray continuum emission (thought
to come from an accretion disk close to the BH) brightens first, followed later in time by the
brightening of broad emission lines. The time lag is interpreted as light travel time from the
accretion disk out to a location in the broad line region (BLR); in combination with the width
of the broad line (which gives the velocity), these measurements can be used to estimate the
BH mass.2 Reverberation mapping was used to discover an empirical relation between BLR
line luminosity and location in the BLR, which allows a BH mass measurement from a single
epoch of spectroscopy (e.g., Kaspi et al. 2005). And finally, observations of water masers in
galactic nuclei can also yield BH mass measurements (e.g., Greene et al. 2010): the orbital
motion of water masers can be measured very precisely with radio interferometry, and then
fit to a model potential.

All of these observational BH studies have led to several important conclusions: (almost)
all moderately massive galaxies host a massive BH at their center (e.g., Richstone et al. 1998),
and the mass of the BH correlates with the host galaxy3 bulge’s stellar mass, luminosity,
and velocity dispersion (e.g., Ferrarese & Merritt 2000; Gebhardt et al. 2000a; Häring & Rix
2004). However, several interesting caveats to these conclusions are in order. First, these
correlations hold with significantly larger scatter for lower-mass BHs in the ∼ 105 − 107M⊙
range (especially those hosted by “pseudobulges,” galactic nuclei that are flatter and more
rotation-dominated than classical bulges) (e.g., Greene et al. 2008); indeed a few low-mass
galaxies have been found to host no massive BH at all (e.g., Gebhardt et al. 2001). Second,
the above techniques for measuring MBH are possible for only a small number of galaxies:
those that are very nearby and moderately massive (so that we can resolve the radius of
influence), and those that host an AGN (or water masers). If the correlations are different
for more distant galaxies, lower-mass galaxies, or non-AGN, there is little way we would
know currently.

As I show in Chapters 2 and 3, the luminosities, peak wavelengths, evolution timescales,
and spectral lines of tidal disruption events all depend on the mass of the BH. TDEs turn
out to be bright at optical wavelengths even for ∼ 105 − 106M⊙ BHs, and may be visible
as far away as z ∼ 1. Thus, observationally studying the tidal disruption of stars offers an
exciting new technique for estimating BH masses, even in fairly low-mass or distant galaxies,
and does not depend on the presence of an AGN.

1.2.2 The orbits of stars in galactic nuclei

Not only can we measure BH masses directly in only a few dozen galaxies, we can
only measure the distribution of stars (their number density and velocities as a function
of location) close to the BH in an even more limited set of galaxies. Yet the structure

2Note that the zero-point in this method is calibrated to the dynamically measured MBH–σ relation, to
resolve geometrical ambiguities.

3A “bulge” means an entire elliptical galaxy, or the bulge in the center of a spiral galaxy.
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of the nucleus of our Milky Way galaxy is richly complex: there is a circumnuclear disk of
molecular gas, an ionized gas structure called the “mini-spiral,” dense stellar “superclusters,”
and either one or two disks of stars right in the central parsec (e.g., Lu et al. 2009; Genzel
et al. 2010). Our neighbor the Andromeda galaxy (M31) harbors an interesting nuclear
region as well, with a disk of stars orbiting the central BH on aligned eccentric orbits (e.g.,
Peiris & Tremaine 2003). These tantalizing observations, which likely carry imprints of the
galaxies’ and BHs’ histories, suggest that the nuclei of many galaxies have interesting stories
to tell, even though we cannot measure such detail in distant galaxies. Observing how often
BHs tidally disrupt stars can offer us a new window into the structure of galactic nuclei,
which can inform our understanding of how they formed.

I will now quickly review observations of the nuclei of the dozens of galaxies nearby
enough for high-resolution photometric and kinematic studies. The nuclei of nearby “classi-
cal” galaxy bulges typically exhibit a broken power-law surface brightness profile that breaks
at a radius of a few to tens of parsecs (e.g., Faber et al. 1997). There may be a dichotomy
between galaxies with a shallow inner slope (“core galaxies”) and a steeper inner slope (“cusp
galaxies”) (e.g., Lauer et al. 1995). Integral field studies show that bulge galaxies appear
to comprise both “slow rotators” dominated by random stellar motions, which often show
misaligned photometric and kinematic axes indicating that their shape is triaxial, and “fast
rotators” with significant stellar orbital angular momentum that tend to be axisymmetric
in shape (e.g., Cappellari et al. 2007). The disks of disk galaxies are supported by rotation,
and often show large-scale asymmetric features such as a bar or spiral arms. In the nuclei
of many disk galaxies (∼ 75% of local late-type spirals), the surface brightness profile rises
sharply at the innermost radii, indicating the presence of a nuclear star cluster: these are
massive (∼ 106 − 107M⊙), compact (several pc across), and can show a high degree of rota-
tional support (e.g., Böker et al. 2002; Seth et al. 2008b). Tens of nearby galactic nuclei also
appear to be “pseudobulges,” observationally distinguished from classical bulges by their
more flattened shapes, more ordered stellar velocities relative to random, exponential sur-
face brightness profiles, and often nuclear structure such as a bar or spiral arms (Kormendy
& Kennicutt 2004). Pseudobulges range from a prominent galaxy component to tiny, con-
taining just a few percent of the mass in giant virtually pure-disk galaxies (Kormendy et al.
2010). What processes produce this diversity of galaxy structures?

The hierarchical clustering picture of galaxy formation theorizes that galaxies grow by
merging repetitively (White & Rees 1978). Major galaxy mergers scramble the galactic
potential: any pre-existing galactic disk that had grown by gas accretion or minor mergers
violently relaxes into a classical bulge. Large-scale gravitational instability (for example, a
galactic bar) drives gas to the galactic nucleus, where it forms stars and feeds the central black
hole(s) (Barnes & Hernquist 1991). Dynamical friction causes the BHs from both galaxies to
make their way to the center of the merging galaxies. Through interactions with the gas and
stars in the nucleus, the BHs give up their angular momentum, and eventually can merge via
the emission of gravitational waves (e.g., Holz & Hughes 2005). The structure in the nucleus
of the merging galaxies must affect the ability of BHs to lose angular momentum, and the
merging BHs must also leave their mark on the nuclear structure of the merged galaxy. For



Section 1.2. Astrophysical context 8

example, BHs likely lose angular momentum by kicking stars out of the nuclear region, which
may leave the nucleus relatively empty, in line with observations of core galaxies (e.g., Lauer
et al. 2005). Meanwhile, gas flowing to the galaxy’s center and feeding the BH may form
a massive nuclear star cluster (see Ferrarese et al. 2006; Wehner & Harris 2006; Seth et al.
2008a), and/or leave behind an eccentric disk of gas that forms into stars like what is seen in
the nucleus of M31 (e.g., Hopkins & Quataert 2010). Later on, after the last major merger,
it is thought that continued gas accretion and/or minor mergers can grow a galactic disk
around the classical bulge. On the other hand, galaxies containing a pseudobulge (rather
than a classical bulge) may have experienced no major mergers at all: their much slower
secular evolution is likely instead driven by interactions between gas clouds and stars with
galaxy-scale structures like a bar or spiral, which funnel matter to the center triggering star
formation (Kormendy & Kennicutt 2004).

This wide variety of orbital properties of stars in the nuclei of galaxies should lead to
a variety of rates of tidal disruption as a function of galaxy type. The basic mechanism
for putting stars on orbits bound for the BH’s disruption zone is gravitational encounters
with other stars: two-body relaxation (e.g., Frank & Rees 1976). This mechanism is likely
dominant in spherically symmetric and isotropic nuclei. Other possible mechanisms include
resonant relaxation (if stars deep in the BH’s potential well dominate the rate: Hopman
& Alexander 2006) or gravitational encounters with giant molecular clouds (if there are
enough GMCs close to / inside the BH’s sphere of influence: Perets et al. 2007). Thirdly,
triaxial or asymmetrical galactic potentials (such as is produced by a bar, spiral, or eccentric
disk) produce chaotic stellar orbits which can carry stars to the BH’s disruption zone without
requiring gravitational scattering (Merritt & Poon 2004). Stars in the vicinity of two merging
BHs can be kicked onto chaotic orbits bound for disruption as well (e.g., Chen et al. 2009).
Observing the rate of tidal disruption in various galaxy types can therefore offer an important
probe of the structure of galactic nuclei—even in galaxies much too far away to measure the
structure directly—which can help us learn about the galaxies’ and BHs’ histories. Chapters
2 and 3 describe my work on predicting observable properties of TDEs in order to help
transient surveys begin to make these rate measurements. Chapter 4 describes my work on
predicting the disruption rate as a function of distance from the BH, which should be an
even more sensitive probe of galaxy structure than the overall disruption rate alone.

Measuring the rate of tidal disruption in different galaxy types can also indicate whether
consumption of stars makes an important contribution to BH growth in these galaxies. As
discussed in the next section, many BHs probably grow primarily by accreting nearby gas
(e.g., Yu & Tremaine 2002). The consumption of stars may be significant for the growth
of lower-mass BHs, however: if the rate of disruption is ∼ 10−5 yr−1 (as estimated by the
ROSAT All-Sky Survey: Donley et al. 2002), a 105M⊙ may be able to double its mass over a
Hubble time by disrupting stars. Note that an important question is whether or not the BH
can consume a sizable fraction of the stellar mass fed to it following disruption, or whether
most of the gas is blown away in an outflow (discussed further in the next section). In
any case, studying the rates of tidal disruption events can give us insight into the orbital
properties of stars in galactic nuclei, thereby giving us another tack for understanding the
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evolution of the stars and BHs in galactic nuclei.

1.2.3 The growth of black holes

The tidal disruption of stars can also offer insights into how all of these massive BHs
formed and grew. It is believed that massive BHs began their lives as smaller BHs (“seed
BHs”), and over time have grown by consuming nearby material: gas, stars, and other BHs.
In this subsection, we focus on BH growth via the accretion of gas: TDEs can help us
understand this process by providing opportunities to observe accretion physics in relatively
clean conditions.

A variety of mechanisms have been proposed for forming seed BHs (e.g., van der Marel
2004). Seed BHs of mass ∼ few × 100M⊙ may be the remnants of stellar evolution from
the first generation of stars (the zero-metallicity Population III stars), since the lack of
metals allowed more massive stars to form and diminished the rate of stellar mass loss.
Another possibility is that seed BHs could form via runaway stellar mergers in the dense
central regions of galactic nuclei or globular clusters. A third idea is that seed BHs formed
primordially in the early Universe.

Once formed, at least some fraction of these seed BHs must have grown substantially
to produce the massive ∼ 106 − 1010M⊙ BHs we observe today. Observations of quasars
and AGN show that at least some of that growth proceeded via the accretion of gas: in
fact, by using the quasar luminosity function to estimate how much mass must have been
accreted, and comparing with the inferred mass density of BHs today, Soltan (1982) and Yu
& Tremaine (2002) have shown that gas accretion must account for the bulk of BH growth
(at least for fairly massive BHs).

Gas with even a relatively tiny amount of angular momentum must lose much of that
angular momentum before it can accrete onto a central BH. To begin with, gas just falls
towards the BH, radiating away energy while conserving angular momentum; eventually the
gas falls far enough that its angular momentum corresponds roughly to that of a circular
orbit. The gas can fall no further until it loses angular momentum, and it settles into a
rotationally-supported disk structure (e.g., Pringle 1981). Losing angular momentum is a
complicated process. Simple molecular or particle viscosity is orders of magnitude too weak
to affect the angular momentum (because the mean free path for gas particles is so short).
Instead, turbulent viscosity, where bulk motions on the scale of the accretion disk, appears
to be responsible. A simple commonly-used model to parametrize this viscosity is ν = αcsH ,
where cs is the gas sound speed, H is the disk scale height, and α ∼< 1 is an unknown
dimensionless number (Shakura & Sunyaev 1973).

The leading idea for the physical mechanism to produce the turbulence is the magne-
torotational instability (MRI) (Balbus & Hawley 2002), which requires a weak magnetic field
threading the disk and that the angular velocity decreases with radius (as in a Keplerian
potential around a BH). Consider two radially adjacent fluid elements, which are connected
by the magnetic field: the inner element moves more quickly while the outer element moves
more slowly, increasing the distance between them. This increasing distance is opposed by
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the force of magnetic tension (since field lines connect the two elements), which slows the
inner element down and speeds the outer element up. The slower inner element then sinks
deeper into the BH’s potential, losing angular momentum, while the outer element moves
outward, gaining angular momentum: this further increases their separation, and the process
runs away.

The MRI has been and continues to be investigated by numerical simulations of in-
creasing realism and complexity (e.g., Stone & Pringle 2001; Sharma et al. 2007). A major
subtlety is the presence of radiation: close to the BH (at ∼ tens of Schwarzschild radii),
the radiation pressure in the accretion flow far exceeds the gas pressure (for thin disks).
One complication that has plagued the field is whether the sound speed cs in the viscosity
ν ∼ αcsH should be due the combination of radiation and gas pressure, or to gas pressure
alone. In addition, Lightman & Eardley (1974) showed that under the Shakura & Sunyaev
(1973) model, a radiation-pressure dominated (vertically thin) accretion disk is subject to
thermal and viscous instabilities. Hirose et al. (2009) recently used numerical simulations to
show that a thin disk undergoing the MRI actually is thermally stable, and that the bulk
viscosity is best predicted by including radiation and gas pressure both. Verifying the vis-
cous instability is more challenging, but it appears that the viscous instability may remain
(Blaes et al. 2011): gas may pile up in particular annuli while other annuli are empty, likely
leading to sharp swings in the accretion rate. Accretion disks may be unstable to convection
and the photon bubble instability as well (e.g., Gammie 1998).

How well accretion flows can radiate away their energy has a large impact on the result-
ing dynamics (see, e.g., Frank et al. 1992; Krolik 1999). For a range of mass feeding rates, the
situation is fairly simple: the time it takes for gas at a given radius to be transported inward
is substantially longer than the time for photons to be created (typically by bremsstrahlung)
and diffuse vertically out of the disk (which is typically optically thick to bremsstrahlung
and electron scattering). The disk can therefore cool efficiently and so is geometrically thin
(i.e., the vertical scale height is much less than the radius from the BH). The disk is expected
to emit as a multicolor blackbody (or modified blackbody, if the disk opacity is dominated
by scattering). The comparison of advection time to radiation time corresponds to a com-
parison of the mass feeding rate to the Eddington rate, ṀEdd = LEdd/ǫc

2 = 4πGMBH/ǫκesc,
where ǫ ≈ 0.1 is a typical radiative efficiency and κes is the electron scattering opacity. This
thin disk model applies when the feeding rate is ∼ 0.01 − 1ṀEdd.

However, when the feeding rate is greater or much less than the Eddington rate, the
situation is more complicated: the flow may not be able to cool efficiently, and so it becomes
hot and geometrically thick. When the feeding rate exceeds the Eddington rate, photons
aren’t able to escape from the flow on less than an advection time: instead, some trapped
photons are probably carried down into the BH along with the gas, and others push on
low-angular momentum gas to drive an outflow away from the BH (e.g., King & Pounds
2003). Abramowicz et al. (1988) developed the “slim disk” model to describe the accretion
flow at moderately super-Eddington rates. Ohsuga et al. (2005) numerically simulated BH
feeding at 100ṀEdd and found that about 10% of the gas was unbound in an outflow. The
dynamics and observational appearance of the gas during super-Eddington accretion remain
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important unsolved questions.
When the feeding rate is below ∼ 0.01ṀEdd, the flow can be radiatively inefficient as

well, due to its very low density. If the flow is hot, Coulomb collisions happen too infrequently
to produce the photons necessary to cool the gas, and so it remains hot, geometrically thick
and optically thin (e.g., Ichimaru 1977; Narayan & Yi 1994). The ions and electrons have
different temperatures (ions are hotter), and photons are Compton upscattered to produce
hard X-rays. Variations on this “advection-dominated accretion flow” (ADAF: Narayan &
Yi 1994) idea allow for gas to be driven back out from the BH at the same time: because the
hot gas is only tenuously bound to the BH, it should be easy to unbind some of it using some
fraction of the energy released when even a small amount of gas accretes onto the BH. Ideas
in this vein include the “advection-dominated inflow-outflow solution” (ADIOS: Blandford
& Begelman 1999), in which much of the gas is driven out in a wind from small radii, and
the “convection-dominated accretion flow” (CDAF: Quataert & Gruzinov 2000), in which
the liberated accretion energy drives gas out to large radii via convection.

Observational studies of accreting objects provide important motivation and tests of
these accretion theories. X-ray binary systems (XRBs) are especially important (see Remil-
lard & McClintock 2006, and references therein). These systems comprise a compact object
emitting X-rays as it accretes gas from a donor star (which may be on the main sequence,
a red giant, or a white dwarf): either the compact object intercepts a fraction of the donor
star’s stellar wind, or tidal forces from the compact object rip gas directly off the donor star
(as it overflows its Roche lobe). Many XRBs are observed to transition abruptly between two
states of emission, the “high soft” state, in which the emission is relatively bright and the
spectrum is close to thermal, and the “low hard” state, in which the emission is fainter and
peaks in the hard X-rays. Another state sometimes observed is the “steep power-law” state,
in which the emission is even brighter and softer than the high soft state. These observations
have been interpreted as follows (e.g., Esin et al. 1997): the high soft state is the radiatively
efficient thin disk during periods of high feeding, and the low hard state is the radiatively
inefficient optically thin flow during periods of low feeding. The steep power-law state may
arise from super-Eddington feeding rates. Radio emission is often observed to accompany
the hard X-rays of the low hard state: this has been interpreted as synchrotron emission
from a highly collimated, relativistic jet driven by magnetic fields close to the BH, perhaps
tapping into the BH’s spin.

Active galactic nuclei show many similarities to XRBs. Seyfert galaxies and quasars
show prominent thermal emission (though also X-rays and radio emission), which is probably
produced by radiatively efficient accretion at somewhat sub-Eddington feeding rates (see
Krolik 1999, and references therein). Many more galactic nuclei host low-luminosity AGN
(including our own Galactic nucleus), where the bolometric luminosity may be as low as
10−5LEdd (∼< 10−8LEdd for the Milky Way); much of the energy in these AGN is released
in the X-rays, and radio emission is prominent as well (e.g., Ho 2008; Genzel et al. 2010).
These are likely galactic nuclei with a very sub-Eddington mass feeding rate. Quasars, by
contrast, shine at a high fraction of their Eddington luminosities, and thus are likely being
fed at super-Eddington rates (e.g., Kollmeier et al. 2006). Many bright AGN/quasars also
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emit strongly in the radio (see Krolik 1999). Blueshifted absorption lines in the spectra of
bright AGN are likely produced by outflowing gas obscuring a central accretion disk (e.g.,
Weymann et al. 1991; Pounds et al. 2003; Murray et al. 1995).

The tidal disruption of stars offers another opportunity to study accretion physics—
perhaps easier to interpret than XRBs and AGN because we have an idea of the mass
feeding rate and inflowing gas geometry a priori. TDEs let us study the accretion onto a
BH through a wide range of feeding rates, from highly super-Eddington through highly sub-
Eddington, over a period of only months to years. We may be able to learn about the speed
and mass flux of outflows, in particular teaching us about what fraction of gas can accrete
onto a BH and contribute to its growth during super-Eddington feeding. We may also be
able to learn about the sub-Eddington transition from radiatively efficient to inefficient flow,
and about the conditions required to produce a radio jet.

1.3 Previous studies of the tidal disruption of stars

In this section, we describe previous research on the tidal disruption of stars by massive
black holes. The tidal disruption of stars was first studied in the 1970s as a source of fuel for
BHs, in the hopes of explaining observations of quasars4 (e.g., Hills 1975; Young et al. 1977;
Frank 1978). This explanation was soon abandoned, as it was realized that the rate of tidal
disruptions necessary to explain the abundance of quasars required unrealistically high stellar
densities in nuclei of galaxies. (As we have said, the leading idea today to explain quasars is
galaxy-scale instabilities related to galaxy mergers that funnel gas to the center, where it is
accreted by the central massive BH.) Later on, Rees (1988) revived interest in studying the
tidal disruption of stars: he pointed out that even if it cannot explain quasar observations,
the process must nevertheless happen in any galaxy hosting a moderately massive BH, and
so could be used to find BHs and constrain their prevalence in the Universe.

Studies of the tidal disruption of stars are generally focused either on predicting the
rate of such events in galactic nuclei, or on predicting the observational appearance and
effects on the BH’s environs. My thesis work includes both types of studies, and the physics
involved in each is quite different: gravitational dynamics to understand disruption rates, and
hydrodynamics and accretion physics to understand observational properties. We describe
previous research in each subtopic in turn.

1.3.1 Stellar dynamical studies of the tidal disruption of stars

In this section, we describe previous calculations of the dynamics of stars orbiting a black
hole, as bears on the tidal disruption rate. We begin with order-of-magnitude estimates, then
discuss more precise calculations using the distribution function and Fokker-Planck equation
(the background for both of these is discussed in much more detail in Chapter 4). We then
describe other dynamical effects.

4This has the wonderful name, the “black tide” model.
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The basic work on tidal disruption rates considers a very simple situation, a BH embed-
ded in a cluster of stars that is spherically symmetric and whose velocities are distributed
(at least mostly) isotropically. In the absence of gravitational interactions, stars that are on
orbits aimed at the BH’s disruption zone would be destroyed in a dynamical time, and all
other stars would be safe “forever.” Instead, gravitational interactions between stars occa-
sionally alters stellar orbits, providing a continuing supply of stars on orbits aimed at the
disruption zone (e.g., Frank & Rees 1976). (Such orbits are said to be in the “loss cone,” the
region of velocity space where stars can be lost to the BH. If you draw a sphere around a star,
the set of velocity vectors aimed inside the disruption region fills a cone-shaped region.) In
a gravitational interaction, two stars passing each other at a distance b change each other’s
orbital velocity by

δv ∼ Gm

bv
(1.1)

(where m is the stellar mass and v is a typical stellar velocity), and so during a “relaxation
time” trel, stellar velocities are changed by order unity,

trel ∼
v3

G2m2n

1

ln Λ
(1.2)

(where n is the stellar number density and Λ accounts for integration over all possible
separations b) (see Binney & Tremaine 1987). Simple estimates5 of tidal disruption rates
assume that gravitational relaxation happens efficiently enough to keep the loss cone “full”
(e.g., Rees 1988), and so the rate of disruption is simply

γ ∼ N(< r)

tdyn(r)
θ2
lc(r) , (1.3)

where N is the number of stars inside r, tdyn ∼ (r3/GMBH)1/2 is the dynamical time, and
θ2
lc is the solid angle of the loss cone. Frank & Rees (1976) and Lightman & Shapiro (1977)

pointed out, however, that at sufficiently small distances from the BH (sufficiently large
negative energies), the fractional velocity change over a dynamical time due to gravitational
encounters is insufficient to completely refill the loss cone: in this limit, the disruption rate
from a starting radius r is

γ ∼ N(< r)

ln(
√
r/rT) trel(r)

(1.4)

(e.g., Alexander 2005). It turns out that an integration over orbital energy (roughly corre-
sponding to a star’s starting radius) demonstrates that most disrupted stars come from the
junction between the full loss cone regime and this diffusive regime, at an energy dubbed
Ecrit (e.g., Magorrian & Tremaine 1999). Since Ecrit is much greater (much less negative)
than the energy of a circular orbit inside the disruption zone, stars on course to disrupt typ-
ically approach the BH on approximately parabolic orbits. Furthermore, it turns out that

5Other simple estimates ignore the loss cone completely, and assume that diffusion in energy space is
responsible for disrupting stars (e.g., Bahcall & Wolf 1976; Shapiro & Lightman 1976).
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Ecrit typically corresponds to a radius close to the radius of influence of the BH; using rinf in
equation (1.4) gives a typical disruption rate per galaxy of 10−5 − 10−4 yr−1 (e.g., Alexander
2005).

Work beyond these order-of-magnitude estimates requires calculating the distribution
function of stars, i.e., the spatial density and distribution of velocities (see Binney & Tremaine
1987). In the absence of gravitational interactions, the distribution function would obey
the Boltzmann equation. The effect of gravitational interactions, assumed to be weak, is
approximated by the Fokker-Planck equation (borrowed from plasma physics, where the
Coulomb force on ions/electrons parallels the gravitational force acting on stars). Two-
body gravitational interactions cause the distribution function to diffuse over the relaxation
timescale; the (spherically symmetric, isotropic) diffusion coefficients have been calculated
by Rosenbluth et al. (1957). The tidal disruption rate is found by solving the Fokker-Planck
equation for the distribution function, subject to approriate boundary conditions accounting
for the presence of the loss cone; then calculating the rate at which the distribution function
flows into the loss cone. Solving the Fokker-Planck equation is challenging. One route is
direct integration, usually averaging over an orbital period and assuming that gravitational
interactions are short enough range to affect only orbital velocity and not orbital position
(e.g., Lightman & Shapiro 1977; Cohn & Kulsrud 1978). Another route has been Monte Carlo
calculations, where the orbits of stars are directly integrated, occasionally being perturbed
randomly (according to a distribution calibrated to the diffusion coefficients) (e.g., Spitzer &
Hart 1971; Shapiro & Marchant 1978). Comparison of these two complementary approaches
is used to confirm each other’s results. Direct N -body calculations of an entire galaxy bulge
have been too computationally expensive so far.

In the late 1990s, high-resolution imaging from the Hubble Space Telescope gave us the
first views of external galactic nuclei inside the BH’s radius of influence, in a sample of about
thirty nearby elliptical galaxies. Spectroscopic results along with two-integral axisymmet-
ric modeling was used to estimate masses for the stellar distribution and BH (Magorrian
et al. 1998). Syer & Ulmer (1999) used these observational results to calculate tidal dis-
ruption rates for real galaxies for the first time, assuming spherical symmetry and isotropic
velocity distribution. They derived rates of ∼ 10−7 − 10−4 yr−1 per galaxy. Magorrian &
Tremaine (1999) performed similar calculations but assuming axisymmetry, and obtained
similar (slightly higher) results. Several years later, the observational results for these BH
masses were found to be too high; Wang & Merritt (2004) recalculated disruption rates us-
ing the MBH − σ∗ relation for MBH, assuming spherical symmetry and isotropy. Despite the
increasing number of galaxies with high-resolution imaging of their nuclei and dynamically-
measured BH masses, no further data-based disruption rate calculations have been published.
(This is a direction I intend to pursue, particularly focusing on non-elliptical galaxies.)

Thus far, all of the calculations mentioned in this section assume that two-body gravita-
tional interactions are the primary process driving stellar orbits into the disruption zone. A
variety of other dynamical effects have been proposed and studied as well (as already alluded
to in §1.2.2). Merritt & Poon (2004) predicted tidal disruption rates in model galaxies having
triaxial shapes, showing that stellar orbits become chaotic and can head for the disruption
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zone even without suffering gravitational scatterings. Their rate estimates reach as high as
∼ 10−3 yr−1. A process called resonant relaxation (e.g, Rauch & Tremaine 1996) may also be
relevant: because stars close to the BH orbit in an almost-Keplerian potential, the timescale
during which they can torque each other’s orbits becomes longer and so relaxation proceeds
more quickly. This mechanism is probably not that important for tidal disruption rates, since
rates are typically set by the stars close to the BH’s radius of influence, where the potential
is no longer very Keplerian. Zhao et al. (2002) proposed that “massive perturbers” are im-
portant for tidal disruption rates: gravitational interactions with giant molecular clouds or a
remnant accretion disk may dominate over interactions with stars (GMCs are typically too
rare close to Ecrit, however, so may not be important). The rate at which merging or recently
merged BHs disrupt stars may be interesting as well. Merging BHs slingshot stars on chaotic
3-body encounters, perhaps raising the disruption rate as high as 1 yr−1 for ∼ 105 yr in the
final stages of a BH merger (Chen et al. 2009). If the merging BHs have large and misaligned
spins, their gravitational wave emission can give them a kick that sends the merged BH to a
region of stellar phase space where the loss cone is temporarily full again, raising disruption
rates significantly (e.g., Komossa & Merritt 2008; Stone & Loeb 2011). Results of these
studies are particularly uncertain since the rate of BH mergers is uncertain.

Finally, it is worth noting that there are other phenomena whose rate calculations are
closely related to the tidal disruption rate calculations summarized here. The orbits of binary
star systems are similarly torqued by interactions with other stars (and here GMCs do seem
to play an important role); binary stars can be tidally pulled apart if they approach the
BH too closely, sending one star off (perhaps as one of the observed “high-velocity stars”)
and one star in close to the BH (perhaps as one of the observed “S stars”6) (e.g., Perets
et al. 2007). The disruption of stars in globular clusters has also received much attention,
particularly as a method for determining whether globular clusters do in fact host massive
BHs.7 The disruption rate in globulars is likely lower than galactic nuclei, however, due to
the lower concentration of stars (e.g., Sigurdsson & Rees 1997).

6The S stars comprise a cluster of tens (observed so far) of mostly B stars in the central 0.04 pc of the
Galactic Center. The dynamics of these stars are in good agreement with an isotropic distribution, perhaps
with a somewhat higher eccentricity distribution than a relaxed, thermal distribution (e.g., Genzel et al.
2010). The formation of these stars is mysterious, as they are young but may have had difficulty forming
in situ due to the BH’s strong tidal gravity; it has been proposed that they have been delivered to tightly
bound orbits by the tidal disruption of binary star systems (e.g., Hills 1988). These stars may not, however,
be of great interest for tidal disruption of individual stars: the pericenter distance of even the closest star lies
at ∼ 100rT from the BH, and moreover, the stellar disruption rate is dominated by the far more numerous
population of stars much further away at Ecrit (corresponding to ∼ 1 pc).

7Observing the disruption of white dwarfs rather than main sequence stars would be particularly inter-
esting, because this is only possible for MBH ∼< 105M⊙ and so would indicate the presence of an intermediate
mass BH.
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1.3.2 Predictions for the observational appearance of tidal disrup-

tion events

Much of the basis for our current understanding of what happens to the gas following
disruption comes from Rees (1988) (see also Hills 1975; Lacy et al. 1982). The star typically
approaches the BH from great distance on an orbit of approximately zero energy—then
following disruption8 at ∼ rT, different parts of the star end up with a spread of energy
much wider than the star’s own binding energy. The (specific) energy spread

∆ǫ ∼ GMBH

rT

r⋆
rT

(1.5)

is due to the fact that different parcels of gas lie at different depths in the BH’s potential
well, yet all have approximately the same velocity (the BH’s escape velocity). (On top of
this, the tidal gravity might spin the approaching star up to break-up, increasing the energy
spread by a factor of ≈ 3: see, e.g., Li et al. 2002.) As a result, about half of the stellar gas
has positive specific energy, and escapes from the BH on hyperbolic trajectories, while the
other half has negative specific energy, and follows its highly eccentric orbits away and then
back towards the BH again. The timescale for the most tightly bound material to return to
the BH is the orbital period of particles having energy −∆ǫ,

tfallback ∼
(

r3
T

GMBH

)1/2(
rT
r⋆

)3/2

. (1.6)

Accretion of bound gas onto the BH powers the tidal disruption flare, and so the bound gas
has received the most attention.

Calculating the rate at which bound gas approaches the BH requires knowing how the
mass of the star is distributed among the spread in energies ∆ǫ. Rees (1988) assumed for
simplicity that the spread is uniform, dm/dǫ ∝ ǫ0, and so the rate of bound gas approaching
the BH is

Ṁfallback ≈ 1

3

M⋆

tfallback

(
t

tfallback

)−5/3

(1.7)

(Rees 1988; Phinney 1989).9 The rate of gas falling back to the BH, Ṁfallback, can far
exceed the Eddington rate early on, so many early studies simply assumed that the emission
from a tidal disruption event would be at the Eddington luminosity, eventually declining

8The possibility of emission from the tidal disruption process itself has also been studied. It has been
proposed that the shock as the star is tidally compressed at pericenter can be strong enough to start
thermonuclear reactions for stars on orbits that deeply penetrate the disruption zone (e.g., Carter & Luminet
1982; Brassart & Luminet 2008), but 3-dimensional grid-based calculations have shown that the density in
the shock is probably never high enough for this to occur for a solar-type star (Guillochon et al. 2009). (It
probably does occur in the disruption of white dwarfs, however; see Rosswog et al. 2009). The breakout of
shockwaves may produce bright short-lived X-ray emission (Guillochon et al. 2009).

9Rees (1988) published the incorrect exponent, which was corrected by Phinney (1989).
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proportional to t−5/3. Evans & Kochanek (1989) confirmed the uniform dm/dǫ distribution
with a smoothed-particle hydrodynamics (SPH) calculation of a tidal disruption. This result
has been further confirmed at late times t ≫ tfallback by more recent SPH simulations and
analytic polytropic calculations, though the fallback rate may decline somewhat more gently
at early times (e.g., Lodato et al. 2009; Ramirez-Ruiz & Rosswog 2009). The falling-back
gas is expected to shock on itself vertically and radially as it reaches pericenter, due to
funneling of orbits into a tight volume, and relativistic precession (e.g., Rees 1988; Evans &
Kochanek 1989; Kochanek 1994; Ramirez-Ruiz & Rosswog 2009). (Kochanek 1994 discusses
the extreme possibility that stellar debris will not intersect itself at pericenter at all if the
BH is spinning rapidly.)

The shock at pericenter should circularize the gas particles’ orbits within a few times
tfallback, forming a torus of stellar debris. The viscous time in the torus is typically shorter
than the fallback time at least early on, so at least some of the gas should manage to accrete
(Li et al. 2002; Ulmer 1999). Cannizzo et al. (1990) considered the long-term evolution of
the torus, suggesting that eventually (when the fallback rate and so density are low), the
viscous time becomes longer than the fallback time; accretion onto the BH thus must wait for
the disk to viscously spread, so the accretion rate declines more gently, and the light curve
may fall more gently as well. (We show in Chapter 2 that the flow may become radiatively
inefficient before this point, which leads to very different observational predictions.)

Early on, radiation pressure may inhibit accretion while the fallback rate exceeds the
Eddington rate however (e.g., Ulmer 1999). Ulmer (1999) proposed that the gas forms a
thick disk that should be bright in the UV and soft X-rays, while Loeb & Ulmer (1997)
proposed a lower-energy outflow that never becomes completely unbound from the BH; it
rather settles into a hydrostatic atmosphere surrounding the BH, like a star, and would be
bright at optical wavelengths. Most recently, Giannios & Metzger (2011) suggested that the
super-Eddington fallback rate could give rise to a relativistic jet that would shock on the
interstellar medium and produce radio emission.

The half of the gas that becomes unbound during the process of stellar disruption has
been studied by several authors as well. Khokhlov & Melia (1996) estimated its dimensions
(though we disagree: see §2.3) and predicted that it would sweep up material in the interstel-
lar medium (similar to a supernova); they propose that the structure Sagittarius A East in
our Galactic Center was produced in this way. Bogdanović et al. (2004) performed an SPH
simulation of disruption; they then used the photoionization code Cloudy to calculate the
Hα emissivity of individual unbound gas particles and predict a (fairly faint) Hα luminosity.
After our paper Strubbe & Quataert (2009) was published, Kasen & Ramirez-Ruiz (2010)
suggested that recombination in the unbound debris could produce a days-long optical tran-
sient. Clausen & Eracleous (2011) used our results for the photoionization of unbound debris
in Strubbe & Quataert (2009) to make spectroscopic predictions for the unbound debris of
a white dwarf disrupted by an intermediate mass BH.



Section 1.3. Previous studies 18

1.3.3 Observations of tidal disruption candidates

A modest number of events have been observed that may potentially be tidal disruptions—
TDE candidates. All of these candidates were found as galaxies that exhibited a single
large-amplitude swing in luminosity during a period of multiple observations. AGN may
appear similar to TDEs, so two observational cuts are typically made: requiring a single
large-amplitude outburst, rather than multiple outbursts, and a follow-up optical spectrum
to look for AGN emission lines. (It is not that TDEs cannot be present in active galaxies,
but rather that they would be significantly more difficult to identify and interpret.) Here we
review how the candidates were detected and identified, and their observational properties.

A handful of tidal disruption candidates were found in the late 1990s by the ROSAT
All-Sky Survey (RASS), which imaged the entire sky in the energy band 0.1 − 2.4 keV over
a period of six months, and about 20% of the sky at least twice during that period. These
events were discovered by comparing multiple epochs of data within the RASS, or RASS de-
tections with later pointed observations, looking for galaxies with a brightness difference of at
least a factor of 20. A longer list of candidates was followed up with optical spectroscopy, and
a handful of Seyfert nuclei discarded. Komossa (2002) reviews the candidate TDEs, which
comprise NGC 590510 (Bade et al. 1996; Komossa & Bade 1999), RXJ1642+7554 (Grupe
et al. 1999), RXJ1242-1119 (Komossa & Greiner 1999) and RXJ1420+5334 (Greiner et al.
2000). The former two galaxies are spirals, and the latter11 two are early-type galaxies. These
candidates are at redshifts z ∼ 0.1, show peak X-ray luminosities typically ∼ 1044 erg s−1,
and have very soft X-ray spectra. The ROSAT light curves of all of these candidates (except
for NGC 5905) consist only of an outburst point and a later upper limit. No radio emission
was detected from these galaxies (except NGC 5905) in the FIRST12 (Faint Images of the
Radio Sky at Twenty centimeters) Survey (Komossa 2002). Follow-up in the X-rays with the
Chandra X-ray Observatory a decade after RASS found that all candidates had dimmed by
factors of hundreds to thousands (Halpern et al. 2004). Donley et al. (2002) estimated the
tidal disruption rate per galaxy based on these RASS candidates to be ∼ 10−5 yr−1. These
events are tantalizing, but had so little data during the flare that they are very difficult to
interpret unambiguously.

A handful of additional candidates have been found at X-ray wavelengths in other
surveys. The XMM-Newton Slew Survey images the sky as the telescope slews between
pointed observations; comparison of galaxies detected in this survey with the RASS un-
covered two more tidal disruption candidates, NGC 3599 and SDSS J132341.97+482701.3
(although later detailed optical spectroscopy of the former led to its reclassification as a
low-luminosity AGN) (Esquej et al. 2007, 2008). The amplitude of each of these flares was

10NGC 5905, previously known to contain star formation, was later shown to contain a weak Seyfert
nucleus as well by Gezari et al. 2003, and so may be a less viable TDE candidate. Furthermore, the X-ray
luminosity of the flare was fainter, prompting Li et al. 2002 to interpret the flare as disruption of a brown
dwarf or planet, rather than solar-type star.

11RXJ1242-1119 is actually a pair of (probably interacting) early-type galaxies.
12Neither RXJ1242-1119 nor RXJ1420+5334 lies in the FIRST Survey field.
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≈ 80, their X-ray luminosities were ∼ 1041 erg s−1 and 1043 erg s−1, and their X-ray spectra
were very soft. Follow-up observations with XMM-Newton and the Swift X-ray Telescope
show that each event dimmed by a factor of tens over several years. These events were
used to estimate a disruption rate per galaxy of ∼ 2 × 10−4 yr−1 (Esquej et al. 2008). Tidal
disruption candidates have additionally been found in galaxy clusters: in Abell 3571 with
ROSAT (Cappelluti et al. 2009), and in the spiral galaxy SDSS J131122.15-012345.6 in Abell
1689 with XMM-Newton / Chandra (Maksym et al. 2010). Both of these candidates showed
peak X-ray luminosities of few × 1042 erg s−1 and very soft X-ray spectra. A study of the
Chandra Deep Field (containing ≈ 30, 000 galaxies) found no TDE candidates (Luo et al.
2008).

Candidate disruptions have been found at ultraviolet wavelengths as well. The first
was in NGC 4552 (Renzini et al. 1995) (found serendipitously by comparing two epochs of
HST observations), though the later detection of variable hard X-ray emission with Chandra
makes a flaring low-luminosity AGN a more likely interpretation (Xu et al. 2005). Another
candidate called “PALS-1” was found by a UV-optical survey for Lyman Break galaxies in
the galaxy cluster Abell 267, possibly a gravitationally lensed TDE at z ∼ 3.3 (Stern et al.
2004). Two tidal disruption candidates were found in the GALEX Deep Imaging Survey
(Gezari et al. 2006, 2008), which covered 80 deg2 in the far and near UV (≈ 1300− 2800 Å)
over several years, of which 1.2 deg2 were imaged multiple times. The FUV13 GALEX
data were co-added into 1-year bins and searched for sources showing a single swing of
variability. Regions of the DIS overlap the optical Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS) fields, and so TDE candidates were required to have optically-resolved
galaxy hosts. These regions also had prior XMM-Newton or Chandra data, and candidates
were required not to contain a bright compact X-ray source (which would be interpreted as an
AGN). Potential candidates were then followed up with optical spectroscopy and discarded
if they showed [OIII]/Hβ ratios indicative of an AGN. The two candidates identified this
way are labelled “D1-9” and “D3-13.” A third event, labelled “D23H-1,” was later found in
DIS observations of a field called DEEP2 23H (which does not overlap the CFHTLS fields)
(Gezari et al. 2009). Candidates D1-9 and D3-13 each have several GALEX data points
and tens of CFHTLS optical points, spanning a few years, and are fairly similar. The peak
UV luminosities for both are ∼ few × 1043 erg s−1, and the peak optical luminosities are
∼ few×1041 erg s−1; both light curves decay relatively steeply for the first year, then flatten.
These candidates appear to have two-temperature blackbody spectral energy distributions,
at T ∼ few×104 K and T ∼ few×105 K. Chandra follow-up 1–3 years after the peaks yielded
X-ray detections, with luminosities of ∼ few × 1041 erg s−1 for D1-9 and ∼ 1043 erg s−1 for
D3-13. Both of these candidates are hosted by red (non-star-forming) galaxies located at
redshifts z ∼ 0.3 − 0.4. The third candidate, D23H-1, was identified in close to real time
and followed up with optical photometry 2 and 8 weeks after the observed UV peak of the
flare. The peak UV luminosity was ∼ 1043 erg s−1. The event was followed up with Chandra
a few days and a few months after the UV peak, but no X-ray emission was detected. Unlike

13FUV was chosen because the host galaxy is fainter than in NUV.
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the other two candidates, D23H-1’s spectral energy distribution appears consistent with a
single-temperature blackbody at T ∼ few × 105 K, and the light curve appears to decay as
a single power-law. The host galaxy of D23H-1 is a star-forming galaxy located at z ∼ 0.2.
Possible identification of these events as other types of transients has been considered but
judged unlikely: (1) the lack of prior hard X-rays, previous variability, and [OIII] emission
contra-indicates AGN; and (2) the candidates are likely too blue in color to be Type Ia
supernovae, gamma-ray bursts, or AGN. Type II supernovae (bluer than Type Ia’s) are not
expected in red non-star-forming hosts like D1-9 or D3-13; although D23H-1 is in a star-
forming galaxy, the long decay timescale of the observed flare makes it unlikely to be a Type
II supernova (which should fade in the UV over the course of weeks, or display emission
lines in the case of a Type IIn supernova). These UV-selected events comprise the most
comprehensively studied tidal disruption candidates to date.

A few candidates have been published on the basis of unusual emission lines. The
low-luminosity Seyfert galaxy NGC 5548 displayed a brightening at optical wavelengths
accompanied by the appearance of a strong, abnormally broad He II 4686 Å emission line,
which the authors suggested was due to an accretion event such as the tidal disruption of
a star (Peterson & Ferland 1986). The galaxy SDSS J095209.56+214313.3 exhibited a very
bright high-ionization iron line accompanied by bright He II emission and unusually shaped
Balmer lines, all of which faded over several years (Komossa et al. 2008, 2009). Archival
NUV, optical and near-infrared data show continuum variability on the same timescale. The
faint post-flare X-ray luminosity of ∼ 1041 erg s−1 measured by Chandra suggests that the
galaxy does not host a typical AGN, though it may be a low-luminosity AGN. While the
observed event could be an extreme Type IIn supernova, the authors suggest that the event
is the “light echo” of a tidal disruption event as photons from the flare pass through and
ionize circumnuclear material.

One of the most signficant results of this thesis is that tidal disruption events may be
particularly bright at optical wavelengths. Prior to our paper Strubbe & Quataert (2009),
virtually no candidate events had been selected by their optical emission (with the exception
of UV/optical candidate PALS-1 by Stern et al. 2004). van Velzen et al. (2010) then an-
nounced two optically-selected candidates in 2010, culled from the Sloan Digital Sky Survey’s
Stripe 82. Stripe 82 is a 300 deg2 that was imaged ∼ 70 times over 9 years in the u, g, r, i, z
wavebands, and contains ∼ 3 × 106 galaxies within z < 0.3, many of which have been ob-
served spectroscopically as well. These authors identified galaxies from this set that showed
a single flare over the observing epoch. In order to remove contamination from supernovae,
they measured the distance of each flare from the host galaxy’s center and kept only those
located within 0.2′′, arguing that this distance is sufficiently small for contamination to be
low. They identify AGN spectrocopically where they can, and photometrically otherwise,
and remove those as well. This procedure leads to the identification of two tidal disruption
candidates, which they label “TDE1” and “TDE2.” TDE1 shows a maximum optical lumi-
nosity of ∼ few× 1042 erg s−1, and its color is very blue; the host is located at z ∼ 0.1 and is
red (not forming stars). TDE2 is also very blue in color, but brighter with a maximum optical
luminosity of ∼ few×1043 erg s−1. The host is located at z ∼ 0.3 and is forming stars. Based
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on observed galaxy luminosities, the authors estimate that the galaxies host BHs of masses
∼ 107M⊙ and few × 107M⊙, respectively. Although it is not clear that these events are not
in fact supernovae, their observational appearances are broadly in line with the predictions
we make in Chapter 2 (as described in §3.5.2). Another optically-selected TDE candidate
has been found in the ROTSE supernova survey, though has not yet been published (J.C.
Wheeler, personal communication). As described in §6, we found the first optically-selected
TDE candidate in real time with the Palomar Transient Factory last summer (Cenko et al.
2011)—my work was instrumental in the analysis of this event.

1.4 Summary of chapters

Here I briefly summarize the work presented in each chapter.

Chapter 2 is entitled “Optical Flares from the Tidal Disruption of Stars by Massive
Black Holes” (published as Strubbe & Quataert 2009). We were motivated by the advent of
new and upcoming wide-field rapid-cadence surveys to make predictions of the observable
properties of tidal disruption events. While previous theoretical studies focused on UV/X-
ray emission, we studied potential sources of optical emission, with the aim of helping optical
transient surveys like the Palomar Transient Factory, Pan-STARRS, and the Large Synoptic
Survey Telescope (e.g., Magnier 2007; Rau et al. 2009) find and study TDEs at much higher
cadence than had previously been possible. We identified two important sources of optical
emission in TDEs: super-Eddington outflows, and the unbound material. As described in
§1.3.2, the rate of mass falling back to the BH following disruption can initially be well
above the Eddington rate; as described in §1.2.3, radiation pressure may then drive gas back
away from the BH. Photons are trapped by electron scattering in the expanding flow, which
adiabatically stretches their wavelengths—from X-rays into the optical/UV. We calculate
the location and temperature of the photosphere where these cooled photons emerge, and
predict their luminosity and (blackbody) spectral energy distribution: ∼ 1043 − 1044 erg s−1,
as bright as a supernova, and peaking in the near UV. We use these results to predict the
rate of TDEs that may be detectable to optical transient surveys: tens to hundreds per year!
We also calculate the emission properties of the accretion disk, which should last beyond
the period of super-Eddington outflow, and the half of the gas that becomes unbound when
the star is disrupted. The surface of the unbound gas is photoionized by emission from the
accretion disk; it then re-radiates in very broad permitted lines (like Hα). The spectroscopic
appearance of the unbound material is similar to that of an AGN’s broad line region, but
where the lines have been blue- or red-shifted away from the galactic lines, and with no
associated narrow line region. We make predictions for the detection rates of TDEs due to
this emission as well. Emission from super-Eddington outflows and the unbound material is
particularly prominent for BHs in the mass range MBH ∼ 105 − 106M⊙, and so new optical
transient surveys may be particularly sensitive to this population of BHs which is otherwise
very difficult to study.
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In Chapter 3, entitled “Spectroscopic Signatures of the Tidal Disruption of Stars by
Massive Black Holes” (and published as Strubbe & Quataert 2011), we study in more detail
the super-Eddington outflow produced in a TDE. The layers of gas outside the continuum
photosphere are photoionized by the continuum photosphere below. These outer layers
absorb photons at discrete wavelengths, producing a spectrum of absorption lines on top of
the blackbody spectrum from the continuum photosphere. These lines should be strongly
blueshifted relative to the host galaxy, and typically be very broad (0.01−0.1c). We use the
photoionization code Cloudy to predict the lines and line strengths, finding that lines are
most prominent at ultraviolet wavelengths (e.g., C IV, Lyman α, O VI) at early times (∼< 1
month for a ∼ 106 M⊙ BH). There may also be optical absorption lines of hydrogen and He
II if there is a lower velocity component to the outflow (∼< 0.01 c). We also discuss the ability
of the shock (at pericenter, where the falling back gas returns to the BH) to reach thermal
equilibrium: when the density falls too low (e.g., after a few weeks for a 106M⊙ BH), the gas
cannot thermalize and instead likely produces a spectrum of hard X-rays. We additionally
discuss how supernovae will likely contaminate optical transient searches for TDEs: both
types of events can be similar in brightness and last weeks to months. A discriminant can
be imaging to determine whether a putative TDE lies truly at the center of the galaxy. We
estimate that, unfortunately, the rate of central supernovae, to within the resolution of a
ground-based survey at z ∼ 0.1, can be 100 times the rate of TDEs—high-resolution follow-
up imaging with HST or adaptive optics will be crucial in telling the difference. The color
evolution of TDEs (becoming bluer with time) is also distinct from that of supernovae, and
should be an important discriminant in optical transient surveys.

Having focused much of my thesis on the accretion physics of tidal disruption events,
I decided to strike out in a new direction for my last project, which I plan to continue
into my postdoctoral research. In Chapter 4, entitled “The Rate of Tidal Disruption as a
Function of Pericenter Distance,” I study the stellar dynamics in galactic nuclei, with the aim
of calculating the disruption rate as a function of pericenter distance, making the simplest
standard assumptions. A star’s final orbit towards the BH’s disruption zone may have its
pericenter just inside the disruption zone at ∼ rT, or its pericenter may lie deep inside the
disruption zone as far in as ∼ rS (any deeper in, and the star is swallowed directly without
disruption, providing no observable trace). Previous dynamical studies have focused only on
the overall rate of disruption, and not how the rate varies with pericenter distance—and yet,
we show in Chapters 2 and 3 that the observable properties of TDEs depend on this pericenter
distance. This chapter represents work in progress, and as such has a different tone from
the other chapters. I spend much of the chapter reviewing in detail the standard framework
for calculating disruption rates using the Fokker-Planck equation—not new results, but I
provide many more explicit details in the derivation than are typically presented. I use this
foundation to solve the Fokker-Planck equation inside the tidal disruption zone, allowing
me to derive an expression for the disruption rate as a function of pericenter for a generic
spherically symmetric and isotropic galactic nucleus. I then calculate the disruption rate as
a function of pericenter for the galaxy NGC 4467, using real data from Faber et al. (1997).
I close by describing my future plans to calculate these rates for a variety of other galaxies,
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and extend this theory to more complicated galactic nuclei geometries.
The penultimate chapter, called “Dust Dynamics, Surface Brightness Profiles, and Ther-

mal Spectra of Debris Disks: The Case of AU Mic” (published as Strubbe & Chiang 2006),
describes my earlier theoretical work on a very different topic. Debris disks are optically thin
disks of dust (and a little gas) surrounding young stars (∼ 10 Myr−1 Gyr old). Debris disks
can be observed in several ways: as an infrared excess in the spectral energy distribution
of a star, through its thermal emission in resolved radio observations, or in scattered light
at optical wavelengths. An important question has been the origin of the dust: Is the dust
primordial (left over from star formation), is it produced in steady state through collisions
of rocks, or is it produced in catastrophic bursts when a giant rocky mass is somehow de-
stroyed? Understanding the origin of the dust can offer a probe of the late stages of planet
formation. We chose to study the debris disk surrounding the M star AU Microscopii (AU
Mic) because of its intriguing scattered-light surface brightness profile (observed with HST):
at radii less than ≈ 43 AU from the star, the profile falls gently, and then outside this radius
it falls much more quickly. We proposed that a ring of rocks orbits the star at ≈ 43 AU,
and that these rocks collide in steady state to produce the dust seen as the debris disk.
Although the rocks essentially feel only the gravity from the star, smaller dust particles
produced in collisions feel additionally the outward forces of radiation pressure and stellar
wind pressure from the star. Freshly born dust grains, now feeling this reduced gravity, are
sent onto eccentric orbits away from the star14 (sharing pericenter at ≈ 43 AU). Smaller
grains feel a smaller effective gravity and so have larger apocentric distances—since grains
spend most of their time at apocenter, the size distribution of grains dictates the surface
brightness profile of the outer regions of the debris disk. Meanwhile, Poynting-Robertson
and stellar wind drag degrade the dust grains’ orbits over time, and would eventually cause
the grains to spiral into the star. Collisions with other grains, however, act too quickly in the
AU Mic system: collisions grind down grains so small that they become unbound from the
star before they would have time to spiral in. As a result, the inner region of the debris disk
(inside ≈ 43 AU) is empty. We develop these ideas, then use them to calculate model surface
brightness profiles, color profiles, and thermal spectra; we compare these with the data and
find reasonable agreement. In the time since we published this research, many more debris
disks have revealed broken surface brightness profiles, and our work has been instrumental
in understanding the dust dynamics in these systems.

The final chapter is an Epilogue, returning to tidal disruptions: I describe two recent
observational discoveries that build on results in my thesis. During the final year of my thesis,
two ground-breaking tidal disruption candidates were discovered by teams led by Berkeley’s
Dr. S. B. Cenko and Prof. J. S. Bloom: the first optically-selected candidate found in real
time, labelled “PTF10iya” (Cenko et al. 2011), and the first TDE candidate found in the
γ-rays, labelled “Swift 1644+57” (Bloom et al. 2011). I contributed to the analysis in both
of these discoveries, and describe the discoveries and interpretation in this final chapter.

14For a surprising moment, this work parallels the dynamics in a tidal disruption event! I considered
titling my thesis “Eccentric orbits in Keplerian potentials.”
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Chapter 2

Optical Flares from
the Tidal Disruption of Stars
by Massive Black Holes

Abstract

A star that wanders too close to a massive black hole (BH) is shredded by the BH’s
tidal gravity. Stellar gas falls back to the BH at a rate initially exceeding the Eddington
rate, releasing a flare of energy. In anticipation of upcoming transient surveys, we predict
the light curves and spectra of tidal flares as a function of time, highlighting the unique
signatures of tidal flares at optical and near-infrared wavelengths. A reasonable fraction
of the gas initially bound to the BH is likely blown away when the fallback rate is super-
Eddington at early times. This outflow produces an optical luminosity comparable to that of
a supernova; such events have durations of ∼ 10 days and may have been missed in supernova
searches that exclude the nuclear regions of galaxies. When the fallback rate subsides below
Eddington, the gas accretes onto the BH via a thin disk whose emission peaks in the UV to
soft X-rays. Some of this emission is reprocessed by the unbound stellar debris, producing
a spectrum of very broad emission lines (with no corresponding narrow forbidden lines).
These lines are the strongest for BHs with MBH ∼ 105 − 106M⊙ and thus optical surveys
are particularly sensitive to the lowest mass BHs in galactic nuclei. Calibrating our models
to ROSAT and GALEX observations, we predict detection rates for Pan-STARRS, PTF,
and LSST and highlight some of the observational challenges associated with studying tidal
disruption events in the optical. Upcoming surveys such as Pan-STARRS should detect
at least several events per year, and may detect many more if current models of outflows
during super-Eddington accretion are reasonably accurate. These surveys will significantly
improve our knowledge of stellar dynamics in galactic nuclei, the physics of super-Eddington
accretion, the demography of intermediate mass BHs, and the role of tidal disruption in the
growth of massive BHs.
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2.1 Introduction

Stellar orbits in the center of a galaxy are not static, and sometimes stars walk into
trouble. If an unlucky star passes within RT ∼ R⋆(MBH/M⋆)

1/3 of the galaxy’s central black
hole (BH), the BH’s tidal gravity exceeds the star’s self-gravity, and the star is disrupted.
For BHs with MBH ≤ 108M⊙, the disruption of a solar-type star occurs outside the horizon
and is likely accompanied by a week- to year-long electromagnetic flare (e.g., Rees 1988).

Gravitational interactions between stars ensure that all supermassive BHs tidally disrupt
nearby stars (e.g., Magorrian & Tremaine 1999). The scattering process might be accelerated
by resonant relaxation very close to the BH (Rauch & Tremaine 1996), or interactions with
“massive perturbers” like a massive accretion disk (Zhao et al. 2002) or giant molecular clouds
(Perets et al. 2007). In addition, the galactic potential may be triaxial so stars need not be
scattered at all: they may simply follow their chaotic orbits down to ∼ RT (Merritt & Poon
2004). Given these uncertainties, predictions for the timescale between tidal disruptions in
a given galaxy range from 103 to 106 years. The rate remains uncertain, but tidal disruption
must occur.

Indeed, a handful of candidate events have been detected to date. The accreting stellar
debris is expected to emit blackbody radiation from very close to the BH, so X-ray and
UV observations probe the bulk of the emission. Several candidate tidal disruption events
were discovered in the ROSAT All-Sky Survey (see Komossa 2002) and the XMM-Newton
Slew Survey (Esquej et al. 2007); the GALEX Deep Imaging Survey has so far yielded three
candidates (Gezari et al. 2006, 2008, 2009). For ROSAT, these detections are consistent with
a rate ∼ 10−5 yr−1 per galaxy (Donley et al. 2002), but the data are sparse. However, we are
entering a new era of transient surveys: in the optical, surveys like Pan-STARRS (PS1, then
all four telescopes) (e.g., Magnier 2007), the Palomar Transient Factory (Rau et al. 2009),
and later the Large Synoptic Survey Telescope will have fast cadence, wide fields of view, and
unprecedented sensitivity. Wide-field transient surveys with rapid cadence are also planned
at other wavelengths, including the radio (e.g., LOFAR and the ATA), near-infrared (e.g.,
SASIR), and hard X-rays (e.g., EXIST). How many tidal flares these surveys find depends
on their luminosity and spectra as a function of time.

In this paper, we predict the light curves and spectra of tidal disruption events as a
function of time. Since the early work on tidal disruption (e.g., Rees 1988), it has been well-
appreciated that the bulk of the emission occurs in the UV and soft X-rays, with a possible
extension to harder X-rays.1 Taking into account only this emission, optical wavelengths are
not the most promising for detecting tidal flares, because the blackbody temperature of the
inner accretion disk is ∼ 3×105 K. We show, however, that there are two additional sources
of optical emission that likely dominate the optical flux in many, though not all, cases: (1)

1Such a hard X-ray component may be detectable with upcoming all-sky X-ray surveys like the proposed
EXIST mission (Grindlay 2004). However, we choose not to include predictions for hard X-rays in our
calculations: one could draw analogy to the hard X-ray power-law tail observed in AGN spectra, but since
the origin of this feature is uncertain, it is difficult to make firm theoretical predictions for tidal disruption
events.
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emission produced by a super-Eddington outflow at early times and (2) emission produced
by the irradiation and photoionization of unbound stellar debris (see also the earlier work
of Bogdanović et al. 2004). In the latter case, much of the optical emission is in the form
of very broad emission lines, while in the former it is primarily continuum (although some
lines may also be present). Throughout this paper, we typically discuss these two sources
of emission separately, largely because the physics of the photoionized stellar debris is more
secure than that of the super-Eddington outflows.

The remainder of this paper is organized as follows. In §§2.2.1, 2.2.2 and 2.3, we describe
our models for the polar super-Eddington outflow, accretion disk and the equatorial unbound
material, respectively; then in §2.4 we calculate the luminosity and spectral signatures of
tidal disruption events. We predict detection rates in §2.5, and summarize and discuss our
results in §2.6. §§2.5.2 and 2.6 include a discussion of our models in the context of ROSAT
and GALEX observations of tidal flare candidates.

2.2 The Initially Bound Material

We consider a star approaching the BH on a parabolic orbit with pericenter distance
Rp ≤ RT. Once the star reaches the vicinity of the tidal radius (RT), the tidal gravity
stretches it radially and compresses it vertically and azimuthally. The acceleration is a ∼
(GMBH/R

2
p)(R⋆/Rp) and acts for a dynamical time tp ∼ (GMBH/R

3
p)

−1/2 near pericenter,

resulting in velocity perturbations ∆vp ∼ atp ∼ v⋆(RT/Rp)
3/2, where R⋆ is the star’s radius

and v⋆ is the star’s escape velocity. The change in velocity ∆vp is smaller than the star’s
orbital velocity at pericenter, vp ≡ (2GMBH/Rp)

1/2, by a factor of R⋆/Rp.
Because ∆vp is at least as large as the sound speed inside the star, the stellar gas

may shock vertically and azimuthally (e.g., Brassart & Luminet 2008; Guillochon et al.
2009). Once the shredded star passes through pericenter, the compression subsides and the
star re-expands, cooling adiabatically; thermal pressure becomes negligible and the particles
travel away from the BH ballistically. We assume that the particle trajectories become
ballistic when the star passes through pericenter. At that time, the particles have perturbed
azimuthal, vertical, and radial velocities ∼ ∆vp.

The particles have a range in specific energy E ∼ ±3(GMBH/Rp)(R⋆/Rp) (e.g., Lacy
et al. 1982; Li et al. 2002), due to their relative locations in the BH’s potential well and
differences in their azimuthal speeds. Initially, approximately half of the stellar mass is
bound and half is unbound (Lacy et al. 1982; Evans & Kochanek 1989). After a time

tfallback ∼ 2π

63/2

(
Rp

R⋆

)3/2

tp (2.1)

∼ 20M
5/2
6 R3

p,3RS
r−3/2
⋆ min ,

the most bound material returns to pericenter. (Here we have defined M6 ≡ MBH/106M⊙,
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Rp,3RS
≡ Rp/3RS, and r⋆ ≡ R⋆/R⊙.) Less bound gas follows, at a rate

Ṁfallback ≈ 1

3

M⋆

tfallback

(
t

tfallback

)−5/3

(2.2)

(Rees 1988; Phinney 1989). There will be some deviations from this canonical t−5/3 scaling at
early times, depending on the precise structure of the star (Lodato et al. 2009; Ramirez-Ruiz
& Rosswog 2009), but we use equation (2.2) for simplicity. As matter returns to pericenter, it
shocks on itself, converting most of its bulk orbital energy to thermal energy (see Kochanek
1994). The viscous time is typically shorter than the fallback time, so at least some of the
matter begins to accrete.

For MBH ∼< few × 107M⊙, the mass fallback rate predicted by equations (2.1) & (2.2)
can be much greater than the Eddington rate ṀEdd for a period of weeks to years; here
ṀEdd ≡ 10LEdd/c

2, LEdd is the Eddington luminosity, and 0.1 is the assumed efficiency of
converting accretion power to luminosity. The fallback rate only falls below the Eddington
rate at a time

tEdd ∼ 0.1M
2/5
6 R

6/5
p,3RS

m3/5
⋆ r−3/5

⋆ yr, (2.3)

where m⋆ ≡ M⋆/M⊙. While the fallback rate is super-Eddington, the stellar gas returning to
pericenter is so dense that it cannot radiate and cool. In particular, the time for photons to
diffuse out of the gas is longer than both the inflow time in the disk and the dynamical time
characteristic of an outflow. The gas is likely to form an advective accretion disk accompanied
by powerful outflows (e.g., Ohsuga et al. 2005), although the relative importance of accretion
and outflows in this phase is somewhat uncertain (see §2.6). Later, when Ṁfallback < ṀEdd

(t > tEdd), the outflows subside, and the accretion disk can radiatively cool and becomes
thin.

In §2.2.1, we describe our model for the super-Eddington outflows, and in §2.2.2, we
describe our model for the accretion disk. We discuss uncertainties in these models in §2.6.

2.2.1 Super-Eddington Outflows

When the fallback rate to pericenter is super-Eddington, radiation produced by the
shock and by viscous stresses in the rotating disk is trapped by electron scattering. By
energy conservation, this material is initially all bound to the BH, but it is only weakly
bound because the radiation cannot escape and because the material originated on highly
eccentric orbits. Some fraction of the returning gas is thus likely unbound (see, e.g., the
simulations of Ayal et al. 2000), with energy being conserved as other gas accretes inward
(Blandford & Begelman 1999). If the outflow’s covering fraction is high, most of the radiated
power will be emitted from the outflow’s photosphere, which can be far outside ∼ Rp (Loeb
& Ulmer 1997). We now estimate the properties of this outflowing gas (see Rossi & Begelman
2009 for related estimates in the context of short-duration gamma-ray bursts).
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In our simplified scenario, stellar debris falls back at close to the escape velocity and
shocks at the launch radius RL ∼ 2Rp, converting bulk kinetic energy to radiation:

aT 4
L ∼ 1

2
ρfallback,Lv

2
esc,L , (2.4)

where TL is the temperature at RL, ρfallback,L ∼ Ṁfallback/(4πR
2
Lvesc,L) is the density of gas at

RL, and vesc,L ≡ (2GMBH/RL)1/2. Outflowing gas is launched from RL at a rate

Ṁout ≡ foutṀfallback (2.5)

and with terminal velocity
vwind ≡ fvvesc(RL). (2.6)

We approximate the outflow’s geometry as spherical, with a density profile

ρ(r) ∼ Ṁout

4πr2vwind
(2.7)

inside the outflow where r ∼< Redge ≡ vwindt; the density falls quickly to zero at ∼ Redge.
We define the trapping radius Rtrap via Rtrapρ(Rtrap)κs ∼ c/vwind (where κs is the opacity
due to electron scattering): inside Rtrap, the gas is too optically thick for photons to escape
and so the outflowing gas expands adiabatically. Because the outflow remains supported by
radiation pressure, T ∝ ρ1/3. The photosphere of the outflow Rph is where Rphρ(Rph)κs ∼ 1.
Because vwind is likely not much smaller than c, Rtrap ∼ Rph; we thus neglect any deviations
from adiabaticity between Rtrap and Rph.

At the earliest times for small MBH and Rp, the fallback rate can be so large and the
density so high that the edge of the outflow limits the location of the photosphere to be
just inside Redge. In that case, the density of the photosphere is still given by ρ(Rph) ∼
(κsRedge)

−1; lacking a detailed model, we assume that the photospheric gas near the edge is
on the same adiabat as the rest of the gas, so that

Tph ∼ TL

[
ρ(Rph)

ρfallback,L

]1/3

(2.8)

∼ 3 × 104f−1/3
v M

1/36
6 R

−1/8
p,3RS

m−1/12
⋆ r1/12

⋆

(
t

day

)−7/36

K .

Note that the photospheric temperature during the edge-dominated phase is essentially inde-
pendent of all parameters of the disruption (e.g., MBH, Rp, etc.), and is only a weak function
of time. The total luminosity during this phase grows as L ∝ t11/9 while the luminosity on
the Rayleigh-Jeans tail increases even more rapidly, νLν ∝ t65/36. After a time

tedge ∼ 1 f
3/8
out f

−3/4
v M

5/8
6 R

9/8
p,3RS

m3/8
⋆ r−3/8

⋆ day , (2.9)
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the density falls sufficiently that the photosphere lies well inside Redge; the photosphere’s
radius is then

Rph ∼ 4foutf
−1
v

(
Ṁfallback

ṀEdd

)
R

1/2
p,3RS

RS (2.10)

and its temperature is

Tph ∼ 2 × 105f
−1/3
out f 1/3

v

(
Ṁfallback

ṀEdd

)−5/12

M
−1/4
6 R

−7/24
p,3RS

K . (2.11)

The adiabatically expanding outflow preserves the photon distribution function generated
in the shock and accretion disk close to the BH. Estimates indicate that this gas is likely
to be close to thermal equilibrium and thus we assume that the escaping photons have a
blackbody spectrum

νLν ∼ 4π2R2
phνBν(Tph) . (2.12)

When the photosphere lies inside the edge of the outflow (i.e., t > tedge so Rph < vwindt),
equations (2.10) and (2.11) imply that the total luminosity of the outflow is

L ∼ 1044f
2/3
out f

−2/3
v M

11/9
6 R

1/2
p,3RS

m1/3
⋆ r−1/3

⋆

(
t

day

)−5/9

erg s−1. (2.13)

The total luminosity of the outflow is thus of order the Eddington luminosity: see Figure 2.4,
discussed in §2.4.1. Note that the total luminosity decreases for lower outflow rates, L ∝ f

2/3
out ,

because the photosphere’s surface area is smaller. The luminosity on the Rayleigh-Jeans tail
(generally appropriate for optical and near-infrared wavelengths) declines even faster for
lower Ṁout, scaling as

νLν ∝ f
5/3
out f

−5/3
v . (2.14)

These relations only apply if Rph ∼> RL because otherwise the outflow is optically thin; we
impose this lower limit to Rph in our numerical solutions described later.

2.2.2 The Accretion Disk

We now consider the bound stellar debris that accretes onto the BH. After shocking at
pericenter, this gas circularizes and viscously drifts inward, forming an accretion disk. The
disk extends from ∼ 2Rp down to the last stable orbit, RLSO. We expect the viscous time in
the disk to be substantially shorter than the fallback time for at least a few years (see Ulmer
1999 for the case of Rp = RT, assuming a thick disk), and check this expectation at the end of
§2.2.2; we thus assume that accretion during this period proceeds at Ṁ ≃ (1− fout)Ṁfallback.
During the super-Eddington phase, the time for photons to diffuse out of the disk is longer
than the viscous time, and so the disk is thick and advective. In contrast, at later times
when Ṁfallback ∼< ṀEdd, the disk is thin and can cool by radiative diffusion. We derive an
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analytic “slim disk” model (similar to the numerical work of Abramowicz et al. 1988) to
describe the structure of the disk in both regimes.

To calculate the disk’s properties, we solve the equations of conservation of mass, mo-
mentum, and energy:

Ṁ = −4πRHρvr , (2.15)

vr = −3

2

ν

R

1

f
, (2.16)

q+ = q− − ρTvr
s

R
, (2.17)

where we have approximated the radial entropy gradient as ∂s/∂R ∼ −s/R. Here Ṁ is
the accretion rate, R is the cylindrical distance from the BH, H is the disk scale height, ρ
is the density, vr is the radial velocity, and T is the midplane temperature. The no-torque
boundary condition at the inner edge of the disk implies f ≡ 1−(RLSO/R)1/2. We neglect gas
pressure, since radiation pressure is dominant throughout the disk for at least a few years;
we further assume that the viscous stress is proportional to the radiation pressure, so that
(Shakura & Sunyaev 1973) ν = αcsH with sound speed cs = (aT 4/3ρ)1/2 and H = cs/ΩK,
where ΩK ≡ (GMBH/R

3)1/2. Simulations indicate that this assumption is reasonable and
that such disks are thermally stable (Hirose et al. 2009). The vertically integrated heating
and cooling rates are given by 2Hq+ = 3GMBHṀf/4πR3 and 2Hq− = 8σT 4/3τ , where
the half-height optical depth is τ = Hρκs and κs is the electron scattering opacity. These
relations form a quadratic equation for the dimensionless quantity κsaT

4/cΩK = 3τ(cs/c),

0 =

(
κsaT

4

cΩK

)2

− 4

3α

(
κsaT

4

cΩK

)
− 8f

3α2

(
10Ṁ

ṀEdd

)2(
R

RS

)−2

. (2.18)

Solving equation (2.18) yields the effective temperature of the disk,

σT 4
eff =

4σT 4

3τ
=

3GMBHṀf

8πR3
×




1

2
+





1

4
+

3

2
f

(
10Ṁ

ṀEdd

)2 (
R

RS

)−2





1/2



−1

. (2.19)

Combining this relation with equation (2.2), we calculate the luminosity and spectrum of
the disk as a function of time, modeling it as a multicolor blackbody.

The solution to (2.18) also yields the disk scale height ratio,

H

R
=

3

4
f

(
10Ṁ

ṀEdd

)(
R

RS

)−1

×
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


1

2
+





1

4
+

3

2
f

(
10Ṁ

ṀEdd

)2 (
R

RS

)−2





1/2



−1

. (2.20)

The scale height H ∼ R while Ṁfallback ∼> ṀEdd, and decreases as t−5/3 at fixed R at later
times. The viscous time at a radius R in the disk is

tvisc ∼ α−1

(
GMBH

R3

)−1/2(
H

R

)−2

, (2.21)

which is ∼ α−1 times the local dynamical time during the super-Eddington phase, and later
increases as t10/3 at fixed R. For α ∼ 0.1, the viscous timescale evaluated at the disk’s outer
edge is shorter than the time t since disruption for ∼ 1−3 yr; our assumption of steady-state
accretion during this period is thus consistent.

2.3 The Equatorial Unbound Material

While half of the initial star becomes bound to the BH during the disruption, the other
half gains energy and escapes from the BH on hyperbolic trajectories. From the viewpoint of
the BH, this unbound material subtends a solid angle ∆Ω, with a dispersion ∆φ in azimuth
and a dispersion ∆i in orbital inclination. This material absorbs and re-radiates a fraction
of the luminosity from the accretion disk.2 We now estimate the dimensions of the unbound
wedge.

In the orbital plane at a fixed time t ∼> tfallback, the unbound stellar debris lies along
an arc, as the spread in specific energy produces a spread in radius and azimuthal angle
(see Fig. 2.1). The most energetic particles escape on a hyperbolic orbit with eccentricity
emax ∼ 1 + 6R⋆/Rp. These particles race away from the BH at a substantial fraction of the
speed of light,

vmax

c
∼
(

3R⋆

Rp

)1/2
vp

c
∼ 0.3M

−1/2
6 R−1

p,3RS
(2.22)

(ignoring relativistic effects) and lie furthest from the BH at a distance

Rmax ∼ 0.01M
−1/2
6 R−1

p,3RS
r1/2
⋆

(
t

0.1 yr

)
pc . (2.23)

They also have the smallest angle away from stellar pericenter, φmin ∼ f∞, where f∞ obeys
cos f∞ = −1/emax so that φmin ∼ π − (12R⋆/Rp)

1/2 (see also Khokhlov & Melia 1996).
Particles with lower energies and thus smaller eccentricities are closer to the BH and make
a larger angle relative to pericenter, up to φ ∼ π. This produces an azimuthal dispersion
∆φ ∼ (12R⋆/Rp)

1/2.

2The polar outflow could also irradiate the unbound material, but it will have less of an effect because
its spectrum is softer and its luminosity declines more rapidly.
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Particles having the maximum vertical velocity ∆vp have vertical specific angular mo-
mentum jz = Rpvp, and total specific angular momentum

j ∼ Rpvp

[
1 +

1

2

(
∆vp

vp

)2
]
∼ Rpvp

[
1 +

1

2

(
R⋆

Rp

)2
]

(2.24)

to lowest order in ∆vp/vp. The orbital inclination i is given by cos i = jz/j ∼ 1 −
(1/2)(R⋆/Rp)

2, so i ∼ ±R⋆/Rp. The resulting inclination dispersion is ∆i ∼ 2R⋆/Rp (our
result is consistent with Evans & Kochanek 1989 but we disagree with Khokhlov & Melia
1996).

The finite inclination dispersion produces a vertical wall of debris whose inside face
scatters, absorbs, and re-radiates a fraction of the disk’s emission. This face subtends a solid
angle

∆Ω = ∆i∆φ ∼ 481/2

(
R⋆

Rp

)3/2

(2.25)

∼ 0.2M
−3/2
6 R

−3/2
p,3RS

r3/2
⋆ sr .

0.1 yr

0.
3 
yr

1 
yr

BH

Figure 2.1: Spatial diagram of the equatorial stellar debris in the plane defined by the original
orbit of the star. The unbound material is shown 0.1 yr, 0.3 yr, and 1 yr after the tidal
disruption of a solar-type star by a 106M⊙ BH at Rp = 3RS. The dashed and dotted curves
indicate the incoming parabolic trajectory of the star and its continuation if the star were
not disrupted. The debris also has an inclination dispersion perpendicular to this plane of
∆i ∼ 2R⋆/Rp.
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The number density of particles in the unbound wedge is n ∼ (M⋆/2mp)/(R
2∆R∆Ω/3),

where ∆R is the radial dispersion of the material at fixed φ. This dispersion is due to
differences in the particles’ radial velocities and azimuthal positions when the star passes
through pericenter. Particles at ∼ Rmax travel on orbits whose pericenter is shifted from
the star’s pericenter by an angle ∼ ±3(R⋆/Rp), which produces a spread in radial position
(∆R/R)max ∼ (3R⋆/Rp)

1/2. The number density is then

n ∼ 109M
7/2
6 R5

p,3RS
m⋆r

−7/2
⋆

(
t

0.1 yr

)−3

cm−3 (2.26)

and the radial column density seen by the black hole is

N ∼ 1025M
5/2
6 R

7/2
p,3RS

m⋆r
−5/2
⋆

(
t

0.1 yr

)−2

cm−2 . (2.27)

As the unbound material expands, it cools very quickly; after at most a few weeks, the
gas would all be neutral if not for the disk’s ionizing radiation. This radiation ionizes the
surface layer of the unbound material. The ionized gas in turn emits via bremsstrahlung,
radiative recombination, and lines. The physical conditions and processes here are similar
to those in the broad line region of an active galactic nucleus (AGN).

t = 10 days

t = 30 days

t = 100 days

t = 30 days

t = 1 day

t = 3 days

t = 10 days

MBH = 10
6
M⊙

Rp = RT

MBH = 10
6
M⊙

Rp = 3RS

MBH = 10
7
M⊙

Rp = RT

Figure 2.2: Spectral energy distributions for our three fiducial tidal disruption flares at
several different times after disruption. These spectra include only the emission from the
super-Eddington outflows (for fout = 0.1 and fv = 1; see eqns [2.5] & [2.6]), which dominate
the emission at early times (see Fig. 2.3). For MBH = 107M⊙ and Rp = RT (right panel),
the disk dominates the emission for t ∼> 50 days (Fig. 2.3); this is why we do not plot the
outflow emission at later times.
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Figure 2.3: Light curves at g- (solid) and i-band (dashed) for our three fiducial models.
In each panel, times to the left of the vertical dotted line (∼ tEdd; eq. [2.3]) have super-
Eddington fallback rates and an outflow dominates the optical emission; at later times, the
fallback rate is sub-Eddington and the emission is produced by the accretion disk and the
photoionized unbound material (see §2.4.2). In the leftmost panel, the emission rises at
early times because the edge of the outflow limits the size of the photosphere. The optical
emission then declines until the end of the outflow phase as the photosphere recedes and the
photospheric temperature rises (Fig. 2.2).

The ionized gas can reach photoionization equilibrium provided conditions change more
slowly than the hydrogen recombination rate t−1

rec ∼ neαrec. The recombination coefficient for
hydrogen is αrec ≈ 4 × 10−13 cm3 s−1, and ne is the electron number density. In the ionized
region, ne/n ≈ 1, as we show below. The material can remain in equilibrium for at least a
few years, until trec/t ∼> 1:

trec
t

∼ (nαrect)
−1 ∼ 10−3M

−7/2
6 R−5
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⋆

(
t
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)2

. (2.28)

The column depth of the ionization front isNion ∼ 1023U cm−2, where U ≡ Ldisk/4πR
2
maxc〈hν〉n

is the ionization parameter,
U ∼ (2.29)
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The electron density in the ionized layer is ne ≈ n(1 − 10−6U−1) ≈ n and the fractional
depth of the ionization front is
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so the ionized layer is typically thin and highly ionized.

2.4 Predicted Emission

We use the results of §§2.2 and 2.3 to calculate the emission due to the tidal disruption of
a solar-type star as a function of time and wavelength. We consider a solar-type star because
the stellar mass-radius relation and typical stellar mass functions imply that these stars
should dominate the event rate. The two key parameters we vary are the star’s pericenter
distance Rp and the BH mass MBH. We consider the mass range MBH ∼ 105 − 108M⊙.

2.4.1 Super-Eddington Outflows

Early on, when Ṁfallback ∼> ṀEdd (t < tEdd), outflowing gas likely dominates the emission.
We calculate its properties using results from §2.2.1.

In Figure 2.2 we plot the spectral energy distribution at various times during the outflow
phase, for three fiducial models: MBH = 106M⊙ and Rp = 3RS; MBH = 106M⊙ and Rp = RT;
and MBH = 107M⊙ and Rp = RT. We take nominal values of fv = 1 and fout = 0.1; we
discuss the uncertainties in these parameters in §§2.5.3 and 2.6. The photosphere lies well
inside the edge of the outflow at all times shown in Figure 2.2. The emission from the outflow
has a blackbody spectrum, initially peaking at optical/UV wavelengths. As time passes and
the density of the outflow subsides, the photosphere recedes and the emission becomes hotter
but less luminous.

In Figure 2.3, we plot g- (4770Å) and i- (7625Å) band light curves for the three fiducial
models. In the leftmost panel at t ∼< 1 day, the edge of the outflow limits the size of the
photosphere, so the photosphere initially expands, following the edge of the outflow. After
a time tedge (eq. [2.9]), however, the photosphere begins to recede inside the edge of the
outflow and the luminosity declines. In the middle and rightmost panels, the photosphere
lies well inside Redge for virtually the entire outflow phase. The optical emission decreases
as the photosphere’s emitting area decreases and the temperature rises only slowly. As
Figures 2.2 & 2.3 demonstrate, the peak optical luminosity of the outflow is substantial,
∼ 1043 erg s−1 ∼ 109L⊙, comparable to the optical luminosity of a supernova. The color of
the emission is quite blue (g− r ≈ −0.8). To illustrate how the peak luminosity depends on
the parameters of the disruption event, Figure 2.4 shows the peak bolometric and g-band
luminosities of the outflow as a function of MBH, for Rp = 3RS and Rp = RT. For sources
at cosmological distances (which are detectable; §2.5), the negative k-correction associated
with the Rayleigh-Jeans tail implies that the rest-frame g-band luminosity in Figure 2.4
underestimates the peak optical luminosity visible at Earth.
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2.4.2 Disk and Photoionized Unbound Debris

When Ṁfallback ∼> ṀEdd, a fraction of the falling-back gas is blown away while the
remainder likely accretes via an advective disk (§2.2.2). As the fallback rate declines below
Eddington, the photons are able to diffuse out of the region close to the BH and the disk cools
efficiently, but also becomes less luminous. The vertical dotted line in Figure 2.3 delineates
the super-Eddington fallback (and outflow) phase from the sub-Eddington fallback phase.

The accretion disk irradiates the surface of the equatorial unbound stellar material
(§2.3). In this section we calculate the combined emission produced by the accretion disk
and the irradiated stellar debris. In order to isolate the more theoretically secure emission by
the disk and photoionized material, we do not consider the emission from super-Eddington
outflows in this section. We show results for the disk and photoionized material at both
t < tEdd and t > tEdd; depending on the geometry of the outflow, and the viewing angle of
the observer to the source, it is possible that all three emission components could be visible
at early times. Because the mass driven away by outflows during the super-Eddington phase
can also be photoionized by the central source at times t > tEdd, our emission line predictions
are likely a lower limit to the total emission line fluxes (§2.6).

We calculate the photoionization properties of the unbound material using version
07.02.02 of the publicly available code Cloudy, last described by Ferland et al. (1998). We
simplify the geometry: the unbound spray traces out a widening spiral shape with most of
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Figure 2.4: Peak bolometric (heavy lines) and g-band (light lines) luminosities of the early-
time super-Eddington outflows as functions of MBH, for Rp = 3RS (dashed) and Rp = RT

(solid), assuming that fout = 0.1 and fv = 1. Figure 2.11 shows the duration of this phase.
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the area coming from close to ∼ Rmax, so we approximate it as a cloud of area R2
max∆Ω

located a distance Rmax from the ionizing source. Our model cloud has constant density n
(eq. [2.26]), column depth N (eq. [2.27]), and is irradiated by the accretion disk having the
luminosity and spectrum described in §2.2.2. The total emission calculated here is the sum
of the emission from this photoionized layer and the emission from the central accretion disk.
We focus on non-rotating BHs (RLSO = 3RS), although we quote results for rapidly rotating
holes (RLSO = RS) as well.

In Figure 2.5 we plot the spectral energy distribution 30 days, 100 days, 300 days, and
1000 days after disruption, for our three fiducial models: MBH = 106M⊙ and Rp = 3RS;
MBH = 106M⊙ and Rp = RT; and MBH = 107M⊙ and Rp = RT. The early-time short-
wavelength peaks at ∼ 0.1 keV with luminosity ∼ LEdd are emission from the disk. After a
time tEdd, the mass fallback rate declines below the Eddington rate, and the disk begins to
cool and fade. For Rp ∼ RLSO and MBH ∼ 105 − 106M⊙, the optical light is dominated by
lines and continuum from the photoionized material. For larger MBH (and larger Rp/RS),
the equatorial debris subtends a smaller solid angle (see eq. [2.25]) and the disk’s luminosity
is larger, so the disk dominates the optical emission.

Figure 2.6 zooms in on the UV/optical/near-infrared spectra for our three fiducial mod-
els. The emission lines characteristic of the broad line region of an AGN are typically the
strongest lines here as well: e.g., Lyα, CIV 1548+1551, Hβ, and Hα. In most cases, these
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Figure 2.5: Spectral energy distributions for tidal flares around a non-rotating BH, 30,
100, 300, and 1000 days after disruption. Emission from the accretion disk dominates at
short wavelengths. The photoionized unbound stellar debris absorbs and re-radiates some
of the disk’s emission, producing optical-infrared emission. These spectra do not include the
emission from super-Eddington outflows at early times; see Figs. 2.2 & 2.3 for this emission.
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Figure 2.6: UV to near-infrared spectra for tidal flares around a non-rotating BH, 30, 100,
300, and 1000 days after disruption. The spectra are the sum of contributions from the
accretion disk and the photoionized unbound material, but do not include the emission from
super-Eddington outflows, which likely dominate at early times (Fig. 2.3). The linewidths
and line strengths are both larger for smaller Rp/RS and smaller MBH (eq. [2.22]).
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Figure 2.7: Line strength evolution for the three fiducial models. Results are shown for
Lyα (solid), CIV 1548+1551 (dotted), Hβ (dashed), Hα (dot-dashed), and Paα (triple-
dot-dashed). The quantity Lν,line/Lν,cont is the ratio at line center of the line intensity to
continuum intensity, taking into account emission from both the disk and the photoionized
material, but not the early-time super-Eddington outflows.
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Table 2.1: Assumed parameters for transient surveys4 and predicted rates. Our results can be scaled to other survey
parameters and model assumptions using eq. (2.31).

Survey flim fsky Cadence D+UBa ( yr−1) Outflowsb ( yr−1)
Pan-STARRS 3π Survey 23 AB mag (g, i-band) 0.75 6 months 4 − 12 200

Pan-STARRS Medium Deep Survey 25 AB mag (g-band) 2 × 10−3 4 days 0.2 − 1 20
Palomar Transient Factory 21 AB mag (g-band) 0.2 5 days 0.3 − 0.8 300

Large Synoptic Survey Telescope 24.5 AB mag (g-band) 0.5 3 days 60 − 250 6000
Synoptic All-Sky Infrared Surveyc 23.5 AB mag (Y -band) 0.03? 10 days? 0.1 − 0.5 100

ROSAT All-Sky Surveyd 2 × 10−12 erg s−1 cm−2 1 e 2 − 100 N/Af

GALEX Deep Imaging Survey 25 AB mag (2316 Å) 7 × 10−5 e 0.05 − 0.2 N/Af

a Rates for the emission from the disk and unbound equatorial debris; the range corresponds to RLSO = 3RS (low),
RLSO = 1RS (high). This emission is relatively faint in the optical/infrared and may be difficult to detect relative to
the host bulge (see §2.6).
b Rates for the emission from super-Eddington outflows, restricted to z < 1, for fout = 0.1 and fv = 1 (see Fig. 2.13).
c The survey strategy for SASIR has not yet been finalized.
d These parameters are for comparison with the all-sky rate calculation by Donley et al. (2002).
e ROSAT and GALEX do not have regular cadences.
f ROSAT and GALEX have insufficient cadence and/or sky coverage to detect flares from super-Eddington outflows.
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lines are optically thick for more than a year. The lines are extremely broad, since the
marginally bound gas has a speed close to zero while the most energetic gas leaves the BH
at vmax ∼ 0.4c, 0.09c, and 0.2c for MBH = 106M⊙, Rp = 3RS; MBH = 106M⊙, Rp = RT;
and MBH = 107M⊙, Rp = RT, respectively (see eq. [2.22]). In addition, the mean velocity
along our line of sight will usually be substantial, so the lines should have a large redshift
or blueshift on top of the galaxy’s redshift. For clarity, we plot the spectra with a mean
redshift of zero.

Figure 2.7 focuses on the evolution of five strong lines, plotting the ratio Lν,line/Lν,cont

at line center for each.3 The quantity Lν,line is the line intensity at line center accounting
for the significant broadening. As the surface area of the equatorial wedge grows in time,
line luminosities grow until Ṁfallback ∼< Ṁedd and irradiation by the disk subsides. The
quantity Lν,cont is the continuum intensity, which includes the contributions of both the
disk (blackbody) and the photoionized unbound material (bremsstrahlung and radiative
recombination)—again, the emission from the super-Eddington outflows is not included in
Lν,cont. The lines remain prominent for a few years, and are strongest and broadest for small
MBH and small Rp/RS. The UV lines are the strongest lines when the unbound material
dominates the continuum (left panel), while the near-infrared lines are the strongest when
the disk dominates the continuum (middle and right panels).

We next describe the broadband optical evolution of a tidal disruption event. Figure
2.3, also discussed in §2.4.1, plots the optical light curve for each fiducial model, showing the
total emission at both g- and i-bands. For t ∼< tEdd (left of the dotted lines), the emission is
dominated by the super-Eddington outflows, while for t ∼> tEdd the emission is dominated by
the accretion disk and photoionized equatorial debris. Once t > tEdd, i.e., Ṁfallback ∼< Ṁedd,
the disk’s optical luminosity falls off gently, approximately as t−5/12: although the bolometric
luminosity is declining as t−5/3, the optical emission lies on the Rayleigh-Jeans tail. Increasing
Rp/RS and/or MBH increases the disk’s luminosity by up to two orders of magnitude because
of the disk’s larger emitting area and/or because LEdd rises. At all times, the disk emission
is quite blue (g − r ≈ −1).

For large MBH and/or large Rp/RS (middle and right panels in Fig. 2.3), the disk
outshines the photoionized material at optical wavelengths, and the light curves and color
evolution are determined by the disk emission alone. By contrast, for MBH = 106M⊙ and
Rp = 3RS (left panel), the photoionized material’s optical line emission is initially an order
of magnitude brighter than the disk. As the illuminating power of the disk declines but the
unbound debris becomes less dense, different lines wax and wane. The significant redshift
or blueshift of the unbound material further complicates the photometry by altering which
lines contribute in which wavebands (again, our figures assume a mean redshift of zero).
These effects can produce a non-monotonic light curve and a complicated color evolution,
depending on the exact redshift of the source and the velocity of the equatorial debris.

3By comparing the results of different versions of Cloudy, we find that the results for line strengths can
be uncertain by up to factor few.
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2.5 Predicted Rates

We use our calculated spectra and light curves to predict the number of tidal disruption
events detectable by observational surveys. We focus on an (almost) all-sky optical survey
like the Pan-STARRS PS1 3π survey, but we also predict results for surveys with more rapid
cadence (e.g., PTF and LSST) and discuss the results of our models compared to ROSAT
and GALEX observations. Our assumed survey parameters are listed in Table 2.1, along
with some of our results.4 Our results can readily be scaled to other surveys using equation
(2.31) discussed below.

To predict rates, we use the redshift-dependent BH mass function given by Hopkins
et al. (2007). At z ∼ 0, the BH density is ≃ 10−2 Mpc−3 for ∼ 106M⊙ and gently falling
at higher masses; as z rises to 3, the BH number density falls by ∼ 30. We assume that
the BH number density for 105 − 106M⊙ is the same as for ∼ 106M⊙, although it is poorly
constrained observationally. We do not consider tidal disruption events beyond z ∼ 3. (Our
results can easily be scaled to other assumed BH mass densities; see eq. [2.31]).

The rate of tidal disruptions within a single galaxy is γ(MBH). To predict detection
rates, we assume that γ is independent of BH mass. We adopt γ = 10−5 yr−1 as found by
Donley et al. (2002) using the ROSAT All-Sky Survey, which is also in line with conserva-
tive theoretical estimates. We further assume that this rate is distributed equally among
logarithmic bins of stellar pericenter distance Rp, so that dγ/d lnRp = γ/ ln(RT/Rp,min). In
the limit of z ≪ 1, the equation for the predicted rate is

dΓ

d lnMBH

=

∫ RT

Rp,min

4π

3
d3

maxfsky
dn

d lnMBH

dγ

d lnRp

d lnRp (2.30)

where fsky is the fraction of sky surveyed; when necessary we use the generalization of
equation (2.30) that includes cosmological effects. When the duration of a flare tflare is
shorter than the cadence of the survey tcad, we approximate the probability of detection as
tflare/tcad.

We start by considering emission from only the accretion disk and photoionized equato-
rial debris. Then in §2.5.3, we include the emission from super-Eddington outflows, where the
physics is somewhat less certain, but the observational prospects are particularly promising.

2.5.1 Disk and Photoionized Material

For all but the largest MBH, the duration of peak optical emission for the accretion
disk and photoionized material is tflare ∼ tEdd (eq. [2.3]). This timescale depends on the
BH’s mass and the star’s pericenter distance, as shown in Figure 2.8. For Rp ∼ RT, the
flare lasts for tEdd ∼ 0.3 − 1 yr and then decays only gently since the disk dominates the
optical emission. However, for MBH ∼ 105 − 106M⊙ and Rp ∼ RLSO, the optical flare is

4These are intended to be illustrative, and may not correspond precisely to the true observational survey
parameters, although we have attempted to be as accurate as possible.
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shorter, tEdd ∼ 0.03 − 0.1 yr, and then the emission decays more quickly since irradiation
of the unbound material—the dominant source of optical emission—subsides. For MBH ∼>
8 × 107M⊙, tflare ∼ tfallback (eq. [2.1]) because the fallback rate in these systems is never
super-Eddington.

Figure 2.9 shows our calculated rates for optically-detected tidal flares (for a survey
like the Pan-STARRS 3π survey), for both non-rotating and rapidly rotating BHs. For
MBH ∼> 106M⊙, the disk contributes most of the emitted power, so the rates increase with
MBH as Ldisk ∼ LEdd increases. The rates are dominated by Rp ∼ RT and MBH ∼ 2×107M⊙
(non-rotating BHs) and MBH ∼ 108M⊙ (rapidly rotating BHs). Since most of the flares that
dominate the rates have relatively long durations (Fig. 2.8), imperfect survey cadence only
modifies the detection rates by ∼ 50%. At 105 − 106M⊙ and small Rp, the photoionized
material re-emits a relatively large fraction of the disk’s power in the optical and boosts the
detection rates significantly.

Integrated overMBH = 106−108M⊙, our estimated rates for the Pan-STARRS 3π survey,
assuming non-rotating BHs, are 4 yr−1 and 2 yr−1 in g-band and i-band, respectively. The
mass range 105 − 106M⊙ contributes another 0.4 yr−1 (both g-band and i-band), assuming
(probably optimistically) that dn/d lnMBH and γ are the same at 105M⊙ as at 106M⊙. If
the BH is rotating faster, Rp/RS can be smaller. This allows an accretion disk to form for
even MBH ∼ few × 107 − 108M⊙, widens the disk for all MBH, and increases the solid angle
of the unbound material. Indeed for MBH ∼ 105M⊙ and Rp ∼ RS, the unbound material
covers a quarter of the sky! (At this point RS ∼ R⊙ so our approximations begin to break
down.) These effects raise the total predicted rates for rapidly rotating BHs to ∼ 12 yr−1.

Figure 2.10 plots the detection rates as a function of Rp/RS for MBH = 105M⊙, 106M⊙,
and 107M⊙, for the disk alone (light lines) and for the disk plus photoionized material (heavy
lines). The photoionized material enhances detection rates significantly for most Rp/RS at
105M⊙ and 106M⊙, but has little effect for 107M⊙. The rates decrease substantially for
Rp/RS → 1.5 because then the outer radius of the disk ≃ 2Rp = 3RS is at the last stable
orbit; our disk model assumes a no-torque boundary condition at RLSO, implying that there
is essentially no emission from the disk when Rp ∼ RLSO.

Although the rates quoted above and in Figures 2.9 and 2.10 are for a survey covering
3/4 of the sky, assuming constant γ(MBH) and constant BH mass density below ≃ 106M⊙,
our predicted rates can be scaled to other assumed parameters:

dΓ

d lnMBH

∝ f
−3/2
lim fskyfcad

dn

d lnMBH

γ(MBH) (2.31)

assuming that the sources are at z ≪ 1, where fcad ≡ min(tflare/tcad, 1).
The Pan-STARRS MDS, PTF, and LSST will have cadences of only a few days, giving

them sensitivity to all events within their survey volumes. However, for detecting this
relatively long-lived emission, the advantage of fast cadence is only minor; more significant
is the spatial volume probed by the survey (see Table 2.1). The MDS will deeply (mAB ∼ 25)
image a relatively small (84-deg2) region, and so will detect ∼ 5 − 10% as many events as
the 3π Survey, ∼ 0.2−1 per year. PTF will image a larger region (8000 deg2) but less deeply
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(mAB ∼ 21), and so will have detection rates similar to the MDS. The emission from early-
time super-Eddington outflows may significantly increase these rates, as we discuss in §2.5.3.
In the next decade, LSST will image a large region (20,000 deg2) deeply (mAB ∼ 24.5), and
so will discover hundreds of tidal flares. MDS and LSST will detect events at cosmological
distances (zmax ∼ 0.3 − 0.6), where the negative k-correction of the disk’s blackbody peak
enhances rates by a factor of a few. By co-adding images up to ∼ 1 month, these short-
cadence surveys will also be able to raise their detection rates of events having MBH ∼
106 − 108M⊙ by a factor of a few. Also in the next decade, SASIR plans to deeply image
140 deg2 each night in the near infrared (to mAB ∼ 23.5 at Y -band; Bloom et al. 2009).
Their observing strategy is not yet finalized; assuming a 10-day cadence covering 1400 deg2

(a good strategy for detecting flares during the super-Eddington outflow phase; see §2.5.3),
this survey should detect a flare every few years from the accretion disk plus photoionized
debris.
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Figure 2.8: Duration of maximum luminosity during the late-time accretion disk phase,
plotted as a function of MBH for Rp = 3RS and Rp = RT. Most flares last longer than ∼
a month. The super-Eddington outflow at early times produces a shorter flare that should
precede this emission (Figs. 2.3 & 2.11–2.13). (The fallback rates for MBH ∼> 8× 107M⊙ are
never super-Eddington, so the flare duration in these systems is ∼ tfallback.)
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2.5.2 Current Observational Constraints

As a check on our model, we have calculated rates for the ROSAT All-Sky Survey for
comparison with Donley et al. (2002)’s result of 42 events per year over the whole sky for
flim = 2 × 10−12 erg s−1 cm−2 (0.2 − 2.4 keV).5 Considering blackbody emission alone, we
predict 2 yr−1 (Rin = 3RS) or 40 yr−1 (Rin = RS). This strong sensitivity to Rin arises be-
cause the ROSAT band is on the Wien tail of the disk emission. If we assume that 10%
of the emission is in an X-ray power-law tail with a photon index Γ = 3 (not unreasonable
assumptions for X-ray emission from accreting BHs; e.g., Koratkar & Blaes 1999), our pre-
dicted rates are 10 yr−1 (Rin = 3RS) and 100 yr−1 (Rin = RS). Given the large uncertainties
in the X-ray emission, our predictions are consistent with the observational results. We also
compare with detection rates in the GALEX Deep Imaging Survey (Gezari et al. 2008). They
search an area of 2.882 square degrees, observed at FUV (1539 Å) and NUV (2316 Å) down
to flim ∼ 25 AB magnitudes. Gezari et al. detect 2 events6 in this region over 3 years. This

5The cadence is ∼ 1 year but irregular; we assume it is perfect for simplicity. The rates we predict thus
may be slightly high.

6The candidate of Gezari et al. (2009) is in a different field.
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Figure 2.9: Predicted detection rates as a function of BH mass for the Pan-STARRS 3π
survey (see Table 2.1). Results are shown for non-rotating BHs (left panel) and rapidly
rotating BHs (right panel). The rates shown here can be scaled to other surveys and other
model parameters using eq. (2.31). These rates do not include the emission from super-
Eddington outflows at early times; see Figs. 2.12 & 2.13 for these results.
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is somewhat higher than our predicted rates in the NUV, 0.05 yr−1 if Rin = 3RS and 0.2 yr−1

if Rin = RS (assuming perfect cadence for simplicity), and may suggest that the disruption
rate per galaxy γ is a factor of a few higher than we have assumed here.

As the above estimates demonstrate, consistency with GALEX and ROSAT constraints
prefers a rate per galaxy of γ ∼ (1− 3) × 10−5 yr−1. Significantly larger disruption rates, as
some calculations predict (e.g., Merritt & Poon 2004), are inconsistent with current observa-
tional limits unless dust obscuration has significantly biased the ROSAT and GALEX results
or the large disruption rates are confined to brief epochs in a galaxy’s life (e.g., a merger).
Note also that this constraint only applies to massive BHs with MBH ∼ 107M⊙ − 108M⊙,
because UV and X-ray surveys select for these systems (§2.6).

MBH = 10
7
M⊙

M
B
H

=
10

6 M
⊙

MBH = 10
5
M⊙

Figure 2.10: Predicted detection rates as a function of pericenter distance Rp/RS for the Pan-
STARRS 3π survey at g-band (see Table 2.1). Results are shown for MBH = 105M⊙ (solid),
106M⊙ (dashed), and 107M⊙ (dot-dashed), assuming a non-rotating BH. The thin/light lines
are for the disk emission alone, while the thick/heavy lines include the emission from both
the disk and the photoionized unbound material. The photoionized material significantly
increases the rates for low MBH and small Rp/RS. These rates do not include emission
from super-Eddington outflows at early times; those results are shown in Figs. 2.12 & 2.13.
The small fluctuations in the results for MBH = 105M⊙ are due to difficulties in performing
Cloudy calculations at very high densities.
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2.5.3 Super-Eddington Outflows

We now calculate optical detection rates accounting for emission from the luminous but
shorter-lived super-Eddington outflows. We begin by plotting the duration of peak emission
for the outflow phase, tflare ∼ toutflow, in Figure 2.11 as a function of MBH for Rp = 3RS and
Rp = RT. For Rp = 3RS and MBH ∼< 6 × 106M⊙, the duration of the outflow is set by the
time at which the photosphere recedes inside the edge of the outflow (toutflow ∼ tedge; eq.
[2.9]) while for larger MBH, the duration is set by the timescale for the most bound material
to return to pericenter (toutflow ∼ tfallback; eq. [2.1]); for Rp = RT, the transition from tedge

to tfallback occurs at a somewhat lower BH mass of MBH ∼< 4 × 105M⊙. Figure 2.11 shows
that most flares last longer than the few-day cadences of surveys like PTF, Pan-STARRS
MDS, and LSST, but are much shorter than the months-long cadence of the Pan-STARRS
3π survey. ROSAT and GALEX are unlikely to have detected events during this phase due
to insufficient cadence and sky coverage.

In Figure 2.12, we plot detection rates as a function of Rp/RS forMBH = 105M⊙, 106M⊙,
and 107M⊙, all for the Pan-STARRS 3π survey at g-band. At small Rp/RS, the edge of the
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Figure 2.11: Duration of peak luminosity during the early super-Eddington outflow phase,
as a function of MBH for Rp = 3RS and Rp = RT (for fout = 0.1 and fv = 1; see eqs.
[2.5] & [2.6]). The vertical dotted lines mark the boundary between events where the edge
of the outflow limits the size of the photosphere (lower BH masses) and where it does not
(higher BH masses). The flares from super-Eddington outflows typically last longer than
the few-day cadence of surveys like PTF, Pan-STARRS MDS, and LSST, but they are often
short enough that they would not be detected in surveys optimized solely for supernovae.
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outflow limits the size of the photosphere. As Rp/RS increases, the radius of the photosphere
at tedge increases and so the rates increase. For MBH = 106M⊙ and 107M⊙ at the largest
Rp/RS, the photosphere is no longer limited by the edge of the outflow, and the maximum
luminosity occurs at tfallback. For large Rp/RS, the rate declines as the photosphere recedes
inward.

In Figure 2.13, we plot overall detection rates at g-band for Pan-STARRS 3π and MDS,
PTF, and LSST. In the leftmost panel, we assume that 10% of the falling back material flows
out in the wind (fout = 0.1), as we have previously. Here we restrict detections to redshifts
z < 1, where our assumed tidal disruption rate per galaxy is appropriate. The Pan-STARRS
3π survey should detect 200 yr−1, while the MDS should detect 20 yr−1 because of its smaller
spatial volume. PTF should detect 300 yr−1 as well, since its fast cadence makes up for its
smaller spatial volume relative to the Pan-STARRS 3π survey. LSST’s large spatial volume
and rapid cadence should allow it to detect 6000 yr−1! Assuming the survey parameters and
strategy described in §2.5.1 and Table 2.1, SASIR should detect ∼ 100 yr−1 as well.

In the central panel of Figure 2.13, we plot detection rates for redshifts z > 1 to highlight
the possibility of studying tidal disruption events at cosmological distances. Deep surveys
like MDS will be sensitive to events far beyond z ∼ 1. Even the shallower 3π survey could
detect ∼ 30 events per year at z > 1. Our predicted rates at z > 1 are particularly uncertain:
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Figure 2.12: Predicted detection rates for emission from super-Eddington outflows at early
times (for fout = 0.1 and fv = 1; see eqs. [2.5] & [2.6]). Results are shown as a function
of Rp/RS for MBH = 105M⊙, 106M⊙, and 107M⊙, all for a Pan-STARRS 3π-like survey at
g-band (see Table 2.1).
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higher redshift sources are more likely to be obscured, and the lower mass BHs of interest for
tidal disruption are still growing significantly in mass at these redshifts (Heckman et al. 2004)
so the tidal disruption rate and mass function become less certain. Nonetheless, the fact
that tidal disruption flares will be detectable at z > 1 with forthcoming surveys highlights
that these sources may become a strong probe of the evolution of ∼ 106 − 108M⊙ BHs.

In the rightmost panel of Figure 2.13, we show the sensitivity of our predictions to
uncertainty in the outflow model by plotting the rates for the Pan-STARRS 3π survey for
different assumptions about the fraction of the material that is blown away in the outflow,
fout. For fout ∼ 0.3, the detection rate is 600 yr−1, while for fout ∼ 0.01 it falls to 8 yr−1. The
rate falls rapidly at the highest MBH because the outflow is optically thin. Figure 2.13 shows
that even if we very conservatively assume that only 1% of the material is blown away when
the fallback rate is super-Eddington, upcoming optical surveys like Pan-STARRS should still
be able to detect a significant number of tidal disruptions during the super-Eddington phase.
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Figure 2.13: Predicted detection rates for emission at g-band from super-Eddington outflows
for various optical transient surveys. In the leftmost panel, we use our standard outflow
model in which fout = 0.1 and fv = 1 (see eqns [2.5] & [2.6]), and restrict detections to
z < 1. In the central panel, we plot detection rates for z > 1 to illustrate the potential
for surveys to be sensitive to the cosmological evolution of BHs; note that PTF is not deep
enough to detect flares beyond z ∼ 1. In the rightmost panel, we vary fout from 0.3 to 0.01
to illustrate the sensitivity of our results to uncertainties in the outflow physics.
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2.6 Discussion

We have calculated the spectra and light curves produced by the tidal disruption of a
solar-type star by a massive black hole. Upcoming optical transient surveys should detect
many such events (§2.5). Our results demonstrate that there are at least three different
emission components that are important during tidal flares: (1) outflows at early times
when the fallback rate is super-Eddington, (2) a compact (∼< 10 − 100RS) accretion disk
around the BH, and (3) stellar debris that is unbound during the disruption and forms an
outflowing “wedge” in the equatorial plane (see Fig. 2.1). It is also possible that the super-
Eddington fallback powers a lower-density magnetically-dominated jet, but the properties of
such a jet are difficult to predict so we do not consider this potential source of emission.

Each of these three components contributes to the total emission from tidal disruption
flares. At early times, the super-Eddington outflows likely dominate, producing a few– to
10–day optical-infrared flare with a luminosity comparable to that of a supernova (Figs.
2.2-2.4 & 2.11). As the fallback rate decreases below the Eddington rate, these outflows
will diminish, revealing the underlying accretion disk that emits primarily in the UV to
soft X-rays (Fig. 2.5); at this time, the optical emission is likely to be much less than
that of a typical AGN—and well below that of the super-Eddington phase (Fig. 2.3)—
because the accretion disk is not very spatially extended. The central UV and soft X-ray
source photoionizes the inner edge of equatorial stellar debris, producing a spectum of broad
emission lines (Figs. 2.5, 2.6, & 2.7) whose “rest” wavelength should be either blueshifted
or redshifted with respect to the host galaxy depending on the line of sight of the observer
relative to the escaping material. We find that this spectroscopic signature of tidal flares
is the strongest for low mass BHs because the equatorial stellar debris occupies the largest
solid angle in these systems (eq. [2.25]).

Although the above stages are the focus of this paper, for completeness we briefly discuss
the rest of the evolution of a tidal disruption event. As the fallback rate continues to decrease
below the Eddington rate, the viscous time in the thin disk (eq. [2.21]) increases and becomes
comparable to the time t since disruption; at this point, matter begins to build up rather than
rapidly accreting onto the BH. For disruption at Rp ∼ RT, which is likely to produce a sig-

nificant fraction of the events (Figs. 2.10 & 2.12), we estimate that this occurs ∼ 3α
3/7
0.1 years

after disruption, when the fallback rate has decreased to Ṁfallback ∼ 0.2α
−5/7
0.1 M

−2/3
6 ṀEdd

(where α ≡ 0.1α0.1 is the dimensionless viscosity). Separately, we expect a significant change
in the thermodynamics of the disk when Ṁfallback ≃ α2ṀEdd ∼ 10−2ṀEdd. Below this accre-
tion rate, the material will no longer cool efficiently when it circularizes and shocks upon
returning to pericenter. Instead of cooling to form a thin disk, the material will be shock
heated to form a geometrically thick, radiatively inefficient accretion flow. In general, both
geometrically thin/optically thick and geometrically thick/radiatively inefficient disks ap-
pear to be stable accretion solutions for a given Ṁ ∼< 10−2ṀEdd. However, in this case, the
boundary condition that matter shocks up to the virial temperature upon returning to peri-
center picks out the radiatively inefficient solution once Ṁfallback ∼< 10−2ṀEdd. Because the
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viscous time in a thick disk is ∼ α−1 times the dynamical time, once the accretion becomes
radiatively inefficient, the viscous time is always much shorter than the orbital period of
matter returning to pericenter. Moreover, the transition to radiatively inefficient accretion
happens at a time comparable to when matter would otherwise begin accumulating in a
thin disk, particularly for more massive BHs. This suggests that there is typically only a
limited range of accretion rates (and time) during which the “spreading disk” solution of
Cannizzo et al. (1990) applies. Instead, at late times matter will rapidly accrete via a thick
disk and the accretion rate will decay as ∼ Ṁfallback ∝ t−5/3. As in X-ray binaries (Remillard
& McClintock 2006), we expect that the thermodynamic transition at ∼ 10−2ṀEdd will be
accompanied by a significant change in the luminosity and spectrum of the disk, and perhaps
also by the production of relativistic jets. This should be explored in more detail in future
work.

Having summarized our key results and the timeline of a tidal disruption event, we now
discuss some uncertainties in our models, observational challenges to detecting tidal flares,
and the astrophysical applications of studies of tidal disruption events.

2.6.1 Super-Eddington Outflows

In §2.2.1, we described our simple model for outflows driven when the fallback rate is
super-Eddington. Energy conservation implies that the falling back material initially remains
bound after returning to pericenter and circularizing, but even small amounts of accretion
can release additional energy and drive a powerful outflow. There is, however, a significant
uncertainty in precisely how much of the falling back material is blown away, and in the
kinematics of the outflow. We assume that the gas expands roughly spherically from the
BH, but the flow is probably somewhat collimated along the pole, due to the original angular
momentum of the stellar debris. Some photons can then leak out through the sides of the
outflow rather than continuing to drive the expansion; in this case, the overall emission
would be somewhat hotter and fainter, with a dependence on viewing angle.

We have parameterized the terminal velocity of the outflow using vwind = fvvesc(2Rp),
and the mass outflow rate using Ṁout ≡ foutṀfallback; in all of our calculations, we have
assumed that fv ∼ 1. If the gas actually expands more slowly (fv < 1), its density will be
larger, so the photosphere will be larger, increasing the optical fluxes and detection rates. In
the extreme case in which there is no unbound outflow, but super-Eddington fallback leads
to a radiation-pressure-supported atmosphere around the BH that slowly expands until the
photons can diffuse out, we also expect significant optical luminosities during the super-
Eddington phase (e.g., Loeb & Ulmer 1997).

It is worth noting that our predictions for the radiation from super-Eddington outflows
are particularly uncertain for low MBH and small Rp/RS, when the edge of the outflow
limits the radius of the photosphere and determines both the peak luminosity (Fig. 2.3)
and duration (Fig. 2.11) of the flare; this does not, however, significantly influence our total
predicted rates (Fig. 2.12).

Figure 2.13 shows that even if the outflow rate is just a few percent of the fallback rate
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(fout ∼ 0.01 − 0.1), the outflowing gas is sufficiently bright in the optical that forthcoming
surveys should detect a significant number of tidal disruption flares. This makes early-
time optical flares from the tidal disruption of stars an extremely promising candidate for
current and future optical/infrared transient surveys. (We discuss some practical issues
associated with detecting these sources in §2.6.3.) In this context, we note that in the
radiation hydrodynamic simulations of accretion at Ṁ = 100ṀEdd carried out by Ohsuga
et al. (2005), ∼ 10% of the gas becomes unbound, ∼ 10% accretes, and the remaining ∼ 80%
is marginally bound and may (or may not) eventually accrete as well. These precise values
will depend on the pericenter of the star, with smaller Rp/RS likely leading to smaller fout,
i.e., a smaller fraction of the gas being blown away. Future observational constraints on the
luminosity, spectrum, and timescale of the super-Eddington outflow phase should be able to
strongly constrain the value of fout in individual events. These results will have important
implications for how massive BHs grow. In particular, if fout is typically modest, this would
imply that black holes can accrete at rates far above the Eddington rate, perhaps helping to
explain how supermassive BHs (MBH ∼> 108M⊙) can be observable as luminous quasars as
early as z ∼ 6.

Figure 2.13 also demonstrates that deep optical surveys such as the Pan-STARRS MDS
and LSST will be sensitive to tidal flares at high redshift. These surveys may thus provide a
powerful probe of the BH mass function and stellar dynamics in galactic nuclei as a function
of redshift. For example, at z ∼ 0.1, BHs having MBH ∼< 107M⊙ are still growing significantly
in mass (Heckman et al. 2004) and thus their disruption rates may evolve significantly
with redshift. In addition, galaxy mergers, which are more common at z ∼ 1 − 2, could
substantially increase the tidal disruption rate: Chen et al. (2009) find rates of up to ∼ 1 yr−1

for ∼ 105 years after the merger due to three-body interactions between stars and a binary
BH.

2.6.2 The Accretion Disk, Photoionized Gas, & Broad Emission

Lines

We now consider several aspects of our model for the accretion disk, broad emission
lines, and the material unbound during the disruption (§§2.2.2 and 2.3). Our accretion disk
model is designed to describe the emission from the time when the disk first forms through the
following few years. During much of this period, the fallback rate is super-Eddington, and we
expect the disk to be optically and geometrically thick, with radiation pressure dominating
gas pressure. Once the fallback rate becomes sub-Eddington, the disk becomes geometrically
thin and may be subject to viscous instabilities (although it is thermally stable; Hirose
et al. 2009). These instabilities may lead to additional time dependence not captured in our
models, particularly at late times when the viscous time in the thin disk becomes comparable
to the orbital period of the material falling back to pericenter. As described above, once
Ṁfallback ∼< α2ṀEdd, the density is sufficiently low that the flow becomes radiatively inefficient
and our model is no longer appropriate. The disk will then heat up and its spectrum will
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become significantly harder. This phase may be detectable by hard X-ray transient surveys
like EXIST.

It is also unclear how much tidal forces will spin up the rotation of the star as it
approaches pericenter. We have assumed that the star is maximally spun up, so that stellar
debris is accelerated to relative velocities ∆v ∼ vp(R⋆/Rp)

1/2 in the azimuthal direction. If
in fact the spin-up is less effective, the onset of the flare, which occurs at the fallback time
(eq. [2.1]), will be later by a factor of few and the solid angle subtended by the unbound
equatorial debris will be somewhat smaller. This will not change our qualitative conclusions,
only some of our quantitative results.

It is important to stress that the line emission we predict may well be an underestimate
in all cases: the accretion disk will also photoionize the back edge of the material that was
blown away during the super-Eddington phase, which is far from the BH once the outflows
subside. Simple estimates indicate that the density and velocity of this outflowing gas are
similar to that of the gas unbound at the time of disruption; as a result, irradiation of this gas
will produce additional broad hydrogen lines. The equivalent width of these lines depends
on the solid angle subtended by the super-Eddington winds, which, although uncertain,
is likely to be significant. These lines are unlikely to depend as sensitively on MBH and
Rp/RS as the emission lines from the equatorial debris (see Fig. 2.6 for the latter). As a
result, observations of the line emission will help constrain the geometry of the outflowing
gas created during the tidal disruption event.

In addition to emission lines from the back edge of the outflowing gas at late times,
the photosphere of the super-Eddington outflow may at early times show strong absorption
lines, particularly in the ultraviolet (much like the photosphere of a star); these lines would
likely be highly blueshifted relative to the lines of the host galaxy. Finally, we reiterate
that we expect very little narrow forbidden line emission from tidal disruption events: the
outflowing stellar debris is too dense to produce forbidden lines, and there is insufficient
time to photoionize ambient lower density gas far from the BH. It is possible that there is
ambient gas in the galactic nucleus sufficiently close to the BH to produce forbidden lines
on a ∼< 1 yr timescale, but the prevalence of such gas is currently poorly understood.

2.6.3 Observational Considerations

Candidate detections of tidal disruption flares have thus far been selected by their UV
and soft X-ray emission (predominantly via GALEX, ROSAT and XMM-Newton). The emis-
sion at these wavelengths is primarily produced by the accretion disk, which is brighter for
larger MBH. As a result, these surveys are most sensitive to BHs having MBH ∼ 107−108M⊙.
UV and X-ray selected events are likely to be discovered somewhat after the initial period of
super-Eddington fallback, because the outflow during that phase probably precludes direct
observation of the underlying accretion disk from many viewing angles. This outflowing ma-
terial could also be a significant source of obscuration even at late times when the fallback
rate is sub-Eddington.

The accretion disk emission we predict for UV-selected events is broadly consistent
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with the GALEX candidates: UV luminosities of ∼ few×1043 erg s−1, optical luminosities of
∼ few×1041 erg s−1, blackbody temperatures of T ∼ few×104− few×105 K, and bolometric
luminosities of Lbol ∼ 1045 erg s−1. The events selected from soft X-rays have less data, but
typically have soft X-ray luminosities of ∼ 1043 − 1044 erg s−1. This emission may be from
the accretion disk, at energies just above the blackbody peak, or may be from an X-ray
power-law tail with 1−10% of the bolometric luminosity. In addition, as discussed in §2.5.2,
our model is consistent with ROSAT and GALEX rate estimates, provided that the tidal
disruption rate per galaxy for BHs with MBH ∼ 107M⊙ − 108M⊙ is γ ∼ 10−5 yr−1. This
constraint already suggests that galactic nuclei in the nearby universe are relatively spherical,
rather than triaxial, because the expected disruption rate is significantly higher in the latter
case (Merritt & Poon 2004).

As described in §2.4, the spectral signature of the equatorial stellar debris is a transient
spectrum of broad emission lines shifted in wavelength relative to the host galaxy. We do
not expect forbidden lines (e.g. [NII], [SII], [OI], [OIII]) to be present, because the density in
the unbound material is too high.7 For several reasons, it is not surprising that this spectral
signature has yet to be seen. First, the tidal flare candidates are likely from relatively high-
mass BHs; in those events, the unbound stellar debris subtends a small solid angle (eq. [2.25])
and so the emission lines should be ∼< 1% of the bulge luminosity. Future optically-selected
tidal flares are more likely to show detectable lines. It is also important to note that most
standard searches for AGN in optical/infrared surveys use forbidden lines to identify nuclear
activity, and have not specifically looked for faint, broad lines offset from the host galaxy’s
lines. Tidal disruption events may yet be hiding in archival spectroscopic data.

We predict that outflows during the super-Eddington fallback phase have peak optical
luminosities of ∼ 1043 − 1044 erg s−1 and characteristic decay timescales of ∼ 10 days (Figs.
2.4 & 2.11). These events are sufficiently bright that a natural concern is whether our
predictions can already be ruled out by optical supernova searches such as the Supernova
Legacy Survey and Stripe 82 in the Sloan Digital Sky Survey. Although a careful search of
archival data is clearly warranted, we do not believe that current observations are necessarily
that constraining, for two reasons. First, the outflow phase can be relatively brief and many
survey cadences may be insufficient to find these events. Most importantly, however, tidal
flares could be readily mistaken for AGN and thus discarded. Indeed, most supernova
searches discard galactic nuclei in order to avoid confusion with AGN and optimize their
probability of detecting supernovae.

Optically detecting a tidal flare may require disentangling the flare emission from that of
the BH’s host galaxy. For example, at a distance of 300 Mpc, a ground-based optical survey
with a resolution ∼ 1” should just be able to resolve a kiloparsec-sized bulge. Bulges are
found to be ∼ 700 times more massive than their central BHs (Häring & Rix 2004). Super-
Eddington outflows typically shine at 1043 − 1044 erg s−1 (see Fig. 2.4), so this phase should
be at least as bright as the host galaxy and readily detectable given sufficient attention to

7The 5007 Å line of [OIII] does appear at late times for the lowest MBH and Rp, where the densities fall
below this ion’s critical density after about a year.
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sources in galactic nuclei and careful screening to rule out an unsteady AGN. By contrast, the
typical optical luminosity of the accretion disk itself is 1040− few×1041 erg s−1 (see Fig. 2.3).
The accretion disk would thus brighten the host bulge by only a few percent. Photometric
detections of late-time flares will require very careful bulge subtraction. As a result, shallow,
wide-area surveys such as PTF are more likely to find the late-time disk emission than narrow
deep surveys such as the Pan-STARRS MDS. As an additional complication to finding tidal
flares, optical extinction in galactic nuclei can be significant (although less than at UV or
soft X-rays); as a result, some fraction of optical tidal flares may not be detectable due to
obscuration. Infrared surveys such as SASIR, which are also very sensitive to tidal disruption
events (Table 2.1), will be particularly immune to the effects of obscuration.

Type II supernovae in the nuclear regions of galaxies may be confused with tidal disrup-
tion events, as both have quite blue colors. For sources at ∼ 300 Mpc, we estimate that such
supernovae will occur within ∼ 1” of the galactic nucleus at a rate of ∼ 10−4 yr−1, perhaps
an order of magnitude more often than tidal disruption events; at higher redshift the con-
tamination from supernovae will be more significant, but follow-up imaging at high spatial
resolution and/or spectroscopic follow-up should help classify these events and distinguish
tidal flares from nuclear supernovae.

2.6.4 Astrophysical Applications

Theoretical calculations of the tidal disruption rate per galaxy, γ, vary substantially and
can have complicated dependences on BH mass and pericenter distance (e.g., Magorrian &
Tremaine 1999). The rate model we implement is consistent with theoretical estimates and
is sufficiently simple that the reader can easily scale our results to different model parameters
(eq. [2.31]). We have assumed that the rate at which stars enter the disruption zone
(RS < Rp < RT) is independent of BH mass, and constant with lnRp. A star may venture
deep into the disruption zone (Rp ∼ RS) on its last orbit if its change in angular momentum
over one dynamical time is large enough—at least of order the maximum angular momentum
for disruption. This condition is satisfied in the full loss cone regime, and marginally satisfied
in the outskirts of the diffusive regime. For realistic stellar density profiles, the disruption
rate is dominated by the boundary between these two regimes (e.g., Alexander 2005), so
many stars probably do take large enough angular momentum steps to arrive at Rp ≪ RT.
In the diffusive regime, the disruption rate per lnRp varies weakly with lnRp, consistent
with our assumption in §2.5. Given the sensitivity of the optical-infrared emission from tidal
flares to Rp, upcoming surveys should significantly improve our knowledge of the stellar
dynamics in galactic nuclei.

Our results demonstrate that optical transient surveys will be quite sensitive to the
lowest mass BHs in galactic nuclei, both because of the outflows produced when the fallback
rate is super-Eddington and because of the large angle subtended by the equatorial stellar
debris. Such BHs are otherwise difficult to detect because their host galaxies are faint, it
is difficult to resolve their small spheres of influence, and even when they are active, their
Eddington luminosities are low. The space density of 105 − 106M⊙ BHs and the stellar
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density profiles in the galaxies they inhabit are only moderately well-constrained at present
(e.g., Greene & Ho 2007), as is the role of tidal disruption in growing these BHs. Optical
searches for tidal flares should thus prove to be a powerful probe of low-mass BHs and their
host galaxies.
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Chapter 3

Spectroscopic Signatures of
the Tidal Disruption of Stars
by Massive Black Holes

Abstract

During the tidal disruption of a main sequence star by a massive black hole (BH) having
mass MBH ∼< 107M⊙, the stellar debris is expected to fall back to the BH at a rate well above
the Eddington rate. Some fraction of this gas is predicted to be blown away from the BH,
producing an optically bright flare of radiation. We predict the spectra and spectral evolution
of tidal disruption events, focusing on the signatures produced by photoionized gas outside
the photosphere of this super-Eddington outflow. We show that the spectrum of such an
outflow should show absorption lines that are strongly blueshifted relative to the host galaxy,
are typically very broad (0.01 − 0.1c), and are most prominent at ultraviolet wavelengths
(e.g., C IV, Lyman α, O VI) at early times (∼< 1 month for a ∼ 106 M⊙ BH). There may
also be optical absorption lines of hydrogen and He II if there is a lower velocity component
to the outflow (∼< 0.01 c). At later times, the outflow falls out of thermal equilibrium and
the continuum emission likely hardens—the absorption lines will then primarily be in the
soft X-rays.

Supernovae in galactic nuclei are a significant source of confusion in optical surveys
for tidal disruption events: we estimate that nuclear Type Ia supernovae are two orders of
magnitude more common than tidal disruption events at z ∼ 0.1 for ground-based surveys.
Nuclear Type II supernovae occur at a comparable rate but can be excluded by pre-selecting
red galaxies. The contamination from nuclear supernovae can be reduced to a manageable
level by using high-resolution follow-up imaging with adaptive optics or the Hubble Space
Telescope. Our predictions should help optical transient surveys capitalize on their potential
for discovering tidal disruption events.
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3.1 Introduction

A massive black hole (BH) at the center of a galaxy can tidally disrupt stars that pass
within a radius RT ∼ R⋆(MBH/Mstar)

1/3 of it, where MBH and Mstar are the mass of the BH
and star1, respectively, and R⋆ is the radius of the star. For solar-mass stars, RT lies outside
the BH’s event horizon for MBH ∼< 108M⊙; in these systems, a fraction of the stellar debris
is expected to flow back towards the BH following disruption, releasing a flare of radiation.
Although the rate of tidal disruption events per galaxy is uncertain, it is likely ∼ 10−6−10−3

per year (e.g., Magorrian & Tremaine 1999; Wang & Merritt 2004; Donley et al. 2002).
Observing and studying such flares has the potential to inform our understanding of

accretion physics, the mass function of BHs, and the dynamics of stars in the nuclei of
galaxies. To date, several candidate events have been discovered, and many more are likely
to be found in the coming years. A handful of candidates were discovered in soft X-rays by the
ROSAT All-Sky Survey and XMM-Newton Slew Survey, and several more candidates have
been discovered in the ultraviolet (UV) by GALEX (Komossa 2002; Gezari et al. 2008, 2009);
these observations likely probe emission from an accretion disk close to the BH. Searches
with GALEX are ongoing, and several new wide-field, high-cadence optical transient surveys
have recently started or are planned: the Palomar Transient Factory (PTF), Pan-STARRS,
and the Large Synoptic Survey Telescope (LSST).

In Strubbe & Quataert (2009), we argued that optical surveys have the potential to
discover tens to hundreds of tidal disruption events per year. Bright optical emission occurs
when stellar debris is unbound by the intense radiation pressure produced by the debris
falling back to the BH at a super-Eddington rate. We predicted that this outflow produces a
flare as bright as a supernova, ∼ 1043− few×1044 erg s−1, that lasts for days to weeks. These
optically luminous flares may be detectable out to z ∼ 1 (and perhaps beyond). However,
optical transient surveys are finding and will find many bright transients close to the centers
of galaxies (e.g., active galactic nuclei and supernovae). Identifying tidal disruption events
amid an array of far more common transient phenomena thus poses a substantial challenge.
Observational follow-up is crucial: detailed multi-wavelength light curves, high-resolution
imaging (to determine that events are truly nuclear), and spectroscopy are all required. In
the long term, the last of these has the potential to be the most definitive signature of a
tidal disruption event.

In this paper, we predict the optical–X-ray spectroscopic signatures of tidal disruption
events as a function of time, focusing on the outflows produced when the fallback rate is
super-Eddington. In such outflows, gas outside the electron scattering photosphere emits
photons and absorbs photons from deeper in, producing a spectrum that can contain emis-
sion and absorption features. A separate source of spectroscopic features can arise at late
times, after the outflow subsides, from the half of the star that gained energy upon disruption
and is escaping from the BH in the star’s original orbital plane. The surface of that equa-
torial material is irradiated by the accretion disk, producing broad emission lines (mostly

1We reserve the symbol M∗ for the stellar mass of a galaxy (§3.4).
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hydrogen) offset in velocity from the galactic lines (Strubbe & Quataert 2009). Detecting
these lines would also be a strong confirmation of a tidal disruption event, but they are
usually substantially fainter than the spectral diagnostics presented here and so will be more
difficult to observe.

The remainder of the paper is organized as follows: in §3.2, we review the physics of
super-Eddington outflows produced during tidal disruption events and describe how we use
the photoionization code Cloudy to calculate the spectral lines of the outflow and how we
calculate the line profiles. We also critically assess when the assumption of thermal equilib-
rium for the outflow’s emission employed by Strubbe & Quataert (2009) is valid (§3.2.2). In
§3.3 we describe our primary spectroscopic predictions. We then briefly estimate the rate of
supernovae in the nuclei of galaxies (§3.4), since nuclear supernovae are one of the primary
sources of confusion in optical searches for tidal disruption events. Finally, in §3.5 we discuss
our results and their implications for observing and identifying tidal disruption events.

3.2 Super-Eddington Outflows

3.2.1 Summary of Basic Properties

We summarize theoretical expectations for the physics of tidal disruption events. Fol-
lowing a star’s disruption, roughly half of the stellar debris becomes bound to the BH, falls
back to pericenter, and shocks; the rate of fallback is (Rees 1988; Phinney 1989)

Ṁfallback ≃ 1

3

Mstar

tfallback

(
t

tfallback

)−5/3

(3.1)

where
tfallback ≃ 20M

5/2
6 R3

p,3RS
r−3/2
⋆ min

is the period of the most bound debris, the BH mass is MBH ≡M6 × 106M⊙, the pericenter
distance of the star’s orbit is Rp, Rp,3RS

≡ Rp/3RS (where RS is the Schwarzschild radius),
and the stellar radius r⋆ ≡ R⋆/R⊙. For MBH ∼< few × 107M⊙, the fallback rate predicted
by equation (3.1) can be much greater than the Eddington rate ṀEdd for a period of weeks
to years; here ṀEdd ≡ 10LEdd/c

2, LEdd is the Eddington luminosity, and 0.1 is the fiducial
efficiency of converting accretion power to luminosity.

While the fallback rate is super-Eddington, the stellar gas returning to pericenter is so
dense that the photons produced in the shock are unable to escape and cool the gas; in
particular, the time for photons to diffuse out of the gas is longer than both the inflow time
in the disk and the dynamical time characteristic of an outflow. The gas is likely to form
an advective accretion disk accompanied by powerful outflows (e.g., King & Pounds 2003;
Ohsuga et al. 2005).

In Strubbe & Quataert (2009), we developed a simple model to describe the outflowing
gas (see also related estimates in King & Pounds 2003; Rossi & Begelman 2009). We assume
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the outflowing gas is launched from ∼ RL ≡ 2Rp at a rate

Ṁout ≡ foutṀfallback (3.2)

with a terminal velocity
vwind ≡ fvvesc(RL), (3.3)

which is typically 1 − 10% of the speed of light. Radiation hydrodynamical simulations of
super-Eddington accretion show that the density and velocity structure of the outflowing
gas varies with angle, with higher speed outflows along the pole (e.g., Ohsuga et al. 2005);
in the tidal disruption context, the outflow properties may also vary with time. To account
for variations with viewing angle, we consider values of fout ranging from 0.01 to 0.3, with
fout = 0.1 as our fiducial value, and values of fv ranging from 0.1 to 1, with fv = 1 as our
fiducial value. We approximate the outflow’s geometry as spherical, with a density profile

ρ(r, t) ≃ Ṁout(t− r/vwind)

4πr2vwind

(3.4)

inside the outflow where r ∼< Redge ≡ vwindt. For r ≪ Redge, the density varies as ρ(r, t) ∼
Ṁout(t)/4πr

2vwind. When t ∼> few × tfallback, the density increases with radius approaching
Redge: most of the mass is near the edge, within a shell of thickness ∆rshell, so that

ρ(Redge, t) ∼
1
2
foutMstar

4πR2
edge∆rshell

. (3.5)

Since most of the gas was expelled during a period lasting ∼ tfallback, ∆rshell is at least
∼ vwindtfallback; to account for a possible variation in outflow velocity during the period when
most of the wind is launched, we assume that the wind speed varies by ∆vwind/vwind ∼ 10%,
so that ∆rshell ∼ max(vwindtfallback, 0.1vwindt). The exact magnitude of ∆vwind is uncertain,
but accounting for this systematic variation is important because otherwise the shell is
unphysically narrow and dense at late times.

At most wavelengths, the dominant opacity in the outflow is electron scattering. The
outflow is optically thick to electron scattering out to a radius Rph,es, the electron scattering
photosphere, at which Rph,esρ(Rph,es)κes ∼ 1, where κes the opacity to electron scattering:

Rph,es ≃ 10foutf
−1
v

(
Ṁfallback

ṀEdd

)
R

1/2
p,3RS

RS . (3.6)

Because they are trapped by electron scattering, photons produced in the shock cool
adiabatically as the gas expands in the outflow. In Strubbe & Quataert (2009) we assumed
that the gas and photons would be in thermal equilibrium at the shock so that the outflowing
photons would have a blackbody spectrum, given by

νLν = 4π2R2
ph,esνBν(Tph,es) (3.7)
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where Tph,es is the temperature at the electron scattering photosphere. The flow remains
supported by radiation pressure and thus adiabatic expansion causes the temperature in
the outflow to scale as T ∝ ρ1/3. In thermal equilibrium, the temperature of the gas and
radiation at the shock (Teq) are determined by aT 4

eq ≃ upre,gas, i.e., the post-shock photon
energy density is approximately equal to the bulk kinetic energy density of the pre-shock
gas. We approximate that the gas falls back to pericenter spherically, so that upre,gas ∼
Ṁfallbackvesc,L/4πR

2
L, where vesc,L is the escape velocity of the gas at RL. The temperature at

Rph,es in thermal equilibrium is thus

Tph,es ∼ 2 × 105 K

(
fv
fout

)1/3
(
Ṁfallback

ṀEdd

)−5/12

M
−1/4
6 R

−7/24
p,3RS

. (3.8)

After weeks to months, the outflow finally becomes optically thin to electron scattering,
revealing the accretion disk close to the BH. The accretion disk’s spectrum is a multicolor
blackbody with temperatures ∼ 105 K, described in more detail in Strubbe & Quataert
(2009). Eventually, after a time

tEdd ≃ 0.1M
2/5
6 R

6/5
p,3RS

m3/5
⋆ r−3/5

⋆ yr (3.9)

(where m⋆ ≡ Mstar/M⊙), the mass fallback rate decreases below the Eddington rate, and
radiation pressure is no longer strong enough to unbind new gas. The previously expelled
gas continues to expand outwards, becoming a thin shell located at ∼ Redge with a thickness
∆rshell and a density given in equation (3.5). From some viewing angles, the accretion disk
will continue to be seen through this shell, with the exact covering fraction of the shell
depending on the geometry of the outflow at early times, which is somewhat uncertain.

3.2.2 The Applicability of Thermal Equilibrium

Equations (3.7) and (3.8) assume that the gas and radiation are thermally well-coupled
from the shock at ∼ Rp to the outflow’s electron scattering photosphere at Rph,es. However,
the post-shock gas and radiation may not have time to reach thermal equilibrium before
advecting away from the shock. Here we quantitatively assess the applicability of thermal
equilibrium drawing an analogy to the radiation-mediated shocks present during supernovae
and shock-breakout (e.g., Katz et al. 2010).

In local thermal equilibrium (LTE), the temperature of the gas and radiation are given
by Teq, where aT 4

eq ≃ upre,gas (see the text before eq. [3.8]). The dominant continuum emission
process is free-free emission. The time to reach thermal equilibrium tLTE is determined by the
timescale for free-free emission in the post-shock plasma to produce the number density of
photons required for thermal equilibrium. Prior to ∼ tLTE, the gas and radiation are instead
in Compton equilibrium at a temperature Tshock that is substantially larger than Teq (Katz
et al. 2010). The shock jump conditions imply that the velocity falls and the density of gas
rises by a factor of 7 as the gas moves from pre-shock to post-shock. Using equation (13)
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from Katz et al. (2010), we then find that the time for the post-shock plasma to thermalize,
in units of the local dynamical time tdyn = RL/vesc,L, is given by2

tLTE

tdyn

∼ 400M
−5/8
6 R

−47/16
p,3RS

(
r⋆
m⋆

)9/8(
t

10 day

)15/8

∼ 0.9M
109/48
6

(
Rp

RT

)43/16

m−9/8
⋆ r−27/16

⋆

(
t

tfallback

)15/8

. (3.10)

If tLTE < tdyn, the assumption of blackbody emission in equations (3.7) and (3.8) is reason-
able. Equation (3.10) shows that this is generally true at early times for MBH ∼< 106M⊙ and
any stellar pericenter distance, and for MBH ∼< few × 106M⊙ and Rp ∼ 3RS. However, for
more massive BHs (MBH ∼ 107M⊙), the assumption of thermal equilibrium is probably poor
for t ∼> tfallback, when most of the stellar debris returns to pericenter. Moreover, for a given
BH mass and stellar pericenter distance, the post-shock plasma is not in thermal equilibrium
after a time

tnon−therm ∼ 0.5M
1/3
6 R

47/30
p,3RS

(
m⋆

r⋆

)3/5

day

∼ 10M
−32/45
6

(
Rp

RT

)47/30 (
m⋆

r⋆

)3/5

day. (3.11)

Equation (3.11) shows that the assumption of thermal blackbody emission is likely reasonable
for a few weeks for MBH ∼ 106M⊙ and Rp ∼ RT. For smaller Rp, thermal equilibrium
breaks down earlier, but events with Rp ∼ RT are predicted to dominate the rates and
are thus in practice probably the most important (Fig. 12 of Strubbe & Quataert 2009).
At times t ∼> tnon−therm, the temperature at the shock, Tshock, is tens to hundreds of keV,
scaling as R−4

p,3RS
for mildly relativistic fallback speeds. The radiation emitted at the electron

scattering photosphere will be cooler than this by a factor of ∼ (Rph,es/RL)2/3 due to adiabatic
expansion. Compton upscattering also likely gives the radiation a power-law spectrum. We
will discuss the effects of this non-blackbody emission in §§3.3.1 and 3.5, but defer a detailed
calculation of the non-LTE spectrum to future work.

It is important to note that if the gas and radiation are not able to thermalize close to
the shock (i.e., for t ∼> tnon−therm), they are unlikely to thermalize further out in the outflow
instead: the equilbrium photon number density falls with radius, as ρ, but the equilibrium
free-free emissivity falls faster, as ρ11/16, so there is even less time to come into thermal
equilibrium at larger radii.

2This estimate of tLTE is about 100 times shorter than the most näıve estimate of the thermalization time,
∼ (αR

ff c)
−1, where αR

ff is the Rosseland mean absorption coefficient for free-free interactions. The time tLTE is
that associated with waiting for the gas to emit photons rather than waiting for it to absorb photons already
present. The large numerical difference between tLTE and ∼ αR

ff c is primarily due to different weighting of
frequencies in the averaging; in the correct calculation, emission of low-frequency photons dominates (Katz
et al. 2010), while in αR

ff , absorption of photons close to the blackbody peak dominates.
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3.2.3 Spectroscopic Calculations

The spectrum of the outflow will be imprinted with spectral lines produced by the
outer layers of gas between the photosphere and the edge of the outflow at Redge. The
photosphere is initially determined by the outflow itself (Rsource = Rph,es) but at later times
as the outflow subsides and becomes optically thin, the photosphere is set by the accretion
disk, with Rsource = Rdisk. The gas outside Rsource absorbs photons released deeper in,
through photoionization and bound-bound transitions, creating absorption and emission
features. The outer gas is highly ionized by the central source, and maintains photoionization
equilibrium so long as the recombination time is shorter than the expansion time: trec ∼
(neαrec)

−1 < t. Here αrec is the recombination coefficient, ∼ 2 × 10−13 cm3 s−1 for hydrogen
at 30, 000 K and typically larger for heavier species.

Early on, most absorption takes place at r ∼ Rph,es, where the gas is always in pho-
toionization equilibrium, since

trec(Rph,es)

t
∼ [ne(Rph,es)αrec]

−1

∼ 10−5fout

fv
M

5/3
6 R

5/2
p,3RS

m⋆

r⋆

(
t

10 day

)−8/3

. (3.12)

At late times, most of the mass in the outflow resides in a shell at r ∼ Redge, which dominates
the absorption. There, the gas falls out of photoionization equilibrium after a few months
to a few years, since

trec(Redge)

t
∼ [ne(Redge)αrec]

−1

∼ 3 × 10−3 f
3
v

fout

M
5/2
6 R

3/2
p,3RS

m⋆r
3/2
⋆

(
t

10 day

)
, (3.13)

when ∆rshell ∼ vwindtfallback; trec increases even more later when ∆rshell ∼ 0.1vwindt.
We determine the ionization and opacity structure of the gas outside Rsource by perform-

ing photoionization calculations with version 08.00 of the publicly available code Cloudy, last
described by Ferland et al. (1998). To determine the spectrum, we then post-process Cloudy’s
output to account for Doppler shifts by the outward motion of the gas. We will only show
results below for times at which trec ∼< t so that photoionization equilibrium is a reasonable
approximation.

For calculating line profiles, it is useful to divide the outflow into two parts: at times
t ∼< tEdd, when the outflow is being continuously driven, there is a radially extended outflow
from Rsource to ∼ Redge. Because Redge is generally much larger3 than Rsource, the line-of-sight

3In Strubbe & Quataert (2009), we describe an early ∼day-long phase for small MBH and small Rp during
which Rph,es ∼ Redge; although there may be interesting spectroscopic features during this phase, we focus
on later times when the physics of the escaping photons is more secure.
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velocities of the gas span a wide range, which causes absorption lines to be strongly velocity-
broadened. At times t ∼> few × tfallback, there is also a narrow, denser shell at r ∼ Redge,
which contains most of the mass (because most of the mass is unbound at ∼ tfallback). In
the shell, thermal broadening may dominate over velocity broadening. We first qualitatively
describe the evolution of the spectrum produced by these two parts of the outflow, and then
explain in more detail how we calculate the absorption and emission line profiles.

Three phases of evolution

For MBH ∼< few 107M⊙, the fallback rate is super-Eddington and the outflow is optically
thick to electron scattering for a few weeks to months after disruption. Photons released from
Rsource = Rph,es with the blackbody spectrum in equation (3.7) (perhaps with an additional
X-ray power-law tail; §3.4) photoionize the outer layers of gas between Rsource = Rph,es and
Redge, which have a density profile given by equation (3.4). This gas spans a wide range in
radii, and so produces a spectrum of broad absorption lines, whose profiles are described in
§3.2.3; when t ∼> few × tfallback, there are also narrower absorption lines, described in §3.2.3.
The emission lines are calculated as described in §3.2.3.

At later times, the fallback rate diminishes and the electron scattering photosphere of
the outflow moves inward. The entire outflow becomes optically thin to electron scattering
∼ weeks to months after disruption, but it continues to be driven until Ṁfallback falls below
ṀEdd, which can be somewhat later (tEdd; eq. 3.9). Deep inside the outflow, accretion onto
the BH proceeds via a thin disk, which emits a multicolor blackbody spectrum peaking close
to ∼ 105 K (described in Strubbe & Quataert 2009). In our calculations for these times, our
input spectrum to Cloudy is the spectrum of the accretion disk (whose size is Rsource = Rdisk).
The outflow continues to span a wide range in radii, Rsource = Rdisk ∼< r ∼< Redge, and so we
calculate absorption line profiles as in §3.2.3, with additional absorption lines from the shell
(§3.2.3) when appropriate. The emission lines are again calculated as in §3.2.3.

For t > tEdd, Ṁfallback < ṀEdd and the shocked gas at pericenter can cool efficiently;
essentially all of the gas thus accretes through the disk rather than being blown away. The
previously expelled material continues to expand out as a thin shell, with a density given
by equation (3.5) and a radial thickness ∆rshell. The shell is irradiated by the blackbody
emission from the accretion disk. In many cases, the outflow is no longer in photoionization
equilibrium (see eq. 3.13), but if there are places where the outflow velocity is low (fv ∼ 0.1),
the shell can be dense enough to remain in equilibrium for up to several years. In such cases,
the absorption lines are all narrow (§3.2.3), while the emission lines are broad (§3.2.3) and
very faint.

We now describe how we calculate the line profiles for the extended part of the outflow
and the shell (see also related calculations in Castor 1970, for line profiles in Wolf-Rayet star
winds).
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Velocity-broadened absorption lines

Cloudy outputs a table of absorption lines: each entry contains the line frequency ν0, the
species (element and ionization stage) producing the transition, and the total optical depth
τstat through the (stationary) layer of gas. Cloudy also outputs the density distribution
nspecies(r) for each species, and the temperature profile T (r). The stationary optical depth
is

τstat =

∫ Redge

Rsource

nspecies(r)σ0(r) dr (3.14)

= (σ0vth)

∫ Redge

Rsource

nspecies(r)

vth(r)
dr (3.15)

≡ (σ0vth)Ispecies , (3.16)

where σ0(r) is the cross section of the transition at line center and vth(r) is the thermal
velocity of the gas. Because the lines provided by Cloudy are thermally broadened, the
quantity (σ0vth) is independent of radius.

For simplicity, we assume that the gas flows out radially with a spatially and temporally
constant velocity, v = vwind (eq. 3.3), superposed by small thermal motions. Since the
gas is optically thin at most frequencies, its temperature regulates to T ∼ 104 − 105 K,
leading to thermal velocities vth ∼ 10 − 30 km s−1 ≪ vwind ∼ 0.01c − 0.1c. Because the
photoionizing source—the electron scattering photosphere or accretion disk—is spatially
extended, its radiation originates from impact parameters b ranging from 0 (center of the
source) to Rsource (edge of the source). At a given impact parameter b, our line of sight passes
through gas moving at projected line-of-sight velocities vLOS = vwind

√
1 − (b/r)2, where r

ranges from Rsource to Redge.
A transition of frequency ν0 can absorb photons of rest frequency ν at places in the

wind where vLOS satisfies ν = ν0(1 + vLOS/c). These locations are centered at radii

rabs =
b√

1 − (vLOS/vwind)2
(3.17)

with a small spread along the line of sight, ∆ℓ, due to random thermal motion of the gas:

∆ℓ = rabs

(
vth(rabs)

vwind

)(rabs

b

)2

. (3.18)

Thus, for a given rest frequency and impact parameter, the optical depth to a given transition
is4

τb ∼ (nspeciesσ0∆ℓ)|rabs
∼ τstatr

3
absnspecies(rabs)

b2vwindIspecies

. (3.19)

4We use τstat and Ispecies because Cloudy does not output line opacities as a function of radius.
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Approximating the source as a spherical isotropic emitter, we find the overall transmitted
power:

νLtrans
ν = νLsource

ν ×
∫ π/2

0

2e−τb sin θ cos θ dθ , (3.20)

where sin θ ≡ b/Rsource. When multiple transitions contribute absorption at frequency ν,
we replace τb above with the sum of their corresponding optical depths. We account for
continuous absorption processes as well; these are generally important only for hν ∼> 0.3 keV
since the gas is so highly ionized.

Thermally-broadened absorption lines

At times t ∼> few × tfallback, the bulk of the previously expelled gas forms a thin shell
at r ∼ Redge, as described above in §3.2.1. While velocity broadening is the dominant
broadening mechanism for absorption at Rsource ∼< r ∼< Redge, the line-of-sight velocity’s
variation with impact parameter at r ∼ Redge may become less than vth after at most a
few months if the wind velocity is close to constant in time. For example, at times when
Rsource = Rph,es,

∆vLOS

vth
∼
(
Rph,es

Redge

)2(
vwind

vth

)

∼ 0.03
f 2

out

f 3
v

M
16/3
6 R

11/2
p,3RS

m2
⋆

r2
⋆

( vth

30 km s−1

)−1
(

t

10 day

)−16/3

. (3.21)

(The variation in vLOS along the line of sight through the narrow shell is even smaller than
this, by a factor of ∆rshell/Redge.) Consequently, the random thermal motion may dominate
the broadening of absorption lines produced in the shell; such lines are therefore narrow,
with a linewidth ∆ν = ν0(vth/c), and are blueshifted to ∼ ν0(1 + vwind/c).

If the wind speed varies in time by more than ∼ 0.1%, velocity broadening instead
dominates over thermal broadening, leading to wider and shallower absorption lines. The
wind speed variation ∆vwind could be substantial, e.g., ∼ 0.1vwind, but is highly uncertain,
so we consider thermal broadening in the shell as a lower limit.

We run separate Cloudy calculations for the narrow shells, which give the thermally-
broadened optical depth τth(ν) as a function of ν, which we blueshift by vwind/c. At times
t ∼< tEdd, we multiply the velocity-broadened spectrum described above by e−τth(ν); at later
times, we multiply the continuum produced at Rdisk by this factor.

Emission lines

The gas at r ∼> Rsource can also produce emission via radiative recombination and radia-
tive decay of (collisionally or radiatively) excited atoms/ions. Because of the large velocities
in the outflow, the gas is effectively optically thin to all of these photons, even at the energies
of resonance lines. As a result, we can observe emission from gas having line-of-sight veloc-
ities vLOS ∼ −vwind up to vLOS ∼ +vwind(1 − R2

source/R
2
edge)

1/2; we approximate this with a



Section 3.3. Predicted Spectra 66

Gaussian line profile centered on the rest energy of the line, and slightly truncated on the red
side. This approximation is based on analogy to Monte Carlo calculations of emission from
expanding Lyman alpha blobs (Verhamme et al. 2006). We treat emission lines produced in
the narrow shell the same way, since line photons emitted from essentially any part of the
shell can reach us.

The large velocities in the outflow imply that the resulting emission lines are extremely
broad; in most of our calculations, the emission is so spread out that the lines will be orders of
magnitude fainter than the transmitted spectrum. The overall emission νLemis

ν then consists
of faint continuum and very broad emission lines centered on the rest frequencies of the
transitions. The observable spectrum is the sum of this emission and the transmitted light
from equation (3.20), i.e.,

νLout
ν = νLtrans

ν + νLemis
ν . (3.22)

Although the physical processes are similar in tidal disruption events and broad ab-
sorption line quasars (BAL QSOs), we note that tidal disruption events have substantially
smaller emission line equivalent widths; this comparison is discussed further in §3.5.

3.3 Predicted Spectra

We now use the methodology of §3.2 to calculate spectra as a function of time due
to the disruption of a solar-type star, varying the BH mass and pericenter distance of the
stellar orbit. We assume solar abundances. We focus on solar type stars because they are
among the most abundant stars at ∼ 1 − 10 pc in galactic bulges, which is where most of
the disrupted stars originate. The three fiducial models we consider are: MBH = 106M⊙ and
Rp = 3RS; MBH = 106M⊙ and Rp = RT; and MBH = 107M⊙ and Rp = RT. Our fiducial
model for the outflow takes fv = 1 and fout = 0.1, but later we vary these values.

To start, we assume that the outflow produces a thermal blackbody spectrum that
photoionizes the surrounding gas; in §3.3.1 we consider the effects of (harder) non-thermal
emission on the predicted spectra. The thermalization time estimate in §3.2.2 implies that
thermal equilibrium in the outflow is maintained for t ∼< 0.5 and 10 days for MBH = 106M⊙,
Rp = 3RS and Rp = RT, while it fails at later times; the outflow is never in thermal equi-
librium for MBH = 107M⊙. Given, however, the uncertainties in the precise thermalization
time we show thermal outflow models for a range of timescales.

Figure 3.1 shows our predicted spectra at various times after disruption, from the optical
to the extreme ultraviolet (EUV). Significant lines in the far ultraviolet (FUV) to optical are
labeled in the top and bottom panels. The top panel of Figure 3.2 shows a zoomed-in version
of the 1000 − 2000 Å region of the spectrum for our fiducial MBH = 106M⊙ and Rp = RT

model. For the latter, we plot the luminosity density Lλ normalized to its maximum value
over the wavelength interval 1000 − 2000 Å and vertically offset different curves for clarity.

In Figures 3.1 and 3.2, we show results from t ∼ tfallback, the peak of fallback and
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Rp = 3RS

MBH = 10
6
M⊙

fout = 0.1

fv = 1
t = 3 days
10 days
30 days
100 days

MBH = 10
6
M⊙

Rp = RT

fout = 0.1

fv = 1

MBH = 10
7
M⊙

Rp = RT

fout = 0.1

fv = 1

Figure 3.1: Predicted spectra for our three fiducial tidal disruption flares at several different
times after disruption. Labeled tickmarks identify the blueshifted positions of the strongest
long-wavelength lines. A zoomed in view of the FUV region of the middle panel is in Figure
3.2. At early times, the continuum emission in these calculations is produced by a super-
Eddington outflow while at later times it is produced by the accretion disk close to the black
hole. These calculations assume that the outflow is able to thermalize completely (§3.2.2);
Fig. 3.4 shows results for incomplete thermalization.
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fout = 0.3

MBH = 10
6
M⊙

MBH = 10
6
M⊙ Rp = RT

fout = 0.1 fv = 1

Rp = RT

fv = 1

100 days

t = 10 days

30 days

t = 30 days

Figure 3.2: Predicted spectra varying the mass-loss rate in the outflow (via fout; eq. 3.2),
focusing on the wavelength region 1000 − 2000 Å. Each spectrum is portrayed as Lλ, nor-
malized by its maximum value on that wavelength range, with an added integer constant
to offset curves for clarity. Labeled tickmarks identify the blueshifted positions of the lines.
Top panel: MBH = 106M⊙, Rp = RT, fout = 0.1, fv = 1 at t = 10 days and 30 days; bottom
panel: same as top panel, except fout = 0.3, and t = 30 days and 100 days. Lines tend to
be stronger for larger mass outflow rates (larger fout), because the continuum emission has
a lower temperature (Tph,es).

outflow, to when the outflow shell falls out of photoionization equilibrium.5 (The out-
flow’s photosphere Rph,es—where most absorption takes place while the fallback rate is
super-Eddington—is always in photoionization equilibrium; see beginning of §3.2.3.) Pho-
toionization equilibrium in the shell typically fails when, or somewhat before, the fallback
rate reaches the Eddington rate. More precisely, it fails at ∼ 30 days for MBH = 106M⊙,
Rp = 3RS, fout = 0.1; 100 days for MBH = 106M⊙, Rp = RT, fout = 0.1, and 200 days for
MBH = 106M⊙, Rp = RT, fout = 0.3; while tEdd ∼ 30, 400 and 400 days for these three
models respectively. For MBH = 107M⊙, Rp = RT, the shell of gas at ∼ Redge is never in
photoionization equilibrium, and so we do not include any contribution from the shell.

The spectral features visible in Figure 3.1 are exclusively absorption lines; the emission
lines are so broadened by the large range in line-of-sight velocity that they become unde-

5For MBH = 106M⊙, Rp = 3RS (top panel), the earliest time we depict is t = 3 days because Rph,es ∼
Redge until ∼ 1 day (see footnote 3).
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tectable above the blackbody continuum. The outflow as a whole and the dense thin shell
at Redge typically both contribute to the absorption lines. For MBH = 106M⊙, Rp = 3RS,
the shell dominates the absorption lines at λ ∼> 800 Å; the shell and outflow as a whole
both contribute at a wide range of wavelengths for 106M⊙, Rp = RT; and the shell does
not contribute for 107M⊙, Rp = RT because it is never in photoionization equilibrium. The
absorption lines from the extended part of the outflow are strongly blueshifted and typically
(while t < tEdd) very broad6, with linewidths of ∼ vwind ∼ 0.01 − 0.1 c. Superimposed on
these broad lines are the thermally-broadened narrow lines produced in the outer shell of
gas, with linewidths of ∼ 10 − 30 km s−1.

Most of the absorption lines are in the UV (λ ∼< 2000 Å; hν ∼> 10 eV), with few features
in the optical. The reason for this has two parts. First, consider the ionization parameter
Uhν for a species whose ionization energy is ξion = hν: because the gas density is relatively
low while the incident spectrum is luminous and peaks at energy hνpeak ∼ 10 eV or higher,
U10 eV ≫ 1 and so species having ξion ∼< 10 eV are almost fully ionized. (For example, the
ionization parameter for hydrogen is typically UH ∼ 103−105, and hydrogen’s neutral fraction
is typically 10−8 − 10−10.) Secondly, most atoms/ions are in the ground state: the radiative
decay rates are fast compared to the rates of photoionization and collisional excitation. As a
result, almost all of the species present in the flow have ξion ∼> hνpeak ∼> 10 eV, and members of
those species are in the ground state. Transitions from the ground state have energies similar
to ξion, which is ∼> 10 eV, so most spectral lines have energies ∼> 10 eV, i.e., in the UV rather
than optical. In particular, some common prominent lines in the UV at λ > 1000 Å are He
II (1640 Å), C IV (1548+1551Å), Si IV (1394+1403Å), O IV (1400+1401+1405+1407Å),
N V (1239+ 1243Å), Lyman α (1216Å), and O VI (1032 + 1038Å). These are similar to the
lines observed in the spectra of BAL QSOs—this is not surprising given that the physical
conditions are similar. When the density is high enough for optical lines to be present
(because U and hνpeak are lower), these optical lines are mostly the lines of H I and He II.

Figure 3.1 shows that the minimum energy/maximum wavelength of the absorption
lines in the optical–UV depends both on time and on the parameters of the tidal disruption
(e.g., MBH and Rp). For example, the typical absorption lines shift to shorter wavelengths
at later times. The physical origin of these dependencies can be understood as follows. For
all times and outflow parameters that we consider, Uhν in the outflow is ≫ 1 for hν ∼<
hνpeak, and so the approximate minimum energy7 of significant absorption lines present in
the spectra is ∼ hνpeak/few. So long as the outflow is optically thick (most times depicted),
the peak energy of the incident spectrum is set by the temperature of the electron scattering
photosphere Tph,es. We can thus understand the variation in the typical energy of spectral
lines by considering the scalings for Tph,es in equation (3.8). For example, at a fixed time
after disruption, a model with MBH = 106M⊙, Rp = 3RS has a hotter electron scattering

6The sawtooth shape of the absorption lines at early times in Figure 3.1 is a result of our assumption of
spatially constant velocity (see §3.2.3); a more realistic velocity gradient would shift some absorption from
∼ hν0(1 + vwind/c) towards hν0, leading to a less abrupt change in the spectrum at ∼ hν0(1 + vwind/c).

7High-n lines of hydrogen at wavelengths of tens of microns are also typically optically thick due to
l-mixing collisions with ions.
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photosphere than a model with MBH = 106M⊙, Rp = RT. This is why the spectra for the
former situation have fewer low-energy lines in Figure 3.1; MBH = 107M⊙, Rp = RT is yet
hotter at fixed time, and so has even fewer longer wavelength lines.

These arguments also help to explain the time evolution of the spectra in Figure 3.1.
During the optically thick phase (§3.2.3), the continuum radiation produced by the outflow
becomes harder with time as Rph,es moves inward, while the luminosity remains high. As a
result, the lines present in the spectrum tend to have shorter wavelengths (higher energies)
at later times. Once the outflow becomes optically thin, the continuum spectrum is ∼
30 eV− 100 eV emission from the accretion disk, and most absorption lines have hν ∼> 30 eV
and remain very broad (§3.2.3). In some cases, narrow lines produced in the shell (§3.2.3) are
superimposed on these broad lines. The lines would become purely narrow after tEdd because
nearly all of the outflow is then in a thin shell, but for our fiducial outflow parameters, the
outflow falls out of photoionization equilibrium before tEdd.

As mentioned in §3.2.1, numerical simulations suggest that the velocity and density of
the outflow will vary with latitude, with higher speed outflows along the pole relative to the
equator (e.g., Ohsuga et al. 2005). To consider how the spectrum of a tidal disruption event
may vary with viewing angle, Figure 3.3 shows spectra for different values of fout and fv
(eqs. [3.2] and [3.3]). Significant NUV/optical lines are labeled; the lower panel of Figure
3.2 highlights the λ = 1000 − 2000 Å part of the spectrum for the fout = 0.3, fv = 1 model.
Because the density at r ∼ Redge is larger if the outflow is slower (smaller fv) the shell
remains in photoionization equilibrium longer for the models with fv = 0.1 in Figure 3.3, for
4000 days (MBH = 106M⊙, Rp = RT) and 1000 days (MBH = 107M⊙, Rp = RT).

The ionization parameter Uhν is large for all of these variations about our fiducial mod-
els. It is thus again the temperature of the continuum radiation Tph,es that determines the
approximate minimum energy of the spectral lines. For fout = 0.3, Tph,es is lower than for
fout = 0.1, and so there are more and deeper FUV-optical lines when fout is larger (compare
the top panel of Figure 3.3 with the middle panel of Figure 3.1, or the two panels of Figure
3.2); for fout = 0.01 (not shown), there are virtually no lines with λ ∼> 1500 Å. Similarly,
Tph,es is lower for lower outflow velocities. For MBH = 106M⊙, Rp = RT, fv = 0.1, there
are in fact many optical absorption lines (mostly hydrogen Balmer and He II) early on; for
MBH = 107M⊙, Rp = RT, fv = 0.1, there are many lines at ∼ 1000−2000 Å, though no lines
in the optical. Additionally, Hα and He II λ6560 (blended together) can be seen in emission
at late times for MBH = 106M⊙, Rp = RT, fv = 0.1. Since the outflow velocity is lower,
the density at r ∼ Redge is larger and so recombination happens more frequently, leading to
emission lines; furthermore, the lower outflow velocity produces less broadening and so the
emission lines are brighter above the blackbody continuum.

3.3.1 Implications of an X-ray Power-law

The candidate tidal disruption events discovered in the ROSAT All-Sky Survey and
GALEX Deep Imaging Survey all show soft X-ray spectra (Komossa 2002; Gezari et al.
2008, 2009). However, by analogy to the observed spectra of AGN, it is possible that some
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Figure 3.3: Predicted spectra showing the effects of varying the mass-loss rate (via fout; eq
3.2) and outflow speed (via fv; eq. 3.3) in the super-Eddington wind. Labeled tickmarks
identify the blueshifted positions of the strongest long-wavelength lines. Slower and/or higher
mass-loss rate winds have softer continuum emission and are thus more likely to produce
optical or near-UV lines (compare these results with Fig. 3.1). Top panel: MBH = 106M⊙,
Rp = RT, fout = 0.3, fv = 1, t = 30 days, 100 days; middle panel: MBH = 106M⊙,
Rp = RT, fout = 0.1, fv = 0.1, t = 30 days, 100 days, 300 days, 1000 days; bottom panel:
MBH = 107M⊙, Rp = RT, fout = 0.1, fv = 0.1, t = 30 days, 100 days, 300 days, 1000 days.
A zoomed in view of the FUV region of the middle panel is in Figure 3.2.
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Figure 3.4: Predicted spectra, including the presence of an X-ray power-law tail with photon
index Γ = 3 that carries 10% of the blackbody luminosity (appropriate when the shock at
pericenter does not have time to thermalize completely). Optical and UV lines are mostly
absent because the gas is so highly ionized (cf. pure blackbody continuum in Figs. 3.1 and
3.3), although there is typically significant absorption in the EUV and soft X-rays. When
Γ = 2, there are even fewer lines and little continuum absorption.



Section 3.3. Predicted Spectra 73

tidal disruption spectra will contain a high-energy power-law tail extending from the peak
in the blackbody continuum to hard X-rays. Such an X-ray power-law component might
also be produced as a result of incomplete thermalization at the shock at pericenter where
matter falls back to the BH (§3.2.2). To consider the observational effects of such X-rays,
we carried out Cloudy calculations using an input spectrum that consists of the blackbody
spectrum described in §3.2.3 plus a power-law tail that has 10% of the blackbody luminosity,
a photon index of 3 (νLν ∝ ν−1), and that begins at the frequency where its emission equals
the blackbody emission. (Such a spectrum may be appropriate for partial thermalization;
in a moment, we consider the even harder spectrum expected from Compton equilibrium if
the shock is not thermalized.)

Figure 3.4 shows the 10 keV to 1µm spectra for several of our models including this X-ray
power-law: MBH = 106M⊙, Rp = RT, fv = 1 (top panel); MBH = 107M⊙, Rp = RT, fv = 1
(middle panel); and MBH = 106, Rp = RT, fv = 0.1 (bottom panel). Due to the different
peak energies of the blackbody components, the actual power-law luminosity above 1 keV
varies for the different models as a function of time, with νLν(> 1 keV)/Lbol = 10−4−2×10−2

(top panel), 6 × 10−3 − 10−2 (middle panel), and 5 × 10−5 − 10−2 (bottom panel). These
models are thus reasonably conservative in terms of the contribution of the X-ray emission to
the bolometric luminosity. Nonetheless, the presence of the hard X-ray emission significantly
changes the resulting spectra.

The hard incident spectrum photoionizes the gas to a higher degree than the pure
blackbody incident spectrum. Species that have ionization energies ξion < 10 eV are thus
more scarce, and so the optical absorption lines seen in the previous section disappear (except
for MBH = 106M⊙, Rp = RT, fv = 0.1, where Hα still has optical depth ∼ 1). Most of the
FUV lines disappear as well; the Lyα line and a few others can still be faintly visible early on
for MBH = 106M⊙, especially if fv ∼ 0.1. Fe XXI λ1354 is sometimes the longest wavelength
UV/optical line.

So long as the outflow is optically thick to electron scattering, the X-ray tail can show
many absorption features. These include both continuum absorption and individual absorp-
tion lines. Figure 3.4 shows that for MBH = 106M⊙, Rp = RT, there is a deep continuum
absorption trough, extending from ∼ 1 keV up to ∼ 5 keV; for fv = 0.1 the outflow is
denser and the trough extends down to ∼ 0.3 keV. This feature is somewhat weaker for
MBH = 106M⊙, Rp = 3RS and absent for MBH = 107M⊙. There are also many absorption
lines superposed on the power-law tail and absorption trough, provided by highly ionized Ar,
Ca, Fe, Mg, Mn, Ni, and Si (among others). The specific lines and line strengths vary sig-
nificantly between the different models, so it is difficult to predict exactly which lines will be
in the spectrum. As the electron scattering photosphere moves inward and becomes hotter,
Figure 3.4 shows that the X-ray luminosity actually increases in time given our assumption of
a fixed power-law with a photon index of 3. Once the outflow becomes optically thin to elec-
tron scattering and the accretion disk provides the incident spectrum with hνpeak ∼ 0.1 keV
(typically after a few months), the gas is so highly ionized that most of the absorption and
emission features in the spectrum disappear.

If instead of νLν ∝ ν−1, the X-ray power-law tail has a flatter spectrum with a photon
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index of 2 (extending up to ∼ 100 keV), the gas is even more highly ionized. There are thus
fewer X-ray lines (though still a significant number) and little continuum absorption. There
are no lines at all in the FUV/optical (apart from very faint Lyα and Fe XXI λ1354 for
fv = 0.1).

3.4 Supernova Rates in Galactic Nuclei

Tidal disruption flares are expected to be similar to supernovae in their overall brightness
and timescale. Supernovae thus represent a significant source of contamination when trying
to discover and study tidal disruption flares in optical transient surveys. In particular, tidal
disruption flares may be confused with supernovae that appear coincident with the galactic
nucleus within the spatial resolution of the observations. To quantify this source of confusion,
we estimate the rate of Type II and Type Ia supernovae that take place within a distance
Rres of a galaxy’s nucleus. To do so, we first estimate the disk and bulge stellar mass within

Ground-based

Type Ia

Type II

HST/AO

Type I
a

Type II

~Tidal disruption rate(?)

Figure 3.5: Supernova rates within 0.5” (black) and 0.05” (blue) of the galactic nucleus at
z = 0.1, for Type II supernovae (solid) and Type Ia supernovae (dashed); 0.5” is the typical
astrometric accuracy of ground-based transient surveys (J. Bloom, personal communication)
while 0.05” is the spatial resolution of HST or ground-based adaptive optics. If the rate
of tidal disruption per galaxy is 10−5 yr−1 (Donley et al. 2002, red dot-dashed line), then
nuclear supernovae will outnumber tidal disruption events by about two orders of magnitude
for ground-based optical transient surveys. For HST/AO, the nuclear supernova rate will be
comparable to the tidal disruption rate, reducing the contamination dramatically.
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Rres as a function of BH mass.
For a BH of mass MBH, the stellar mass of the bulge is M∗,B ∼ 700MBH (Häring &

Rix 2004). We estimate the stellar mass of the disk using the ratio of bulge (B) to total
mass (T ) from Figure 3 of Hopkins et al. (2009), which is based on data from Balcells et al.
(2007): if M∗,B < 1010M⊙, B/T ∼ 0.1; for larger masses, B/T ∼ 3 log(M∗,B/1010M⊙) − 2.9
(where total mass M∗,T = disk mass M∗,D + bulge mass M∗,B). We determine the half-light
radius of the disk R1/2,D using the results from SDSS in Shen et al. (2003) (their eq. 18) and
convert to scale radius via Rscale,D = R1/2,D/1.68. We then find the mass of the stellar disk
inside Rres by assuming that the surface density profile is exponential:

M∗,D(< Rres) ≃M∗,D

∫ Rres/Rscale,D

0

xe−x dx . (3.23)

Similarly, we calculate the half-light radius of the bulge R1/2,B hosting a given BH using8

equation (17) in Shen et al. (2003) and convert it to the scale radius of the de Vaucouleurs
profile using Rscale,B = R1/2,B/3461 (Binney & Merrifield 1998). We then find the mass of
the bulge inside Rres using

M∗,B(< Rres) ≃
M∗,B
20160

∫ Rres/Rscale,B

0

xe−x
1/4

dx . (3.24)

The rate of Type II supernovae depends on the instantaneous star formation rate (SFR)
in the galaxy. For galaxies that are actively forming stars, the galaxy-integrated SFR as a
function of galaxy stellar mass (M∗ = M∗,D+M∗,B) is log SFR = 0.67 log(M∗/1010M⊙)−6.19,
where SFR is in M⊙ yr−1 (Noeske et al. 2007)9. Assuming that the spatial distribution
of star formation tracks stellar mass, the SFR within Rres is SFR(< Rres) ∼ [M∗,D(<
Rres)/M∗,D] × SFR. The nuclear Type II supernova rate is then

ΓII(< Rres) ≃ 10−2fD
SFR(< Rres)

M⊙ yr−1
yr−1. (3.25)

To account for the fact that only disk galaxies typically form stars, equation (3.25) includes
a multiplicative factor given by the fraction of disk galaxies at the given M∗,

fD ≃ 1 − dnE/d lnM∗
dntot/d lnM∗

(3.26)

where dn/d lnM∗ is the number density of elliptical galaxies (E) or all galaxies (tot) from
Bernardi et al. (2010) locally10 and Drory et al. (2009, their Table 3) at higher redshift.

8Note the erratum in Shen et al. (2003)’s Table 1, so that b = 2.88 × 10−6.
9We extend the relation down to M∗ ∼ 109M⊙, and we suppose that the relation is proportional to

(1+ z)3.4, using the redshift dependence of the volume-integrated star formation rate in Yüksel et al. (2008)
and in agreement with the approximate redshift dependence reported by Noeske et al. (2007).

10Parameters for mass functions of ellipticals and total are from Table B2 in Bernardi et al. (2010), defining
ellipticals by a concentration index larger than 2.86 as recommended by these authors.
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With this factor of fD, our estimate of the supernova rate per galaxy statistically takes
into account that some systems of a given M∗ are already passive and thus will not have
significant numbers of Type II supernovae.

Following recent galaxy integrated results, we estimate the rate of nuclear Type Ia
supernovae given both the nuclear stellar mass and the nuclear star formation rate:

ΓIa(< Rres) ≃ A

(
[M∗,B +M∗,D](< Rres)

1010M⊙

)
(3.27)

+ B

(
fD
SFR(< Rres)

10M⊙ yr−1

)
,

where A = 4.4 × 10−4 yr−1 and B = 2.6 × 10−2 yr−1 (Scannapieco & Bildsten 2005).
The typical accuracy to which ground-based optical transient surveys can determine the

location of a transient is ∼ 0.5” (J. Bloom, personal communication), which corresponds to
Rres = 0.9 kpc at z = 0.1 and Rres = 4.1 kpc at z = 1. Figure 3.5 shows the Type II and
Type Ia supernova rates per galaxy within 0.9 kpc of the galactic nucleus, as a function of
BH mass; this choice of Rres corresponds to a ground-based survey observing at z ≃ 0.1.
Predicted tidal disruption rates depend on BH mass and galaxy structure and typically
range from ∼ 10−6 − 10−3 yr−1 per galaxy. Using candidate detections in the ROSAT All-
Sky Survey, Donley et al. (2002) estimated a rate of ∼ 10−5 tidal disruptions per year per
galaxy. For the latter, Figure 3.5 shows that nuclear supernova rates are typically several
orders of magnitude larger than tidal disruption rates. High resolution photometry with
the Hubble Space Telescope (HST) or ground-based adaptive optics (AO) can decrease the
nuclear SN rates to few×10−5 yr−1 per galaxy, reducing confusion to order unity. We discuss
the implications of these estimates of nuclear supernova rates in the next section.

3.5 Discussion

We have calculated the spectroscopic signatures of outflows produced by super-Eddington
accretion during the tidal disruption of stars by massive black holes. Although there are some
uncertainties in the continuum emission, mass outflow rate and kinematics, we find a number
of reasonably robust conclusions: 1) the spectrum will show strong absorption lines that are
blueshifted relative to the host galaxy, 2) the absorption lines will typically be very broad
(∼ 0.01− 0.1 c), though often with a narrow thermally-broadened (∼ 30 km s−1) component
that dominates as the outflow subsides and becomes a thin shell at later times, 3) if the
continuum spectrum is largely a blackbody, the absorption lines will be most prominent at
UV wavelengths (e.g., C IV, Si IV, O IV, N V, Lyman α and O VI). In addition, if there
is a lower velocity component to the outflow, which is plausible based on simulations of
radiatively inefficient accretion (e.g., Ohsuga et al. 2005), we find that there will also be
optical absorption (and possibly emission) lines, in particular Hα, Hβ, He II λ6560, and He
II λ4860 (Fig. 3.3). The optical/UV lines will, however, be largely absent from the spec-
trum if the continuum emission is harder or contains an X-ray power-law tail (either because
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of non-thermal processes or incomplete thermalization)—the gas would then be too highly
ionized. In that case, the dominant absorption lines are in the soft X-rays (Fig. 3.4). This
highlights the importance of X-ray observations of tidal disruption events coeval with optical
and UV spectroscopic observations, in order to properly interpret the presence or absence of
optical/UV lines.

Having summarized our key results, we now describe several uncertainties in our spectro-
scopic predictions. Our calculations assume a blackbody spectrum of photons released from
the electron scattering photosphere of the outflow, with an ‘optional’ phenomenologically
motivated X-ray power-law tail. We find, however, that when gas returning to pericenter
shocks at ∼ 2Rp, the thermalization between the photons and gas is a strong function of
BH mass, stellar pericenter distance, and time since disruption (§3.2.2). The thermaliza-
tion is often incomplete. This would harden the continuum spectrum, eliminating many of
the optical-UV spectroscopic signatures of tidal disruption events. Moreover, the prominent
optical continuum emission predicted by Strubbe & Quataert (2009) from tidal disruption
outflows requires reasonable thermalization in the post-shock plasma. Such thermalization
is the most likely for tidal disruptions around lower mass BHs with MBH ∼< few 106M⊙ and
at early times after disruption, t ∼< 2 weeks (eq. 3.10). This estimate assumes spherical
fallback and is thus somewhat conservative, since stellar debris is focused into a thin stream
as it falls back after disruption (Kochanek 1994); a higher density at the shock would lead to
a longer period of thermal blackbody emission, perhaps up to a month for MBH ∼ 106M⊙.
Nonetheless, these results emphasize the importance of high cadence observations with rapid
follow-up in optical searches for tidal disruption flares. In the future, observing the spectrum
of a tidal disruption event change as the outflow falls out of thermal equilibrium would pro-
vide strong constraints on the physics of radiation-dominated shocks, which are important
in other astrophysical environments such as shock break-out in supernovae.

Another uncertainty in our spectroscopic predictions is related to the mass loading and
speed of the outflow (parameterized by fout [eq. 3.2] and fv [eq. 3.3] in our calculations),
and the outflow’s geometry. Radiation hydrodynamic simulations of super-Eddington black
hole feeding suggest reasonable values for fout and fv: Ohsuga et al. (2005)’s simulation at
100ṀEdd obtains fout ∼ 0.1 and fv ∼ 1 (our fiducial values). Ohsuga (2007)’s similar simula-
tions of feeding at ṀEdd−300ṀEdd imply fout ∼ 0.1−0.4 (depending on viscous parameter α)
and outflow velocities of ∼ 0.1c−0.3c; Takeuchi et al. (2009)’s similar simulations at 100ṀEdd

and 300ṀEdd imply fout ∼ 0.8. Dotan & Shaviv (2011) calculate a super-Eddington accre-
tion model in which instabilities make the gas inhomogeneous, and find that fout ∼ 0.5−0.7
for feeding rates 5ṀEdd − 20ṀEdd. We note that Lodato & Rossi (2011) calculate tidal dis-
ruption light curves using our super-Eddington outflow model (eqs. [3.6] - [3.8]) with Dotan
& Shaviv (2011)’s fout results and a more detailed model for Ṁfallback(t) (Lodato et al. 2009);
they find similar results to those in Strubbe & Quataert (2009) (optical luminosities are
similar, and emission from the outflow lasts a factor of few times longer). In §3.3, we used
fiducial values of fout ∼ 0.1 and fv ∼ 1 and showed the results of varying those parameters:
larger mass outflow fractions lead to more absorption lines at longer wavelengths, and slower
outflow velocities lead to narrower absorption lines, the presence of optical lines, and even
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the presence of some emission lines. In reality, the mass-loading and outflow kinematics may
vary with viewing angle; the geometry of the outflow is uncertain, and we do not capture
this effect with our simple spherical models. Ohsuga & Mineshige (2007) and Takeuchi et al.
(2009) find outflow opening (half) angles of ∼ 30 degrees, suggesting that from some viewing
angles, accretion disk and outflow may both be visible.

3.5.1 Observational Prospects

The prominent UV lines predicted here are challenging to observe for several reasons.
First, the UV emission can be obscured by dust, particularly along lines of sight through the
host galaxy’s disk; however, observations of similar absorption lines in BAL QSO spectra
suggest that at least some lines of sight will have low obscuration. Second, observations
at extreme UV wavelengths (1000 Å ∼< λ ∼< 100 Å), where most of the predicted spectral
features lie, must take place from space and are technically difficult. Encouragingly, the
Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph aboard the
Hubble Space Telescope (HST) should be able to observe spectroscopic features like those
predicted here in the far UV.

The optical to X-ray spectra predicted here apply to tidal disruption flares having early-
time super-Eddington outflows, which requires MBH ∼< few × 107M⊙. To detect such flares
in the first place using optical transient surveys, significant contaminants such as variable
active galactic nuclei (AGN) and supernovae must be excluded. Luminous AGN fueled
by other means are ∼> 103 times more common than tidal disruption events and could in
principle produce optically bright ‘flares.’ Typically, however, AGN show optical emission
lines in their spectra (like the Balmer lines and [O III]). We have shown that during the
super-Eddington outflow phase, tidal disruption events are unlikely to show such optical
lines; furthermore, if tidal disruption events do show optical lines, Balmer and He II lines
are the only reasonable candidates (perhaps also very faint He I and S IX), because the
densities are too high for collisionally excited lines like [O III] which almost always appear
in AGN spectra. These conclusions about Balmer versus [O III] lines also hold during the
later phase of a tidal disruption event (described in Strubbe & Quataert 2009) in which the
accretion disk irradiates the unbound stellar debris.

BAL QSOs (a subset of quasars) are more physically and spectroscopically similar to
tidal disruption events, both involving a bright central continuum source driving an outflow,
which gives rise to blueshifted UV absorption lines. However, BAL QSOs show strong
emission lines while tidal disruption events likely will not, for the following two-part reason,
which draws on Murray et al. (1995)’s theoretical work on BAL QSOs. First, the tidal
disruption outflow is typically much more ionized than a BAL QSO wind, so optical depths
for resonance lines in tidal disruption events are at most comparable to, and are often much
less than, optical depths in BAL QSOs. (The optical depth to true absorption—rather
than scattering—by resonance transitions is typically much less than one in both cases; the
emission is thus effectively thin and so the smaller optical depth for tidal disruption outflows
implies less emission.) Secondly, BAL QSO winds are thought to originate well outside
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the source of continuum radiation (the gas is not as highly ionized at larger radii, so UV
resonance lines are optically thick enough for radiation pressure to drive the wind). Thus,
although we see the hot continuum source through the cooler wind, the wind can produce
significant emission lines (in addition to strong absorption) because the wind’s emitting
area is much larger than the area of the continuum source (Murray et al. 1995). In tidal
disruption events, by contrast, those emitting areas are typically the same: the region where
most line emission occurs and the outer edge of the continuum source are both typically at
the electron scattering photosphere. This, along with the small true optical depth, implies
that tidal disruption outflows are expected to show little or no line emission. The situation
may be more complicated if the outflow does not fully thermalize, as there could be additional
line emission inside the electron scattering photosphere that we have not considered here.11

In addition to this important difference in the presence of emission lines, note that BAL
QSOs are generally associated with higher-mass BHs (MBH ∼> 108M⊙), which cannot tidally
disrupt solar-type stars outside the horizon.

Another significant contaminant in optical searches for tidal disruption events is super-
novae that take place in the nuclei of galaxies, because the luminosities and timescales are
similar, and because supernovae are initially blue like tidal disruption events. Spectroscopy
will help: supernovae typically show a forest of deep optical absorption lines, quite unlike
our predictions for tidal disruption events. Type IIn supernovae may still pose a particular
challenge: the supernova plows into surrounding circumstellar medium, shock-heating the
gas to high enough temperatures to suppress the optical lines. However, these supernovae
begin to cool after several months, becoming redder and producing optical emission lines
at late times. Tidal disruption events, by contrast, become hotter with time and are not
expected to produce similar optical emission lines.

To quantify how much nuclear supernovae will ‘contaminate’ searches for tidal disruption
events, we estimated the rate of supernovae within the spatial resolution (∼ 0.5”) of ground-
based optical transient surveys (§3.4 and Fig. 3.5): at z ∼ 0.1 the nuclear Type II rate is
a few × 10−3 yr−1 per galaxy, of which ∼ 10% are probably Type IIn (Li et al. 2011); the
Type Ia rate is a factor of 2 − 3 smaller than the Type II rate. These rates of Type II and
Type IIn supernovae are ∼> 2 and 1 order(s) of magnitude greater than the tidal disruption
rate per galaxy inferred by Donley et al. (2002) using ROSAT. The ROSAT constraints,
however, are largely on more massive black holes (which are both more luminous and more
likely to be prominent in the X-rays) so it is possible that the tidal disruption rate is different
in the lower mass systems most likely to produce optically luminous emission from super-
Eddington outflows. The high rate of nuclear supernovae estimated in Figure 3.5 emphasizes
the importance of high-resolution follow-up imaging with HST or adaptive optics, which can
reduce the rate of nuclear supernovae ‘false positives’ in optical tidal disruption searches by
a factor of ∼> 50 (Fig. 3.5).

Although the super-Eddington outflows produced during the tidal disruption of stars are

11If the outflow runs into relatively dense circumnuclear gas, additional line emission may be possible there
as well.
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in principle readily detectable out to z ∼> 1 (Strubbe & Quataert 2009), restricting candidate
events to hosts with z ∼ 0.1 is likely a good strategy for minimizing interference from
supernovae: the rate of nuclear supernovae increases rapidly with redshift, to ∼ 10−1 yr−1

per galaxy at z ∼ 1. This increase is due to both the increase in star formation at high
redshift and the increasing fraction of a galaxy that lies within the point-spread function of
the observation.

The fiducial outflow model in Strubbe & Quataert (2009) (fout = 0.1; fv = 1; disruption
rate per galaxy = 10−5 yr−1) predicts that ∼ 8 tidal disruptions per year can be detected
at z ∼< 0.1 for a survey like the Palomar Transient Factory. Relatively nearby events have
the additional advantages that they are less expensive to follow up spectroscopically and
it is easier to characterize their host galaxies. For these comparatively nearby events, we
predict that the detection probability in optical surveys is relatively independent of MBH

for MBH ∼< few × 107M⊙, so it should help to restrict candidates to bulges less massive
than ∼ 1010M⊙ (the weak dependence of the detection probability on MBH is also important
because tidal disruption flares from lower mass BHs ∼ 106M⊙ are the most likely to be
in thermal equilibrium and thus to have prominent optical continuum emission in the first
place). Restricting follow-up to systems with little ongoing star formation and/or old stellar
populations would help further minimize the number of nuclear supernovae. Observationally,
the star formation rate in galaxies, and hence the supernova rate, is relatively bimodal, and
thus some galaxies will have nuclear supernova rates (particularly type II rates) smaller than
estimated in Figure 3.5. This is especially true for more massive BHs, but ∼ 10% of lower
massive systems (MBH ∼< 107M⊙) are likely to be relatively passive as well (e.g., Bernardi
et al. 2010). If these can be identified in advance (via, e.g., prior Sloan Digital Sky Survey
observations), they may well be the most promising systems in which to follow up nuclear
transients; this selection would, however, decrease the predicted detection rate to ∼ 1 yr−1

at z ∼< 0.1 for a survey like PTF.
Given the recent plethora of luminous supernovae (e.g., Quimby et al. 2009), it is un-

clear how well single-band photometry alone will be able to distinguish tidal disruption events
from nuclear supernovae. If this proves difficult, as we suspect is likely, the spectroscopic
predictions for tidal disruption events presented here, and the color evolution predicted in
Strubbe & Quataert (2009) (the outflow photosphere becomes hotter with time—becoming
bluer if the observing band is close to the peak, or showing no color evolution if the observ-
ing band is on the Rayleigh-Jeans tail), may prove particularly useful for identifying and
characterizing tidal disruption flares.

3.5.2 Optically-selected candidates

The first two optically-selected tidal disruption candidates were announced shortly af-
ter the submission of this paper, found in Stripe 82 of the Sloan Digital Sky Survey (van
Velzen et al. 2010). These candidates have observed properties broadely consistent with our
predictions, with observed g-band luminosities of ∼ 1043 erg s−1 and no color evolution. The
optical data for candidate “TDE1” is reasonably approximated by our model for the super-
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Eddington outflow due to the disruption of a solar-type star by a BH of mass ∼ 107M⊙ at
Rp ∼ RT, with fout ∼ 0.1 [eq. 3.2] and fv ∼ 0.1 [eq. 3.3]. In detail, the optical data for
candidate “TDE2” is harder to approximate with our simple model: although the luminosity
can be reproduced by a relatively large fout or relatively small fv, the optical colors and only
gentle fading of the event are less consistent with our model. These properties may be more
consistent with a model like that of Loeb & Ulmer (1997) in which falling-back gas settles
into a steady hydrostatic atmosphere rather than becoming unbound in a true outflow; this
may be appropriate if the fallback rate is never highly super-Eddington. The large opti-
cal luminosity of these two candidate events suggests that outflows may have relatively low
velocities, and is encouraging for the optical detection of future tidal disruption candidates.
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Chapter 4

The Rate of Tidal Disruption as a
Function of Pericenter Distance

Abstract

The tidal disruption of a star by a massive black hole (BH) is predicted to produce
an electromagnetic flare whose observational appearance depends on the BH mass MBH

and on stellar properties—and also on the pericenter distance rp, the star’s distance of
closest approach to the BH on its last orbit (where rp ≤ rT). As data and models improve,
we expect robust identification of rp in individual tidal disruption events to be possible,
enabling calculation of an observed disruption rate as a function of rp and host galaxy
properties. Many authors have made predictions of the tidal disruption rate per galaxy, but
have focused on the overall rate γ integrated over all pericenter distances, rather than the rate
as a function of pericenter distance, dγ/d ln rp. In this work, we review the Fokker-Planck
formalism for calculating tidal disruption rates, and then derive an expression for dγ/d ln rp
by extending the solution to the Fokker-Planck equation inside the tidal disruption region,
assuming a spherically symmetric and isotropic stellar distribution surrounding the BH. We
use our result to calculate dγ/d ln rp for the nearby elliptical galaxy NGC 4467: as expected,
the rate rises proportional to rp for small rp and then turns up more quickly at rp ∼ rT.
We then examine how this form for dγ/d ln rp affects predictions for the optical detection
rate of tidal disruption events. We close by describing future research plans based on this
work as a foundation: calculating dγ/d ln rp for a variety of individual galaxies, extending
our derivation to a wider range of geometries, and investigating other dynamical effects not
accounted for here. In the future, comparison of the observed disruption rate as a function
of rp with predictions for dγ/d ln rp for a variety of galaxy types should provide an important
probe of the dynamics of galactic nuclei, offering insights into the formation and evolution
of BHs and their surrounding stars.
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4.1 Introduction

The tidal gravity of a massive black hole (BH) in the center of a galaxy will disrupt stars
that pass closer than rT ∼ r∗(MBH/m∗), where r∗ and m∗ are the radius and mass of the star,
and MBH is the mass of the BH. Gas from the disrupted star flows towards the BH, powering
an electromagnetic flare that should be detectable by new and upcoming transient surveys.
In Chapters 2 and 3 (Strubbe & Quataert 2009, 2011), we predicted the photometric and
spectroscopic evolution of tidal disruption events (TDEs). When gas falls back to the BH at
a super-Eddington rate, radiation pressure likely drives a significant fraction back outwards
in a super-Eddington outflow that is optically bright, superposed with broad, blueshifted
absorption lines. There is also expected to be a longer-lasting accretion disk, and emission
from the disk should photoionize the surface of the stream of stellar gas that became unbound
during the disruption, producing broad emission lines.

Our predicted observational signatures depend on MBH and orbital pericenter distance
rp, the distance between the BH and the star at closest approach on the star’s last fateful
orbit. A smaller pericenter distance leads to a more extreme event in which timescales and
velocities are faster, and the rate at which mass feeds the BH is higher. As a result, the flares
from events at rp ≪ rT are predicted to look substantially different from those at rp ∼ rT:
the former evolve more quickly (on timescales of hours to days instead of weeks to months),
and show spectral lines that are broader and can comprise different lines. Additionally, the
accretion disk should be fainter because it is narrower, while the super-Eddington outflow
can be brighter or fainter (depending on MBH and viewing time). Events at low rp also are
less able to thermalize, likely producing hard X-rays. More speculative, we have proposed
that the emission from Swift J164449.3+573451 may come from a relativistic jet produced by
a TDE at very low rp, feeding the BH at a highly super-Eddington rate (Bloom et al. 2011).
While not yet possible today, we may be able before long to identify rp robustly for individual
events based on their observed multi-waveband light curves and spectra. Observationally
measuring the rate of TDEs as a function of MBH and rp should offer a statistical probe
of the structure and dynamics of galactic nuclei. Theoretical studies of the disruption rate
per galaxy as a function of rp (which we call dγ/d ln rp) will be an important foundation for
interpreting the observed rates of TDEs as a function of rp.

This quantity dγ/d ln rp has not previously been investigated in detail, but much work
has been devoted to theoretically calculating the overall (rp-integrated) rate at which BHs
should tidally disrupt stars (which we call γ). The basic process that converts safe stellar
orbits into dangerous ones that enter the BH’s disruption zone (sometimes called the “loss
cone” due to its shape in velocity space: see footnote 5) is 2-body scattering events in
which one star’s orbit is perturbed by a gravitational interaction with another star. (Stellar
orbits may also be changed by other processes, but we will discuss these only in §4.6 and
defer deeper investigation of their effects on dγ/d ln rp to future work.) Repeated scattering
events cause stellar orbits to diffuse in phase space. The tidal disruption rate implied by this
diffusion process can be estimated through simple approximations (e.g., Frank & Rees 1976)
which we review in §4.2. The diffusion process is described more exactly by the Fokker-Planck
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equation (e.g., Lightman & Shapiro 1977; Cohn & Kulsrud 1978), first derived in the context
of plasma physics: in both circumstances, interactions via a 1/r2 force (gravity or Coulomb
collisions) alter particle trajectories (stars or electrons/ions). Solutions of the Fokker-Planck
equation under various approximations have been calculated for generic model galaxies (e.g.,
Frank & Rees 1976; Rees 1988), and using observational data for real galaxies (Syer & Ulmer
1999; Magorrian & Tremaine 1999; Wang & Merritt 2004). This formalism is reviewed in
detail in §4.3. This previous work, however, focuses only on finding solutions to the Fokker-
Planck equation outside the disruption region and at the boundary—and therefore only on
the overall tidal disruption rate γ.

In this chapter, we derive dγ/d ln rp for a spherically symmetric stellar profile by ex-
tending the solution to the Fokker-Planck equation inside the disruption region (§§4.3.6 and
4.3.8). This Fokker-Planck solution is based on unpublished work by M. Milosavljević (per-
sonal communication). We provide a detailed derivation of this solution, show how dγ/d ln rp
depends on it, and then in §4.4 calculate dγ/d ln rp as a function of orbital energy for a Kep-
lerian potential and power-law stellar density profile. Next in §4.4.2 we extend the results to
general spherical (non-Keplerian) potentials, and in §4.5 calculate the tidal disruption rate
as a function of pericenter distance for the elliptical galaxy NGC 4467, based on its observed
surface brightness profile, mass-to-light ratio, and inferred MBH. We conclude by showing
how an accurate form for dγ/d ln rp affects predictions of optical detection rates of TDEs
(§4.5.1), and in §4.6 discuss plans for future work in the context of studying the co-evolution
of BHs and their surrounding stars.

4.2 Tidal disruption rate basics

In this section, we review the order-of-magnitude framework for estimating tidal disrup-
tion rates in galaxies, based on Frank & Rees (1976); Lightman & Shapiro (1977); Binney
& Tremaine (1987); Rees (1988); Alexander (2005). Our set-up is a BH of mass MBH sur-
rounded by a population of stars all of mass m having a density distribution n(r) ∝ r−α,
where r is the radius measured from the BH.1 The radius of influence rh is the location where
the interior mass of stars equals MBH, i.e., n(r)r3 ∼ MBH/m. The stars have an isotropic
velocity distribution, which means that stars at a given r have equal probability of their
velocity vector ~v pointing in any direction. For r < rh, v ∼ (GMBH/r)

1/2, and for r > rh,
v ∼ σ, where σ ∼ (GMBH/rh)

1/2 is the (assumed constant) velocity dispersion of the stellar
bulge.2

1Note that throughout this chapter, we assume for simplicity that all stars have mass m, and in §4.5
we assume that stars are solar-type so that m ∼ M⊙ and r∗ ∼ r⊙. We also assume that the background
distribution of stars is distributed spherically and isotropically (despite evidence to the contrary in particular
stellar populations in galactic nuclei, including the disk(s) of stars in our own Galactic Center). Thirdly, we
assume that the stars and BH are the only dynamically important masses; we ignore possible contributions
from gas or dark matter. See §4.6 for discussion of these assumptions.

2As an aside, note that if the stellar distribution outside rh is that of an isothermal sphere, then the
velocity distribution will be Maxwellian. The velocity distribution inside rh is not Maxwellian due to the
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Stars are occasionally gravitationally scattered by interactions with other stars. During
a single gravitational scatter at impact parameter b, a star’s velocity is deflected by

δv ∼ fgravδt ∼
Gm

b2
b

vrel
∼ Gm

bvrel
∼ Gm

bv
, (4.1)

where we have employed the impulse approximation: fgrav ∼ Gm/b2 is the gravitational force
per mass, δt ∼ b/vrel is the timescale for the interaction, and vrel ∼ v is the relative velocity
of the two stars. Multiple scatters are approximately uncorrelated, and so lead to zero
mean change in velocity: the velocity executes a random walk. To change a star’s velocity
by order unity therefore requires Nscat ∼ (v/δv)2 ∼ (bv2/Gm)2 scatters. The frequency of
gravitational interactions at impact parameter b is

dνscat

d ln b
∼ nb2vrel ∼ nb2v , (4.2)

and so the time to change a star’s velocity by order unity is the relaxation time,

trel ∼ Nscat
1

nb2v

1

ln Λ
∼ v3

G2m2n

1

lnΛ
, (4.3)

where lnΛ ≈ ln(rbulge/bmin) is the Coulomb logarithm, accounting for integration over all
impact parameters b from a minimum bmin to the size of the stellar bulge rbulge.

Note that we have bmin ∼ Gm/v2 because closer gravitational scatterings lead to velocity
changes δv ∼> v, so this perturbative analysis breaks down (in particular, the Fokker-Planck
equation requires δv ≪ v to be valid). Tidal disruption rate calculations typically ignore the
strong gravitational scatterings at b < bmin, since the results depend only logarithmically on b
and there are many more decades in b at b > bmin. However, strong gravitational scatterings
at b < bmin may be more important for producing tidal disruption events at rp ≪ rT. We
will investigate this further in future work.

We will see later that most tidally disrupted stars come from radii far from the BH on
orbits of specific energy ≪ GMBH/rT. A star on track to be tidally disrupted thus has orbital
angular momentum (per mass) at most Jlc ∼ (2GMBHrT)1/2. The angular momentum of a
star on a circular orbit at r < rh is Jc ∼ (GMBHr)

1/2, and at r > rh is Jc ∼ σr. Assuming
an isotropic velocity distribution, the fraction of stars at a given r with low enough angular
momentum to be disrupted is3

θlc
2 ∼ Jlc

2

Jc
2 ∼






2GMBHrT
GMBHr

∼ rT
r
, r < rh

2GMBHrT
(σr)2

∼ rTrh
r2
, r > rh .

(4.4)

presence of the BH.
3The reader can visualize this in the following way. Around the point P a distance r from the BH, the

set of all possible velocity directions trace out a sphere in velocity space. The stars whose angular momenta
are low enough to be disrupted trace out a cone in velocity space whose vertex is at the point P , whose base
is Jlc/r, and whose opening angle is θlc. The fraction of stars in the cone compared to the total within the
sphere is therefore ∼ θlc

2: the space of velocities tangent to the BH is two-dimensional.
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(In future sections we will often call this quantity Rlc instead of θlc
2.) Typical values for rT

and rh are AU and pc, respectively: therefore, rT ≪ rh and so the fraction of stars on track
to be disrupted is θlc

2 ≪ 1 (and this is true even for giant stars and particularly compact
nuclei). Since we wish to consider stellar disruptions at pericenter distances rp < rT, we can
also calculate the fraction of stars having (at most) the corresponding angular momentum
Jrp<rT ∼ 2GMBHrp,

θ2
rp<rT

∼
J2
rp<rT

Jc
2 ∼





2GMBHrp
GMBHr

∼ rp
r
, r < rh

2GMBHrp
(σr)2

∼ rprh
r2
, r > rh .

(4.5)

Since a star can survive on an orbit with J ≤ Jlc for at most a dynamical time, it is
useful to calculate the typical change in angular momentum over a dynamical time. During
one dynamical time, a star experiences tdyn(dνscat/d ln b) ∼ nb2vtdyn scatters, which change
v by ∆vdyn ∼ v(tdyn/trel)

1/2, and so the orbital angular momentum (relative to Jc ∼ vr)
therefore changes by

θdyn ∼ ∆vdynr

Jc
∼
(
tdyn

trel

)1/2

. (4.6)

Comparison of θdyn and θlc reveals two regimes. In the “diffusive regime,” θdyn < θlc,
and so stars can only diffuse into the disruption zone a distance ∆J ∼ Jc(tdyn/trel)

1/2 in
angular momentum space: deeper inside, the disruption zone is empty. A given star has a
reasonable probability of entering the disruption zone only after a relaxation time, and so
the rate of tidal disruption in this regime is

dγ

d ln r0
∼ n(r0)r

3
0

trel(r0)
(diffusive regime) , (4.7)

where r0 is the initial orbital radius of the star. (In future sections, we will more precisely
consider this as an initial orbital energy of the star rather than orbital radius.) In the “full
loss cone regime” (also called the “pinhole regime”), θdyn > θlc, and so stars can repeatedly
enter and exit the disruption region during a single dynamical time: the presence of the
disruption region has little effect on the dynamics. Each dynamical time, the BH disrupts a
small fraction (θlc

2) of the stars, so that the rate of tidal disruption is

dγ

d ln r0
∼ n(r0)r

3
0

tdyn
θlc

2 (full loss cone regime) . (4.8)

Similarly, (using eq. 4.5) the rate—now as a function of rp—is

d2γ

d ln r0 d ln rp
∼ n(r0)r

3
0

tdyn

θ2
rp<rT

∝ rp . (4.9)

The ratio (θdyn/θlc)
2 is often called q. At small radii from the BH, q ≪ 1 and the regime

is diffusive; at large radii from the BH, q ≫ 1 and the regime is full loss cone. The special
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location where θdyn = θlc is called rcrit. The full tidal disruption rate is the integral over all
initial radii (or all q). The behavior of dγ/d ln r0 clearly changes at r0 ∼ rcrit and r0 ∼ rh.
Examination of power-law scalings for typical density profiles shows that rcrit ∼ rh, and that
r ∼ rcrit (or q ∼ 1) dominates the rate integral. Figure 4.1 demonstrates the difference
between the diffusive and full loss cone regimes (using the language of §4.3): the horizontal
axis is proportional to J2, and the vertical axis shows the (normalized) fraction of stars that
have orbits inside the disruption region after one dynamical time. For q ≫ 1, the fraction
is independent of angular momentum, while for q ≪ 1, the fraction drops by half when one
compares stars at the boundary of the disruption region with stars that have wandered in a
distance of q1/2/2 ∼ θdyn/2θlc in angular momentum space.

Therefore, based on these approximate considerations, we expect that the tidal disrup-
tion rate as a function of pericenter distance will have the following shape: At rp ≪ rT,
dγ/d ln rp ∝ rp (by eq. 4.9), because only stars having θdyn ≫ θlc can take such a large
angular momentum step in a single dynamical time. At rp ∼ rT, dγ/d ln rp will be enhanced
above this linear scaling, due to the contribution from stars in the diffusive regime: the closer
to rT, the more stars at q ≪ 1 can contribute. The more precise result for dγ/d ln rp that
we present for NGC 4467 in Figure 4.4 follows this expected shape.

4.3 The Fokker-Planck formalism:

Review & derivation of dγ/d ln rp

With the previous section’s order-of-magnitude results in mind, we now derive the tidal
disruption rate as a function of pericenter distance using the Fokker-Planck formalism. We
spend much of this section reviewing the derivation and solution of the Fokker-Planck equa-
tion in the context of stellar dynamics, synthesizing results from Cohn & Kulsrud (1978);
Spitzer (1987); Binney & Tremaine (1987); Magorrian & Tremaine (1999) and making ex-
plicit steps that these works leave implicit. These papers calculate the tidal disruption rate
integrated over rp by solving the Fokker-Planck equation outside and at the boundary of the
tidal disruption region. In §§4.3.6 and 4.3.8, we derive the solution to the Fokker-Planck
equation inside the disruption region: this derivation is due to M. Milosavljević (personal
communication), and we have again made more steps in the derivation explicit. Associating
the solution inside the disruption region with dγ/d ln rp (eqs. 4.71, 4.73), and finding the
limiting form for ξ(q) (eq. 4.85) are my primary original contributions in this section.

4.3.1 The distribution function and coordinate systems

Consider the (number) distribution function of stars f(r,v) in the gravitational potential
of a black hole of mass MBH. We start by discussing coordinate systems. In full generality, we
would use the 6-dimensional coordinate system (r,v)—however, we make several simplifying
assumptions about symmetry: first, we assume that the distribution function is (spatially)
spherically symmetric, so that the only spatial coordinate is r. The spatial volume element
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is therefore d3r = 4πr2 dr. Second, we make the following assumption about the symmetry
in velocity space. For a star at a given spatial location r, there could in principle be three
independent velocity coordinates: vr parallel to r, vt perpendicular to r, and the angle φ
between vt and a reference direction. We assume that the distribution function is independent
of φ. (Note that this is different from the assumption of isotropic velocity distribution,
because we still have two velocity coordinates, rather than only one.) So the velocity space
volume element is d3v = 2πvt dvt dvr, a thin ring of height dvr, radius vt and thickness dvt.
The full coordinate system can thus be written (r, vr, vt).

We can now transform the two velocity coordinates into two new coordinates, (E,R),
where E ≡ ψ(r)− 1

2
(v2
r + v2

t ) is (minus) the specific energy (“dynamicists’ sign convention”)
and ψ is (minus) the gravitational potential; R ≡ J2/Jc(E)2, where J = vtr is the specific
angular momentum, and Jc(E) is the specific angular momentum of a circular orbit of
energy E (equal to GMBH/(2E)1/2 for a Keplerian potential). This coordinate system is
useful because the relaxation time (see §4.3.3 and eq. [4.36]) is typically much longer than
an orbital period (trel ≫ tdyn), so E and R change little over an orbital period (i.e., are
approximately independent of r), and thus can treated as action variables, while r is the
angle variable (in which the motion is periodic).

The transformation from velocity v = (vr, vt cosφ, vt sin φ) to v = (E,R, φ) is made via

vr =

√
2[ψ(r) − E] − J2

r2
(4.10)

vt cosφ =
J

r
cosφ (4.11)

vt sinφ =
J

r
sinφ . (4.12)

(We include both eqs. 4.11 and 4.12 just to emphasize the three dimensions of v.) The
differential velocity element is

d3v = (detJ ) dE dRdφ = −Jc
2dE dRdφ

2vrr2
, (4.13)

where J is the Jacobian matrix for the transformation. Since d3v is independent of φ, we
integrate

∫ 2π

0
dφ. We also multiply by 2 because there are two radial velocities of opposite

sign that correspond to the same (E,R; r) (and drop the minus sign, which is present because
r increases outwards and E increases inwards). Thus we obtain

d3v =
2πJc

2 dE dR

vrr2
. (4.14)

(We could also have derived this using d3v = 2πvt dvt dvr, along with v2 = v2
r + v2

t and
dE = v dv.)

We now can write the phase space volume element

dV = d3r d3v =
8π2Jc

2

vr
dE dRdr . (4.15)
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The differential number of stars having coordinates (E,R; r) is thus

d3N

dE dR dr
=

8π2Jc
2

vr
f(E,R; r) ; (4.16)

We can calculate the differential number having coordinates (E,R) by integrating from
pericenter r− to apocenter r+ (alternatively called the radial turning points if the potential
is non-Keplerian),

d2N

dE dR
=

∫ r+

r−

8π2Jc
2

vr
f(E,R; r) dr . (4.17)

If we take the orbital velocity of an imaginary star and project it onto the radial direction,
we find that a star spends an amount of time 2dr/vr per orbit at radii between r and r+ dr
(the 2 appears because stars pass the same r twice each orbit), and so

2

∫ r+

r−

dr

vr
= P (E) , (4.18)

where P (E) is the orbital period at energy E. In general, P could be a function of E and R,
but for almost-radial orbits close to the disruption zone, we may approximate P (E,R) by
P (E) ≡ P (E, 0). Thus,

d2N

dE dR
= 4π2Jc

2(E)P (E)f(E,R) , (4.19)

where f(E,R) is the distribution function averaged over an orbital period.
When calculating diffusion coefficients in §4.3.3, we will make the useful assumption

that the stellar velocity distribution is isotropic: i.e., f depends only on v2 or E, but not on
R. Under this approximation, the relationship between number density n and distribution
function f is simple, since d3v = 4πv2 dv and dE = −v dv with v =

√
2(ψ −E), and (0,√

2ψ) are the limiting values for the velocity v of a bound4 star:

n(r) =

∫ √
2ψ

0

f(v) d3v = 4π

∫ √
2ψ

0

f(v)v2 dv

= 4π

∫ ψ

0

f(E) [2 (ψ − E)]1/2 dE . (4.20)

The distribution function can be inferred from the density by differentiating this equation
with respect to ψ to obtain

1√
8π

dρ

dψ
= m

∫ ψ

0

f(E)√
ψ −E

dE , (4.21)

4Any unbound stars originally present are expected to have left the region close to the disruption zone
long ago; new unbound stars could be gravitationally scattered into this region, but we assume that this rate
is negligible.
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which is an Abel integral equation with solution (called Eddington’s formula)

f(E) =
1√

8π2m

d

dE

∫ E

0

dρ

dψ

dψ√
E − ψ

. (4.22)

We now use equation (4.20) to show for a Keplerian potential (r ≪ rh or E ≫ σ2
h; see

below) that if the distribution function is

f(E) = (2πσ2
h)

−3/2n0
Γ(α+ 1)

Γ(α− 1
2
)

(
E

σ2
h

)α− 3
2

,
1

2
< α < 3 , (4.23)

then the number density of stars is n(r) = n0(r/rh)
−α (where rh is the radius of influence of

the BH, and σ2
h = GMBH/rh is the velocity dispersion there). We show this by integrating

f(E) in equation (4.20) using the substitution t = 1 − rE/GMBH and the result

∫ 1

0

t1/2(1 − t)α−3/2 dt = B

(
3

2
, α− 1

2

)
=

Γ(3
2
)Γ(α− 1

2
)

Γ(α+ 1)
, (4.24)

where B is the Euler Beta function, Γ is the Gamma function, and Γ(3/2) =
√
π/2. Note

also the relation

n0 =
MBH

m

3 − α

4π

(
σh

2

GMBH

)3

, (4.25)

where m is the mass of an individual star.

4.3.2 Deriving the Fokker-Planck equation for (E,R; r) space

In the absence of collisions, the distribution function f changes while satisfying the
continuity equation in the 6 phase-space coordinates wα (any coordinate system): f changes
locally due only to the divergence of the flow of f (through all 6 dimensions), ∂f/∂t =
−∇w · F(w) = −∇w · (fẇ). This is the Boltzmann equation. When stars gravitationally
scatter each other, their locations in phase space change discontinuously, and so the flow of
the distribution function changes discontinuously. We employ the usual trick of separating
how the distribution function changes due to the smooth background potential and that
due to stellar encounters (the “graininess” of the potential): the total derivative of the
distribution function is instead is equal to the rate of change of f due to encounters, the
collision term Γ[f ]. This is the Vlasov equation (BT chapter 8.3),

df

dt
=

∂f

∂t
+

6∑

α=1

∂(fẇα)

∂wα
=
∂f

∂t
+ ∇w · (fẇ) (4.26)

=
∂f

∂t
+

6∑

α=1

ẇα
∂f

∂wα
=
∂f

∂t
+ (ẇ · ∇w)(f) (4.27)

= Γ[f ] . (4.28)
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The second line follows from the fact that gravitational acceleration depends only on spatial
location and not velocity, so that

6∑

α=1

∂ẇα
∂wα

= 0 . (4.29)

We now write out the above in the coordinate system (r, E,R) (where terms like ∂f/∂φ
are assumed to equal zero by symmetry),

df

dt
=
∂f

∂t
+ vr

∂f

∂r
+ Ė

∂f

∂E
+ Ṙ

∂f

∂R
= Γ[f ] (4.30)

We will look for steady-state solutions, so ∂f/∂t = 0. Additionally, since R is a constant of
motion for a spherical potential and E is a constant of motion for any static potential, we
have Ṙ = Ė = 0, and so

df

dt
= vr

∂f

∂r
. (4.31)

To evaluate the collision term Γ[f ], we make the approximation that most gravitational
encounters are weak, meaning that most encounters have impact parameter b≫ bmin, where
bmin ≡ Gm/v2 is the impact parameter which produces an order-unity velocity change. Then
we can Taylor expand Γ[f ] in small r and small v. We make an additional approximation
that b≪ L, where L is a typical length-scale of the system (say, the BH’s radius of influence,
or radius of the bulge). This is the “local approximation,” meaning that encounters are short
compared to an orbital period, and so we can use the impulse approximation. This means
that we can say that v (which is a function of E and R) changes in an encounter, but r does
not. (Note that the weak encounters approximation is required to obtain the Fokker-Planck
equation, but the local approximation is not.) Neglecting diffusion in r, the collision term
Γ[f ] can be written

Γ[f ] = − ∂

∂E
[〈∆E〉f ] − ∂

∂R
[〈∆R〉f ] +

1

2

∂2

∂E2
[〈(∆E)2〉f ]

+
1

2

∂2

∂E∂R
[〈∆E∆R〉f ] +

1

2

∂2

∂R2
[〈(∆R)2〉f ] , (4.32)

where the diffusion coefficient 〈∆E〉 is defined as the expectation per unit time of the change
in E (and corresponding definitions for the other diffusion coefficients).

Next we recognize that although stars diffuse in both E and J2 with the same charac-
teristic timescale trel, diffusion in J2 is the dominant contributor to consumption by the BH:
for all but the most tightly bound stars (of which there are very few), the boundary of the
tidal disruption zone (loss cone5, “lc”) is almost independent of E,

J2
lc ≡ 2GMBHrT

(
1 − E

GMBH/rT

)
≈ 2GMBHrT (4.33)

5 The shape of the disruption region is a cone in velocity space, but close to a cylinder in (E,R) space.
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since E ≪ GMBH/rT for all but the closest-in stars. The geometry of the velocity space we
are considering is a solid of revolution, having circular cross-sections of varying radius: the
vertical coordinate is E, radial coordinate is J2 with maximum radius Jc

2(E), and azimuthal
coordinate φ is the angle between vt and a reference direction (again, the distribution function
is assumed to be independent of φ). The disruption zone is a vertical tube in the middle of
the cylinder with an almost constant radius J2

lc. Therefore, another way to say the argument
is that for almost all stars, E has to grow by much more than unity for a star to enter the
disruption zone, which thus takes much longer than trel (rather, it takes ∼ trel(GMBH/ErT));
by contrast, a star needs to lose only order unity of its angular momentum to be disrupted,
which takes only trel. Most disrupted stars therefore originate from large radii (r ≫ rT),
having a large orbital apocenter and entering the disruption zone on a near-radial orbit:
Rlc ≡ J2

lc/Jc
2 ≪ 1 for most stars.

Therefore, we neglect energy diffusion in the Fokker-Planck equation (4.32), and only
consider diffusion in R. Dropping ∂/∂E terms, we obtain:

df

dt
=

∂

∂R

[
−〈∆R〉f +

1

2

∂

∂R
(〈(∆R)2〉f)

]
. (4.34)

4.3.3 Diffusion coefficients

Next we consider the diffusion coefficients, 〈∆R〉 and 〈(∆R)2〉, which measure the ex-
pectation value per time of changes in the stellar velocities. The basic diffusion coefficients
(the components of 〈∆v〉 and 〈∆v2〉, from which other diffusion coefficients can be calcu-
lated) are calculated by considering how a single interaction between a test star and field
star (both of mass m for simplicity) changes their relative velocity V0. This velocity change
is averaged over different angular orientations to obtain (∆vi)θ; then it is integrated over all
possible field star velocities va and impact parameters b—weighted by the frequency νscat of
such encounters6, nσV0 = (f d3va)(2πb db)V0,

〈∆vi〉 =

∫
(∆vi)θ(f d3va)(2πb db)V0 . (4.35)

To simplify the calculations, two assumptions are made about the background distribution
function f . First, we assume that f is spatially homogeneous7 , i.e., does not depend
on spatial location, and so is independent of b. Second, we assume that the background
distribution function is isotropic, which means f depends only on |v| (or equivalently on E),
but not on R. To justify this, we will look ahead to a result from §4.3.5, equation (4.56)
for f(E,R). For angular momenta far outside the disruption zone8 R ≫ Rlc, with Rlc ≪ 1

6Note that σ here is a cross section for gravitational scattering, not a velocity dispersion; we use that
symbol in this way only here, to clarify the scattering frequency.

7 This is equivalent to assuming that most encounters are short-range enough that the densities at the
locations of the test star and perturbing star are not very different.

8Note that at the same time as we assume an isotropic background distribution function, we will still be
taking the limit of R ≪ 1 for the test star to simplify calculations.
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(so Rlc
−1 ≫ 1), we have ln(R/Rlc) = lnR + lnRlc

−1 ≈ lnRlc
−1, so f(E,R) ≈ f(E,R = 1),

independent of R; additionally, we find that f(E,R = 1) is approximately equal to the
distribution function averaged over R. We call this average background distribution function
f̄(E), and use it for all diffusion coefficient calculations.

In a single (weak) encounter, most of the velocity change is perpendicular to the direction
of motion: the acceleration is ∼ Gm/b2 and the duration of the encounter is ∼ b/V0, so
δv⊥ ∼ V0(Gm/bV

2
0 ). The velocity change along the direction of motion is smaller because

the interaction is almost symmetric: the test star spends almost as much time being pulled
forward by the field star (while it approaches) as it does being pulled backward (as it recedes).
The time difference, due to the test star’s slightly longer path away because of δv⊥, leads to
a slowing of δv‖ ∼ δv⊥(Gm/bV 2

0 ) ∼ V0(Gm/bV
2
0 )2. However, averaged over many encounters

at random orientations, 〈∆v⊥〉 = 0, while 〈∆v‖〉 is not. The squared velocity change δv2
⊥ ∼

V 2
0 (Gm/bV 2

0 ) ∼ V0δv‖ is also non-zero. Another way to say this is that since the distribution
function is isotropic, there is only one unique direction in velocity space: the velocity vector
of the test star being scattered; there are thus only three (non-zero) independent velocity
diffusion coefficients, 〈∆v‖〉, 〈∆v2

‖〉, and 〈∆v2
⊥〉. The quantities v‖, v

2
‖ and v2

⊥ diffuse on a
similar timescale, the relaxation timescale trel,

trel ∼ ν−1
scat

(
bV 2

0

Gm

)2

∼ v3

G2m2n
, (4.36)

as we already saw in equation (4.3). Therefore both first- and second-order diffusion coeffi-
cients have similar magnitudes (i.e., the second-order diffusion coefficients cannot be dropped
relative to the first-order terms in the Fokker Planck equation [4.32 and 4.34]); third-order
quantities like v3

⊥, however, diffuse on a timescale that is longer by (bV 2
0 /Gm), and so can be

neglected. BT (8-64) evaluates the first- and second-order diffusion coefficients; for example,

〈∆v2
⊥〉 =

32

3
π2G2m2 ln Λ

(
3I1/2 − I3/2 + 2I0

)
∼ v2

trel
, (4.37)

where

I0 ≡
∫ √

2ψ(r)

v

vaf̄(va) dva (4.38)

In/2 ≡ v−n
∫ v

0

vn+1
a f̄(va) dva .

The integrals here can be written9

I0 ≡
∫ E

0

f̄(E ′) dE ′ (4.39)

In/2 ≡ [2(ψ(r) − E)]−
n
2

∫ ψ(r)

E

[2(ψ(r) − E ′)]
n
2 f̄(E ′) dE ′ .

9Note that we assume stars are bound, so that v <
√

2ψ; this assumption is not made in Binney &
Tremaine (1987) (8-64), where the upper bound for I0 is instead ∞.
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The quantities v〈∆v‖〉 and 〈∆v2
‖〉 are the same order of magnitude as 〈∆v2

⊥〉, but with

different velocity-weighted distribution function integrals (which are ∼ n/v).
We start by calculating 〈∆v2

t 〉, since 〈∆R〉 = r2〈∆v2
t 〉/Jc

2. (Remember that the diffusion
coefficients for R are defined holding E and r constant, because our coordinate system
is (E,R; r)). Because f̄ is isotropic, v2

t = v2
x + v2

y with vx and vy the (normal) velocity
components in an arbitrary plane; therefore,

∆v2
t = ∆(v2

x + v2
y)

= 2vx∆vx + 2vy∆vy + 2∆vx∆vx + 2∆vy∆vy . (4.40)

We evaluate this using Binney & Tremaine (1987) (8-65)10, which gives the velocity diffusion
coefficents with respect to an arbitrarily oriented coordinate system in terms of 〈∆v‖〉, 〈∆v2

‖〉,
and 〈∆v2

⊥〉:

〈∆v2
t 〉 = 〈∆v2

⊥〉 +
v2
t

v2

[
2v〈∆v‖〉 + 〈∆v2

‖〉 −
1

2
〈∆v2

⊥〉
]

≈ 〈∆v2
⊥〉 (4.41)

because R ≪ 1 implies that v2
t ≪ v2. Physically, the assumption of low angular momentum

means that almost all of the test star’s velocity is in the radial direction, and so vt is almost
perpendicular to the test star’s velocity; thus 〈∆v2

t 〉 ≈ 〈∆v2
⊥〉.

Next we consider the diffusion coefficient 〈(∆R)2〉 ≡ 〈∆R∆R〉 = r4〈∆v2
t∆v

2
t 〉/Jc

4. Us-
ing equation (4.40) and dropping terms third-order and higher,

∆v2
t∆v

2
t = 4v2

x(∆vx)
2 + 4v2

y(∆vy)
2 + 8vxvy∆vx∆vy , (4.42)

and so (using BT 8-65 again)

∆v2
t∆v

2
t = 2v2

t

[
〈∆v2

⊥〉 +
4v2

t

v2

[
〈∆v2

‖〉 −
1

2
〈∆v2

⊥〉
]]

≈ 2v2
t 〈∆v2

⊥〉 , (4.43)

again because v2
t ≪ v2 for low-angular momentum orbits. Therefore,

〈(∆R)2〉 ≈ 2R〈∆R〉 (4.44)

and

〈∆R〉 =
1

2

∂

∂R
〈(∆R)2〉 . (4.45)

We then define µ, which is thus a function of E and r but not R:

µ ≡ lim
R→0

〈(∆R)2〉
2R

= 〈∆R〉 =
r2〈∆v2

⊥〉
Jc

2 ∼ 1

trel
. (4.46)

10Note that Binney & Tremaine (1987) uses the notation D(∆v) where Cohn & Kulsrud (1978),Magorrian
& Tremaine (1999) (and we) use 〈∆v〉.
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4.3.4 The Fokker-Planck equation, continued

Using the above results for the diffusion coefficients, equation (4.34) becomes

df

dt
= vr

∂f

∂r
= Γ[f ] = µ

∂

∂R

(
R
∂f

∂R

)
. (4.47)

It is now useful to change variables from r to the time-like coordinate τ :

τ ≡
[∫ r

r−

µ dr

vr

]/
2

[∫ r+

r−

µ dr

vr

]
≡
[∫ r

r−

µ dr

vr

]/
P (E)µ̄(E) (4.48)

where r± are the apocenter and pericenter of an orbit of energy E and angular momentum R,
µ̄(E) is orbit-averaged normalized diffusion coefficient11, and we have again assumed R ≪ 1
in estimating the orbital period (see eq. 4.18). (The factor of 2 accounts for the orbital
motion from pericenter to apocenter and back to pericenter again.) The values τ = 0, 1, 2, ...
correspond to successive pericenter passages of an imaginary star of energy E and angular
momentum R. Note that in a Keplerian potential,

r± =
GM

2E

[
1 ±

√
1 −R

]
(4.49)

because the orbital semi-major axis is a = GMBH/2E and the orbital eccentricity is e =√
1 − R. We now transform variables using

dτ

dr
=

1

P µ̄

d

dr

∫ r

r−

µ dr′

vr
=

1

P µ̄

µ

vr
(4.50)

(by the Fundamental Theorem of Calculus), so that

∂f

∂τ
= P µ̄

∂

∂R

(
R
∂f

∂R

)
. (4.51)

Additionally, using equation (4.50), note that the differential volume element can be written

dV = 4π2Jc
2(E)P (E)

µ̄(E)

µ(τ, E)
dτ dR dE . (4.52)

We now introduce another variable, y ≡ R/P µ̄:

∂f

∂τ
=

∂

∂y

(
y
∂f

∂y

)
, (4.53)

11Despite the assumption of homogeneous background distribution made in calculating the diffusion co-
efficients like 〈∆v2

⊥〉, orbit-averaging is required to calculate µ̄ because µ̄ ∝ r2 and the integral bounds in
〈∆v2

⊥
〉 (eq. 4.37) contain r as well.
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and then make one more variable change, x ≡ √
y, so we have

∂f

∂τ
=

1

4x

∂

∂x

(
x
∂f

∂x

)
=

1

4
∇2
xf , (4.54)

where the Laplacian is in cylindrical coordinates, and changes in f are independent of both
azimuthal coordinate φ and vertical coordinate E. (We have made many variable changes at
this point, but note that x simply is proportional to the orbital angular momentum.) This
equation now has the form of the heat equation, where x is the radial coordinate and τ is
the time coordinate. Note that over one orbit (τ = 0−1), f diffuses by order unity in x, i.e.,
R changes by P µ̄, or J changes by (P µ̄)1/2Jc ∼ (tdyn/trel)

1/2Jc, as expected by our simpler
analysis (§4.2).

4.3.5 The distribution function outside the tidal disruption zone

We start by solving equation (4.51) for f outside the tidal disruption zone R > Rlc.
Since f changes with respect to R on timescales much longer than an orbital period, we
can consider in ∂f/∂τ only changes due to orbital motion. Far outside the loss region
(Rlc ≪ R ∼ 1), orbits are close to circular, and so ∂f/∂τ ≈ 0 (stars spend similar fractions
of time at all phases of their orbit, so f does not vary much with τ). We therefore solve
equation (4.51) setting ∂f/∂τ = 0, which gives the correct limiting behavior for R ∼ 1.
However, we will extend this solution down to Rlc ≪ 1 where it may no longer be valid.

So now we solve

0 = P µ̄
∂

∂R

(
R
∂f

∂R

)
(4.55)

on R := (Rlc, 1) and find

f(E,R) = f(E,Rlc) +
f(E, 1) − f(E,Rlc)

lnR−1
lc

ln(R/Rlc) , Rlc ≤ R ≤ 1 . (4.56)

We can calculate f(E, 1) from the mean R-integrated distribution function,

f̄(E) ≈
∫ 1

Rlc
f(E,R) dR
∫ 1

Rlc
dR

= (1 −Rlc)
−1

[
f(E,Rlc)(1 −Rlc) +

f(E, 1) − f(E,Rlc)

lnRlc
−1

(
lnRlc

−1 − 1 +Rlc

)]

≈ f(E, 1) , (4.57)

since Rlc ≪ 1. The mean distribution function f̄(E) can be calculated for real galaxies; e.g.,
for a galaxy with a power-law density profile, we can use equation (4.23) (inside the radius
of influence).
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4.3.6 The distribution function inside the tidal disruption zone

Inside the tidal disruption zone, orbit-averaging is not appropriate, because stars survive
until pericenter and are then removed (disrupted). So we separately solve equation (4.54)
on x := (0, xlc), where xlc ≡ (Rlc/P µ̄)1/2. The initial condition is

f(E, x, τ = 0) = 0 , (4.58)

because a star whose orbital pericenter falls below rT (i.e., x falls below xlc) is removed when
the star reaches pericenter. In the mathematical language of this section, the region inside
x < xlc is empty (f = 0) at τ = 0; as τ increases, stars can diffuse into the region so f
increases; but when τ = 1, all stars in the region are removed so that f = 0 again, and the
process repeats. So we solve the equation on the time interval τ := (0, 1−).

The boundary conditions use the solution from the previous section, equation (4.56),
saying that f is continuous at Rlc, and that the time-averaged (i.e., orbit-averaged) flow
rate through Rlc (see the next section §4.3.7) is continuous. The problem is mathematically
equivalent to the transfer of heat in a solid cylinder of radius xlc where the outer radius is
held at a constant value f(E, xlc) (to be determined later), and the inner region x < xlc has
f = 0 for τ = 0. We will however, be starting by solving the problem with simpler boundary
and initial conditions, and then transforming it to our actual problem of interest.

We begin by separating equation (4.54), so that f(τ, x) = T (τ)X(x), and

4

T

dT

dτ
=

1

X

d2X

dx2
+

1

xX

dX

dx
= −β2 , (4.59)

where β is an eigenvalue. This becomes separate equations for T and for X:

−β
2

4
T =

dT

dτ
(4.60)

0 =
d2X

dx2
+

1

x

dX

dx
+ β2X . (4.61)

The former equation is easily solved: T = c1 e
−β2τ/4, where c1 is a constant (that will be

absorbed into our constants am later). The latter equation is a form of Bessel’s differential
equation (of order zero); it is simplified by the substitution z = βx,

0 =
d2X

dz2
+

1

z

dX

dz
+X . (4.62)

The eigenfunctions for Bessel’s equation (of order zero) are J0(z) and Y0(z), Bessel functions
of the first and second kind; since we are interested in the domain including z → 0, but
Y0(z) → ∞ as z → 0, we reject the Y0(z) eigenfunctions. The solution is therefore a linear
combination of terms J0(βx), for various values of β.

To determine the eigenvalues β, we start by considering homogeneous boundary condi-
tions (essentially the opposite of our actual boundary conditions): f(xlc) = 0 for all τ and



Section 4.3. Fokker-Planck formalism 98

f(x < xlc) = C at τ = 0. The first condition tells us that J0(βxlc) = 0; we thus obtain an
infinite number of the eigenvalues βm, where βmxlc is the mth zero of J0. By superposition,
we are looking for solutions of the form

f(E, x, τ) =

∞∑

m=1

ame
−β2

mτ/4J0(βmx) , (4.63)

where the values of am are determined by the initial conditions, f(E, x < xlc, τ = 0) = C.
The Bessel functions J0(βmx) form an orthogonal set with weighting x, i.e.,

∫ xlc

0

xJ0(βmx)J0(βnx) dx = δmn
xlc

2

2
J2

1 (βmxlc) ≡ N (4.64)

(N is the normalization), and so decomposing our initial condition into an infinite series of
Bessel functions

f(E, x, τ = 0) = C =

∞∑

m=1

amJ0(βmx) , (4.65)

we find the values of am,

am = N−1

∫ xlc

0

CxJ0(βmx) dx

=
2

xlc
2J2

1 (βmxlc)
× CxlcJ1(βmxlc)

βm

=
2C

βmxlcJ1(βmxlc)
, (4.66)

where we have used the Bessel function property

∫ u

0

u′J0(u
′) du′ = uJ1(u) . (4.67)

The solution to the homogeneous boundary value problem is therefore equation (4.63) with
the am values from equation (4.66).

We can now transform this solution to the homogeneous problem into a solution for our
actual boundary conditions. We do this by subtracting the homogeneous solution from the
solution to the steady-state problem with our actual boundary conditions, which is simply
f(E, x < xlc, τ) = f(E, xlc). The value of C in our homogeneous problem should likewise be
f(E, xlc). Our solution is therefore (Özişik 1993, chapter 3, especially p119)

f(E, x, τ) = f(E, xlc)

[
1 − 2

xlc

∞∑

m=1

e−β
2
mτ/4

βm

J0(βmx)

J1(βmxlc)

]
, 0 ≤ τ < 1 ; 0 ≤ x ≤ xlc . (4.68)
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4.3.7 Flow rates in phase space

To connect the solutions outside and inside the disruption region, we shall require that
flow rates through phase space are continuous at Rlc. The flow rate at a point w in phase
space is F(w) = fẇ, and so the flow rate through an entire surface of constant wα = w∗ is
F(w) · ŵα = fẇα integrated over the five-dimensional surface area. The differential element
of surface area of constant wα is dV/dwα (just as dV = 4πr2 dr is the differential volume
element in space, and dV/dr = 4πr2 is the surface area at constant r). The flow rate is
therefore

Fwα(w
∗) =

∫ [
(fẇα)

dV
dwα

]

wα=w∗

. (4.69)

Looking ahead, our ultimate goal is to calculate the flow rate through the surface of
constant τ = 1−, for angular momenta between R and R + dR (with R < Rlc) and energies
between E and E + dE: we’ll call this rate of stars reaching orbital pericenter γ ≡ Fτ (1

−).
This flow rate is thus

γ =

∫ E+dE

E

∫ R+dR

R

[
(f τ̇) 4π2Jc

2P
µ̄

µ
dR′ dE ′

]

τ=1−
; (4.70)

since τ̇ = ṙ(dτ/dr) = vr(µ/µ̄Pvr) = µ/µ̄P , we have simply

d2γ

dE dR
= 4π2Jc

2f(E,R, τ = 1−) . (4.71)

In terms of the pericenter distance rp corresponding to R,

R ≈ 2GMBHrp

Jc
2 (4.72)

(applying our assumption that E ≪ GMBH/rp), we can re-write equation (4.71)

d2γ

dE d ln rp
= 8π2GMBHrp f

(
E,R(rp), τ = 1−

)
. (4.73)

This is the equation we will ultimately use to calculate the tidal disruption rate as a function
of pericenter distance in §4.4.

Along the way, we shall also need to calculate the flow rate across the surface of constant
R = Rlc, integrated over all spatial locations r− to r+ (i.e., integrated over τ from 0 to 1−)
for energies between E and E + dE,

FR(Rlc) =

∫ [
(F · R̂)

dV
dR

]

R=Rlc

(4.74)

=

∫ E+dE

E

∫ 1−

0

(F · R̂) 4πJc
2P
µ̄

µ
dτ dE ′ .
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It is helpful here to use the Divergence Theorem. We draw a closed surface with sides
R = Rlc, E

′ = E, E ′ = E + dE in velocity space, and τ = 0 − 1− spatially: the rate of
change of f integrated throughout the enclosed volume is equal to the flux through the closed
surface, which is the quantity we seek, FR(Rlc),

FR(Rlc) =

∫
(∇w · F) dV (4.75)

=

∫ E+dE

E

∫ 1−

0

∫ Rlc

0

(∇w · F) 4π2Jc
2P
µ̄

µ
dR dτ dE ′ .

(We continue to assume that flow along Ê into the disruption zone is negligible, so the
“endcap” surfaces of constant E and E+dE do not contribute to (∇w · F) inside the region.)
The Vlasov equation (4.30) says that the divergence of the flow in phase space is given by
the collision rate (∇w · F = Γ[f ]), so using equation (4.47) for Γ[f ], we have

FR(Rlc) = 4π2Jc
2 dE

∫ 1−

0

∫ Rlc

0

P µ̄
∂

∂R

(
R
∂f

∂R

)
dRdτ . (4.76)

We can write this result in two ways, integrating first over τ or first over R. To integrate
over τ , we rewrite the integrand as ∂f/∂τ and use the fact that f(E,R, τ = 0) = 0 for
R < Rlc, so

FR(Rlc) = 4π2Jc
2 dE

∫ Rlc

0

f(E,R, τ = 1−) dR

= 8π2Jc
2P µ̄ dE

∫ xlc

0

xf(E, x, τ = 1−) dx . (4.77)

(Note that the flow rate to pericenter [equation 4.71] can also be found with equation [4.77],
replacing the upper bound with R and differentiating with respect to R.) We can also write
equation [4.76] using the fact that ∂f/∂R = 0 at R = 0 (because we have required that f
be smooth there) and that R(∂f/∂R) is (at least approximately) constant with respect to τ
at Rlc:

FR(Rlc) = 4π2Jc
2P µ̄ dE

∫ 1−

0

[
R
∂f

∂R

]

R=Rlc

dτ

= 4π2Jc
2P µ̄ dE

[
R
∂f

∂R

]

R=Rlc

. (4.78)

4.3.8 Calculating f(Rlc)

We now evaluate f(Rlc) by requiring that FR(Rlc) be continuous between the outer
solution (eqs. [4.56] and [4.78])

FR(Rlc
+) = 4π2Jc

2P µ̄
f(E,R = 1) − f(E,Rlc)

lnRlc
−1 (4.79)
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and the inner solution (eqs. [4.68] and [4.77]),

FR(Rlc
−) = 8π2Jc

2P µ̄f(E,Rlc) (4.80)

×
∫ xlc

0

x

[
1 − 2

xlc

∞∑

m=1

e−β
2
m/4

βm

J0(βmx)

J1(βmxlc)

]
dx .

Noting equation (4.67) and P µ̄xlc
2 = Rlc, the flow rate from the inner solution is

FR(Rlc
−) = 4π2Jc

2Rlcf(E,Rlc)

(
1 − 4

∞∑

m=1

e−α
2
mq/4

α2
m

)

≡ 4π2Jc
2Rlcf(E,Rlc)ξ(q) , (4.81)

where we have made several new definitions. We have defined αm ≡ βmxlc, and

ξ(q) ≡ 1 − 4
∞∑

m=1

e−α
2
mq/4

α2
m

. (4.82)

We also have defined q(E) ≡ xlc
−2 = P µ̄/Rlc, the square of the ratio of a star’s angular

change over an orbital time [θdyn = (tdyn/trel)
1/2 ∼ (P µ̄)1/2] divided by the angular size of

the tidal disruption zone (θlc = Jlc/Jc = Rlc
1/2),

q(E) =

(
θdyn

θlc

)2

. (4.83)

Comparing equations (4.79) and (4.81), we find

f(E,Rlc) =
f(E,R = 1)

1 + q−1ξ(q) lnRlc
−1 , (4.84)

where f(E,R = 1) can be approximated as f̄(E), derivable from observations of galactic
nuclei. We also find the limiting behavior of ξ(q),

lim
q→0

q

ξ(q)
=

√
πq

2
. (4.85)

As an aside, note that Cohn & Kulsrud (1978) and MT write the flow rate across Rlc

as12

FR(Rlc
+) = 4π2Jc

2(E)P (E)µ̄(E)
f(E,R = 1)

lnR−1
0

, (4.86)

12Note that the outer distribution function in equation (4.56) extrapolated inside Rlc is not equal to the
actual distribution function inside Rlc (eq. 4.68), and so the former cannot be used to calculate the disruption
rate there.
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where R0 is the f = 0 intercept of the outside solution (eq. 4.56) extrapolated inside Rlc.
Cohn & Kulsrud (1978) and Magorrian & Tremaine (1999) write an approximate expression
for R0 (a limit of which was first derived by Baldwin et al. 1972 for a plasma mirror machine):

R0 = Rlc ×
{
e−q , q > 1
e−0.186q−0.824

√
q , q < 1 .

(4.87)

Comparing equation (4.86) with (4.79) using (4.84), we find the more exact expression

R0 = Rlce
−q/ξ(q) , (4.88)

so that the overall flow rate is

FR(Rlc
+) = 8π2GMBHrT

qf(E,R = 1)

ξ−1q + lnRlc
−1 . (4.89)

Equation (4.88) approximately reduces to equation (4.87) in the limits q ≫ 1 and q ≪ 1.
For q ≫ 1, ξ ≈ 1 and so R0 ≈ Rlce

−q. For q ≪ 1, q/ξ ≈ √
πq/2 ≈ 0.886

√
q, similar to the

result in (4.87) for small q: the term 0.186q is negligible compared to 0.824
√
q for q ≪ 1,

and is part of the fit to make the function [almost] continuous at q = 1).

4.4 Tidal disruption rate as a function of pericenter

distance

We now have everything we need to calculate the tidal disruption rate as a function
of pericenter distance! The answer is equation (4.73), using equations (4.68) and (4.84),
integrated over energy E. We collect those here again for easy reference:

d2γ

dE d ln rp
= 8π2GMBHrp f

(
q(E), u(rp), τ = 1−

)
(4.90)

f(q, u, τ = 1−) = f(q, Rlc)

[
1 − 2

∞∑

m=1

e−α
2
mq/4

αm

J0(αmu)

J1(αm)

]
, 0 ≤ u ≤ 1 (4.91)

f(q, Rlc) =
f̄(E)

1 + q−1ξ(q) lnRlc
−1 (4.92)

q(E) =
P (E)µ̄(E)

Rlc(E)
(4.93)

u(rp) ≈
(
rp
rT

)1/2

, (4.94)

where I have defined u ≡ q−1/2x, so that u = 1 at rp = rT. In the limit of q ≫ 1, f(τ = 1−) is
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Figure 4.1: Normalized tidal disruption rate as a function of pericenter distance f(q, u, τ =
1−)/f(q, Rlc) for q = 0.01, 0.03, 0.1, 0.3, 1, 3, 10. In the diffusive regime (q ≪ 1), stars can
only diffuse a small distance into the loss region; in the full loss cone (pinhole) regime (q ≫ 1),
stars can diffuse all the way across the loss region, so the normalized rate is flat.

independent of u, since e−α
2
mq/4 → 0 and J0(αmu) is finite. Therefore (d2γ/dE d ln rp) ∝ rp,

as expected for the pinhole (full loss cone) regime. Figure 4.1 plots the normalized rate
f(q, u, τ = 1−)/f(q, Rlc) for various energies corresponding to different values of q, as a
function of u which is proportional to the orbital angular momentum. In the diffusive
regime (q ≪ 1), stars can diffuse only a distance ∆J ∼ (tdyn/trel)

1/2Jc = q1/2/Jc into the
loss region—and so the normalized rate in the figure falls to 1/2 over a normalized angular
momentum ∆u ∼ q1/2/2. In the full loss cone (pinhole) regime (q ≫ 1), stars can diffuse in
a dynamical time a distance much wider than the loss region, and so the normalized rate is
flat.

Calculating dγ/d ln rp requires adding up the curves in Figure 4.1, weighting appropri-
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ately by the number of stars at each energy—which is the challenge:

dγ

d ln rp
= 8π2GMBHrp (4.95)

×
∫ GMBH/rT

Emin

f̄(E)

1 + q(E)−1ξ(q(E)) lnRlc(E)−1

[
1 − 2

∞∑

m=1

e−α
2
mq(E)/4

αm

J0(αmu)

J1(αm)

]
dE .

When evaluating this integral, we must confirm that the integral bound Emax does not
dominate the rate, because our assumption that stars diffuse only in R (not E) breaks
down there. (Additionally, other processes like resonant relaxation may be important at
these small radii.) Equation (4.95) shows that the tidal disruption rate requires calculating
several quantities: (1) the angular size of the disruption zone Rlc, (2) the mean (R-averaged)
distribution function f̄(E), and (3) the relationship between q and E. We calculate q(E)
using equations (4.46) and (4.37) for µ(r, E) and then orbit-integrating (recalling that Jlc

2 =
2GMBHrT):

q(E)J2
lc = P (E)µ̄(E)Jc

2(E) = 2 lim
R→0

∫ r+

r−

r2〈∆v2
⊥〉

vr
dr

=
64

3
π2G2m2 ln Λ

∫ rψ=E

0

r2

√
2(ψ(r) − E)

(
3I1/2 − I3/2 + 2I0

)
dr , (4.96)

where we have defined rψ=E such that ψ(rψ=E) = E (i.e., the orbital apocenter in the limit
of low angular momentum R→ 0).

4.4.1 Keplerian potential with power-law density profile

In this subsection, we demonstrate the methodology for calculating d2γ/dE d ln rp for
the region well inside the radius of influence of the BH rh; here, the gravitational potential is
approximately Keplerian, so the calculations are simpler and analytic. Because the overall
disruption rate is typically dominated by r ∼ rh, the results of this subsection are not
sufficient to fully calculate dγ/d ln rp; instead we show them as a simpler warm-up for the
more complicated full calculations of §4.4.2.

We will typically want to calculate dγ/d ln rp for a power-law density distribution, n(r) =
n0(r/rh)

−α, so that we have f̄(E) from equation (4.23). To simplify algebra, we define
fh ≡ [Γ(α+1)/Γ(α− 1

2
)](2πσ2

h)
−3/2n0 so that f̄(E) = fh(E/σh

2)α−3/2. Using the substitution
t = 1 − rE/GMBH in equation (4.39), we have

I0 =
fhσh

2

α− 1/2

(
E

σh
2

)α−1/2

(4.97)

In/2 = fhσh
2

(
1 − rE

GMBH

)−n/2(
GMBH

rσh
2

)α−1/2

B

(
1 − rE

GMBH

;
n

2
+ 1, α− 1

2

)
(4.98)
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where B is here the Incomplete Euler Beta function. Note that for α = 3/2, we have simply

I0 = fhE (4.99)

In/2 =
(n

2
+ 1
)−1

fh

(
GMBH

r
− E

)
. (4.100)

Next we calculate P µ̄ ≡ 2
∫ r+
r−
µ/vr dr. Recalling equation (4.46), we orbit-integrate I0 and

In/2 weighting by r2; we take the limit of R ≪ 1 so that vr ≈ v =
√

2GMBH/r − E,
r+ ≈ GMBH/E, and r− ≈ 0. Therefore,

∫ r+

r−

r2I0
vr

dr =
5π

8
√

2

fhσh

α− 1/2

(
GMBH

σh
2

)3(
E

σh
2

)α−4

(4.101)

∫ r+

r−

r2In/2
vr

dr =
fhσh√

2

(
GMBH

σh
2

)3(
E

σh
2

)α−4

IB(
n

2
, α) , (4.102)

where we define

IB(
n

2
, α) ≡

∫ 1

0

t−
n+1

2 (1 − t)3−αB(t;
n

2
+ 1, α− 1

2
) dt , (4.103)

which has the special value IB(α = 3/2) = π
16
/(n

2
+ 1). Finally we obtain

q(E) = ν

(
E

σh
2

)α−4

, (4.104)

where (using Rlc = 2GMBHrT and replacing fh)

ν =
8
√
π

3
(3 − α)

Γ(α+ 1)

Γ(α− 1
2
)

[
5

32(α− 1
2
)

+
3IB(1

2
, α) − IB(3

2
, α)

4π

](
Gm

σh
2rT

)
ln Λ , (4.105)

and we follow Spitzer & Hart (1971) in taking Λ = 0.4MBH/m. The derivative of E is

−dE
dq

=
σh

2

4 − α
ν

1
4−α q−

α−5
α−4 . (4.106)

We now have the ingredients to calculate the tidal disruption rate as a function of pericenter
distance and q for energies well inside the radius of influence,

d2γ

d ln q d ln rp
= 8π2GMBHrp

qf̄(E(q))

1 + q−1ξ(q) lnRlc(E(q))−1

[
1 − 2

∞∑

m=1

e−α
2
mq/4

αm

J0(αmu)

J1(αm)

] (
−dE
dq

)

(4.107)
In Figure 4.2, we plot d2γ/d ln q d ln rp as a function of normalized angular momentum u for
MBH = 106M⊙, σh = 100 kms−1 and α = 2. This plot is essentially the same as in Figure
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Figure 4.2: Tidal disruption rate per energy as a function of pericenter distance
d2γ/d ln q d ln rp for MBH = 106M⊙, σh = 100 km s−1 and α = 2. Results are shown for
values of q corresponding to energies inside the BH’s radius of influence qh = 3.5, so that
Keplerian approximations can be made. The full loss cone regime dominates rp ≪ rT, while
the diffusive regime dominates rp ∼ rT.

4.1 but with appropriate weighting of the curves according to the number of stars at each
value of q. The radius of influence E = σ2

h is at qh = ν = 3.5, so we only plot q values less
than this. Values of q ∼> 1 in the full loss cone regime dominate d2γ/d ln q d ln rp at rp ≪ rT,
while values of q ∼< 1 in the diffusive regime dominate rp ∼ rT. The closer we approach rT,
the smaller the value of q that dominates. The overall rate is γ ∼ few × 10−4 yr−1, in line
with results in Wang & Merritt (2004). The shape of the curve found by summing these
curves is approximately proportional to rp at rp ≪ rT and rises at rp ∼ rT, as expected from
§4.2. To calculate dγ/d ln rp properly, however, we need to include energies E < Eh outside
the radius of influence, where the potential is no longer Keplerian.

4.4.2 The non-Keplerian potential

In the previous section, we considered radii close to the BH where the gravitational
potential is dominated by the BH’s gravity—but a considerable fraction of the disrupted
stars likely comes from radii outside rh where the potential is dominated by the stars. We
write our results as functions of the stellar density distribution (which can be inferred from
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the surface brightness profile; see eq. 4.123), continuing to assume spherical symmetry and
isotropic velocity distribution far (in R-space) from the disruption zone.

To calculate the angular size of the disruption zone, we must account for the non-
Keplerian potential in calculating the orbital angular momentum Jc

2(E),

Rlc(E) =
J2

lc

Jc
2(E)

=
2GMBHrT

G [MBH +Menc,∗(rc)] rc
, (4.108)

where rc is the radius corresponding to a circular orbit with energy E, i.e., rc satisfies
E = ψ(rc) − G(MBH +Menc,∗)/2rc. The stellar mass enclosed by r is Menc,∗, defined below
in equation (4.129). We calculate f(E) using equation (4.22). We must also account for the
non-Keplerian potential in calculating q(E): equation (4.96) shows that we need to calculate
(and then orbit-average) the quantity

(
3I1/2 − I3/2 + 2I0

)
, using the correct potential and

distribution function in equations (4.39).
We spend the rest of this subsection analytically developing numerically tractable for-

mulas for f(E) and q(E), with the aim of applying them to real galaxies with measured
surface brightness profiles and measured BH masses. Wang & Merritt (2004) calculated
disruption rates γ for the 51 elliptical galaxies presented in Faber et al. (1997) (using more
accurate BH masses than Magorrian & Tremaine 1999), assuming spherical symmetry and
isotropic velocity dispersion; in the following subsection, we apply our results to one of these
galaxies. The overall methodology presented here is far more detailed than in Wang & Mer-
ritt (2004), though the spirit is the same. The goal is essentially to calculate ψ(r) and f̄(E)
from the data for individual galaxies. Although we use the surface brightness parametriza-
tion of Faber et al. (1997) (the “Nuker Law”), the results we present are general to any
(radially symmetric) surface brightness profile and need only change the surface brightness
derivatives in equation (4.125).

Faber et al. (1997) fit the surface brightness profile I of each galaxy in units of
erg s−1 cm−2 sr−1 with the function

I(R) = Ib2(β−Γ)/α

(R
rb

)−Γ [
1 +

(R
rb

)α]−(β−Γ)/α

, (4.109)

where R is the projected radius from the center of the galaxy. The parameters α, β, Γ and rb
are given in Faber et al. (1997) and Wang & Merritt (2004); also given are the dimensionless
visual mass-to-light ratio ΥV ≡ (M/M⊙)/(L/L⊙,V ), and µb, the surface brightness at rb in
visual magnitudes per arcsec2, so that

Ib = (206265)2 L⊙,V
(10 pc)2

10
1

2.5
(MSun,V −µb) , (4.110)

where MSun,V = 4.83 is the visual absolute magnitude of the sun.
To simplify calculations, throughout we: (1) make variable substitutions that remove

variables from integral bounds, (2) differentiate analytically within integrands (when neces-
sary) to avoid numerical differentiation (which is much less reliable than numerical integra-
tion), and (3) and we non-dimensionalize our variables. In particular, we express densities
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in terms of the density scale at rb,

ρ0 ≡
ΥV IbM⊙
rbL⊙,V

=
1

rb

M⊙
(10 pc)2

(206265)2ΥV 10
1

2.5
(Msun,V −µb) . (4.111)

The relationships between dimensional and non-dimensional variables are thus:

I = IbĨ (4.112)

R = rbR̃ (4.113)

r = rbr̃ (4.114)

ρ(r) = ρ0ρ̃(r̃) (4.115)

MBH = ρ0r
3
bM̃BH (4.116)

Menc,∗(r) = ρ0r
3
bM̃enc,∗(r̃) (4.117)

E = Gρ0r
2
b Ẽ (4.118)

ψ(r) = Gρ0r
2
b ψ̃(r̃) (4.119)

f̄(E) =
1√

G3ρ0mr
3
b

˜̄f(Ẽ) (4.120)

In(E, r) =

√
ρ0

mrb
√
G
Ĩn(Ẽ, r̃) (4.121)

J2
c (E) = Gρ0r

4
b J̃

2
c (Ẽ) (4.122)

Assuming spherical symmetry, we can calculate the density profile (which can be re-
written conveniently without r̃ in the integral bounds using the dimensionless variable θ),

ρ̃(r̃) = −1

π

∫ ∞

r̃

dĨ
dR̃

dR̃√
R̃2 − r̃2

= −1

π

∫ 1

0

dĨ
dR̃

(
R̃ =

r̃

θ

)
dθ

θ
√

1 − θ2
. (4.123)

Note that for radii r̃ ≪ rh/rb, ρ̃(r̃) ∝ r̃−Γ−1, and for r̃ ≫ 1, ρ̃(r̃) ∝ r̃−β−1. The derivative of
the density is

dρ̃

dr̃
= −1

π

∫ 1

0

dĨ
dR̃

(
R̃ =

r̃

θ

)
dθ

θ2
√

1 − θ2
. (4.124)
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and the derivatives of the surface brightness profile are

dĨ
dR̃

= −2
β−Γ

α R̃−Γ−1(1 + R̃α)−
β−Γ

α
−1(Γ + βR̃α) (4.125)

d2Ĩ
dR̃2

= 2
β−Γ

α R̃−Γ−2(1 + R̃α)−
β−Γ

α
−2

×
[
β(1 + β)R̃2α + (β − αβ + Γ + αΓ + 2βΓ)R̃α + Γ + Γ2

]
(4.126)

d3Ĩ
dR̃3

= 2
β−Γ

α R̃−Γ−3(1 + R̃α)−
β−Γ

α
−3
[
−β(1 + β)(2 + β)R̃3α

+
{
(−1 + α)β(4 + α+ 3β) −

(
2 + α2 + 3α(1 + β) + 3β(2 + β)

)
Γ
}
R̃2α

+
{
(1 + α)(−4 + α− 3Γ)Γ − β

[
2 + α2 − 3α(1 + Γ) + 3Γ(2 + Γ)

]}
R̃α

−Γ(1 + Γ)(2 + Γ)] . (4.127)

The gravitational potential (defined such that ψ̃(r̃ → ∞) = 0) is

ψ̃(r̃) =
M̃BH

r̃
+

4π

r̃

∫ r̃

0

ρ̃(r̃′)r̃′2 dr̃′ + 4π

∫ ∞

r̃

ρ(r̃′)r̃′ dr̃′

≡ M̃BH

r̃
+
M̃enc,∗(r̃)

r̃
+ ψ̃2(r̃) , (4.128)

where

M̃enc,∗(r̃) = −4

∫ r̃

0

∫ 1

0

dĨ
dR̃

(
R̃ =

r̃

θ

)
r̃′2

θ
√

1 − θ2
dθ dr̃′ (4.129)

is the stellar mass enclosed by r̃ and

ψ̃2(r̃) = −4

∫ r̃

0

∫ 1

0

dĨ
dR̃

(
R̃ =

r̃

θ

)
r̃′

θ
√

1 − θ2
dθ dr̃′ (4.130)

Note that Γ must be ≤ 2 for finite Menc,∗ at any r > 0; this condition is met for all galaxies
in Faber et al. (1997). Additionally, β must be > 2 for finite Menc,∗ as r → ∞, which is not
met for most of these galaxy models; this is of course unphysical and indicates that the mass
distribution steepens at larger radii. However, as long as β > 1 (which is true for almost all
of these galaxies), the potential ψ is finite as r → ∞—and the integrals presented below are
not dominated by r → ∞, so it is a very good approximation to cut off the mass distribution
at finite r ≫ rb. The scalings for the behavior of functions at r̃ ≫ 1 and Ẽ ≪ 1 are given
below separately for β ≥ 2 and 1 < β < 2 with the understanding that the behavior in the
latter case ultimately transitions to the behavior in the former case at sufficiently large radii.

The relationship in dimensionless units between the density and (isotropic) distribution
function is given by (see eq. 4.22)

˜̄f(Ẽ) =
1√
8π2

d

dẼ

∫ Ẽ

0

dρ̃

dψ̃

dψ̃√
Ẽ − ψ̃

≡ 1√
8π3

dg̃(Ẽ)

dẼ
. (4.131)
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We use equation (4.124) and make the substitution r̃ = r̃ψ=E/ϕ to obtain

g̃(Ẽ) = π

∫ r̃ψ=E

∞

dρ̃

dr̃

dr̃√
Ẽ − ψ̃(r̃)

=

∫ ∞

r̃ψ=E

∫ 1

0

d2Ĩ
dR̃2

(
R̃ =

r̃

θ

)
1√

Ẽ − ψ̃(r̃)

dθ dr̃′

θ2
√

1 − θ2

= r̃ψ=E

∫ 1

0

∫ 1

0

d2Ĩ
dR̃2

(
R̃ =

r̃ψ=E

θϕ

)
1√

Ẽ − ψ̃(r̃ψ=E/ϕ)

dθ dϕ

ϕ2θ2
√

1 − θ2
. (4.132)

Note that for Ẽ ≫ M̃BH/(rh/rb), g̃(Ẽ) ∝ ẼΓ+1/2, and for Ẽ ≪ 1, g̃(Ẽ) ∝ Ẽβ+1/2 (β ≥ 2) or

g̃(Ẽ) ∝ Ẽ
β+1
β−1

− 1
2 (1 < β < 2). We can use the latter form of g̃(Ẽ) to calculate ˜̄f(Ẽ) (which

is necessary for calculating f(Rlc) though not necessary for q(E)):

˜̄f(Ẽ) =
1√
8π3

∫ 1

0

∫ 1

0

1√
Ẽ − ψ̃(r̃ψ=E/ϕ)

(4.133)

×
[ r̃ψ=E

θϕ

dr̃ψ=E

dẼ

d3Ĩ
dR̃3

(
R̃ =

r̃ψ=E

θϕ

)
+
dr̃ψ=E

dẼ

d2Ĩ
dR̃2

(
R̃ =

r̃ψ=E

θϕ

)

−r̃ψ=E
d2Ĩ
dR̃2

(
R̃ =

r̃ψ=E

θϕ

)
1 − 1

ϕ
dψ̃
dr̃

(r = r̃ψ=E/ϕ)
dr̃ψ=E

dẼ

2
[
Ẽ − ψ̃(r̃ψ=E/ϕ)

]
] dθ dϕ

ϕ2θ2
√

1 − θ2

= − 1√
8π3

r̃2
ψ=E

M̃BH + M̃enc,∗(r̃ψ=E)

∫ 1

0

∫ 1

0

1√
Ẽ − ψ̃(r̃ψ=E/ϕ)

[ r̃ψ=E

θϕ

d3Ĩ
dR̃3

+
d2Ĩ
dR̃2

+r̃−1
ψ=E

d2Ĩ
dR̃2

M̃BH(ϕ− 1) + ϕM̃enc,∗(r̃ψ=E/ϕ) − M̃enc,∗(r̃ψ=E)

2
[
Ẽ − ψ̃(r̃ψ=E/ϕ)

]
] dθ dϕ

ϕ2θ2
√

1 − θ2
,

where derivatives of Ĩ are evaluated at R̃ = r̃ψ=E/θϕ, and we have used the derivative

dr̃ψ=E

dẼ
=

[
dψ̃

dr̃
(r̃ = r̃ψ=E)

]−1

= −
r̃2
ψ=E

M̃BH + M̃enc,∗(r̃ψ=E)
. (4.134)

For Ẽ ≫ M̃BH/(rh/rb),
˜̄f(Ẽ) ∝ ẼΓ−1/2, and for Ẽ ≪ 1, ˜̄f(Ẽ) ∝ Ẽβ−1/2 (β ≥ 2) or

˜̄f(Ẽ) ∝ Ẽ
β+1

β−1
− 3

2 (1 < β < 2).
Now we calculate the integrals Ĩ0 and Ĩn/2, using equation (4.39). The former is simply

Ĩ0(E) =

∫ Ẽ

0

˜̄f(Ẽ ′) dẼ ′ =
1√
8π3

g̃(Ẽ) . (4.135)

Next we calculate Ĩn/2(r̃, Ẽ): integrating equation (4.39) by parts, and then making the
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substitution ψ̃(r̃) − Ẽ ′ = (ψ̃(r̃) − Ẽ)θ, we have

Ĩn/2(r̃, Ẽ) =
[
2(ψ̃(r̃) − Ẽ)

]−n
2

∫ ψ̃(r̃)

Ẽ

[
2(ψ̃(r̃) − Ẽ ′)

]n
2 ˜̄f(Ẽ ′) dẼ ′

=
1√
8π3

[
2(ψ̃(r̃) − Ẽ)

]−n
2

×
{[

2(ψ̃(r̃) − Ẽ ′)
]n

2

g̃(Ẽ ′)

∣∣∣∣
ψ̃(r̃)

Ẽ

+ n

∫ ψ̃(r̃)

Ẽ

[
2(ψ̃(r) − Ẽ ′)

]n
2
−1

g̃(Ẽ ′) dẼ ′

}

=
1√
8π3

[
−g̃(Ẽ) +

n

2

∫ 1

0

θ
n
2
−1 g

(
ψ̃(r̃)(1 − θ) + Ẽθ

)
dθ

]
. (4.136)

Then we combine to obtain (3Ĩ 1
2
− Ĩ 3

2
+ 2Ĩ0), and find that the terms proportional to g̃(Ẽ)

cancel out:

3Ĩ1/2 − Ĩ3/2 + 2Ĩ0 =
3√
32π3

∫ 1

0

(
1√
θ
−

√
θ

)
g̃
(
ψ̃(r̃)(1 − θ) + Ẽθ

)
dθ . (4.137)

We orbit-integrate weighting by r̃2 to obtain
∫ r̃ψ=E

0

r̃2

√
2(ψ̃(r̃) − Ẽ)

(3Ĩ1/2 − Ĩ3/2 + 2Ĩ0) dr̃ =
3

8π2
G̃(Ẽ) , (4.138)

where we introduce another dimensionless function

G̃(Ẽ) ≡
∫ r̃ψ=E

0

∫ 1

0

r̃2

√
ψ̃(r̃) − Ẽ

(
1√
θ
−
√
θ

)
g
(
ψ̃(r̃)(1 − θ) + Ẽθ

)
dθ dr̃ . (4.139)

Note that for Ẽ ≫ M̃BH/(rh/rb), G̃(Ẽ) ∝ ẼΓ−3, and for Ẽ ≪ 1, G̃(Ẽ) ∝ Ẽβ−3 (β ≥ 2) or

G̃(Ẽ) ∝ Ẽ
β−2

β−1
−1 (1 < β < 2).

Finally, using these results in equation (4.96) and returning to dimensional units, we
obtain

q(E) =
P (E)µ̄(E)Jc

2(E)

2GMBHrT
=

32π2G2m2

3GMBHrT
ln Λ

r2
b√
Gρ0

√
ρ0

mrb
√
G

3

8π3
G̃(Ẽ)

=
4

π
ln Λ

(
rb
rT

)(
m

MBH

)
G̃(Ẽ) . (4.140)

We follow Spitzer & Hart (1971) and take Λ = 0.4MBH/m. In terms of our dimensionless

distribution function ˜̄f(Ẽ), the tidal disruption rate as a function of pericenter distance is
therefore

dγ

d ln rp
= 8π2

(
MBH

m

)(
rT
rb

)√
Gρ0 (4.141)

×
∫ M̃BHrb/rT

Ẽmin

˜̄f(Ẽ)

1 + q(Ẽ)−1ξ(q(Ẽ)) lnRlc(Ẽ)−1

[
1 − 2

∞∑

m=1

e−α
2
mq(Ẽ)/4

αm

J0(αmu)

J1(αm)

]
dẼ .
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q(Ẽ)

Ẽ
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Figure 4.3: Ratio q(E) ≡ P (E)µ̄(E)/Rlc(E) and distribution function f(E) for the galaxy
NGC 4467. We plot dimensionless energies Ẽ = E/Gρ0r

2
b , and dimensionless distribution

function ˜̄f =
√
G3ρ0mr

3
bf . Left panel: Lines shows where q = 1 (heavy dashed) and the

normalized energy Ẽh of a circular orbit at rh = 0.98 pc (thin solid). The energy Ẽcrit, defined
to be where q = 1, is close to (and just inside) Ẽh, as expected and found by Wang & Merritt
(2004). This energy dominates the overall disruption rate. Right panel: Vertical dashed line
shows Ẽcrit. The function f̃ exhibits a “kink” because f̃ is proportional to d3Ĩ/dR3: the kink
occurs at the energy corresponding to rb where the surface brightness profile Ĩ transitions
(fairly sharply) between power-laws.

4.5 Results: NGC 4467

In this section, we demonstrate application of this methodology to NGC 4467, an ellip-
tical galaxy in the Virgo Cluster that hosts a BH of mass MBH = 1.1 × 106M⊙ (Wang &
Merritt 2004, using the MBH − σ relation from Merritt & Ferrarese 2001). The relevant sur-
face brightness parameters presented in Faber et al. (1997) are α = 7.52, β = 2.13, Γ = 0.98,
µb = 19.98, and rb = 240 pc, and the mass-to-light ratio is ΥV = 6.27. The density scale is
thus ρ0 = 9.7M⊙ pc−3 (eq. 4.111), and the normalized BH mass is M̃BH = 8.2 × 10−3. (Our
calculated densities agree with those presented in Table 3 of Faber et al. 1997.) We perform
calculations for solar-type stars. Numerical results presented here have been performed with
Mathematica 7.01.0.

Figure 4.3 shows q(Ẽ) (eq. 4.140) and the distribution function ˜̄f(Ẽ) (eq. 4.133).
We have indicated the energy Ẽcrit at which q = 1 (see §4.2), which dominates the tidal
disruption rate as expected. This energy corresponds to a radius close to (and just inside)
the BH’s radius of influence, as expected (see first section, also Wang & Merritt 2004).

Figure 4.4 shows our result for the disruption rate as a function of pericenter distance.
This rate integrated over all rp (see eq. 4.89) is γ = 8.2×10−4 yr−1, in reasonable agreement
with the result γ = 5.0× 10−4 yr−1 reported in Wang & Merritt (2004). The dotted vertical
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Figure 4.4: Calculated tidal disruption rate dγ/d ln rp as a function of rp/rT. The
Schwarzschild radius rS = 0.045rT is indicated; stars on deeper trajectories are directly
consumed by the BH. At rp ≪ rT, only stars in the full loss cone regime (E ≪ Ecrit)
contribute, giving the scaling dγ/d ln rp ∝ rp. Close to rT, stars at higher energies in the
diffusive regime are able to contribute, raising the overall rate. The rate peaks at rp = rT.

line shows the location of the Schwarzschild radius; stars on deeper trajectories are directly
consumed by the BH rather than experiencing disruption. At rp ≪ rT, only stars in the full
loss cone regime (E ≪ Ecrit) contribute, giving the scaling dγ/d ln rp ∝ rp. Close to rT, stars
at higher energies in the diffusive regime are able to contribute, raising the overall rate. The
disruption of stars very close to rT offers a probe of smaller initial radii from the BH.

4.5.1 Implications for optical transient surveys

Our calculation of dγ/d ln rp has implications for predicted detection rates of tidal dis-
ruption events in optical transient surveys. Figure 2.13 (left panel) in Chapter 2 shows
our prediction for the observable tidal disruption rate as a function of MBH, for a super-
Eddington outflow (with our canonical values of fout = 0.1 and fv = 1), restricted to redshifts
z < 1. These calculations assumed that the intrinsic tidal disruption rate for every galaxy is
γ = 10−5 yr−1 (integrated from rS to rT) and that this rate is distributed as dγ/d ln rp ∝ r0

p.
As we have seen, the true intrinsic rate distribution rises with rp and is peaked at rp ∼ rT.
To see how this affects optical detection rates, we recalculate our detection predictions for
the same super-Eddington outflow parameters but with different assumptions about the in-
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trinsic rate. In future work, we will incorporate dγ/d ln rp results for many galaxies hosting
BHs of a variety of masses. Here as a preliminary calculation, for each galaxy we assume
that dγ/d ln rp has the same shape as for NGC 4467, and that γ = 10−5 yr−1 (integrated
from rp = 0 to rT).

The resulting predicted detection rates are plotted in Figure 4.5. Compared to Figure
2.13 (left panel), the predicted detection rates are suppressed at MBH ∼> 107M⊙, and en-
hanced at ∼ 105 − 106M⊙. The reason is that the peak fallback rate is highest at small rp
(see eqs. 2.1 & 2.2). At high MBH, the fallback rate is only marginally super-Eddington: the
less common events at rp < rT are optically brighter than those at rp ∼ rT. At low MBH

and small rp, the fallback rate is so super-Eddington that the outflow is edge-limited at early
times (see §2.2.1), and so only similarly bright at peak to events at rp = rT; the events at
low rp fade on timescales short compared to typical survey cadences, however, and so are
more difficult to detect. Thus, enhancing the intrinsic rate of the more detectable events at
rp ∼ rT increases the overall predicted detection rate. The detection rate dΓ/d ln rp rises
steeply with rp (approximately proportional to r3

p—see Figure 2.12 for the detection rate
assuming dγ/d ln rp ∝ r0

p). The predicted detection rates integrated over MBH and rp differ
slightly from those in Table 2.1: here, we predict 300 yr−1 for Pan-STARRS 3π, 30 yr−1 for
Pan-STARRS MDS, 300 yr−1 for PTF, and 7000 yr−1 for LSST (all with the same assumed
survey parameters as in Table 2.1).

4.6 Discussion & directions for future work

We have derived an expression for the tidal disruption rate as a function of pericenter
distance dγ/d ln rp subject to a set of simple assumptions, and calculated dγ/d ln rp for the
galaxy NGC 4467 using observational data for the photometric surface brightness profile,
mass-to-light ratio, and BH mass. As expected by the approximate considerations in §4.2,
the shape of dγ/d ln rp is proportional to pericenter distance rp for rp ≪ rT, and rises
significantly at rp ∼ rT. We have used the shape of dγ/d ln rp for NGC 4467 to revise our
predictions for the optical detection rates of tidal disruption events: relative to our previous
predictions (§2.5.3), detection rates are expected to be somewhat higher at lower MBH and
somewhat lower at higher MBH.

The first optically-selected TDE candidates, TDE1 and TDE2 from Stripe 82 of the
Sloan Digital Sky Survey (van Velzen et al. 2010) and PTF10iya from the Palomar Transient
Factory (§6.1, Cenko et al. 2011), appear consistent with our results for dγ/d ln rp. We have
reasonably modeled TDE1 as an event having MBH = 9 × 106M⊙ and rp = rT, and also
modeled13 TDE2 as an event having 3 × 107M⊙ and rp = rT. (These BH masses are
suggested by van Velzen et al. 2010, based on the MBH −Lbulge relation.) As shown in §6.1,
we have also reasonably modeled PTF10iya by rp = 12rS = 0.5rT and MBH = 106M⊙. Since

13Although the model for TDE2 does not agree well with the color and temporal slope, the conclusion
that rp ∼ rT should be fairly robust if the value of MBH is correct, since rT = 2.2rS, and rp < rS will not
lead to disruption (or rp < rS/2 for a maximally spinning BH).
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Figure 4.5: Predictions for tidal disruption event detection rates by optical transient surveys:
Pan-STARRS 3π Survey (solid), Medium Deep Survey (triple-dot-dashed), Large Synoptic
Survey Telescope (dashed), and Palomar Transient Factory (dot-dashed). See Table 2.1 for
assumed survey parameters. Compare with left panel of Figure 2.13: there we assume that
dγ/d ln rp is independent of rp, and here we assume the form of dγ/d ln rp for NGC 4467.
The detection rates predicted here are relatively enhanced at low MBH and suppressed at
high MBH.

the intrinsic tidal disruption rate and detection rate are peaked at rp ∼ rT, events at rp ∼ rT
should likely be found in the highest numbers. If the event PTF10iya is at rp ∼ rT/2, we
may expect ∼ 8 times as many events at rp ∼ rT to be present in the PTF data: at a redshift
limit of z ∼< 0.2, we predict a PTF detection rate of ∼ 3 yr−1. Detailed characterization of
the PTF selection function should improve predictions of the detection rate.

We now review the major assumptions and uncertainties in our derivation of dγ/d ln rp,
and use these to motivate planned future work on this topic. Foremost, we assume that
2-body relaxation is the process that delivers stars to the tidal disruption region: we assume
that the galactic nucleus (inside rcrit at least) is older than a relaxation time so any stars
initially on orbits inside the disruption region were disrupted long ago, and we ignore the
possibility of chaotic orbits (which can lead to disruption without 2-body relaxation). The
relaxation time at the radius of influence of a 106M⊙ BH is trel(rh) ∼ 108 yr ≪ the age of the
universe, so this assumption is reasonable; however, this assumption may no longer be good
for MBH ∼> 107M⊙ (since trel ∝ M1.79

BH assuming MBH ∝ σ4.24: Gültekin et al. 2009). Our
derivation assumes that the galactic nucleus has a spherically symmetric density distribution.
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We also make two assumptions about the distribution of stellar velocities: (1) the velocities
of test stars have only two independent components (radial and azimuthal), and (2) the
velocity distribution of stars that induces perturbations is isotropic (f used in calculating
the diffusion coefficients depends only on E).

We have additionally assumed that all stars have a single mass m, and that stars are
solar type when we perform quantitative calculations. Of course, in reality, more and less14

massive main sequence stars can disrupt as well, as can giant stars. Which stars dominate
the event rate depends primarily on the mass function of stars in the galactic nucleus, and
more weakly on the stars’ mass-radius relation (which determines the size of rT as a function
of stellar mass, and therefore the size of the loss cone θlc

2)15: see equations (4.7) and (4.8).
For a normal mass function, the disruption rate is dominated by main sequence stars at the
peak of the mass function (m ∼ 0.5M⊙). Although the tidal disruption radius rT for giant
stars can be ∼ 100 times larger than for solar-type stars, the size of the loss cone affects the
rate only weakly, and so the relative rarity of giants (∼ 0.1− 1% of stars) implies that their
disruption rate is substantially below that of main sequence stars.16 Magorrian & Tremaine
(1999) account approximately for the mass function of stars and find only small refinement
to their single-population results. However, the process of star formation close to a massive
BH may produce a different stellar mass function than elsewhere in galaxies (for example,
the disk(s) of young stars in our Galactic Center appears to have a top-heavy initial mass
function), and the star formation history in galactic nuclei is complicated and not spatially
uniform (Genzel et al. 2010). These effects could perhaps lead the disruption rate to be
dominated by massive stars at some pericenter distances in some galactic nuclei.

Another assumption is that the BH and stars make the only contributions to the grav-
itational potential; gas and dark matter are considered negligible. In our Galactic Center,
it is possible that the circumnuclear disk, a collection of molecular and atomic gas and dust
about a parsec from the BH, weighing ∼ few ∼ 104 − 106M⊙, could have a dynamical effect
on the stars if the true mass is at the upper end of this range (e.g., Šubr et al. 2009). Sim-
ilarly, giant molecular clouds could affect the tidal disruption rate in other galaxies if they
extend deep enough into the gravitational potential of the BH (since the disruption rate is
dominated by stars close to the BH’s radius of influence) (e.g., Zhao et al. 2002; Perets et al.
2007), perhaps particularly relevant for the gas-rich nuclei of pseudobulges. Dark matter
in galactic nuclei likely contributes orders of magnitude too little mass to affect the system
dynamically (e.g., Vasiliev & Zelnikov 2008). Interestingly, though, the same dynamical

14Less massive stars, which are more compact than solar-type stars, are swallowed hole for sufficiently
massive BHs, since rT may lie inside the BH’s event horizon.

15Considering a full distribution of stellar masses, the relaxation time is roughly constant for different
stellar masses, because it depends only on the background distribution of stars. The size of the loss cone
affects the event rate only weakly because the rate is dominated by the boundary between the diffusive and
full loss cone regimes, and the size of the loss cone enters only logarithmically into the rate in the diffusive
regime.

16Giant stars are of particular interest nevertheless because they can be disrupted by BHs more massive
than 108M⊙.
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processes that cause stars to be consumed by the BH can also lead to the accretion of dark
matter onto the BH (e.g., Read & Gilmore 2003).

Other important assumptions in our derivations are that velocity deflections caused by
gravitational scatterings are small compared with the stellar velocity, and that the grav-
itational scatterings are randomly distributed in direction rather than coherent. Large-
amplitude scattering events may significantly raise the rate of stars reaching rp ≪ rT in the
diffusive regime. At radii r ≪ rh, the assumption of incoherent scattering events is invalid
because stars remain on almost-Keplerian orbits for many [∼ (MBH/m)(nr3)−1/2] orbital
periods before precessing significantly; therefore, stars have much longer opportunities to
torque each other. This process is called resonant relaxation (Rauch & Tremaine 1996).
Both large-amplitude scattering events and resonant relaxation have the potential to affect
our results in the diffusive regime, perhaps leading to a less sharp peak at rp ∼ rT since stars
can diffuse further into the disruption region than we have assumed. We will investigate
these effects in future work.

We plan to calculate tidal disruption rates as a function of pericenter distance for a wide
variety of observed and model galaxies, with two connected aims: (1) To refine predictions of
tidal disruption detection rates, which should help interpret individual candidate detections
and help guide observational survey and follow-up strategies, and (2) To identify robust dif-
ferences between tidal disruption rate profiles for different nuclear profiles, which should help
us use future observed detection rates to draw statistical conclusions about the dynamics
of different galactic nuclei; for example, if only highly asymmetrical galactic nuclei can give
rise to large dγ/d ln rp at rp ∼ 0.1rT, and most observed TDE candidates are found to have
rp ∼ 0.1rT, then we may infer that many galaxies likely have highly asymmetrical nuclei.
Future work will thus include: (1) fully exploring results for spherically symmetric galaxy
models, (2) extending our model to axisymmetric and then triaxial and asymmetrical galaxy
models, and (3) exploring other dynamical effects, as described in the previous paragraph.
We plan to calculate dγ/d ln rp for all of the galaxies presented in Faber et al. (1997) and
compare the overall disruption rates γ with those calculated by Wang & Merritt (2004). We
will then calculate dγ/d ln rp for a selection of the other ∼ dozen galaxies that have dynam-
ically measured BH masses and photometry that resolves within ∼ rh of the BH (for which
γ has not yet been calculated); Gültekin et al. (2009) summarize results for many of these
galaxies. We will then extend our dγ/d ln rp calculation to axisymmetric galaxies, drawing
on the formalism presented in Magorrian & Tremaine (1999) for calculating γ in axisym-
metric galaxies—applicable to the pure-disk galaxies with measured BH masses presented in
Kormendy et al. (2010) whose formation mechanism is unclear—and triaxial galaxies, draw-
ing on Merritt & Poon (2004). Triaxial and asymmetrical potentials can set stars on chaotic
orbits, which may enter the disruption region without requiring gravitational scattering at
all, and therefore may give rise to a significantly different shape for dγ/d ln rp. Of particu-
lar interest are pseudobulges, which have more flattened shapes and ordered velocities than
classical bulges and often host a BH of mass MBH ∼ 105 − 107M⊙—and which often exhibit
asymmetrical structure close to the BH, such as a nuclear bar or spiral. The Galactic Center
(a pseudobulge) contains richly complicated structure, including one or two disks of young
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massive stars on eccentric orbits, and a population of late-type giant stars distributed fairly
isotropically (e.g., Genzel et al. 2010). Furthermore, the galaxies M31 and NGC 4486B (not
pseudobulges) also each contain an eccentric disk of stars in the nucleus that may be a ubiq-
uitous signature of past merging BHs (Hopkins & Quataert 2010). Finally, we will predict
dγ/d ln rp for other types of disruptions: binary star systems and giant stars, both of which
disrupt much further outside rS than solar-type stars, and therefore offer a richer probe of
galactic structure thanks to a wider range of possible pericenter distances. Along similar
lines, it will be significant to calculate the rate of partial stellar disruptions at rp ∼ few× rT
alongside current research to predict the observational appearance of such events.

In this way, our derivations and results presented here for dγ/d ln rp form important
groundwork for future stellar dynamical calculations for a variety of types of galactic nuclei.
In the not-too-distant future, we can look forward to the time when observational studies
of TDEs in transient surveys and theoretical dynamics calculations can converge to improve
our understanding of the formation and co-evolution of BHs and their surrounding stellar
nuclei.
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Chapter 5

Dust Dynamics, Surface Brightness
Profiles, and Thermal Spectra of
Debris Disks: The Case of AU Mic

Abstract

AU Microscopii is a 12 Myr old M dwarf that harbors an optically thin, edge-on disk
of dust. The scattered light surface brightness falls with projected distance b from the star
as b−α; within b = 43 AU, α ≈ 1–2, while outside 43 AU, α ≈ 4–5. We devise a theory
to explain this profile. At a stellocentric distance r = rBR = 43 AU, we posit a ring of
parent bodies on circular orbits: the “birth ring,” wherein micron-sized grains are born from
the collisional attrition of parent bodies. The “inner disk” at r < rBR contains grains that
migrate inward by corpuscular and Poynting-Robertson (CPR) drag. The “outer disk” at
r > rBR comprises grains just large enough to remain bound to the star, on orbits rendered
highly eccentric by stellar wind and radiation pressure. How the vertical optical depth τ⊥
scales with r depends on the fraction of grains that migrate inward by CPR drag without
suffering a collision. If this fraction is large, the inner disk and birth ring share the same
optical depth, and τ⊥ ∝ r−5/2 in the outer disk. By contrast, under collision-dominated
conditions, the inner disk is empty, and τ⊥ ∝ r−3/2 outside. These scaling relations, which
we derive analytically and confirm numerically, are robust against uncertainties in the grain
size distribution. By simultaneously modeling the surface brightness and thermal spectrum,
we break model degeneracies to establish that the AU Mic system is collision-dominated,
and that its narrow birth ring contains a lunar mass of decimeter-sized bodies. The inner
disk is devoid of micron-sized grains; the surface brightness at b ∼< 43 AU arises from light
forward scattered by the birth ring. Inside b = 43 AU, the disk’s V − H color should not
vary with b; outside, the disk must become bluer as ever smaller grains are probed.
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5.1 Introduction

“Debris disks” surrounding young stars are composed of optically thin dust (see the
reviews by Artymowicz 2000; Lagrange, Backman, & Artymowicz 2000; Zuckerman 2001).
Most debris disks are inferred to exist from measurements of infrared excesses (e.g., Aumann
et al. 1984; Habing et al. 2001; Zuckerman & Song 2004). A few disks are close enough to
resolve in images, either in scattered starlight (e.g., Smith & Terrile 1984; Schneider et
al. 1999; Kalas, Graham, & Clampin 2005) or in thermal emission (e.g., Telesco et al. 2000;
Greaves et al. 2004).

Is the observed dust primordial—the remains of an optically thick, gas-rich disk from
a previous Herbig Ae or T Tauri phase? Or is it maintained in equilibrium—continuously
removed by processes such as Poynting-Robertson drag and replenished by the comminution
of larger, colliding parent bodies? A third possibility is that the observed dust represents
the transient aftermath of recent cataclysmic events. Dust might be freshly generated,
unequilibrated debris from the catastrophic destruction of large planetesimals (Su et al. 2005;
Song et al. 2005).

The debris disk encircling the young M dwarf AU Microscopii is a promising place
to investigate these questions. It is well resolved in scattered light from optical to near-
infrared wavelengths (Kalas, Liu, & Matthews 2004; Krist et al. 2005, hereafter K05; Liu
2004; Metchev et al. 2005). Of central relevance to our study is the disk’s surface brightness
profile. Within a projected distance b from the star of 43 AU, the surface brightness SB falls
approximately as b−1.8 (K05). We refer to this region as the “inner disk.” Outside 43 AU,
in the “outer disk,” the slope of the profile changes dramatically: SB ∝ b−4.7 (K05). This
break is observed independently by other researchers (Liu 2004; Metchev et al. 2005). The
shape of the profile is all the more significant because it resembles that of the debris disk
surrounding β Pictoris (Kalas & Jewitt 1995; Liu 2004), and of the recently discovered disk
encompassing HD 139664 (Kalas et al. 2006). AU Mic’s disk is also detected in unresolved
thermal emission (Liu et al. 2004; Chen et al. 2005). The disk’s infrared spectrum peaks at
a wavelength of ∼100µm and exhibits no excess at 12µm; this behavior suggests that the
disk contains an inner hole (Liu et al. 2004).

Here we offer a theory that explains these observations quantitatively. The reason
why the surface brightness profile breaks at 43 AU is that a narrow ring of parent bodies,
analogous to the solar system’s Kuiper Belt, orbits the star at a stellocentric radius r =
rBR = 43 AU. The subscript “BR” refers to our term for the belt of parent bodies, the “birth
ring,” wherein micron-sized dust grains are born through collisions of larger planetesimals.
Grain creation is balanced in steady state by destructive grain-grain collisions and removal by
corpuscular and Poynting-Robertson (CPR) drag.1 Corpuscular drag exerted by the young M
dwarf’s wind is probably at least a few times more effective at removing dust than Poynting-
Robertson drag in the AU Mic system, a possibility first pointed out by Plavchan, Jura, &

1Our analysis ignores any gas that might still be orbiting the star. Only upper limits are observed for
the column of gas towards the star: NH2

< 1.7 × 1019 cm−2 (Roberge et al. 2005).
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Lipscy (2005, hereafter PJL05). The outer disk comprises grains that are only tenuously
bound, moving on orbits rendered highly eccentric by stellar wind and radiation forces (e.g.,
Lecavelier des Etangs et al. 1996; Augereau et al. 2001). These barely bound grains dominate
scattering of starlight in the outer disk. By contrast, unbound grains escape the system too
quickly for their steady-state population to contribute appreciably to the surface brightness.
The inner disk is populated by grains that migrate inward by CPR drag quickly enough to
evade collisional destruction. In CPR-dominated (what we refer to as “type A”) disks, a
large fraction of grains meets this condition, unlike in collision-dominated (“type B”) disks.
Similar classifications were put forward by Wyatt (2005) and Meyer et al. (2007) in their
considerations of disks composed of single-sized grains. We calculate simultaneously the
steady-state spatial and size distributions of dust particles, and derive how the outer disk’s
optical depth scales with radius for type A and type B disks. Our analysis accounts for
destructive grain-grain collisions and the detailed dynamics of CPR drag, which reduces
not only the orbital semi-major axes of grains but also their orbital eccentricities (Wyatt
& Whipple 1950). The reduction of orbital eccentricity is not often considered but is a key
component of our theory. Whether type A or type B conditions apply to AU Mic’s disk is
determined in part by the strength of the stellar wind, which according to previous works is
uncertain by orders of magnitude. In this work, we place a novel constraint on the stellar
mass loss rate and decide the appropriate disk type by comparing our theoretical models to
the observations.

In §5.2, we lay down basic parameters of the AU Mic system: stellar properties, disk
optical depths, timescales for grain-grain collisions, and how the star’s wind and radiation
alter orbits of dust grains. In §5.3, we employ order-of-magnitude physics and analytic
scalings to understand how the interplay between collisions, blow-out, and drag shapes the
observed surface brightness profiles of the inner and outer disks. There we derive the steady-
state grain size distribution as a function of position, including the maximum sizes and total
mass of parent bodies. In §5.4, we verify and extend our analytic results with a Monte Carlo
simulation of the disk’s surface brightness, color, and spectral energy distribution (SED).
Models are compared directly with observations. Finally, in §5.5, we summarize our theory,
place it in context with our understanding of how planets form, and point out directions for
future research.

5.2 Preliminaries

We establish orders of magnitude characterizing the AU Mic system. Stellar properties—
including the stellar mass-loss rate that figures prominently throughout our analysis—are
reviewed in §5.2.1. Collision times between grains and relative collision velocities are esti-
mated in §5.2.2. Grain dynamics relevant to our theory include blow-out by stellar wind and
radiation pressure, as discussed in §5.2.3, and orbital decay by corpuscular and Poynting-
Robertson drag, as treated in §5.2.4.
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5.2.1 Stellar Properties

AU Microscopii is a spectral type dM1e star located a distance d = 9.9 pc from Earth. It
has mass M∗ = 0.5M⊙, radius R∗ = 0.93R⊙, effective temperature T∗ = 3500 K, luminosity
L∗ = 0.1L⊙, V magnitude 8.8, and H magnitude 4.8 (Kalas et al. 2004; Metchev et al. 2005;
and references therein). The star’s age is estimated to be tage = 12+8

−4 Myr. AU Mic’s X-ray
luminosity is a prodigious LX = 5.5×1029 erg/s = 3×10−3L∗ (Hünsch et al. 1999). The star
flares at both X-ray and ultraviolet wavelengths (Magee et al. 2003). The stellar rotation
period is 4.87 days (Torres & Ferraz Mello 1973).

How strong is AU Mic’s stellar wind? The wind velocity vwind is likely of order the
stellar escape velocity vesc =

√
2GM∗/R∗ ≈ 450 km/s. Plavchan et al. (2005) discuss what

is known about mass loss rates Ṁ∗ from M dwarfs, citing values ranging from 10 to as high
as 104 times the solar mass-loss rate of Ṁ⊙ = 2 × 10−14M⊙ yr−1. While the star’s youth,
flaring activity, and fast rotation suggest that a powerful wind emanates from AU Mic, the
star’s X-ray emission indicates otherwise. Wood et al. (2002) and Wood et al. (2005) study
the relationship between X-ray luminosity and stellar mass loss rate by measuring Ṁ∗ from
a handful of M, K, and G dwarfs having ages ∼> 500 Myr. They establish that the mass flux
at the stellar surface FM ≡ Ṁ∗/(4πR

2
∗) increases with X-ray surface flux FX ≡ LX/(4πR

2
∗)

for FX < 8 × 105 erg cm−2 s−1 ≡ FX,crit. The mass flux FM saturates at a maximum of
102FM,⊙. For FX > FX,crit, FM drops to ∼< 10FM,⊙, perhaps because the strong magnetic
fields of such extraordinarily X-ray-active stars inhibit stellar winds (see also Schrijver &
Title 2001; Strassmeier 2002). AU Mic’s X-ray flux FX ∼ 1×107 erg cm−2 s−1 exceeds FX,crit,
implying at face value a relatively low mass-loss rate. Nevertheless, it is unclear whether the
measurements of Wood et al. (2005) apply to this highly variable, pre-main-sequence star.
To accommodate the uncertainty in AU Mic’s mass-loss rate, we consider in our analysis
a wide range of values, Ṁ∗ ∈ (1, 10, 102, 103)Ṁ⊙. We ultimately find in §5.4 that detailed
comparison between theoretical models of the disk and observations can, in fact, constrain
Ṁ∗.

5.2.2 Collision Times

Consider for the moment a disk of single-sized particles on low-eccentricity orbits. Where
the vertical, geometric optical depth equals τ⊥, the mean free time between collisions is

tc ∼
1

Ωτ⊥
, (5.1)

where Ω is the local orbital angular frequency. This expression may be derived by recognizing
that every ∼1/Ω orbital period, a typical particle traverses an optical depth of ∼τ⊥ over the
course of its vertical epicycle. For τ⊥ < 1, the particle collides with probability τ⊥; for
τ⊥ > 1, it undergoes τ⊥ collisions per orbit.

Detailed fits to observations in §5.4 reveal that the total vertical, geometric optical
depth in the birth ring at r = rBR = 43 AU equals τ⊥,BR ≡ τ⊥(rBR) = 4× 10−3. We define a
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fiducial collision time

tc,BR ≡ 1

Ωτ⊥,BR
∼ 2 × 104

(
4 × 10−3

τ⊥,BR

)
yr . (5.2)

The collision lifetime tcol(s) is the time a grain of radius s survives before it is destroyed
by colliding with another grain. Unlike the case for tc, in calculating tcol we do not assume
that particles have a single size. For a given collisional specific energy Q∗ (ergs g−1 Greenberg
et al. 1978; Fujiwara et al. 1989), targets of size s suffer catastrophic dispersal by smaller
projectiles of minimum size

sproj ∼
(

2Q∗

v2
rel

)1/3

s

∼ 0.6

(
Q∗

107 erg g−1

)1/3(
100 m s−1

vrel

)2/3

s , (5.3)

which is comparable to s. By catastrophic dispersal we mean that the mass of the largest
postcollision fragment is no greater than half the mass of the original target and that collision
fragments disperse without gravitational reassembly. We have normalized the relative speed
vrel to the vertical velocity dispersion of visible grains at r = rBR = 43 AU,

Ω
hBR

2
∼ 100 m s−1 , (5.4)

where the full vertical disk height hBR ≈ 2.75 AU (K05). We have normalized Q∗ to a
value appropriate for centimeter-sized silicate targets (Greenberg et al. 1978; Fujiwara et al.
1989). Ice targets of similar size have specific energies that are 2 orders of magnitude smaller
(Greenberg et al. 1978). On the other hand, it is possible that Q∗ increases with decreasing
size (Fujiwara et al. 1989; Housen & Holsapple 1990), perhaps as fast as Q∗ ∝ s−0.5. If
so, grains having sizes s ∼ 1µm would be ∼100 times stronger than their centimeter-sized
counterparts, thereby possibly cancelling the reduction in strength due to an icy composition.
To keep the telling of our story as simple as possible, we adhere to a nominal, size-independent
value of Q∗ = 107 erg g−1. The essential point is that collisions between comparably sized
grains in the AU Mic disk are destructive.2

5.2.3 Blow-out by Stellar Wind and Radiation Pressure

Grains of certain sizes cannot occupy orbits bound to the star because of stellar wind
and radiation (SWR) forces. The ratio of repulsive to gravitational forces felt by a grain
equals

2Commercial sandblasting machines accelerate abrasive particles up to speeds of 100 m s−1.
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β =
Frad + Fwind

Fgrav
(5.5)

=
3

16π

L∗PSWR

GM∗cρs
, (5.6)

where the dimensionless factor

PSWR ≡ Qrad +Qwind
Ṁ∗vwindc

L∗
(5.7)

measures the extent to which the ram pressure exerted by the (assumed radial) wind domi-
nates radiation pressure.3 Here s and ρ ∼ 2 g cm−3 are, respectively, the radius and internal
density of a particle, G is the gravitational constant, c is the speed of light, Qrad ∼< 2 is the
cross section that the grain presents to radiation pressure in units of the geometric cross
section (Burns et al. 1979), and Qwind ∼ 1 is the analogous dimensionless cross section the
grain presents to wind pressure.4 For Qrad ∼ 2 (appropriate for the s > λ∗/2π geometric
optics limit where λ∗ ≈ 1µm is the wavelength at which the bulk of the stellar luminosity
is emitted), wind pressure is negligible compared to radiation pressure except for the largest
value of Ṁ∗ considered. Table 5.1 lists possible values for PSWR.

Grains are continually created from colliding parent bodies. Throughout this paper, we
assume that parent bodies move on nearly circular (β ≪ 1) orbits, and that the velocities
with which grains are ejected from parent bodies are small compared to parent body orbital
velocities. These assumptions imply that grains having β ≥ 1/2 are “blown out” by SWR
pressure. For constant PSWR with s, the condition β ≥ 1/2 is equivalent to

s ≤ sblow =
3

8π

L∗PSWR

GM∗cρ
∼ 0.2

(
PSWR

2

)
µm . (5.8)

Grains for which s < sblow are unbound and move on hyperbolic escape trajectories. Grains
for which s = sblow move on parabolic escape trajectories. A grain for which s−sblow ≪ sblow

moves initially on a highly elliptical orbit whose periastron distance rperi,0 equals the orbital
radius of the parent body. It is these “barely bound” grains that contribute significantly to
the scattered light observed in the outer disk. The initial eccentricity e0 and semi-major axis
a0 of a barely bound grain upon its birth are uniquely related to grain size s via the force
ratio β:

e0 =
β

1 − β
, (5.9a)

3The assumption of a purely radial wind is valid insofar as the azimuthal velocity of the wind vwind,φ is
less than Ωr. By modelling the stellar magnetic field as that of a rotating (split) monopole (Weber & Davis
1967; Parker 1964), we estimate that vwind,φ/Ωr ∼< 1/30.

4Our Qrad equals Qpr from Burns et al. (1979). It should not be confused with Qscat, the usual scattering
efficiency.
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a0 =
rperi,0

1 − e0
, (5.9b)

β =
1

2

(sblow

s

)
, (5.9c)

where the last relation assumes that PSWR is independent of s.
A consequence of equations (5.1) and (5.9) is that grains on highly eccentric orbits

have prolonged collision times. Provided that the optical depth traversed by a grain is
concentrated near periastron at r = rperi, the optical depth τ⊥ in (5.1) should be evaluated
at r = rperi. However, Ω should not necessarily be evaluated for a semi-major axis equal to
rperi. Instead, from (5.9b),

Ω(e) =

(
GM∗
r3
peri

)1/2

(1 − e)3/2 . (5.10)

A related useful quantity is the fraction of time a grain on a fixed orbit spends at radii
between rperi and rperi + ∆r:

f(e) ∼
(

∆r

rperi

)1/2
(1 − e)3/2

(1 + e)1/2
, (5.11)

valid in the limit of ∆r ≪ rperi and large e.

5.2.4 Corpuscular and Poynting-Robertson Drag

Under the drag due to corpuscular and Poynting-Robertson (CPR) forces (see, e.g.,
Burns et al. 1979), dust grain orbits having periastron distances rperi and arbitrary eccen-
tricities e collapse to a point in a time

tCPR =
4πc2ρ

3L∗PCPR
E(e)r2

peris , (5.12)

where the dimensionless factor

PCPR ≡ Qrad +Qwind
Ṁ∗c

2

L∗
(5.13)

quantifies the relative importance of wind-driven versus radiation-driven drag. For the values
of Ṁ∗ we consider, the stellar wind is at least as important as the stellar radiation: PCPR > 2;
see Table 5.1. The dimensionless factor

E(e) =
8

5

(1 + e)2

e8/5

∫ e

0

x3/5 dx

(1 − x2)3/2
(5.14)

governs the decay of orbital eccentricity (Wyatt & Whipple 1950). A related useful result
from Wyatt & Whipple (1950) is that
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Figure 5.1: CPR drag time as a function of grain size s/sblow, for Ṁ∗/Ṁ⊙ = {1, 10, 102, 103}.
To highlight the behavior as s→ sblow, the horizontal axis is scaled as log(s/sblow − 1). The
fiducial collision time tcol = tc,BR(s/sblow)1/2(1 − e0)

−3/2 is also indicated as a dashed line
(see §5.3.1). The size sbreak corresponds approximately to where this collision time and the
CPR drag time are equal. Timescales for removal by CPR drag and collisions can be much
shorter than the age of the system, tage.

de

dt
=

(
15L∗PCPR

32πc2ρr2
peri,0

)
1

s

e
8/5
0

(1 + e0)2

(1 − e2)3/2

e3/5
. (5.15)

The initial effect of CPR drag on a highly eccentric orbit is to reduce the apastron
distance while keeping the periastron distance and eccentricity nearly fixed (see Figure 1 of
Wyatt & Whipple 1950). For highly eccentric orbits, the time spent during this apastron
reduction phase is much longer than the usual CPR-timescales that are cited for e≪ 1. As
e approaches 1, E diverges as

E(e ≈ 1) ∝ (1 − e)−1/2 . (5.16)

Once CPR drag reduces the eccentricity to values less than a few percent, the entire orbit
collapses to a point in a time given by tCPR with E ≈ 1.

Table 5.1 provides sample values of tCPR(e = e0) for three choices of s/sblow =
{1.1, 1.5, 15}, while Figure 5.1 depicts how tCPR(e = e0) varies with s, all for rperi = rBR =
43 AU.
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5.3 Theory

We assemble the ingredients laid out in §5.2 into a theory for the distribution of grain
sizes (§5.3.1) and the profile of optical depth (§5.3.2) in the AU Mic disk. Included in our
analysis are estimates of the sizes and total mass of the largest parent bodies undergoing a
collisional cascade. According to our theory, all of the current optical to near-IR observations
probe grains whose population is maintained in steady state and that are still bound—
most only barely—to the central star. Contributions to scattered light from unbound and
unequilibrated populations of grains are assessed in §5.3.3 and §5.3.4, respectively.

5.3.1 Equilibrium Size Distribution

We posit an annulus of parent bodies extending from r = rBR−∆r/2 to r = rBR+∆r/2—
the “birth ring”—where grains are born from the collisional attrition of larger parent bodies.
These grains travel on orbits whose eccentricities and semi-major axes are continuously
modified by CPR drag. Grains are removed from the birth ring either by CPR drag or by
collisions with other grains. The goal of this section is to determine the equilibrium size
distribution dN/ds as a function of r, where dN is the vertical column density of grains
having sizes between s and s+ ds.

The size distribution of dust in debris disks is commonly assumed to be proportional
to s−qce = s−7/2. This scaling is appropriate for grains on low-eccentricity orbits whose
collisional strengths are independent of size, whose spatial distribution is homogeneous,
and whose numbers are maintained in a purely collisional equilibrium, as first derived by
Dohnanyi (1969; see also O’Brien & Greenberg 2003; Pan & Sari 2005). In such equilibrium
cascades, as much mass is ground into every size bin as is ground out. One presumption
behind the cascade is that collision times are short enough that the system has relaxed into
collisional equilibrium. However, Figure 5.1 shows that tCPR and tcol are of the same order
for some grain sizes. Visible dust may be removed too quickly by CPR drag to participate
in a purely collisional, equilibrium cascade.

Instead of making the usual assumption that the size distribution is proportional to
s−7/2 for all s, we construct the following model. We define sbreak as the radius of the grain
for which

tcol(sbreak) = tCPR(sbreak) (5.17)

at r = rBR. We expect that grains of a given size can participate in a standard collisional
cascade if they have had enough time to collide destructively about once (for numerical
estimates of the time required for a cascade to equilibrate see, e.g., Campo Bagatin et
al. 1994 and references therein). For s > sbreak, we expect tCPR > tcol and a Dohnanyi-like
size distribution (modified appropriately for grains on highly eccentric orbits, i.e., for spatial
inhomogeneity). For s < sbreak, we will see that tCPR < tcol. The two regimes are treated
in §5.3.1 and §5.3.1, respectively. We discuss which grain sizes carry the bulk of the optical
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depth and how collision times vary with grain size in §5.3.1. These considerations are applied
to computing sbreak in §5.3.1. The sizes of the largest parent bodies are estimated in §5.3.1.

Readers interested only in our results for the grain size distribution can examine equa-
tions (5.18), (5.21), (5.23), (5.25), (5.26), (5.27), (5.37), and (5.39), and can skip ahead to
§5.3.2 where grain dynamics are analyzed.

Equilibrium Size Distribution for s < sbreak

First we define

dN
ds

≡
∫ ∞

0

dN

ds
2πr dr (5.18)

as the size distribution of grains integrated over the entire disk.
Fresh debris having s < sbreak continually sprays from colliding bodies having s > sbreak.

We assume that the initial or “injection” spectrum of fresh debris follows a power law; the
rate at which grains having sizes between s and s+ds are injected into the entire disk obeys

dṄ
ds

∣∣∣∣∣
I

= Cs−qinject , (5.19)

where C is a constant and the subscript “I” denotes “injection.” Theoretical considerations
of mass conservation suggest qinject = 3–4 (Greenberg et al. 1978), while impact experiments
using centimeter-sized targets suggest values of qinject ≈ 3.5–4 (Fujiwara et al. 1989, see their
Figure 3).

To solve for the steady-state size distribution, we equate the injection rate dṄ/ds|I to
the removal rate dṄ /ds|R. We show in §5.3.1 that removal is dominated by CPR drag onto
the central star: tCPR/tcol < 1 for s < sbreak. Then grains having s < sbreak drag inward from
the birth ring largely unimpeded by collisions, and

dṄ
ds

∣∣∣∣∣
R

=
1

tCPR(s)

dN
ds

. (5.20)

Equating the injection and removal rates yields

dN
ds

∼ Cs−qinjecttCPR(s, rperi = rBR) for s < sbreak . (5.21)

The column density dN/ds local to the birth ring is proportional to dN /ds times the
fraction of time spent inside the birth ring:

dN

ds

∣∣∣∣
BR

∝ dN
ds

∆treside|CPR

tCPR

(5.22)

∝ s−qinject ∆treside|CPR for s < sbreak , (5.23)
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where ∆treside|CPR is the total time a grain spends inside the birth ring over its CPR-limited
lifetime. Figure 5.2 plots ∆treside|CPR as a function of s for the parameters Ṁ∗/Ṁ⊙ = 1,
∆r/rBR = 0.1, and rperi,0 = rBR. We compute this quantity by explicitly tracking the
position of a grain on a decaying orbit. Evidently, ∆treside|CPR scales approximately linearly
with s for all s. We can understand this linear scaling by examining two extremes. For
s ≫ sblow, orbits are nearly circular always, and ∆treside|CPR is merely the time for the
grain’s orbital radius to decay by ∆r/2. This time is proportional to s since E ≈ 1 (see
equation [5.12]). For s − sblow ≪ sblow, eccentricities e0 are large. Over most of a grain’s
lifetime, the grain’s periastron lies inside the birth ring while its apastron lies well outside.
Evaluated over intervals shorter than tCPR, the fraction of time the grain spends inside the
birth ring is given by f(e) with rperi set equal to rBR. Applying (5.11) and (5.15), we have

∆treside|CPR ∼
∫ 0

e0

f(e)
dt

de
de

∝ s

(
∆r

rBR

)1/2 ∫ e0

0

(
1 + e0
1 + e

)2(
e

e0

)3/5
de

e0
∝ s , (5.24)

Figure 5.2: The length of time ∆treside|CPR a grain spends within the birth ring (at radii
between rBR − ∆r/2 and rBR + ∆r/2) as a function of grain size, for grains whose lifetimes
are limited by CPR drag. We take rperi,0 = rBR = 43 AU, ∆r/rBR = 0.1, and Ṁ∗ = 1Ṁ⊙.
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where the integral in the second row is nearly constant with s.

Equilibrium Size Distribution for s > sbreak

For s > sbreak, a collisional cascade is established before CPR drag has time to remove
grains. Collisions occur primarily in the birth ring since the vertical optical depth is greatest
there. In the birth ring, the usual collisional equilibrium implies

dN

ds

∣∣∣∣
BR

∝ s−qce = s−7/2 for s > sbreak . (5.25)

By the same logic that led to (5.23),

dN
ds

∝ dN

ds

∣∣∣∣
BR

tcol
∆treside|col

for s > sbreak , (5.26)

where we have assumed (and show in §5.3.1) that tcol < tCPR is the appropriate lifetime
for grains having s > sbreak. By analogy to ∆treside|CPR, ∆treside|col is the total time a grain
spends within the birth ring over a collision-limited lifetime.

In the special case of large initial eccentricity e0,

dN
ds

∝ dN

ds

∣∣∣∣
BR

1

f(e0)

∝ dN

ds

∣∣∣∣
BR

(1 − e0)
−3/2 , s > sbreak, e0 ≈ 1 , (5.27)

where we have used the fact that grains having large e0 and whose lifetimes are limited by
tcol < tCPR have their periastra within the birth ring and their eccentricities close to their
birth values for nearly all their lives.

Optical Depth and Collision Times in the Birth Ring

We estimate the sizes of grains that carry the lion’s share of the optical depth in the
birth ring. For s > sbreak, the column density in the birth ring obeys dN/ds ∝ s−7/2. The
vertical optical depth contributed by such grains equals

τ⊥(s > sbreak) ∼ s3dN

ds
∝ s−1/2 ; (5.28)

therefore among grains of size s > sbreak, the optical depth is dominated by grains of size
sbreak. What about the regime s < sbreak? From (5.23),

τ⊥(s < sbreak) ∼ s3dN

ds
∝ s3−qinject ∆treside|CPR . (5.29)
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For qinject ≈ 3.5–4, this quantity either grows or is approximately constant with s. We
conclude that grains of size s ∼ sbreak dominate the total geometric optical depth in the
birth ring:

τ⊥(sbreak) ∼ τ⊥,BR , (5.30)

which in combination with (5.2), (5.3) and (5.10) implies that

tcol(sbreak) ∼ tc,BR(1 − e0,break)
−3/2 , (5.31)

where e0,break ≡ e0(sbreak).
We exploit (5.2), (5.10), and (5.28)–(5.31) to estimate tcol for arbitrary s. For s > sbreak,

tcol(s > sbreak) ∼ tc,BR

(
s

sbreak

)1/2

(1 − e0)
−3/2 , (5.32)

where we have set e = e0 since most of the grain’s lifetime is spent with that eccentricity
(see §5.2.4). Since in the large-s limit tcol ∝ s1/2 while tCPR ∝ s, the assumption made in
§5.3.1 that grains are removed principally by collisions for s > sbreak is asymptotically valid.
In Figure 5.1, we plot (5.32) as a fiducial size-dependent collision time, replacing sbreak by
sblow to render the curve independent of stellar mass-loss rate. This replacement, performed
solely for Figure 5.1, accrues only a slight error since we find in §5.3.1 that sbreak and sblow

are nearly the same.
Next we estimate tcol(s < sbreak) and show that tCPR/tcol < 1 for s < sbreak, as was

assumed in §5.3.1. Equation (5.30) implies that grains having s < sbreak are predominantly
destroyed by sbreak-sized grains. Then5

tcol(s < sbreak) ∼ 1

Ω(s)τ⊥(sbreak)

∼ tcol(sbreak)

(
1 − e0,break

1 − e0

)3/2

. (5.33)

For convenience, we construct the approximate fitting formula for tCPR from (5.12), (5.16),
and (5.17):

tCPR(s < sbreak) ∼ tcol(sbreak)

(
s

sbreak

)(
1 − e0,break

1 − e0

)1/2

. (5.34)

Combining (5.33) and (5.34), we find that the ratio between CPR and collision lifetimes is

5Equation (5.33) overestimates tcol because it neglects the fact that grains on highly eccentric orbits
intercept an optical depth parallel to the disk in addition to τ⊥,BR. This neglect does not change our derived

scaling relations, but it will change certain normalizations, e.g., the threshold Ṁ∗ dividing CPR-dominated
from collision-dominated behavior. We are indebted to Y. Wu for pointing out this omission, which will need
to be corrected in future work.
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tCPR

tcol

∣∣∣∣
s<sbreak

∼
(

s

sbreak

)(
1 − e0

1 − e0,break

)
< 1 ; (5.35)

indeed this ratio vanishes as s approaches sblow. We have established that inequality (5.35)
holds at r = rBR, but in fact it holds for all r = rperi < rBR, since tCPR ∝ r2 while tcol ∝ r3/2.
Therefore our assumption that bound grains having s < sbreak are removed principally by
CPR drag is valid.

Calculating sbreak

Equate the collision time (5.32) to the CPR drag time (5.12),

(1 − e0,break)
−3/2tc,BR ∼ 4πc2ρr2

BR

3L∗PCPR

sbreakE(e0,break) , (5.36)

to find

sbreak ∼





1.002sblow = 0.2µm for Ṁ∗/Ṁ⊙ = 1

1.01sblow = 0.2µm for Ṁ∗/Ṁ⊙ = 10

1.1sblow = 0.3µm for Ṁ∗/Ṁ⊙ = 102

2.3sblow = 2µm for Ṁ∗/Ṁ⊙ = 103 .

(5.37)

Larger Parent Bodies

Bodies having s > sbreak participate in a collisional cascade in which the Dohnanyi-like
spectrum extends from sbreak up to a maximum size smax. By definition, smax characterizes
those grains whose collisional lifetimes equal the age of the AU Mic disk; by (5.32), this size
satisfies

tcol(smax) ∼ tc,BR

(
smax

sbreak

)1/2

= tage , (5.38)

where we have dropped the eccentricity-dependent factor since grains having s = smax ≫
sblow travel on essentially circular orbits. Then

smax ∼
(
tage
tc,BR

)2

sbreak ∼






10 cm for Ṁ∗/Ṁ⊙ = 1

10 cm for Ṁ∗/Ṁ⊙ = 10

20 cm for Ṁ∗/Ṁ⊙ = 102

100 cm for Ṁ∗/Ṁ⊙ = 103 .

(5.39)

Our model has no information on parent bodies having s > smax. While such bodies
likely exist, we do not know whether they are currently in a constructive (planet building)
or destructive (debris generating) phase of their evolution. It is not justified to extend the
size distribution to s > smax (e.g., to the kilometer size range) as is sometimes done.
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5.3.2 Physical Implications of Optical Depth Profiles

The birth ring divides the inner disk from the outer disk. In §5.3.2, we discuss the
vertical optical depth in the inner disk. In §5.3.2, we estimate the total disk mass. In §5.3.2,
we derive analytically how the vertical optical depth scales with radius in the outer disk.

Inner Disk (r < rBR): Competition Between Collisions and CPR-Driven Accretion

We showed in §5.3.1 that grains of size s ∼ sbreak make the largest contribution to the
total optical depth at r ≈ rBR. Bound grains having s < sbreak tend to be transported inwards
by CPR drag, unimpeded by interparticle collisions. Larger grains tend to be collisionally
destroyed before reaching the star. How does the vertical optical depth in the inner disk
compare with the optical depth in the birth ring?

We define CPR-dominated type A disks to be systems for which sbreak − sblow ≫ sblow.
In such disks, grains for which sblow < s < sbreak are numerous, contain a significant fraction
of the total optical depth in the birth ring, and tend to accrete onto the central star before
undergoing a collision. From continuity, the optical depth τ⊥(r < rBR) scales approximately
as r0: the inner disk is “filled in.”

By contrast, in collision-dominated type B disks, sbreak−sblow ≪ sblow. The region inside
the birth ring is virtually empty. The reasons for this are twofold. First, the range of sizes
of grains that drag in without being collisionally destroyed (sblow < s < sbreak) is narrow;
there are not many such grains. Second, because sbreak is so close to sblow, sbreak-sized grains
have large initial eccentricity. They spend most of their lifetimes having rperi ≈ rperi,0 and
only a small portion at r < rBR (see §5.2.4).

As judged from (5.37), if Ṁ∗/Ṁ⊙ ≫ 102, type A conditions would hold for the AU Mic
disk and the inner disk would be filled in. If Ṁ∗/Ṁ⊙ ≪ 102, then type B conditions would
hold and the inner disk would be empty. In §5.4, we not only check these assertions by
detailed Monte Carlo simulations of the AU Mic disk, but also decide which case is favored
by the observations.

Total Mass of the Disk

By (5.25), most of the mass of the disk is contributed by the largest grains (s = smax),
since s4dN/ds ∝ s1/2. We scale from the column density of sbreak-sized grains in the birth
ring,

τ⊥,BR ∼ πs3
break

dN

ds

∣∣∣∣
sbreak

(5.40)

to estimate the column density of smax-sized grains in the birth ring,

smax
dN

ds

∣∣∣∣
smax

∼ τ⊥,BR

πs3
break

(
smax

sbreak

)−7/2

smax . (5.41)
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The total number of such grains is their column density multiplied by the area of the birth
ring 2πrBR∆r, since smax-sized grains undergo a collision long before dragging inwards. Mul-
tiplying this total number by the mass of a single grain yields the mass of the disk,

Mmax ∼ 8π

3
ρrBRτ⊥,BRsbreak

(
smax

sbreak

)1/2

∆r (5.42)

∼ 0.01M⊕

(
∆r/rBR

0.1

)(
τ⊥,BR

4 × 10−3

)2(
sbreak

0.2µm

)
,

where we have used (5.2) and (5.39), and have normalized ∆r/rBR and τ⊥,BR to values that
yield good fits to observations, as described in §5.4. The steady comminution of ∼0.01M⊕ ∼
1 lunar mass’s worth of decimeter-sized bodies into micron-sized particles does not seem an
unduly heavy burden for the AU Mic system to bear. The solar system is thought to have
somehow shed ∼10M⊕ of rock and ice near ∼30 AU over an uncertain timescale of 10–1000
Myr during its “clean-up” phase (Goldreich et al. 2004).

Outer Disk (r > rBR): Barely Bound Grains

Grains created at r = rBR = 43 AU and having s− sblow ∼< sblow occupy initially highly
eccentric orbits having periastron distances rperi = rBR (see §5.2.3). Here we show that such
barely bound grains establish an outer disk at r ≫ rBR whose vertical optical depth scales
approximately as r−5/2 for CPR-dominated type A disks, and as r−3/2 for collision-dominated
type B disks. The contribution of unbound grains having s ≤ sblow relative to that of barely
bound grains is assessed in §5.3.3.

The outer disk comprises grains having sizes slightly greater than sblow since only those
grains have substantial eccentricities (see equations [5.9]). We refer to such barely bound
grains as having sizes s = sblow,+. The optical depth in the outer disk should scale approxi-
mately as their column density Nblow,+:

τ⊥ ∝ Nblow,+ ∝ 1

r

dNblow,+

dr
, (5.43)

where Nblow,+ is the total number of such grains in the entire disk (see [5.18]). By the chain
rule,

dNblow,+

dr
=
dNblow,+

de

de

dr
. (5.44)

We determine de/dr by making the approximation that at any instant, all grains are located
at their apastra:
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e =
rapo − rperi

rapo + rperi
(5.45)

≈ r − rBR

r + rBR
. (5.46)

This approximation should be good for the highly eccentric orbits of the outer disk. Differ-
entiating (5.46), we find for r ≫ rBR that

de

dr
≈ 2rBR

(r + rBR)2
∝ 1

r2
. (5.47)

The remaining factor in (5.44), dNblow,+/de, is determined by the size distribution of
barely bound grains. This differs between type A and type B disks, as seen below. The size
distribution determines the initial shape of the eccentricity distribution. The eccentricity
distribution is altered over time by CPR drag. Consider grains having identical initial

eccentricities e0 created at a constant rate
˙̃N . In steady state, CPR drag transports a

constant number of particles per time through eccentricity space, (dÑ /de)(de/dt) ∼ ˙̃N .
Hence,

dÑ
de

∝
(
de

dt

)−1

∝ e3/5

(1 − e2)3/2
for e ≤ e0 , (5.48)

where we have used (5.15). Equation (5.48) implies that nearly all barely bound grains have
e ≈ e0. Therefore the CPR-evolved eccentricity distribution closely resembles the initial
eccentricity distribution:

dN
de

∼ dN
de0

. (5.49)

Now we address the size distribution that determines dN /de0. For type A disks, for
which sbreak − sblow ≫ sblow, the size distribution for barely bound grains obeys dN /ds ∝
s−qinjecttCPR(s) (see [5.21]). For type B disks, sbreak − sblow ≪ sblow; outer-disk grains for
which sblow < s < sbreak are outnumbered by grains having s > sbreak. The relevant size
distribution in the outer regions of type B disks is therefore the one appropriate for s > sbreak:
dN /ds ∝ s−7/2(1 − e0)

−3/2 (see [5.27]).6 We evaluate these distributions for s = sblow,+:

dNblow,+

ds
∝ E(e0) ∝ (1 − e0)

−1/2 for Type A disks , (5.50a)

6This statement for type B disks is only valid not too far from the birth ring. As r → ∞, the only bound
grains that are present have sizes between sblow and sbreak. These obey τ⊥ ∝ r−5/2, just as they do for type
A disks. Therefore for type B disks, the τ⊥ ∝ r−3/2 scaling derived in the main text eventually gives way to
τ⊥ ∝ r−5/2.
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dNblow,+

ds
∝ (1 − e0)

−3/2 for Type B disks , (5.50b)

using equations (5.12) and (5.16). Now dN /de ∼ dN /de0 = (dN /ds)(ds/de0). Since
equations (5.9) imply that ds/de0 is approximately constant for e0 ≈ 1 (i.e., for s = sblow,+),
and since r ≈ rapo ≈ 2rBR/(1 − e0),

dNblow,+

de
∝ (1 − e0)

−1/2 ∝ r1/2 for Type A disks , (5.51a)

dNblow,+

de
∝ (1 − e0)

−3/2 ∝ r3/2 for Type B disks . (5.51b)

Combine (5.43), (5.44), (5.47), and (5.51) to obtain

τ⊥ ∝ r−5/2 for Type A disks , (5.52a)

τ⊥ ∝ r−3/2 for Type B disks . (5.52b)

Note that these scaling relations cannot be obtained by merely assuming that the disk-
integrated size distribution obeys the usual Dohnanyi relation dN /ds ∝ s−7/2. For type B
disks, for example, the key modification arises from the prolonging of the collisional lifetime
due to SWR pressure (i.e., the factor of (1 − e0)

−3/2 in equation [5.51b]). Moreover, the
scalings are robust against uncertainties in the size distribution; they do not depend explicitly
on either qce or qinject. We verify these scalings by numerical experiments in §5.4.

5.3.3 Unbound Grains (β ≥ 1/2)

The rapid expulsion of unbound (β ≥ 1/2) grains compared to the longer, CPR-driven
orbital decay of barely bound (1/2 − β ≪ 1) grains suggests that in steady state, unbound
grains contribute little to the surface brightness of the outer disk. On the other hand,
unbound grain velocities are nearly constant with radius—for β ≈ 1, velocities are approx-
imately equal to their (circular, Keplerian) birth velocities. As a result, the optical depth
of unbound grains should roughly obey τ⊥,ub ∝ r−1 and should eventually exceed, at some
“cross-over radius,” the optical depth of barely bound grains, which scales as τ⊥,bb ∝ r−5/2

in type A disks and as τ⊥,bb ∝ r−3/2 in type B disks (§5.3.2). In this section, we estimate
the value of the cross-over radius, rcross, and show in the case of AU Mic that it lies outside
the scope of current observations.

Consider a type A disk. In the birth ring, the optical depth of barely bound grains
exceeds that of unbound grains by

τ⊥,bb/τ⊥,ub ∼
∫ 2sblow

sblow

dN

ds
s2 ds

/∫ sblow

min(sV )

dN

ds
s2 ds . (5.53)

The smallest unbound grain of interest is the smallest grain for which Qscat ∼ 1: min(sV ) ≈
0.1µm. Since τ⊥,bb ∝ r−5/2 while τ⊥,ub ∝ r−1, the cross-over radius is
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rcross ∼
(
τ⊥,bb

τ⊥,ub

)2/3

rBR . (5.54)

By (5.23),

dN

ds

∣∣∣∣
sblow<s<2sblow

∼ Ds−qinject ∆treside|CPR (5.55)

in the birth ring, where D is a constant. By the same logic that led to (5.23),

dN

ds

∣∣∣∣
s<sblow

∼ Ds−qinjecttblow(s) (5.56)

in the birth ring, where

tblow(s) ∼
√
rBR∆r

ΩBRrBR

√
β
∼ 90

(
s

sblow

)1/2√
∆r

rBR

yr (5.57)

is the time for an unbound grain to leave the birth ring, and ΩBR =
√
GM∗/r

3
BR. Numerical

evaluation of the integrals in (5.53) reveals that

rcross ∼
{

900 AU for Ṁ∗/Ṁ⊙ = 102

200 AU for Ṁ∗/Ṁ⊙ = 103 .
(5.58)

If instead type B conditions apply for the AU Mic disk, then by considerations analogous to
those above, rcross ≫ 103 AU. We compare rcross with the maximum radius probed by current
observations—approximately 200 AU—to conclude that under type A conditions, unbound
grains contribute at most marginally to the currently observed surface brightness. Under
type B conditions, they contribute negligibly.

5.3.4 Unequilibrated Grains (sblow < s < sage)

Grains on extremely eccentric orbits may have collisional and CPR lifetimes that exceed
the age of the system. Can such grains, whose numbers cannot be assessed within our steady-
state model, contribute significantly to the observed surface brightness of the AU Mic disk?
Such “unequilibrated grains” have sizes between sblow and sage, where

tage = min[tCPR(sage), tcol(sage)] (5.59)

defines sage. We apply (5.12) and (5.33) to find that

sage

sblow
∼





1.006 for Ṁ∗/Ṁ⊙ = 1

1.002 for Ṁ∗/Ṁ⊙ = 10

1.00003 for Ṁ∗/Ṁ⊙ = 102

1.000002 for Ṁ∗/Ṁ⊙ = 103 .

(5.60)
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Unequilibrated grains occupy such a narrow range of sizes that they seem unlikely to con-
tribute much to the total optical depth. We ignore the unequilibrated population for the
remainder of this paper.

5.4 Monte Carlo Modelling

5.4.1 Procedure

To test several of the analytic results derived in §5.3, we model the AU Mic disk by
means of a Monte Carlo simulation. We calculate the geometric optical depth τ⊥(r), edge-
on surface brightness profile SB(b), and spectral flux density Fν and then we compare to
observations. The input parameters are the stellar mass-loss rate Ṁ∗, optical depth in the
center of the birth ring τ⊥,BR ≡ τ⊥(rBR), and width of the birth ring ∆r.

We lay down a number J of dust particles around the central star in a two-dimensional

Ṁ∗/Ṁ⊙

s
−7/2

Figure 5.3: Disk-integrated grain size distributions dN /ds. Dashed and triple-dot–dashed
curves correspond respectively to Ṁ∗/Ṁ⊙ = {10, 103}. A dotted line proportional to the
Dohnanyi scaling s−qce = s−7/2 is overplotted for reference. As s approaches sblow, the
population of grains rises significantly above what one would expect from a pure Dohnanyi
size spectrum. The deviations from a Dohnanyi spectrum, which differ under type A (e.g.,
Ṁ∗ = 103Ṁ⊙) and type B (e.g., Ṁ∗ = 10Ṁ⊙) conditions, are critical for understanding how
τ⊥ scales with r in the outer disk; see §5.3.2.
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plane. Each particle’s radial coordinate r and azimuth ψ are determined by the particle’s
semi-major axis a, eccentricity e, true anomaly φt, and longitude of periastron ω̃. Since our
model disk is axisymmetric, ω̃ is drawn as a uniform deviate from 0 to 2π.

The birth distributions of the remaining orbital elements depend on the distribution of
grain sizes s. Orbital elements subsequently evolve from their birth values by CPR drag.
The degree of evolution depends on the age of the grain (t) relative to the CPR lifetime
(tCPR; equation [5.12]) and collision lifetime (tcol; equations [5.32] and [5.33]). By definition,
sbreak is the grain size for which tCPR = tcol, and sage is the smallest grain size for which
min(tCPR, tcol) = tage. Only grains having s > sage can be removed over the age of the
system. For s > sbreak, collisions are more important than CPR drag in removing grains
(tcol < tCPR), so we draw the ages t of such particles as a uniform deviate from 0 to tcol(s).
Grains of size s < sbreak are removed by CPR drag (tCPR < tcol), so we draw t for these
grains as a uniform deviate from 0 to tCPR(s).

The evolved eccentricity e depends on the initial eccentricity e0 and the age of the
particle, implicitly according to

t

tCPR

= 1 − E(e)

E(e0)

(
1 + e0
1 + e

)2(
e

e0

)8/5

, (5.61)

where E(e) is defined by (5.14). The evolved semi-major axis is given by

a = a0

(
e

e0

)4/5(
1 − e20
1 − e2

)
(5.62)

(Wyatt & Whipple 1950), where the initial semi-major axis a0 is derived from the initial
periastron rperi,0, which we draw in the following way. In our model, all grains are born in
the birth ring, an annulus of width ∆r centered at rBR. At birth, a grain is located at the
periastron of its osculating orbit—an orbit rendered eccentric by SWR forces (§5.2.3). We
draw rperi,0 from a uniform distribution of width ∆r centered at rBR.

As mentioned, the birth distributions of eccentricities and semi-major axes depend on
the distribution of grain sizes s. Although particles in our simulation are born only in the
birth ring, their steady-state population may occupy all space, so we must draw s from the
global, disk-integrated size distribution dN /ds. We apply results from §5.3.1, made more
precise for our Monte Carlo calculation. From (5.21),

dN
ds

∝ s−qinjecttCPR(s, rperi = rBR) for sage < s < sbreak , (5.63)

and from (5.26),

dN
ds

∝ s−7/2 tcol
∆treside|col

for s > sbreak . (5.64)
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We approximate tcol using (5.32), and we evaluate ∆treside|col numerically. We take the
distribution described by (5.63) and (5.64) to be non-zero only for s > sage

7 and to be
continuous across sbreak; furthermore, we truncate the distribution at smax = 500sblow because
of computational limitations. We fix qinject = 4. The distribution dN /ds is plotted in Figure
5.3. For each s drawn, e0 and a0 are calculated using equations (5.9). For J = 109, one
Monte Carlo simulation takes 8 hr to complete on a 1.33 GHz PowerPC G4 processor.

That the distribution of mean anomalies φm is uniform determines the distribution of
true anomalies φt via Kepler’s equation (Murray & Dermott 2000):

φm = φe − e sinφe , (5.65)

where φe is the eccentric anomaly:

tan
φt

2
=

(
1 + e

1 − e

)1/2

tan
φe

2
. (5.66)

Knowing a, e and φt for each particle determines its radial distance from the star:

r =
a(1 − e2)

1 + e cosφt
. (5.67)

5.4.2 Products of the Monte Carlo Calculation

Having laid down J particles of various sizes, we output the following:

1. The geometric vertical optical depth τ⊥(r). We first calculate this quantity in relative
units by summing the geometric cross sections of particles in a given annulus, and
dividing the resultant sum by the area of that annulus. We then normalize this result
by matching the input τ⊥,BR to the model’s relative optical depth at rBR.

2. The surface brightness of the disk observed edge-on at V -band (Hubble Space Tele-
scope’s F606W ) and H-band wavelengths, as a function of projected stellar separation
b:

SB(b, λ)

=

∫∫
λLλ,∗
4πr2

Qscat(λ, s)P (θ, λ, s) πs2 dn

ds
(r, s) dℓ ds , (5.68)

where ℓ = ±
√
r2 − b2 measures distance along our line of sight. The stellar flux incident

on a grain in the wave band of interest is λLλ,∗/4πr
2, the cross section for scattering is

Qscatπs
2, the scattering angle between the star, grain, and observer is θ = tan−1(ℓ/b),

7For Ṁ∗/Ṁ⊙ = 1, sage > sbreak so only (5.64) is relevant.
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and the relative power scattered per steradian is P (normalized so that its integral over
all solid angle equals unity). We use Mie theory to calculate Qscat and P , adopting the
optical constants of pure water ice (Warren 1984). The volumetric number density of
grains n is found by dividing the geometric vertical optical depth by the height of the
disk:

πs2dn

ds
(r, s) =

1

h(r)

dτ⊥
ds

(r, s) . (5.69)

The radial height profile h(r) is derived from the projected disk height h(b), which
roughly follows a broken power law that changes slope around b = rBR = 43 AU:

h(b) = hBR

{
(b/rBR)η1 for b < rBR

(b/rBR)η2 for b > rBR .
(5.70)

We set hBR = 2.75 AU. Krist et al. (2005) fit separate broken power laws to the
northwest and southeast extensions of the disk and obtain η1 ≈ 0 and η2 ≈ 1–2; see
their Figure 7. For simplicity, we take η1 = 0 and η2 = 1. These values characterize
an inner disk that is empty and seen in projection (or that has constant height), and
an outer disk in which grains have constant inclination dispersion. We adopt a radial
profile h(r) identical to h(b) as given in (5.70) with b replaced by r. We divide the
F606W profile by the H profile to obtain a V −H color profile.

3. The spectral flux density Fν :

Fν =
1

d2
Bν(T∗) πR

2
∗

+
1

d2

∫∫
Bν(T (r, s))Qemis(λ, s) πs

2 dN

ds
(r, s) 2πr dr ds , (5.71)

where Bν(T ) is the Planck function. We model the emissivity of the dust as a broken
power law:

Qemis =

{
1 for 2πs > λ

2πs/λ otherwise ,
(5.72)

in approximate agreement with the model of Chiang et al. (2007) for ice-mantled silicate
grains. Since the peak wavelength of emission from AU Mic is about 1µm, all bound
grains are large enough to absorb most of the incident stellar flux. We solve

L∗
4πr2

πs2 = 4π

∫ ∞

0

Bλ(T )Qemis(λ, s)πs
2 dλ (5.73)

for the temperature T specific to a given grain size.
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Ṁ∗/Ṁ⊙

r
−3/2

r
−5/2

Type A

Type B

Figure 5.4: Vertical optical depth profiles computed from our Monte Carlo simulations. Solid,
dashed, dot-dashed, and triple-dot–dashed curves correspond respectively to Ṁ∗/Ṁ⊙ =
{1, 10, 102, 103}. Values for τ⊥,BR = 0.004 and ∆r/rBR = 0.1 are held fixed for all mod-
els. The two types of disks, CPR-dominated type A disks and collision-dominated type B
disks, may be distinguished. The inner disk for Ṁ∗ = 1Ṁ⊙ is completely empty because
sbreak < sage.

5.4.3 Results

By experimenting with various values of τ⊥,BR, ∆r, and Ṁ∗ ∈ (1, 10, 102, 103)Ṁ⊙, we find
that τ⊥,BR = 4×10−3, ∆r/rBR = 0.1, and Ṁ∗ ∈ (1, 10)Ṁ⊙ yield theoretical surface brightness
profiles and spectra that agree encouragingly well with observations. Our preferred values
for τ⊥,BR and ∆r are likely uniquely determined to within factors of a few; SB(b = rBR) ∝
τ⊥,BR

√
∆r while Fν ∝ τ⊥,BR∆r. The close resemblance of the models for which Ṁ∗ ∼< 10Ṁ⊙

means that we cannot do better than place an upper limit on Ṁ∗/Ṁ⊙ of ∼10. In what
follows, we present results for our preferred input parameters, in addition to models for
which Ṁ∗ ∈ (102, 103)Ṁ⊙ to study the effect of varying Ṁ∗ alone.

Figure 5.4 displays geometric optical depth profiles τ⊥(r). As expected from our analysis
in §5.3.2, disks separate into two types, CPR-dominated type A and collision-dominated type
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B. As Ṁ∗ increases, disk behavior changes from type B to Type A. One consequence is that
the inner disk becomes increasingly filled in. Furthermore, for type A disks, we expect
τ⊥ ∝ r−5/2 at r ≫ rBR; this behavior is indeed evident for Ṁ∗/Ṁ⊙ ∈ (102, 103). For type B
disks, we expect τ⊥ ∝ r−3/2 at r ≫ rBR; the models for which Ṁ∗/Ṁ⊙ ∈ (1, 10) exhibit this
scaling.

We compare our theoretical surface brightness profiles SB(b) with data from K05 in
Figures 5.5 and 5.6, for the cases of high Ṁ∗ and low Ṁ∗, respectively. For all disk models,
there is a significant contribution to the surface brightness at b < rBR from starlight that
is forward scattered by grains located within the half of the birth ring nearest the observer.
As Ṁ∗ increases, the inner disk fills in and the surface brightness at b < rBR increases. In
comparison, the surface brightness at b ≫ rBR decreases with increasing Ṁ∗, reflecting the
transition from the τ⊥ ∝ r−3/2 scaling of type B disks to the τ⊥ ∝ r−5/2 scaling of type A
disks. Examination of either the inner or outer disk profiles reveals that models for which
Ṁ∗/Ṁ⊙ ∈ (1, 10) fit the data better than do models for which Ṁ∗ is higher. Discrepancies
between these low-Ṁ∗ models and the observations are less than a factor of 2. They might
arise in part from our use of a scattering phase function (P ) appropriate for idealized spherical
grains of pure water ice.

In Figure 5.7, we plot V − H colors. For low values of Ṁ∗, the inner disk is largely
evacuated and so there is little variation in color with b for b < rBR. The outer disk becomes
progressively bluer with b as ever smaller (still bound) grains are probed. All of these trends
are in agreement with observations of disk color (S. Metchev 2005, private communication;
M. Fitzgerald 2005, private communication).

In Figure 5.8, we plot our theoretical spectra together with flux measurements from
Liu et al. (2004) and Chen et al. (2005). The filled inner disks of high-Ṁ∗, type A models
produce too much emission at mid-infrared wavelengths to compare well with observations.
As was our conclusion from studying the surface brightness profile in reflected starlight, the
thermal emission spectra point to stellar mass-loss rates of ∼< 10Ṁ⊙.

5.5 Summary and Directions for Future Work

We have constructed a theory to explain the observed optical surface brightness profile
and infrared emission spectrum of the debris disk encircling AU Mic. In our theory, the
slope of surface brightness versus projected radius b changes abruptly at b = 43 AU because
a birth ring of planetesimals exists at stellocentric radius r = rBR = 43 AU. This ring
has a full radial width ∆r ∼ 0.1rBR and a vertical, geometric optical depth of τ⊥,BR ∼
0.004. The parent bodies in the ring have sizes smax ∼ 10 cm and a total mass of Mmax ∼
0.01M⊕. Collisional attrition of parent bodies generates micron-sized grains that scatter
starlight at optical wavelengths. The population of visible grains is maintained in steady
state: production by colliding parent bodies balances removal by grain-grain collisions and
removal by corpuscular and Poynting-Robertson (CPR) drag. The timescales over which
removal of visible grains occurs can be orders of magnitude shorter than the age of the
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Ṁ∗/Ṁ⊙

b
−9/2

Type A

Figure 5.5: Theoretical type A and observed surface brightness profiles. Thin lines are data
(for northwest and southeast extensions of the disk) from K05. dot-dashed and triple-dot–
dashed curves correspond respectively to Ṁ∗/Ṁ⊙ = {102, 103}. The vertical dotted line
corresponds to rBR = 43 AU, the radius of the birth ring containing dust-producing parent
bodies. The inset scaling of b−9/2 is derived from the rule of thumb that at large b, SB
∝ bγ−η−1 for h ∝ rη and τ⊥ ∝ rγ. According to our theory for type A disks, η = 1 and
γ = −5/2.

system (∼12 Myr), ensuring steady state.
Collisions between parent bodies initiate a collisional cascade that extends downward

in particle size by several orders of magnitude. Grains having sizes s < sblow ≈ 0.2µm
are expelled from the system by stellar wind and radiation (SWR) pressure and contribute
negligibly to the observed optical emission. Instead, barely bound grains, having sizes just
larger than sblow and which occupy highly eccentric orbits, make the dominant contribution
to the surface brightness in the outer disk at r > rBR. The number of such grains rises more
steeply than would be expected from a pure Dohnanyi size spectrum as s approaches sblow

from above, because grains on high-eccentricity orbits have prolonged lifetimes against CPR
drag and collisions. The structure of the outer disk depends on whether these smallest of
bound grains are removed principally by CPR drag (type A conditions) or by destructive
grain-grain collisions (type B conditions). As the luminosity and/or mass-loss rate of the
central star increases, disk behavior grades from type B to type A. As the number of parent
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bodies in the birth ring increases, collision rates increase and disk behavior changes from
type A to type B. In the outer reaches of type A disks, the vertical optical depth scales
approximately as τ⊥ ∝ r−5/2. Under type B conditions, τ⊥ ∝ r−3/2 (but see footnote 6).
We have derived these scaling relations analytically and have verified them by Monte Carlo
simulations.

The inner regions at r < rBR are populated by grains that survive long enough before
suffering destructive collisions that their periastron distances diminish appreciably by CPR
drag. In type A disks, a significant fraction of grains born in the birth ring meet this criterion,
so the inner disk is characterized by the same vertical optical depth that characterizes the
birth ring. By contrast, under type B conditions, the inner disk is practically empty.

In the case of AU Mic, type B conditions prevail. By fitting simultaneously both the
surface brightness profile and the thermal emission spectrum, we not only uniquely determine
the vertical optical depth and radial width of the birth ring (see the values cited above), but
also constrain the stellar mass-loss rate Ṁ∗ to be ∼< 10Ṁ⊙. According to our theory, the
inner disk of AU Mic at r < rBR is empty. The observed surface brightness at b < rBR is

Ṁ∗/Ṁ⊙ b
−7/2

Type B

Figure 5.6: Same as Figure 5.5 but for type B disk models. Thick solid and dashed curves
correspond respectively to Ṁ∗/Ṁ⊙ = {1, 10}. The vertical dotted line corresponds to rBR =
43 AU, the radius of the birth ring containing dust-producing parent bodies. The inset
scaling of b−7/2 is derived from the rule of thumb that at large b, SB ∝ bγ−η−1 for h ∝ rη and
τ⊥ ∝ rγ. According to our theory for type B disks, η = 1 and γ = −3/2. Stellar mass-loss
rates of 1–10Ṁ⊙ yield surface brightness profiles that agree better with the data than those
derived from rates of 102–103Ṁ⊙; contrast with Figure 5.5.
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not zero because we are observing the disk edge-on. The primary contribution to the surface
brightness at b < rBR arises from starlight that is forward scattered by grains in the birth
ring.

Our theory states that the observed structure of the AU Mic disk reflects processes
that are balanced in steady state. Equilibrium is likely since the timescales over which
collisions and CPR drag operate, even in the rarefied outer disk, are shorter than the age
of the system. The outer disk does not comprise “primordial” grains left behind from a
now-evaporated gaseous disk, as has been speculated previously. Nor is the manifestation of
the debris disk phenomenon in AU Mic the outcome of a recent cataclysm that has not yet
equilibrated. That our required parent body mass is modest (equation [5.42]) supports our
contention that the AU Mic disk is in steady state.

Ṁ∗/Ṁ⊙

stellar color

Figure 5.7: Color profile (F606W − H) computed using our theoretical Monte Carlo
model. Solid, dashed, dot-dashed, and triple-dot–dashed curves correspond respectively
to Ṁ∗/Ṁ⊙ = {1, 10, 102, 103}. The vertical dotted line corresponds to rBR = 43 AU, the
radius of the birth ring containing dust-producing parent bodies; the horizontal dotted line
is the star’s color. The outer disk is expected to be bluer in scattered near-infrared light
than the inner disk.
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As our paper was being completed, we became aware of an independent study of AU
Mic by Augereau & Beust (2006). These authors find by inverting the observed surface
brightness profile that the underlying vertical optical depth of the AU Mic disk peaks near
35 AU. It is heartening that their conclusion is consonant with one of ours, derived as they are
using complementary approaches: detailed data-fitting procedures versus physical reasoning
to understand dust dynamics under general circumstances.

The ring of parent bodies at rBR = 43 AU that we envision encircling AU Mic presents
a youthful analogue to the Solar System’s Kuiper belt (see the Protostars and Planets V
review by Chiang et al. 2006). The spatial dimensions of these systems are remarkably
similar: The Classical Kuiper belt, containing those planetesimals thought to have formed
in situ, extends in heliocentric distance from ∼40 AU to ∼47 AU (e.g., Trujillo & Brown

Ṁ∗/Ṁ⊙

Figure 5.8: Spectra computed using our theoretical Monte Carlo model. Solid, dashed, dot-
dashed, and triple-dot–dashed curves correspond respectively to Ṁ∗/Ṁ⊙ = {1, 10, 102, 103}.
Data from Liu et al. (2004) (circles and diamond) and Chen et al. (2005) (triangles) are
overlaid; the open circle is a possible detection, and the diamond represents an upper limit.
The discrepancy between theory and observation at λ ≈ 12µm is due to our use of a
blackbody spectrum for the central M dwarf; better agreement can be had by employing
more realistic stellar atmosphere models (e.g., Allard et al. 2001). The discrepancy between
the data and the low-Ṁ∗ models at the longest wavelengths is due at least in part to the
fact that the maximum grain size in our simulations is 500sblow ≪ smax; were we to increase
the number of particles J in our simulation, the discrepancy would be reduced.
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2001).
We conclude by pointing out directions for future work on AU Mic and other debris

disks.

1. Disk thickness.—By assuming that we are viewing the AU Mic disk perfectly edge-on,
we estimated a full disk height of hBR ≈ 2.75 AU. The corresponding opening angle is
hBR/rBR ≈ 4◦. While our model of a type B disk succeeds in reproducing the observed
scaling behavior of disk height (h ∝ b0 in the inner disk and h ∝ b1 in the outer disk),
we have not explained what sets the normalization. Dissipative grain-grain collisions
would be expected to damp the inclination dispersion and to reduce hBR to values
orders of magnitude smaller than our inferred value.

2. Application to other systems.—The debris disk surrounding the A-star β Pictoris
closely resembles the AU Mic disk (Liu 2004). The surface brightness profile abruptly
changes slope at b ≈ 100 AU, from SB ∝ b−2.4 to SB ∝ b−4.0 (Kalas & Jewitt 1995).
Moreover, the vertical scale height h scales with b the same way that it does in the AU
Mic disk.8 Recently, another analogue to the AU Mic disk has been discovered: F-star
HD 139664 hosts a debris disk whose surface brightness profile exhibits a sharp break
at ∼90 AU (Kalas et al. 2006). The theory we have laid out for AU Mic might find
ready application to these other systems.

3. Uniqueness of AU Mic among M dwarfs.—The pioneering Keck survey conducted by
PJL05 at λ = 11.7µm reveals that AU Mic is distinguished among their sample of nine
M dwarfs having ages of 10–500 Myr in emitting an infrared excess. Why? Do the
other M dwarfs not possess disks? As M dwarfs constitute the most numerous stars in
the universe, understanding why AU Mic might be exceptional will help to determine
the prevalence of planetary systems. Many of the M dwarfs surveyed by PJL05 may
simply be much older than AU Mic; their parent body populations may have suffered
near complete comminution.

4. Ubiquity of rings.—That parent bodies are confined to a ring centered at 43 AU in
the AU Mic system calls for explanation. Ring morphologies are so common—witness
the examples of HR 4796A (Schneider et al. 1999), ǫ Eridani (Greaves et al. 1998),
Fomalhaut (Kalas et al. 2005), and even the Kuiper Belt—that the “debris disk phe-
nomenon” might well be more precisely termed the “debris ring phenomenon.” While
regions interior to rings might have been purged of material by planets, the physical
processes that determine the outer edges of rings remain unclear. Ideas proposed by
Takeuchi & Artymowicz (2001) and Klahr & Lin (2005) for how interactions between

8That the color of β Pic’s outer disk is red rather than blue (by contrast to the case of AU Mic) could be
a consequence of the particular grain size required for blow-out in the β Pic system, since for certain grain
sizes and compositions, Qscat(λ, s) can actually increase with increasing wavelength. See Bohren & Huffman
(1983) for a discussion of this phenomenon of “blueing.”
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solids and gas can concentrate planetesimals into rings might be relevant. That plan-
etary systems have sharp outer edges suggests that planetesimal formation is not a
continuous function of disk properties; rather, the formation of planets may require
disk properties to meet threshold conditions (e.g., Youdin 2004).

Acknowledgments

This work was made possible by grants from the National Science Foundation and the Alfred
P. Sloan Foundation. We are grateful to Peter Plavchan for extensive and helpful discussions,
and to John Krist for supplying us with HST surface brightness data. We acknowledge
encouraging exchanges with Pawel Artymowicz, Doug Baker, Josh Eisner, Mike Fitzgerald,
James Graham, Lynne Hillenbrand, Mike Jura, Paul Kalas, Yoram Lithwick, Holly Maness,
Stan Metchev, Re’em Sari, and Yanqin Wu. A portion of this work was completed in Awaji
Island, Japan, in the cheerful company of the participants of the 2005 Kobe International
Planetary School.



S
e
c
t
io

n
5
.5

.
S
u
m
m
a
r
y

a
n
d

D
ir

e
c
t
io

n
s

f
o
r

F
u
t
u
r
e

W
o
r
k

150

Table 5.1: Stellar Wind and Radiation Parameters in the AU Mic Systema

Ṁ∗/Ṁ⊙ PSWR PCPR sblow(µm)b tCPR(s = 1.1sblow)( yr)c tCPR(s = 1.5sblow)( yr)c tCPR(s = 15sblow)( yr)c

1 2.0 5.0 0.23 9.5 × 106 4.9 × 106 1.9 × 107

10 2.0 32 0.23 1.5 × 106 7.8 × 105 3.1 × 106

102 2.4 3.0 × 102 0.28 1.9 × 105 9.9 × 104 3.9 × 105

103 6.4 3.0 × 103 0.74 5.1 × 104 2.6 × 104 1.0 × 105

a Assumes Qrad = 2, Qwind = 1, ρ = 2 g cm−3, vwind = 450 kms−1, L∗ = 0.1L⊙, M∗ = 0.5M⊙, Ṁ⊙ = 2 × 10−14M⊙ yr−1,
and rperi = rBR = 43 AU.
b The blow-out radius is such that β = 1/2.
c Calculated for e = e0. For s/sblow = {1.1, 1.5, 15}, e0 = {0.83, 0.50, 0.034} by equations (5.9) and E(e0) =
{7.2, 2.7, 1.1} by equation (5.14).
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Chapter 6

Epilogue: Recent observational work

I close by returning to tidal disruptions. During the final year of my thesis, two ground-
breaking tidal disruption candidates were discovered by teams led by Berkeley’s Dr. S. B.
Cenko and Prof. J. S. Bloom. These events are the first optically-selected candidate found
in real time, labelled “PTF10iya” (Cenko et al. 2011), and the first TDE candidate found in
the γ-rays, labelled “Swift 1644+57” (Bloom et al. 2011). I contributed to the analysis in
both of these discoveries, and describe the discoveries and interpretation below.

6.1 PTF10iya

The Palomar Transient Factory uses the Palomar 48” telescope (P48) to robotically
image ≈ 8000 deg2 of sky every five days in the optical R band. On June 6, 2010, a flare
of R = 19.77 magnitude was found automatically by PTF’s “Oarical” software. The event
was found to be coincident with a modestly red galaxy at z = 0.22 in the Sloan Digital Sky
Survey, SDSS J143840.98+373933.4 (hereafter, SDSS J1438). The location of PTF10iya had
previously been observed in 2007 – 2008 as part of the Palomar-QUEST survey (compiled as
part of the Deep Sky Project). These observations and the SDSS observations are consistent
with no previous variability for this object. The object had not previously been detected in
the ROSAT All-Sky Survey (0.1 – 2.4 keV), Fermi Large Area Telescope (100 MeV – 100
GeV) one-year point source catalog, or VLA FIRST Survey (1.4 GHz).

The source was followed up at optical wavelengths with the Palomar 60” telescope (P60)
in g′, r′, and i′ bands the following day (June 7), and six days later (June 13). Excess optical
emission was not seen again after June 13. The blue color and overall brightness of the P60
observations led the team to trigger follow-up by the Swift satellite on June 11: PTF10iya
was detected in the 0.3 – 10 keV band (with the XRT) and in the far UV (with the UVOT).
The UV colors are very blue, and the X-ray spectrum was found to be peaked towards the
highest energies. Later Swift observations on August 10 detected no X-rays.

High-resolution imaging with adaptive optics on the Keck telscope (using the NIRC2
camera in K ′ band) showed that the event was within 1.2 kpc of the center of SDSS J1438.
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Optical spectroscopy with ISIS on the Willian Herschel Telescope and LRIS on Keck, taken
right during the event on June 8 and then four days and a month later, showed two important
results: the host galaxy exhibits emission lines characteristic of forming stars (but not an
AGN), and the flare spectrum is essentially featureless with a strong blue continuum.

The optical light curve of the flare is shown in Figure 6.1: the event is clearly short-lived,
lasting only ≈ 10 days. The spectral energy distribution of the flare is shown in Figure 6.2.
The SED was fitted to a blackbody of temperature T ≈ 1−2×104 K accompanied by a hard
X-ray component, yielding a bolometric luminosity of ∼ 1044−1045 erg s−1 (depending on the
galaxy extinction law). The event is unlikely to have been a supernova for several reasons.
First, the optical emission is too short-lived (the decay timescale is faster than any known
supernova). Second, although there is a class of supernovae that produce X-ray emission,
the X-ray emission from PTF10iya is far brighter and shorter-lived than these, and these
typically show optical emission lines which PTF10iya does not. Furthermore, PTF10iya
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Figure 6.1: Observed optical light curve of PTF10iya, around the time of outburst. The
time is referenced to the P48 discovery on Jun 6.302. Inverted triangles represent 3σ upper
limits. The shaded grey vertical bar indicates the epoch of our Swift X-ray and UV observa-
tions. The horizontal dashed line indicates the quiescent (r′) magnitude of the host galaxy
SDSSJ1438. The times of optical spectroscopic observations are marked with an “S”. No
correction has been applied for extinction within the host galaxy. Note that the i′ and g′

data have been offset slightly in the horizontal direction for plotting purposes. Figure and
caption from Cenko et al. (2011).
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Figure 6.2: Broadband SED of PTF10iya. We have plotted the LRIS spectrum from June
12, P60 photometry from June 13, and UVOT and XRT photometry from June 11. A
blackbody fit to incorporate both the optical and X-ray data requires T ≈ 6 × 105 K, but
is inconsistent with the observed X-ray spectrum (the range of allowed power-law indices is
indicated by the shaded blue region) and severely overpredicts the UV flux. On the other
hand, a blackbody fitting both the UV and optical flux (T = 2 × 104 K) cannot account for
the bright X-ray emission. Figure and caption from Cenko et al. (2011).

was unlikely an AGN outburst because (1) it shows no previous variability, (2) the host
galaxy’s spectrum has emission line ratios inconsistent with the presence of an AGN, and
(3) the inconsistency between the SED shape / spectroscopic observations and those of even
unusual AGN outbursts.

PTF10iya may therefore have been a flare produced by the tidal disruption of a star.
The observed properties of the event are broadly consistent with our predictions for a
super-Eddington outflow produced in the aftermath of a disruption—the bright optical
emission, fast evolution, blue color, featureless continuum, and hard X-rays. We show in
Figure 6.3 a super-Eddington outflow model from Chapter 2 (Strubbe & Quataert 2009) for
MBH = 106M⊙, rp = 12rS = 0.5rT, fout = 0.4, and fv = 1, overplotted with UV/optical
data from P48, P60, and Swift / UVOT. This figure demonstrates the similarity between the
observations and our optical/UV predictions. The large photosphere and cool temperature
of the gas driven from the BH while the fallback rate is super-Eddington lead to a large
optical/UV luminosity that is blue in color. The typical timescale for the evolution of emis-
sion from the super-Eddington outflow is tfallback ∼ days. In Chapter 3 (Strubbe & Quataert
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Figure 6.3: Super-Eddington outflow model from Chapter 2 (Strubbe & Quataert 2009) for
MBH = 106M⊙, rp = 12rS = 0.5rT, fout = 0.4, and fv = 1, with UV/optical data from Cenko
et al. (2011): (red, orange, yellow, light green, dark green, blue, purple, magenta) correspond
to (i′, R, r′, g′, U , UV W1, UVM2, UVW2). Time on the horizontal axis is measured from
the moment of disruption, which is taken to be 2010 June 2.8 UT. The discrepant UV colors
may be due to extinction in the host galaxy.

2011), we show that super-Eddington outflows are typically too hot to produce spectral lines
at optical wavelengths, consistent with PTF10iya’s featureless continuum. Finally, though
this is not yet well-studied, we propose that TDEs may be accompanied by hard X-rays, in
particular if the density at the fallback shock at pericenter is too low to give the gas enough
time to reach thermal equilibrium before it is driven out; the photons instead can Compton
upscatter to produce X-rays. Our super-Eddington outflow model predicts that a few events
per year within z ∼< 0.2 should be detectable with PTF (perhaps more if fout is typically
large); our predictions seem consistent with this single discovery to date (especially given the
complicated uncharacterized follow-up selection biases), though we expect that more should
follow soon.

The discovery of PTF10iya is an exciting confirmation of our predictions, and offers a
promising sign that PTF and other optical transient surveys will be able to detect, identify,
and launch follow up observations of many TDEs in the near future.
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6.2 Swift 1644+57

An unusual burst of hard X-rays was detected on March 28, 2011 by the Swift satellite’s
Burst Alert Telescope (which measures in the energy band 15 – 150 keV) (Levan et al.
2011; Burrows et al. 2011). Continuing and follow-up observations revealed that the event,
labelled “Swift J164449.3+573451,” reached a maximum (isotropic) X-ray luminosity of
few × 1048 erg s−1 (and average peak luminosity of ∼ 1047 erg s−1), decaying on the long
timescale of weeks. The X-ray emission (seen by Swift, and also in follow-up observations by
Chandra) additionally showed strong variability on timescales of seconds to minutes. The
source was bright and variable in the near infrared, and bright at millimeter and centimeter
wavelengths as well (as observed by a variety of telescopes around the world). The optical
emission, however, was dominated by the host galaxy, a compact non-interacting star-forming
galaxy at z = 0.35 of comparable brightness to the Large Magellanic Cloud. The high-energy
emission lasted far longer than a long-duration gamma-ray burst (which decays in minutes),
and more luminous than any known AGN (especially considering the modest host galaxy).

We proposed that this extreme panchromatic event was produced by the tidal disruption
of a star (Bloom et al. 2011). Specifically, it may be possible that highly super-Eddington
accretion onto a BH produces a relativistic magnetically-collimated jet. Observing this jet
head-on “down the barrel” would likely reveal relativistically beamed X-rays and γ-rays.
These high-energy photons could be Compton upscattered from seed photons originating
in the accretion disk or jet, or perhaps due to incomplete thermalization at the fallback
shock at pericenter. A typical Lorentz factor for blazars is Γ ∼ 10, which leads to a jet
opening angle of ∼ 1/Γ ∼ 0.1, indicating that the true luminosity (integrated over all
directions) may have been closer to 1045 erg s−1, the Eddington luminosity for a 107M⊙ BH.
Relativistic electrons in the magnetic field would produce radio and near-infrared synchrotron
emission (that could be visible even from other similar events witnessed off-axis; Giannios
& Metzger 2011). The observed large-amplitude variability could conceivably be produced
by the process of circularization of the orbits of gas particles. A super-Eddington outflow
and accretion disk may well be present also but not visible above the optical emission of
the host galaxy (which appears to be heavily extinguished). If the opening angle postulated
above is correct, perhaps 10 such events take place per year (most of which are aimed away
from us) in a volume ∼ 10 Gpc3. Such a volume contains ∼ 107 − 108 galaxies, suggesting
a rate of ∼ 10−7 − 10−6 yr−1, which is lower than other estimates of the tidal disruption
rate (e.g., Donley et al. 2002; Magorrian & Tremaine 1999; Wang & Merritt 2004). Perhaps
only a fraction of disruptions are super-Eddington enough to produce a jet (e.g., because few
have small enough pericenter distances: see Chapter 4); perhaps high BH spin is required to
produce a jet, and only a small fraction of BHs have sufficiently high spin; or perhaps more
of these events have been detectable but lacked the large-amplitude variability which aided
their identification by Swift BAT.

Other (non-tidal disruption) explanations for Swift 1644+57 have been proposed (e.g.,
Quataert & Kasen 2011; Socrates 2011) as well. Nevertheless this extreme event is undoubt-
edly interesting for the study of tidal disruptions: it may give us new insights into accretion
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physics, and demonstrates the ability of Swift to find powerful high-energy bursts from TDEs
if they are out there.
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