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state-contingent security markets in which preferences might be incomplete.! In this setting, we
characterize Pareto optima and equilibria, and show that the presence of uncertainty generates
robust indeterminacies in equilibrium prices and allocations for any specification of initial
endowments. We derive comparative statics results linking the degree of uncertainty with
changes in equilibria. Despite the presence of robust indeterminacies, we show that equilibrium
prices and allocations vary continuously with underlying fundamentals. Equilibria in a standard
risk economy are thus robust to adding small degrees of uncertainty. Finally, we give conditions
under which some assets are not traded due to uncertainty aversion.

The basic intuition of our analysis can be traced back to a result in Bewley (1989). He
shows that uncertainty makes opportunities for mutually satisfactory trades difficult to find in
an exchange economy. A peculiar consequence of uncertainty is that individuals are unwilling
to insure each other. This aversion to trade is counterbalanced by the presence of risk aversion,
which makes mutual insurance attractive. We show how equilibria can be characterized by the
interplay between uncertainty and risk. For example, uncertainty is sometimes so large that
no trade results; other times, the desire to insure prevails and there is trade. This trade-off is
not captured by the standard expected utility model, where only risk aversion has a role.

The basic tool of our analysis is a characterization of Pareto optimal allocations that is the
natural generalization of the corresponding characterization for complete preferences. In the
expected utility setting, an (interior) allocation is Pareto optimal when marginal rates of substi-
tution between any two states are equal across individuals. Without completeness, comparisons
are carried out “one probability distribution at a time”, with one bundle preferred to another
if and only if it has higher expected utility for every probability distribution. Corresponding
to each bundle, there is then a set of marginal atilities for each individual, and we show that
an allocation is Pareto optimal when there exists at least one common element in these sets.
In addition, every element in the intersection of these sets yields a price supporting this Pareto
optimal allocation. This result leads naturally to a characterization of equilibria: they are
simply Pareto optimal allocations at which each individual budget constraint is satisfied at
some supporting price.

This characterization illustrates the fundamental role uncertainty plays in hampering trad-
ing opportunities and fostering indeterminacies. Roughly, more uncertainty induces a larger
set of beliefs, and thus may induce a larger overlap in marginal rates of substitution at a given
allocation. For example, the larger is agents’ perception of uncertainty, the easier it is for the
initial endowment to be Pareto optimal, and for a range of prices to support it as an equilib-
rium. Furthermore, even when perceived uncertainty is small and equilibrium involves trade,
there may be infinitely many equilibrium allocations and prices. Thus, in our model, there is

10ur model is an example of the general equilibrium models with unordered preferences developed by Mas-
Colell (1974), Gale and Mas-Colell (1975), Shafer and Sonnenschein {1975), and Fon and Otani {1979). In
particular, we use their definitions of Pareto optimality and equilibrium, and appeal to their existence results
when applicable.



always a trade-off between uncertainty and risk.

An analogous trade-off is absent in other recent work that introduces uncertainty in a gen-
eral equilibrium framework using decision theories other than Bewley’s. Billot, Chateauneuf,
Gilboa, and Tallon (2000), Chateauneuf, Dana, and Tallon (2000), Dana (2000) and Dana
(2001), Dow and Werlang (1992), Epstein (2001), Epstein and Wang {1994}, Liu (1999), Muk-
erji and Tallon (forthcoming), and Tallon (1998) are some notable examples. They model
uncertainty with either Choquet expected utility (CEU), due to Schmeidler (1989), or maxmin
expected utility (MEU), due to Gilboa and Schmeidler (1989). Decision makers with CEU
preferences evaluate a consumption bundle using its expected utility computed according to
a capacity (a non-additive probability), while decision makers with MEU preferences evaluate
a consumption bundle using the minimum expected utility over some set of probabilities. Al-
though different in general, these models coincide in an important special case used in most
of this work, CEU with a convex capacity. In this case, the Choquet expected utility is equal
to the minimum expected utility over a particular set of probabilities. These models are thus
similar to incomplete preferences in that uncertainty enters individual decision making through
a set of probabilities. In contrast, however, individual behavior in these models can be very
different: because individuals only consider the minimum expected utility over this set of pri-
ors, behavior displays an extreme form of pessimism. In equilibrium, this pessimism creates
strong incentives for mutual insurance.?

Dow and Werlang (1992) consider a portfolio choice problem, and show that there is an
interval of (exogenously given) prices at which a decision maker with CEU preferences holding
a riskless position neither buys nor sells short a risky asset. Epstein and Wang (1994) extend
this partial equilibrium indeterminacy result to a CIEU version of Lucas’ representative agent
asset pricing model. In a series of papers, Anderson, Hansen, and Sargent (2001), Hansen,
Sargent, and Tallarini (1999), and Hansen and Sargent (2001) derive similar results using a
related representative agent model in which agents’ ambiguity is modeled using the framework
of robust control theory. These results suggest that despite the strong incentives to insure in
the CEU and MEU models, price indeterminacy and no trade may be features of equilibria.
Unfortunately, in each of these cases opportunities for mutual insurance are absent.

When these insurance opportunities are present, however, indeterminacies and no trade in
equilibrium are typically ebsent, as Chateauneuf, Dana, and Tallon (2000) and Dana (2001}
show. When agents with CEU preferences have a common convex capacity, Chateauneuf,
Dana, and Tallon {2000} show that equilibrium allocations are comonotonic, that is, individual
consumption vectors are such that the ranking of states from “best” to “worst” in terms
of ex post consumption is the same for all agents. Therefore, when there is no aggregate
uncertainty, equilibrium allocations must involve full insurance. Moreover, Dana (2001) shows

2 A more detailed discussion of the decision theoretic alternatives to incompleteness is contained in Section 2,
while Section 6 contains a fuller description of the results derived in these different models.




that no aggregate uncertainty is the only case in which indeterminacy can arise. In this model,
generically equilibria are determinate, and coincide with equilibria in a standard expected utility
model with fixed priors.® In Rigotti and Shannon (2001), we show that the generic determinacy
of equilibria holds for general MEU preferences, and in particular for CEU preferences with
convex but differing capacities.

In our framework, on the other hand, indeterminacies arise for any initial endowments,
thus indeterminacy is due solely to uncertainty. The reason for this difference is easy to
explain. For example, consider a model with two states. With CEU and MEU preferences,
the agent’s indifference curves have a kink along the certainty line and nowhere else, because
on different sides of this line the minimum expected utility occurs at different probabilities.
This kink makes indeterminacies possible, but only in very particular circumstances. With
incompleteness, better than sets have a kink at the consurnption bundle that is being evaluated,
regardless of where this bundle is. This kink is a fundamental consequence of uncertainty, and
only disappears when preferences are complete and there is no uncertainty.

Our characterization of Pareto optimality is also related to recent work on the absence of
betting. Billot, Chateauneuf, Gilboa, and Tallon {2000) show that in an MEU model without
aggregate uncertainty, a full insurance allocation is Pareto optimal if and only if individuals
have in their sets of priors at least one common probability distribution. Therefore the ex-
istence of a common prior is a necessary and sufficient condition for the absence of betting
without aggregate uncertainty. We extend and clarify these results. In our framework, an al-
location is Pareto optimal if and only if individuals share at least one marginal utility weighted
probability distribution. Because full insurance means an individual’s consumption levels and
marginal utilities are identical across states, the set of marginal utility weighted probability
distributions is identical to the set of probability distributions in this case. Thus the result of
Billot, Chateauneuf, Gilboa and Tallon can be derived from ours. Moreover, the same logic
allows us to show that if all individuals are risk neutral, the existence of a common prior is
a necessary and sufficient condition for the absence of betting for any strictly positive initial
endowment,

The paper is organized as follows. The next section describes the basic decision theoretic
framework we use, and contrasts this with the CEU and MEU models. Section 3 introduces the
general equilibrium model and characterizes Pareto optima and equilibria. Section 4 presents
the results on indeterminacy and comparative statics. Section 5 considers the case in which
some events are uncertain while others are risky. Section 6 compares our results to the related
literature. Section 7 concludes.

3In related work, Liu (1999) shows that indeterminacy obtains in the absence of aggregate uncertainty in a
dynamic economy with heterogeneous agents possessing a particular form of MEU preferences.




2 Preliminaries: Incomplete Preferences and Uncertainty

In this section we briefly describe individual behavior under uncertainty when preferences are
not necessarily complete. Incompleteness in decision making under uncertainty was first stud-
ied by Anmann (1962).* In a series of papers, Bewley (1986), (1987), and (1989), further
developed this model, which he called Knightian decision theory. The basic result of Bewley’s
approach is to modify the standard expected utility framework by replacing the unique sub-
jective probability distribution used in expected utility with a set of probability distributions.
When an individual’s preferences satisfy the completeness axiom, she can compare any two
state-contingent consumption bundles; she decides which one is preferred based on their re-
spective expected utilities. Instead if an individual’s preferences do not satisfy completeness,
she is not necessarily able to compare every pair of consumption bundles. Because incom-
pleteness is reflected by multiplicity of beliefs, she computes many expected utilities for each
consumption bundle, and these might not be ranked uniformly.

To formalize this discussion, suppose the state space ( is finite, and index the states by s =
1,...,8. Let z = {z1,... ,z5} and y = {y1,... ,¥s} be two contingent consumption vectors.
When preferences are not complete but otherwise satisfy standard axioms, Bewley (1986) shows
that there exists a closed, convex set of probability distributions II and a continuous function
u: Ry — R (unique up to positive affine transformations) such that

z>y ifandonlyif  Epfu(z)] > Erju(y)j forallw eIl

Here B, [] denotes the expected value with respect to the probability distribution «, and
u(-) is the usual von Neumann-Morgenstern utility index.® The set of probabilities II reduces

4Recently, Aumann’s work has been extended and clarified by Dubra, Maccheroni, and Ok (2001) and Shapley
and Baucells {1998).

5Bewley’s original theorem (1986, Theorem 1.2) is in the Anscombe-Aumann framework (for a Savage version,
see Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2001)). Bewley assumes that - is a transitive and
irreflexive strict preference ordering that satisfies non degeneracy, monotonicity, continuity, independence, and
completeness over constant acts. More formally, let the set of simple lotteries be ¥ and the set of acts be L = YS,
while I, denotes constant acts. Preferences are defined over L and obey the following axioms.

Axiom 1 (ndependence) For all f,g,h €L, and oll a € (0, 1),
frg Fe af +{l—-a)h>ag+(l—a)h
Axiom 2 (Non-Degeneracy) For some fige L, f > g.

Axiom 3 (Completeness over constant acts ) = is transitive and drreflezive. Moreover, for any f € L, the
closure of

{g€Lelg> fIU{heL:| f>h}
is L.




to a singleton whenever the preference ordering is complete, and the usual expected utility
representation obtains in that case. Since the state space is finite, this expression reduces to:

s 5
z >y  if and only if Zwsu (zs) > Zwsu (ys) for all m € IL.
=1 g=1

This preference order is not represented by a utility function. Instead, comparisons between
alternatives are carried out “one probability distribution at a time”, with one bundle preferred
to another if and only if it is preferred under every probability distribution considered by the
a.gem.6

Bewley (1986) notes that the above representation captures the distinction Knight (1921)
draws between risk and uncertainty. An event is risky when the probability is known, and
uncertain otherwise. Hence the decision maker perceives only risk when II is a singleton, and
uncertainty otherwise. In this setting, incompleteness and uncertainty are equivalent measures
of the same phenomenon. That is, the amount of uncertainty the decision maker perceives is
equivalently reflected by the size of the set of priors II and the degree of incompleteness of the
preference order ».

This idea can be formalized as follows. Given any preference order >, let
C. ={(z,y) € Rf_ X Ri : ¢ and y are comparable under >}.

We say the preference order =’ is more complete than the preference order = if C,. C C,r and
for every (z,y) € Oy, z =y < z >’ y. Less completeness in terms of the decision maker’s
preference order then corresponds to the decision maker’s perception of more uncertainty.”

Proposition 1 Let > and »" be two preference orders over Rf_ satisfying Bewley’s azioms
such that »' is more complete than ». Then there are representations of > and ' involving
the same von-Neumann-Morgenstern utility indez u and sets of probabilities II and I’ such that
I c .

Proof: Consider two bundles T and § (with Z # 7) such that T, = Ty and Fy = Yu for
any two states s, s’. Since » and >’ are complete over constant acts, (z,y) € Cyr and

Axiom 4 (Continuity) Forany f €L, {g €L | g~ f} and {he L| f> h} are both open.

Axiom 5 (Monotonicity) For all f,g € L, if f(s) > g(s) or neither f(s) = g{s) nor g(s) > f(s) for each s € S,
then [ > h whenever g > h, and h - g whenever h - f.

BPhere is also a natural notion of indifference in this setting, under which two bundles are inditferent whenever
they have the same expected utility for each probability distribution in II.
7 A similar result can be found in Ghirardato, Maccheroni, and Marinacci (2001).




(Z,7) € C». Without loss of generality assume ¥ > . Because > is more complete than >
we must have T ' 7 as well. Thus > and > agree on all constant bundles. Since the von
Neumann-Morgenstern index is simply a member of the affine family representing preferences
over constant bundles, we can choose this index u to be identical for = and »'.

Let II and IT be sets of probabilities such that (u,II) represents > and (u, [T’} represents
!, Now consider any two bundles = and y such that (z,y) € C,.. Since >’ is more complete
than », (z,y) € C,r and 2 = y <= z >'y. Thus

Erfu(@)] > Er[u(y)] forallmell <= Erlu ()] > Brju(y)] forallmeIl
and
Er[u(@)] < Brlu()] foralmell <= Eru(z)] < Ex [u(y)] for all w €TI'.

Now we claim II' C II. If not, then there exists #' € II' \ IL. By the separating hyperplane
theorem, there exists v # 0 such that 7' -v > 0> 7 -vforallw € II. Choose bundles z and ¥
such that u(zs) — u{ys) = vs for each s. Since Erfu(z)] — Erfuy)) =7-v < 0forall m € II,
(z,y) € O and y > z. But Eplu(z)] — Ex(uly)] = 7' - v > 0, which is a contradiction. Thus
I cIL n

A graph may help clarify how Bewley’s representation works. In Figure 1 the axes measure
consumption in each of the two possible states. Given a probability distribution over the two
states, a standard indifference curve through the bundle y represents all the bundles that have
the same expected utility as y according to this distribution. As the probability distribution
changes, we obtain a family of these indifference curves representing different expected utilities
according to different probabilities. The thick curves represent the most extreme elements of
this family, while thin curves represent other possible elements.

A bundle like z is preferred to y since it lies above all of the indifference curves correspending
to some expected utility of y. Also, y is preferred to w since w lies below all of the indifference
curves through . Finally, z is not comparable to y since it lies above some expected values
of y and below others. Incompleteness thus induces three regions: bundles preferred to y,
dominated by y, and incomparable to y. This last area is empty only if there is a unicque
probability distribution over the two states and the preferences are complete. Therefore, for
any bundle ¥, the better-than-y set has a kink at y whenever there is uncertainty. This kink
is a direct consequence of the multiplicity of probability distributions in I1, and vanishes only
when 1 is a singleton.

When preferences are not complete, the usual revealed preference arguments do not apply.
If = is chosen when v is available, we cannot say z is revealed preferred to y, we can only say y
is not revealed preferred to z. In other words, one cannot explain choice among incomparable
alternatives. To address this problem, Bewley (1986) introduces a behavioral assumption based




State2 4

State 1

Figure 1: Incomplete Preferences

on the idea of inertia. The inertia assumption posits the existence of a status quo, imagined
to be some planned behavior, that is abandoned only for alternatives that are preferred to it.
When the inertia assumption holds, if x is chosen when y is available and y is the status quo,
then « is revealed preferred to y. If the only alternatives available are not comparable to y,
the individual sticks with y. In Figure 1, the inertia assumption implies that if ¥ is the status
quo, alternatives like z will not be chosen gince they are incomparable to y.

Formally, the inertia assumption as stated in Bewley (1986) requires that if y is the status
quo, then z is chosen when y is available only if

Epfu{z)] > Ex [u(y)] for all m € IL

If IT is a singleton, and therefore there is no uncertainty, this notion of inertia implies bundles
indifferent to y are not chosen. This type of behavior seems unduly restrictive, since it intro-
duces reluctance to abandon the status quo even when uncertainty is absent. Omn the other
hand, one can easily modify the inertia assumption to correct this problem as follows. If y is




the status quo the weak inertia assumption states that z is chosen when y is available only if

Fr[u(z)| > Erju(y)] forall mw € II

The inertia assumption is a behavioral statement, rather than a property derived from
preferences, Work in both economics and psychology provides significant evidence of behavior
under uncertainty that is consistent with such inertia or status quo biases. A classic reference
is Samuelson and Zeckhauser (1988), who find evidence of status quo biases in both field and
experimental data. In an experimental setting, they find significant status quo bias in invest-
ment decisions regarding portfolio composition following a hypothetical inheritance. Moreover,
suggestive of the trade-off between uncertainty and risk embedded in our model, they find that
this bias varies both with the strength of preference and the number of alternatives: the status
quo bias is weaker the stronger is the subjects’ preference for the alternatives, and stronger in
the face of more alternatives. They find similar evidence in field data on health plan choices and
portfolio division in TIAA-CREF plans among Harvard employees. Ameriks and Zeldes (2000)
find similar evidence in data from TIAA-CREF and Surveys of Consumer Finance documenting
a significant relationship between age and portfolio choices. In fact, almost half of their sample
made no change in portfolio composition over the course of the 9 years they observe, while
the same period saw drastic changes in the returns to bond and equity holdings. Einhorn and
Hogarth (1985) find evidence supporting a status quo bias in initial probability assessments in
a mumber of experiments. See also Fox and Tversky (1995) and Heath and Tversky (1991).

Although there is significant evidence of endowment effects consistent with inertia in a va-
riety of settings, defining a plausible status quo may be difficult in some settings. In a general
equilibrium model, however, there is a natural candidate for the status quo: the individual’s
initial endowment. In our analysis, as the next section makes clear, the (weak) inertia assump-
tion plays the role of a natural equilibrium refinement device. With incompleteness, there may
be many equilibria and inertia may select among them.

There are two other prominent models of decision making under uncertainty: Choquet
expected utility (CEU), due to Schmeidler (1989), and maxmin expected utility (MEU), due
to Gilboa and Schmeidler (1989). Their common premise is Ellsberg’s suggestion that the
independence axiom may not be a reasonable description of behavior under uncertainty.® Both
models retain completeness but relax independence. Since Bewley’s model retains independence
and relaxes completeness, neither CEU nor MEU is either a generalization or a special case of
incomplete preferences. MEU and CEU differ in the particular way in which independence is
modified. Understanding their departures from independence is important to understanding
both the results obtained in these models and how these results differ from ours, as we discuss
in more detail in Section 6. Thus we describe both the CEU and MEU models in some detail
here.

8Recall that the independence axiom requires that the ranking of any two alternatives is not changed when
mixing with a third.



CEU modifies the independence axiom by requiring independence to hold only when com-
paring comonotonic alternatives, that is, alternatives that rank states in the same way.® Under
this assumption, Schmeidler {1989) shows that preferences are represented by their Choquet
expected utility, where the expectation is taken with respect to a capacity rather than a prob-
ability distribution.!® In many applications this capacity is also required to be convex, since
convexity of the capacity guarantees that preferences are convex.’l This assumption also re-
flects pessimism on the part of the decision maker facing uncertainty.

On the other hand, MEU requires independence to hold only when comparing constant
acts, and adds an axiom called uncertainty aversion.!? Under these assumptions, Gilboa and
Schmeidler (1989) show that preferences are represented by the minimum expected utility
the decision maker computes using a closed, convex set of probability distributions. As with
incomplete preferences, behavior here depends on a set of probabilities. Given this set, an
MEU decision maker is always pessimistic, however, and makes decisions based on the worst
case scenario,

When the capacity is convex, CEU is equivalent to an MEU representation in which the
agent’s belief set is given by the core of the capacity. Roughly, the core gives the set of
probability distributions consistent with the capacity.!® When the capacity is convex, the core
is non-empty and the Choquet expected value of a random variable with respect to the capacity
is the minimum expected value over distributions in the core. Therefore when the capacity is
convex, CEU preferences are simply MEU preferences with belief set given by the core of this
capacity. Although different in general, for the version most commonly used in applications,
CEU is & special case of MEU.

How do decision makers with CEU and MEU preferences compare to those with incomplete
preferences? Figure 2 illustrates for the case in which there are only two states. Consider
alternative y. The better-than-y set corresponding to CEU and MEU is the area above thick
grey indifference curves, while the better-than-y set under incompleteness is the area above the
thin indifference curves. In particular, note that CEU and MEU preferences have a kink at
every bundle on the certainty line, and nowhere else. Moreover, with respect to these certain
bundles, better-than sets under CEU, MEU, and incompleteness coincide.} In general, the

More precisely, two consumption bundles = {z1,... ,rs}and y = {y1,... ,ys} are comonotonic if for any
two states s and £, (z, — T¢) (¥ — 41) = 0.
104 capacity v on 2 is a mapping v : 2% _; [0,1] such that v(§) = 0, v(©2) = 1, and for all A,B e 2%,
ACc B=w(A) Lo (B).
11 A capacity v is convex if for all A,B € 2%y (AUB)+v{ANB) 2 v(4)+v(B).
12{Jncertainty aversion requires that for all f,g € 1., and al a €{0,1), frvg=>af+{1- a)g= f.
13Formally, the core of a capacity v is defined as

core {v) = {pE A:rp(Ay>v(A) forall A 629}.

14T, gee this, note that if z is a certain bundle, so that z, = Z for every s, then the better-than-z set under

10




Stae2 4

Figure 2: CEU and MEU Preferences

better-than set under incomplete preferences is a subset of the better-than set under MEU.

Finally, we remark that the extreme pessimism implicit in CEU and MEU makes interaction
among agents very different from those with incomplete preferences. Intuitively, decision makers
who have CEU or MEU preferences care about equating utility across states in levels. As we
discuss in more detail in Section 6, this makes mutual insurance much more attractive in
these models than it is in our framework (or standard expected utility theory), regardless of
whether the events being insured against are risky or uncertain. In the next section, we see
that this is not the case with incompleteness, which instead make mutually beneficial insurance
opportunities harder to find.

ecach model corresponds to {x € RS : T, moulz.) > u(z) ¥r € T}

11




3 TUncertainty and Complete Markets

In this section, we first describe a simple exchange economy in which agents’ preferences over
contingent consumption are incomplete. Fxcept for this innovation, the framework we con-
sider is the standard Arrow-Debren model of complete contingent, security markets. The main
result of this section is a characterization of Pareto optimal allocations and equilibria. This
characterization is based on the fact that incomplete preferences are described by a family of
utility functions. The usual condition for Pareto optimality in terms of equating marginal rates
of substitution extends naturally using a set-valued notion of marginal rates of substitution.
Having obtained a characterization of Pareto optimal allocations, we use a standard argument
to characterize equilibria.

There are two dates, 0 and 1. At date 1, there are S possible states of nature, indexed by
s=1,...,5. There is a single consumption good available at date 1; for simplicity we assumne
there is no consumption at date 0. At date 0 agents can trade in a complete set of Arrow
securities for contingent consumption at date 1. We let A denocte the standard simplex in Rf_.

There are finitely many agents, indexed by ¢ = 1,..., 7. Each agent has an endowment
Wt € Rﬁ of contingent consumption at date 1, and a preference order > over Rf_. We
use superscripts to denote agents and subscripts to denote states. To model the distinction
between risk and uncertainty we follow Bewley (1986) and allow each agent’s preference order
to be incomplete. We maintain the following assumptions regarding agents’ characteristics:1®

Foreachi=1,...,7

(A1) o e RS,

(A2) there exists a closed, convex set IT' C A and a %, concave, strictly increasing function
ut : Ry — R such that for any z,y € RY, # »* y if and only if

s s
Zﬂsui(scs) > Zwsu"’(ys) for all 7 € II%.

3=1 s=1

Although preferences are potentially incomplete, there are natural notions of Pareto opti-
mality and equilibrium in-this model. Indeed, our model is a special case of equilibrium models
with unordered preferences developed in Mas-Colell (1974), Gale and Mas-Colell (1975}, Shafer

15WWhile we work in Bewley’s framework, in which each agent has a family of expected utility functions charac-
terizing his incomplete preference order, our results should carry over to a more general setting in which agents’
incomplete preferences are generated by a family of utility functions v{w,x) over probabilities and contingent
consumption bundles that are not necessarily linear in the probability 7. For example, it should be possible to
incorporate features like probabilistic sophistication, as in Machina and Schmeidler (1992).

12




and Sonnenschein (1975), and Fon and Otani (1979). Our definitions of Pareto optimality and
equilibrium follow theirs.

First, as in standard models, an allocation is Pareto optimal if there is no other allocation
that each agent strictly prefers.
Definition A allocation (ml, oyt ) is Pareto optimal if there is no other allocation (yl, ooyt )
such that y* =" z* foreachi=1,...,T.

Thus (z%,... ) is Pareto optimal if there is no allocation (y,...,y") such that for each
agent ¢
s _ ] ‘
Zﬂsu’(y:;) > Zﬂsuz(mg) for all 7 € II".
s=1 8=1

Notice that if preferences are complete, ie. i II’ is a singleton for each ¢, this corresponds to
the standard notion of Pareto optimality.

Similarly, the definition of equilibrium remains unchanged: each agent chooses an element
that is maximal in his budget set and all markets clear.

Definition An allocation (ar;l, - ) and a non-zeroc price vector p £ Rﬁ are an equilibrium
if

l.zxigi=p-z>p-u foralli

2. p-at=p-uforali.

Although the definition of equilibrium is unchanged, many allocations may be equilibrium
allocations when preferences are incomplete. This happens precisely becatse no assumptions
are made about agents’ choices between incomparable alternatives. To address this issue, we
use an inertia assumption as a possible equilibrium refinement device. Inertia says alternatives
incomparable to the status quo are not chosen. We take an individual’s initial endowment as
his status quo, and apply this reasoning. Given his budget set, an agent will not choose a
bundle different from the initial endowment if it is incomparable. This inertia assumption thus
leads naturally to the following definition of equilibrium.

Definition An allocation (z?,. .. ,xl ) and a non-zero price vector p € Rﬁ are an egquilibrium
with inertia if

l.z-izt=p z>p-w foralli

13




2. p-zt=p-ut foralli

3. for each i, cither ¥ = w?, or Ey[ui(zf)] > Epluf(w?)] for each 7t € I

Equilibrium with inertia considers focal equilibrium allocations in which (some) agents do
not trade. With inertia, an equilibrium involves trade only if it is preferred to the status quo
by all individuals who engage in trading. Inertia has particularly sharp consequences when
the allocation of initial endowments is an equilibrium. In that case, the initial endowment
allocation is also the unique equilibrium allocation with inertia provided agents are risk averse
and their beliefs have full support, as the following simple lemma demonstrates.

Lemma 1 Suppose assumptions A1-A2 hold, and in addition that for each i, u' is strictly
concave and I C int A. If (w',... ,w') is an equilibrium ollocation, then it is the unique
equilibrium allocation under inertia.

Proof: Let p be a price vector supporting {wl,...,w!) as an equilibrium. Suppose by way of
contradiction that there is another equilibrium allocation with inertia, (=Y. . xl) # (Wl wl).
Let T be the set of agents who trade in this equilibrium, so

T=1{i:z' #u'}

Then T # #, and by inertia z* =* W' for each i € T. Since (w!,...,w’) is an equilibrium
supported by p, we claim that

p-zt>p-wiforall ieT

To see this, recall that for each i € T, Eplui(z?)] = Enlui(w?)] for all wt € II*. Thus for each
n > 1,

A
2t St st W
n
by the strict monotonicity of u®. Then for each n > 1,
i 1 i
pirt+-—w ] >p-w
n
which imples that

p-mizp-w
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Now suppose there exists ¢ € T such that p- 7t =p-ot. Fix a € (0,1). By the strict concavity
of u¢ and the fact that II* C int A,

E ozt + (1 — a)w')] > En [(w?)] for all n* € it
But

p- (ot +(1—apt)=ap 2’ +(1—a)p-w' =p-u'
which is a contradiction. Thus

p-:ri>p-wi forall :€T

~(5)r (5)

Sat= T

T €T -

by feasibility and the definition of 7. ]

Adding over 7 yields

But this is a contradiction, as

Our first basic result shows that, as in the standard model with risk alone, equilibria
exist, and every equilibrium allocation is Pareto optimal. These results are straightforward
applications of work on equilibrium analysis with unordered preferences; see Mas-Colell (1974),
Gale and Mas-Colell (1975), and Fon and Otani (1979},

Theorem 1 Under assumptions A1 and A2, every ecomomy has an equilibrium and every
equilibrium allocation is Pareto optimal.

Proof: To show that an equilibrium exists here, we will appeal to the equilibrium theorem of
Gale and Mas-Colell (1975). To this end, for each 4 define the preference mapping P* : RS —

oRY by
Piz)={ye Ry > z}.

Then P is irreflexive, i.e. z ¢ P*(z) for every z, and has non-empty convex values by the
concavity and strict monotonicity of u*. Finally, P* has an open graph in R‘i X R‘f_. To show
this, let (z,y) € graph P’. Then

Zwsui(ys) > Zwsu’:(ms) for all = ¢ I
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Since o' is continuous, for each 7 € II* there exist neighborhoods U about 7, Vx about y and
W, about x such that

Za—r (%) >Zvr’u"”(ac8) forall @' € Up,y' € Vi, 2’ € Wr.

As {U; : m € II*} is an open cover of II¢ and II* is compact, we can find a finite subcover
{Upe :k=1,...,m}. Let V=04V and W = pWee. Then forany y € V and &’ e W,

ngu’(y;) > ngu*(x;) for all 7' € TI* © Upls.

That is, W x V C graph P*, which establishes that P* has an open graph. Now by Gale and
Mas-Colell’s equilibrium theorem, an equilibrium exists.

That every equilibrium allocation is Pareto optimal follows from standard arguments (see
Fon and Otani (1979)). [

Next we establish a parallel result for equilibria with inertia.
Theorem 2 Under assumptions Al and A2, every economy has an equilibriurn with inertia.

Proof: Let X = {z € RS : z < 10w}. Define the following correspondences V* on I x --- x
7 x A x X!

fori=1,...,1,
Vi, p )={{yeX:p-y<p-w’:} ifp-a*>p-w
PO = fyeXipy<p )iy Bgli@) > BuldG@} ifp-of <poof

While fori =10

Vompa)={geAiqg- Y o' >q- > o'}

First note that if Vi(m,p,z) = @ foreach: =0,... , 7, then (z, p) is an equilibrium in the risk
economy with priors given by m.1% To see this, note tha.t ifVO(m,p,x) =Ptheng-S 2 < g3 w*
for each ¢ € A. Hence Szt < Ew‘ ie zis feamble Next, if Vi(m, p, ) = §, then p-z* < p-u?,
and thus z* is maximal in agent i's budget set since

{yeX:py<p-w}n{y: Euli'®)] > Enlw'(z)} =0

16T his is just a special case of Gale and Mas-Colell’s construction with complete preferences and pure exchange.
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Now for each i define the correspondence Wt : IT! x - -- x I x Ax X! — 11 by

witnl,... 7l pz)= {7 €I*: Epsui(zh)] < Egsl[ui(w)]}-

Note that each of these might be empty, and that (p,z) is an inertia equilibrium if there
exists some 7 such that each of these is empty.

So definé the correspondence V : I x --- x I x A x XT - I x --- x I x A x XT by
V=W, WLVO L V),

Each component of this correspondence clearly has convex values, and we claim each has
an open graph. To show this, fix a point (7, p,z,7',q,y) € graph V. Then consider each
component of V in turn.

First, for each i, Ep[ui(z?)} < Eplu(w?)}, so by continuity we can find neighborhoods N*
of (m,p,z) and M* of 7’ such that Exlu} ()] < E:[ui(w?)] for each (%, §,%) € N* and & € M?,
i.e. such that N* x M* C graph W*.

Next, consider V0. Since g-3.z* > g- > w?, we can find neighborhoods NO of (7,p,7)
and MP® of g such that §- 3% > §- S w* for every (#,5,) € N’ and § € M°. Thus
NU x MO® C graph VO.

Finally, consider Vi If p- > p-wh thenp-y < p- w*. In this case, clearly there
exist neighborhoods i about (m,p,z) and K% about y* such that Lj x K{ C graph Vi. Now
suppose p-z¢ < p-w. Then p -y < p-w' and Enfui(y)] > E_:[u*(«*)]. Then again there
exist neighbo_rhoods L Qf (_71', p,x) and K§ of 3¢ such that fpr every (T, P, F) e L} a.pd it € 'KE;
5§ < P o and Exfui(§)] > Epi[ut(w®)]. Thus Ly x K3 C graph V*. Soset L' = L1 N L}
and K* = Kin K}i: we have shown that L' x K* ¢ graph V%

Then by Gale and Mas-Colell’s fixed point theorem {Gale and Mas-Colell (1975), p. 10),
there exists (7,75,2) € ' x --+ x If x A x X1 such that

1. either p € VO(#,5,%) or VO(7,5,2) =0

2. for each i, either * € V¥{(#,5,%) or V¥(T,p,E) = 0

3. for each i, either # € Wi(%,,%) or W¥(T,5,%) =0

Now note that if §- 3 > 7 - w*, then V*(#,D, %) # 0 and F ¢ V¥(#,p,T) by construction.
So we must have p- 2 < p- &' Then clearly #* ¢ V¥(%,5,%), so Vi(z,p,z) = 0. Next,
since p- &' < p - w' for each ¢, P - ST <p- Yowt. Thus 7 ¢ VO(#, p, ), which implies that

VO(x,5,2) = 0. Thus for each ¢ = 0,...,7 we must have Vi{(#,p,T) = @, from which we
conclude that (B,z) is an equilibrium in the risk economy with priors given by 7.
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Using the fact that (7,Z) is an equilibrium in the risk economy with priors %, individual
rationality implies that #* ¢ W*(#,5,Z). Thus W*(7,5,Z) = 0 for each i. From this we
conclude that (5, Z) is an equilibrium with inertia in our original economy. |

Next we give several useful characterization results. The first is a characterization of Pareto
optimal allocations that extends a no-trade result in Bewley (1989). The main idea is to use the
set of supports of the preferred set to characterize Pareto optimal allocations and equilibria.

For any fixed bundle z € RY, incompleteness implies that the set of bundles preferred to =
has a kink at z. Nonetheless, we can characterize the possible supports of this set. For this we
require the additional assumption that each agent’s von Neumann-Morgenstern utility index
has no critical points.

(A3) For each i, u¥{(c) > 0 for every ¢ >0

Now for any consumer i and each x € Rf"F 4y let

n%@:{(-i:%,m i%) :weﬂ‘}.

An element g € IT(z) is an element of the simplex A, i.e. is itself a probability measure, thus
this set represents the vectors of “marginal beliefs” induced by the bundle z. As we show
below, the set IT*(z) is the set of supports of the better-than-z set. Notice that if  is constant
across states, [I{(z) = II*. Also, if IT is a singleton, so is IT(z). Thus when preferences are
complete this construction just yields the (normalized) marginal utilities.

Since the set [T*(x) also represents the possible supports of the better-than-z set, an {inte-
rior} allocation (z,...,z) is Pareto optimal if and enly if there is a common element of the
sets IT¢(z*). This result is established formally in the following theorem, adapted from Bewley
(1989).17

Theorem 3 Under assumptions A1-A8, an interior allocation (z*,... ") is Pareto optimal
if and only if

1
ﬂ I (z*) # 0.
i=1

7 Bewley (1989) focuses on the absence of trade when individuals’ preferences are incomplete. In particular,
Bewley assumes the inertia assumption holds, and therefore that an individual is willing to trade only if she
can obtain a strictly preferred consumption bundle. His Propositions 3.1 and 5.1 then provide conditions under
which a no-trade result obtains under inertia. In our setting, the same conditions are used to characterize Pareto
optimality and equilibrium.
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Proof: Define the sets K* and K as follows:

K= {zGRS Zﬂau z+.7;)>z:1'1's )forallTrEH‘}

K:{ £II K'u{0}): l Zz —0}

Then (a:l, - ) is a Pareto optimal allocation if and only if K = {0}. So we need only show
that

I

(I (z*) # 0 <= K ={0}.

=1

Suppose ﬂf;l T (mz) “Qandlet pe n;'r=1 T (53") For each i, let 2* € K*; then, using the
definition of K*, we have
S . .
0 « Z?rs al (74 +2b) — ul (z3)] forall w e I
S . . - "
Zwsu”(mg)z; for all m € IT",
=1

where the second inequality follows from the concavity of u?. This last inequality implies that

@
Zg":tff(m 2> 0 for all m € IT". (1)
t

Since p € [IF¥{z?), for each i there exists n* € II* such that

() ) )
Tomut(e) Enui(a)

Since (1) holds for every 7 € II and every %, we can substitute p in (1) and conclude that

g

2330323J =p-z >0 for all i.
g=1

19




Summing over individuals, we get

or

Since p # 0 this implies

and thus K = {0}.

Now suppose K = {0}. We must show this implies N, I (z') # 0. Let X = S (K*U {o}).
Since K = {0}, X NR* ={0}. Letp & RS, with p # 0, separate X and RS. In particular,

p-z>0forallx e X.

Without loss of generality, take p to be normalized so that Z§=1 ps = 1. Note that K; C X
for all i. Therefore

p-z >0 for all z € K;, for all 7.
‘We claim that p € ﬂf___l I (w‘) To see this, first note that for all i, IT* (:c’) i3 compact and
convex (see Lemma 3 in the Appendix). Let ¢ be given. Now if p ¢ ITé(z?), there exists y # 0
such that
py<b<p-y W eIl(z)

Moreover, we can take b = 0 without loss of generality, as if b # 0 define § such that gs = y,—b
for each s. Then 7 # 0 and

p-g=py-b<0<p y—b=p-g V' eIl

Finally, there exists & > 0 such that ay € K; (since Y iul (28)gs > 0 for all n* € IT¥). So
choose o > 0 such that aj € K;, and note that

p-(ag) <0< p'-(ag) Vp eT(z?),
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contradicting the definition of p. Thus p € IT{(z*). Since i was arbitrary, we conclude that
p € IF(z). .

In the course of this proof, we have also established the useful and intuitive result concerning
the set of supports of an agent’s better-than set to which we alluded above: the set of “marginal
beliefs” corresponding to a bundle completely characterizes the set of supports of the better-
than set at that bundle.

Corollary 1 Suppose assumptions A1-A3 hold. Lety € RS, and

Bi{y) = {z [S Rf_ : Zwsui(zg) > Zfrsui(ys) forallme IP} .

Then p € A supports B¥(y) aty if and only if p € ITi(y). Moreover, if p € IT(y) then p strictly
supports Bi(y) at y, i.e. for everyz € B(y), p-2>p-¥.

Proof: Note that, adapting the notation of the preceding proof, Bi(y) = {y} + K*(y), where
Kily) = {z: SSmsulys + 2} > Y msu'(ys) forall @ € I1'}. Now the results follow by noting
that the preceding proof establishes that p € A supports Ki(y) at 0 if and only if p € I (y),
and that each p € IT¥(y) strictly supports K *(y) at 0. |

Theorem 3 above can be seen as a generalization of the main result in Billot, Chateauneuf,
Gilboa, and Tallon (2000) (for a finite state space). Assuming the economy has no aggregate
uncertainty and individuals have MEU preferences, they show that a full insurance allocaticn
is Pareto optimal if and only if all agents share at least one prior. As noted in Section 2, with
respect to bundles that involve no uncertainty, better-than sets mnder MEU and incomplete
preferences are the same. Therefore we can apply Theorem 3 to the special case of full insurance
allocations to obtain their result as follows.

Corollary 2 Under assumptions A1-AS, there is o full insurance Pareto optimal allocation if
and only if individuals have ai least one common probability distribution. In this case every
full insurance allocation is Pareto optimal.

Proof: If = is a full insurance allocation, then Z* is constant in every state. Thus for each 2
there exists ki such that zi = k' for each state 5. In this case, the set [I*(2*) becomes

Fro8Y e "Tlui’(ki) WS“ﬁ'(ki) ) i
e = {(Ztmﬂckﬁr'“’_Emuéf(ki))'“E“}
= {(71'1,... ,TTS):WEH'L}
= II%
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Therefore by Theorem 3, z is Pareto optimal if and only if
(I ) = #6
i i
that is, z is Pareto optimal if and only if agents share a common prior.

If (), [T # @, then for any full insurance allocation y,
ﬂHﬁ ) = ﬂHi # 0.
i i
Then by Theorem 3, y is Pareto optimal. ]

As the next corollary shows, if all individuals are risk-neutral then any interior allocation is
Pareto optimal provided the agents share at least one prior.!® This result can be thought of as
the extension to an environment where there is uncertainty of the equivalent result under risk.
In that case, any interior allocation is Pareto optimal when agents have a common (unique)
prior. In our case, there must be at least one such prior.

Corollary 3 Under assumptions Al-A2, if all individuals are risk neutral then an interior
allocation is Pareto optimal if and only if individuals have ai least one common probability
distribution.

Proof: If agent 7 is risk neutral, the set [1*(z*) reduces to

i mkt k' \ | ;
H(m)_{(ztﬂzki’”"Z;Wtki rmell

for some constant k*. Clearly, this implies

I (z*) = {(my,... ,mg) T E II'} = IT.

Therefore, for any allocation z,
T (<) #0  ifandonlyif I #0.
i i
Again by Theorem 3, an interior allocation z is Pareto optimal if and only if (), TI* # 0. =

We now turn to characterizations of equilibrium allocations. Theorem 3 shows that an
allocation is Pareto optimal if and only if there is a common element in the marginal belief
sets of all agents at their bundles in the allocation. As with standard Negishi-type arguments,
a Pareto optimal allocation is then an equilibrium if there is a price in this commmon support
set at which each consumer’s budget constraint is satisfied.

18 e siatement is a direct implication of Proposition 3.1 in Bewley {1989).
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Theorem 4 Under assumptions A1-A3, an interior allocation (z*,... yz!) s an equilibrium

allocation if and only if
ﬂIIi () #0
i
and there exists p € [); I (:r") such that p- 2t = p- Wt for eachi.

Proof: et (z1,...,z') be an interior equilibrium allocation. Then there exists a non-zero
p e R such that p-y > p-z* for every y € RS such that y > z*. Without loss of generality,
suppose p is normalized so that 3 ps = 1. Then by Corollary 1, p € TI*(z*). Since this holds
for each i, p € [ IT*(z?).

Now suppose there exists p € [JII!(z*) such that p- zt = p- W' for each 7. By Corollary 1,
for cach i, f y =t ' thenp-y>p-zt=p- W', Thus (z1,... ,z7) is an equilibrium allocation
supported by p. ]

As an immediate consequence, we obtain the following characterization of equilibria with
inertia.

Corollary 4 Under assumptions A1-A3, an interior allocation (z,. .. yoh) # (W W) ds

an equilibrium allocation with inertia if and only if for every such that ©* # «*, Ba[ut(zt)] >
E:[ut(wt)] for each =t € T,

and there exists p € (), I (z%) such that p-2* =p- w* for each i.

Proof: This follows immediately from Theorem 4 and the definition of equilibrium with inertia.
E

Finally, we can also use these results to characterize when no trade will be the unigue
equilibrium with inertia.

Corollary 5 Suppose assumptions A1-A3 hold, and in addition that for each i, u is strictly
concave and IIF C int A. Then the no-trade allocation (wl, e w! ) is the unigue equilibrium
allocation with inertia if and only if

I
ﬂ 154 (w“‘) £ 0.
i=1

Any price p € (Y, IT* (wi) supports (wl., cwl).
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Proof: This follows immediately from Corollary 4 and Lemma 1. ]

These results can easily be illustrated graphically. Figure 3 depicts a no-trade equilibrium.
The initial endowment is w. Agent 1’s preferences are described by the grey indifference curves;
bundles preferred to w! are to the northeast of these indifference curves. Agent 2’s preferences
are described by the black indifference curves; bundles preferred to w? are to the southwest
of these indifference curves. In this example, there are no allocations preferred to w by both
individuals, hence the initial endowment is Pareto optimal and an equilibrium, and it is the
unique equilibrium with inertia. A range of prices supports this as an equilibrium.

State 2

State 1

Figure 3: A no-trade equilibrium

Figure 3 helps to represent a basic feature of individuals’ interaction in this economy.
Uncertainty reduces the set of mutually beneficial trades. In the diagram, the presence of
uncertainty in each individual’s beliefs is reflected by the kink at the initial endowment. More
uncertainty implies a “sharper” kink since more probability distributions are used to determine
the set of consumption bundles preferred to the initial endowment. Therefore more uncertainty
implies that there are fewer allocations preferred to the initial endowment by all agents. Risk-
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aversion also plays a rale since the curvature of the utility function determines the shape of
the better-than sets. Risk-aversion is reflected in an incentive for individuals to seek mutual
insurance, and hence trade away from the initial endowment. The trade-off between these
forces determines equilibrium.

State 2

State 1

Figare 4: An equilibrium involving trade

Figure 4 depicts an equilibrium with inertia in which there is trade. As before, w is the
initial endowment, agent 1’s preferences are represented in grey, while agent 2’s preferences
are in black. Indifference curves through the initial endowment are illustrated using thin lines.
In this case, the set of Pareto improving trades is the lens-shaped set. The allocation z is an
equilibrium, supported by p. To see this, note that z is Pareto optimal, since the better-than-z
sets do not intersect, and clearly p supports z. Finally, since z* is preferred to w* by both
individuals, this is an equilibrium with inertia.

Figures 3 and 4 also help to highlight a relatively simple way to characterize Pareto optimal
allocations. As noted in Section 2, we can think of each individual evaluating consumption
bundles using a family of utilities. In figures 3 and 4, we display only the most extreme
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indifference curves for each individual. When an allocation is Pareto optimal, there must exist
members of each individual’s family of indifference curves that are tangent at that allocation.
A closely related point is made more formally by the following theorem.

Theorem 5 Under assumptions A1-A8, an interior allocation x = (z,...,z!) is Pareto op-
timal if ond only if there exists nt € II* for each i such that x solves the social planner’s
problem

I s
max A Z miui(zl)
=1 3=1
I I
s.t. Zm’: = Zwi
i=1 i=1

for some weights N > 0 such that 3, N=1.

Proof: First note that there exists at € TI* for each ¢ such that z solves the social planner’s
problem

I s
max Z Y Z it (zh)
i=1 =1
I I
s.t. Z = Z w
i=1 i=1

for some weights A* > 0 such that 3, A = 1 if and only if « is Pareto optimal in the risk
economy with priors (71'1, oo yml ). Then in this case there exists no allocation v such that

Zm’;uz(y;) > ngu"(mg) forali=1,...,[
3 -]
which implies that there exists no allocation y such that y* »* z* for each . Thus z is Pareto

optimal in the economy with uncertainty.

To establish the converse, note that since x is Pareto optimal, [, T4 (z*) 5 B by Theorem
3. Thus there exist 7¢ € IT* for each i = 1,... , 7 such that for each g, 7,

R CA T i )
ot wéui' (#3) > ""g“j f (-'5'1)

for all s.

Then in the risk economy with priors (7!, ... , 71, z is Pareto optimal. ]
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The previous result can also be interpreted as a description of the relationship between
Pareto optimal allocations in an economy where uncertainty is present and those in economies
where there is only risk. In particular, Theorem 5 shows that an allocation is Pareto optimal
in our economy if and only if it is Pareto optimal in a standard risk economy in which agents
assign some unique subjective priors 7t chosen from the sets IT¢, In the next section, we expand
on this therne.

4 Determinacy and Comparative Statics

In the previous section, we provided a characterization of equilibria with and without inertia.
In this section, we analyze the role of uncertainty in determining equilibrium outcomes. We
proceed in two directions. First, we investigate how uncertainty affects the determinacy of
equilibrium allocations and prices. We find robust indeterminacies for every initial endowment
vector. Our results are in fact quite stark: provided there is sufficient overlap in agents’
beliefs, there are a contimuum of equilibrium allocations and prices, regardless of other features
of agents’ beliefs, initial endowments, or aggregate endowments. Our second class of results
establishes that, despite such robust indeterminacies, the set of equilibria varies continuously
with the amount of uncertainty agents perceive. In particular, as uncertainty goes to zero (that
is, agents perceive only risk), the equilibrium correspondence converges to an equilibrium of
the economy in which there is only risk.

The following is our main indeterminacy result. For this result we will use a standard Inada
condition coupled with the requirement that all agents’ beliefs have full support to ensure
that all equilibria are interior, and hence that we can use the characterization of equilibria in
Theorem 4. The addition of these assumptions also further highlights the role of uncertainty as
the source of indeterminacies in our model, since these are essentially the assumptions under
which generic determinacy would obtain in the absence of uncertainty. Thus here we add

(A4) for each 7, u”(c) » o0 asc— 0
(A5) for each i, II' C int A

Theorem 6 Suppose assumptions Af-A5 hold, and {; II* has full dimension. For every initial
endowment vector {wl, ... ,wl), there is a continuum of equilibrium allocations and prices.

The idea behind this result is straightforward. First consider an economy which has suffi-
cient uncertainty in which the belief sets of all agents admit a common probability distribution.
Consider the risk-only economy defined by this common prior. An equilibrium in this economy
is an equilibrium in the economy with uncertainty, but there are infinitely many other equilibria

27




around it due to uncertainty. This fact, established in the next lemma, immediately implies
our indeterminacy resuit.

Lemma 2 Suppose assumptions A1-A5 hold, and [); I has full dimension. Let 7 € int[); I
and let x be an equilibrium allocation in the risk economy with common prior w. Let p € A be
the equilibrium price supporting x, so

mou’ ()

py = —=———— for each s.
T meut (2)

Then

(i) z is an equilibrium allocation and p € {; I (z?)

(i) there ezists a neighborhood V of x such that every neighborhood V' Cc V of z contains
infinitely many equilibrium allocations

(i) there exists o neighborhood O of p such that every ¢ € O is an equilibrium price supporting
somex €V.
Proof: For (i), note that there exist AL,..., AT > 0 such that
w? (zt) = Nul(z]) for each s.
Then for each # € [}, II* and for each i, 7,
Fad(eh) el (o)
T a(zl) Y il (w)

Hence [}, I¥(z%) # ¥, and p € [ ITi(zf). Clearly p-a* = p-w' for each i, which implies that
(z;p) is an equilibrium under uncertainty.

for each s.

For (ii) and (iii), first note that since (), I has full dimension, so does [, IT(z*). More-
over, since 7 € int[ I, p € int(}; II*(z?). Now by Lemma 4 in the Appendix, there exist
neighborhoods V of z and O of p such that

ocIE) WeV
i
Without loss of generality, taking & smaller neighborhood if needed, we can ensure that for
each y € V, y* =* w* for each i. Then choose y € V such that p-y' = p - w* for each 7; there is

s continmum of such allocations. Since p € [; IT(z?), ¥ is an equilibrium allocation supported
by p.
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For (iii), define the correspondence B : A — RA% by
Blg)={ye RIS :q.¢/ = g-w' ¥i}.

To establish (i), it suffices to show that there exists a neighborhood O of p such that B(g)NV #
0 for all g € O. To that end, we claim that B is lower hemi-continuous at . To show this, let
g > 0 be arbitrary and take ¢" — ¢ and y € B(g). For each n, set

. 1 . . ,
,ym=@1_(qn_w1_qn,yz)el+yz

where ¢! = (1,0,...,0). For n sufficiently large, y'» > 0. Clearly y™ — y and

n

Sy = G-y

= g°-ut

Thus 3® € B{g") for all n sufficiently large. We conclude that B is lower hemi-continuous.
Now note that B(p) NV # 0, as z € B(p)NV. Since V is open, the lower hemi-continuity of
B implies that there exists & neighborhood O of p such that B(g)N'V # @i for all g € O. ]

This result is illustrated in Figure 5. As usual, w is the initial endowment, agent 1’'s
preferences are grey, while agent 2’s preferences are black. The allocations z and y are both
equilibria supported by the same price vector since the corresponding better-than sets do not
intersect. Roughly, the kink of the better-than sets of each individual moves along the price
line from z to y. Therefore, any allocation between these is also an equilibrium.

Notice that the result in Theorem 6 is independent of the precise nature of agents’ beliefs,
as long as they have full-dimensional intersection, and of the presence of aggregate uncertainty
or certainty. In this sense, uncertainty is a robust source of indeterminacies. In Section 6, we
show this is not the case in economies where individuals have MEU or CEU preferences. In
those cases, indeterminacies are possible only under very specific assumptions about belief sets
and/or initial endowment vectors.

Next we turn to comparative statics analysis, and analyze how the set of equilibria changes
with uncertainty. Recall that by Proposition 1 we can think equivalently of varying the degree
of completeness of agents’ preferences or varying the size of their belief sets. With this in
mind, we show first that the set of equilibrium allocations is monotone in beliefs, that is, any
equilibrium of an economy with smaller belief sets, hence with more complete preferences, is
an equilibrium of the economy with larger belief sets.

Theorem 7 Suppose assumptions A1-A2 hold. Let (z,p) be an equilibrium in the economy
with belief sets (I1%,. .. ,HNI ). If 111 C II¢ for each i, then (z,p) is also an equilibrium in the
economy with belief sets (IT1,... | 117).
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Figure 5: Multiple Equilibria

Proof: Let (x,p) be an equilibrium in the economy with belief sets (II%,...,II'), and let
IIi C [T for each i. Fix j. To see that (z,p) is an equilibrium in the economy with belief
sets ([1%,...,[17), it suffices to note that if Smeul(ys) > Yomeud(zd) for all m € IV then
Tomsud (ys) > S mgud (z3) for all 7 € . Hence p-y > p-w’ for any such bundle y, which
implies that (z,p) is an equilibrium in the economy with belief sets ({13, ... 7). ]

The next result establishes that in our model equilibria vary continuously with uncertainty.
To make this statement precise, we will need some notion of distance between sets of priors.
For this purpose we will use the Hausdorff topology on the set of all subsets of priors 22. Recall
that for arbitrary sets A, B the Hausdorff distance is

d{A, B) = max {sup dist(z, B), sup dist(y, A)} .
yelB

€A

For compact sets, in particular for the sets of priors to which we restrict attention, this is in
fact a metric.
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Theorem 8 Under assumptions A1-A2, the equilibrium correspondence £ : ML, 28 - RIS x
A is upper hemi-continuous.

Proof: Fix (II%,... ,IIY). Let II*» — II’ for each 4, and (z",¢") € E(II'», ... ,[I¥") such that
z® — z and ¢* — g. For each n,
7 = W
and Zm"“ = Zwi
So

1

gzt = gt ¥
and Z:‘ci = Zwi

Now we must show that (z,q) € E(I,... ,II¥). To that end, fix ¢ and let = >* z*. Then for
each 7 € IT¥, B .[ui(z)] > Ep:[u*{(z?)]. For each n* € TI* there exists a neighborhood Ly« of m
and M, : of z* such that

Eulwi(z)] > Egalu'(2)]

for all #° € L« and # € M,:. The collection {L: : 7t € II'} is an open cover of [T%, and since
II* is compact we can find a finite subcover {L1,... ,Lm}. Set L = um Ly and M = ML M.
Then for every m € L and y € M, we have

Erfu(z)] > Ex[v(y)]

Now since II** — II' and z'» — ¢, there exists N sufficiently large such that for n > N,
I’ ¢ L and z'» € M. Thus for n > N,

Epin [u¥(2)] > Epin [u'(z™)]
for all 7 € IIi». As (2", ¢") € E(II*»,... , II’»), we conclude that
@ -x>qt-ut foralln> N

Thus g-z > ¢-w*. This shows that for every y such that y Wi zi gy > gw'. Now suppose, by way
of contradiction, that there exists x such that = »* z¢ and ¢-z = g-w*. Choose € > 0 sufficiently
small such that y = z — ew® =% 2%, Then ¢-(z — ew') = (1 —€)g-w* < ¢ -wt, a contradiction.
Thus if z > z¢, then g-z > ¢- . This establishes our claim that (z,q) € E(IT,... 7). m

A similar result holds if we restrict attention to equilibria with inertia. We leave the details
to the interested reader.
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Theorem 8 enables us to derive several important implications. Intuitively, these are simple
consequences of the trade-off between risk and uncertainty that characterizes equilibria in our
model. At one extreme, for any vector of initial endowments there is a large enough amount
of uncertainty such that no-trade is the unique equilibrium allocation with inertia. At the
other extreme, when uncertainty becomes smaller and incentives to insure are very strong,
all equilibria converge to the equilibrium outcome with only risk. These results are formally
established below.

First, the next result shows that in the presence of risk aversion uncertainty can always
hamper trade since as it becomes sufficiently large, the no-trade allocation is the unique equi-
librium with inertia. Notice that the result would trivially hold if the belief set of each agent
is the entire simplex. Instead we show that the initial endowment is an equilibrium allocation
even if agents rule out some distributions.

Corollary 6 Suppose assumptions A1-AS and A5 hold, and u* is strictly concave for each t.
There exist belief sets ﬁl,... ,ﬁI with II' # A for each i such that the unique equilibrium
allocation with inertia in S(ﬁl, - ,ﬁl) is (W', ... ,wi). If (Tt ... Jim) — (ﬁl, ces ,ﬁl) and

(z™,p™) is an equilibrium with inertia in E(Itt», ... ,II!) for each n, then 2™ — (Wh...,wh).

Proof: First it suffices to show that there exist belief sets ﬁl, . ,ﬁI with II' C ént A for each
i such that (), IT*(w*) # 0. To that end, fix 7' € int A. For each ¢ # 1, set

ﬂ.'rl — Xi Triulj(wi)
8 1] 3
u¥(w})
for each s =1,...,5, where
M= .,__}_...
- alaltfwly ®
e
Then 7' € A and by construction,
() ()

Yoy L mut(er)

for each i. For each i, choose TT such that n* € T and T cint A. Then by comnstruction, for
these belief sets [}, TT*{w?) # 0. Thus (w!,...,w’) is an equilibrium allocation, and by Lemma
1, it is the unique equilibrium allocation with inertia.

Now let (IT'=,... H) — (... JTI') and (z",p") be an equilibrium with inertia in

E(TIm, ... , 1T} for each n. Take any convergent subsequence (z™,p™*) — (z, p). By Theorem
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8, (z,p) € E(IT,... JII'»). Fix ¢ such that z* # w'. Then there exists K > 0 such that for
k> K, o™ # w'. Since (¢™*,p™) is an equilibrium with inertia for each k, we conclude that

Bpsut(zi™)] > Eului(W?) for all 7 € TTém
for each k > K. Letting k& — o0 yields
B (@) = Bplui(e)] for all 7 € T

Thus {z,p) is an equilibrium with inertia in £, ... ). By Lemma 1, = = (w!,... o).
Since every convergent subsequence of {z"} must converge to (o!,... ,w!), we conclude that
™ — (wl, ... wl). [

We now show that if individuals’ beliefs are close enough to a unique prior, then the
equilibria of our economy converge to the equilibria of the risk economy. This result also
establishes that the equilibria in the standard risk setting are robust to adding a small degree
of uncertainty. This is a consequence of the monotonicity and upper hemi-continuity of the
equilibrium correspondence established in Theorems 7 and 8.

‘Theorem 9 Suppose assumptions Al-A2 hold. Let A eAfori=1,...,I, and let (z,p) €
E(xl,...,7!). For any sequence of belief sets (Ie,... IR — ({'},... An'}) such that
7t € I for each i and n:

(i) there ezists a sequence {(z,p")} such that (z",p") € E'», ... 1) for each n and
(z™,p") - (z,D)-

(i) if {(z", p")} is a sequence such that (z*,p™) € E(TTH, ... 1T for eachn and (z™,p™) —
(2,8), then (2,9) € E({m'},... Axt1).

Proof: Part (i) follows immediately from the monotonicity of the equilibrium correspondence
in belief sets established in Theorem 7, by setting (z™,p") = (z,p) for each n. Part (ii}
follows immediately from the upper hemi-continuity of the equilibrium correspondence at

({='},. . {7 D) m

Finally, as the last corollary demonstrates, if the equilibrium of the risk economy happens
to be unique, then all equilibria under uncertainty converge to that equilibrium as uncertainty
shrinks.

Corollary 7 Suppose assumptions A1-A2 hold, and let 1 € A for each i. Assume that (z.p)
is the unique equilibrium in the risk economy with priors (w4, ,wh). If (=, ... ) —
{=1},... . {=1}) and (z",p") € E(TD,... ,II'*) for each n, then (z™, ") — (z,p).
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Proof: By Theorem 8, the equilibrium correspondence is upper hemi-continuous at ({n}, ..., {x'}).

Let (II*~,... Ty — ({x'},... {'}) and (2, p") € E(II'»,... ,II') for each n. Take
any convergent subsequence {z",p"*). Since the equilibrium correspondence is upper hemi-
continuous at ({7'},..., {x’}) and (z, p) is the unique equilibrium given beliefs ({m1},... . {7'}),
(z™,p"™) — (z,p). Then as every convergent subsequence must converge to (z, p), we conclude
that (z®,p") — (z,p). n

In particular, note that this corollary applies in the case in which there is no aggregate
uncertainty, agents are risk averse and have a (unique) common prior, as in this case there is
a unique equilibrium in the risk economy with that prior.

5 Uncertainty and Risk

Tn this section, we derive conditions under which endogenous market incompleteness can arise
in our model. In the previous sections, we have shown that no-trade obtains when uncertainty
is ubiquitous. In that case, securities markets are extremely incomplete since no exchange takes
place in equilibrium. Here, we show that when there is uncertainty only about some events,
there may be equilibria in which securities contingent on these events are not traded, while
securities contingent on the remaining (risky) events are traded. In this case, a more limited
degree of market incompleteness is possible in equilibrium, in that risky securities are traded
while uncertain securities are not.

The state space contains two types of events: events that all agents perceive have a unique
probability, and events that some perceive do not. To find conditions under which only risky
securities are traded in equilibrium we proceed as follows. First, we define an equilibrium
concept as if trades in securities contingent on nncertain events were not allowed. Then we
give conditions under which this constrained equilibrium is an equilibrium when unrestricted
trading strategies are allowed. To make this analysis precise, however, we need to introduce
some new notation that allows the focus to shift to trade contingent on events rather than
states.

To this end, consider the state space S divided into two sets, Sk and Sy. The set Sg
contains all of the risky states, those to which each agent assigns a precise probability, and Sy
contains. all of the uncertain states, those to which some agents assign multiple probabilities.
In parallel, the set of all possible events £ C Sis divided between risky events R and uncertain
events U{, where

R= {E C §: for each i, Z’n‘; is unique for all Fisl= H‘}.

SER
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and
U={ECS:E¢R}

Notice that the union of all uncertain events is an element of R, and so is the event given by
the union of all uncertain states.

In this framework we study the incentives for trade over risky and uncertain events. Given
a bundle z € RJS{ and an event E C 8, let z{E) = {5}, denote the vector of consumption
in the states contained in the event E. Similarly, given m € A, let m(E) = {7,}scr denote
the probabilities of the states contained in the event F. With slight abuse of notation, we
let u¥(z(E)) denote the vector of marginal utilities corresponding to z(E), so w(z(E)) =

{v¥(@s)}seE-

Suppose agents can only trade in securities contingent on risky events. Then, we can define
an equilibrium subject to this restriction as follows.

Definition An allocation (:1:1, Y ) and a non-zero price vector p € RS are an equilibrium
over risky events if

1. for each i, $%(F) = «*(E) for each E €U
2. for each 4, if y(F) = w*(E) for each F €U and y >* z*, thenp -y > p- o’

3. for each i, p-7* = p- u'

In an equilibrium over risky events, each agent must consume her endowment when an un-
certain event occurs. Therefore, the individuals consider only consumption bundles that respect
this restriction. One can see easily that an equilibrium over risky events is, by construction,
an equilibrium with inertia.

The next theorem establishes conditions under which an equilibrinm over risky events is
actually an equilibrium. Intuitively, this can happen whenever individuals’ initial endowments
in the uncertain events are Pareto optimal contingent on those events. Thus this theorem gives
conditions under which markets for trade over uncertain events do not function.

Theorem 10 Suppose assumptions A1-A3 hold. Let (x;p) be an interior equilibrium over risky
events. Then (z;p) is an equilibrium if and only if

7(U) - (@HU)) R
n { (EEeu m(E) - uﬂ(mi(E))) Ueld el } 70

i
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Proof: If  is an equilibrium allocation over risky events, then

#(R) -u(a(R)) e
1 {(zEeR B T ) ™ T} 0

%

By assumption,

(U) - w¥(zU) rell
(] { (S w5 )y ™ <" } 7o

Thus for each 7 there exists ¢ € II* such that
TU) - (@U)  _ _ mU)- ul/(z(U))
S g TE) W (@H(E)  Lpey (B) - uV(zH(E))

for each U € U. Thus for each i there exists M, > 0 such that

7 (U) - w¥ (zHU)) = Ny (U) - w2 (U))
for each U € U, similarly, for each ¢ there exists A% > 0 such that
T(R) - (T(R)) = N (R) - ' (= (R))

for each R € R. Now to establish our claim it suffices to show that Mg, = A}, for all 2. To that
end, note that

| {s}=Su=5\SreR

SESy
while for every s € Sy, {s} € /. Thus for every s € Sv,
() = )
which implies that

3 maf(ah) = M, D mut(=)

€8y seSy

or
7(Sy) - v (@ (Sp)) = M (Sw) - u!' (@ (Sv))-
However, since Sy € R,

7 (Sp) - o (#(Sy)) = Mo (Sv) - u (=1(Sv))
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which implies that M, = ), for each i. |

This result can be viewed as a natural analogue of our equilibrium characterization results
in section 3. To make this analogy more precise, define the set II(z*(U)) as follows

I'(zX(U)) = ( m{U)- uﬁ(f_(U?) ) eIl
Y peu™(E) - w(2HE)) ] yey

Using this notation, Theorem 10 states that an equilibrium over risky events is an equilibrium
if and only if (), IT¥(z*(U)) # @. In sections 3 and 4, we used the corresponding set M (=)
to characterize equilibria and derive comparative statics results. Those results could easily
be modified so that they apply to equilibria over risky events by using the intersection of
these “conditional” belief sets (), [I*(z*(U)). For example, an appropriately modified version
of Corollary 6 would show that if belief sets over uncertain events are large enough, then all
equilibria over risky events are equilibria since the initial endowment is always conditional
Pareto optimal. We leave the details of these results to the interested reader.

Theorem 10 proves particularly useful with additional information on the characteristics of
the economy. For example, suppose there is no aggregate uncertainty over the uncertain states
and therefore there is no aggregate uncertainty over any uncertain event. Then, similar to
the conclusion of Corollary 2, an equilibrium over risky events is an equilibrium if and only if
agents have at least one prior over uncertain events in common. This result can be illustrated
more precisely as follows.

Corollary 8 Let R € R be a _risky event such that R =T04U---UUpy for some uncertain
events U € U, and such that R contains no other proper nsky subevent. Suppose there is no
idiosyncratic or aggregate uncertainty over the stales in R, so for each s,t € R, Wi = ui for
each i. Then an equilibrium over risky events is an equilibrium if and only if agents have one
common conditional prior over the uncertain events Uy,... ,Un.

Proof: To establish this claim, consider an equilibrium over risky events {(z,p). Since each
agent’s initial endowment is constant across the states in R, z(R) will be constant across
states for each ¢ as well. Now consider insurance markets for the uncertain events Uy, ... ,Un.
By Theorem 10, (z,p) is an equilibrium if and only if

T(U) - v (2 (Uk)) e [T
m { (Ee wt(Up) - uz’(mt(Uf)))k— Ly el } 7o

But note that z*(Uy) is constant for each s € Uy C R and for each k, thus for any k,

U)W O) _ Deer, s
I CARTICIGA) D oS
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Thus there is no trade on these new markets if and only if

Z EUk ﬂ-g : .
—— eIl #0.
O (ZE EtEUz 3 E=1,...,m

that is, if and only if the agents share a common conditional prior over the uncertain events
Ul, ceny Um. |

A simple way to understand this result is to imagine that markets open sequentially. Ini-
tially, only markets for trades contingent on risky events are available. After all trades in these
markets are completed, and the economy is in an equilibrium over risky events, the possibility
to open new markets for insurance over uncertain subevents of some risky event is considered.
Is there any trade in these new financial instruments? Using the previous result, we can say
the new markets will succeed if and only if there is sufficient disagreement over the likelihoods
of uncertain events. Otherwise, the uncertainty motive to avoid trade prevails and financial
Innovations fail.

6 Comparisons with Existing Literature

In this section, we compare the results of the previous sections regarding the impact of uncer-
tainty on equilibrium predictions with the ones obtained using Choquet expected utility (CEU)
or maxmin expected utility (MEU).!® The heart of this distinction is the following observa-
tion. When preferences are incomplete, there is an important trade-ofl between risk (aversion)
and uncertainty {aversion) in exchange situations. This trade-off is absent in CEU and MEU
models, because in these cases agents have a strong desire for insurance stemming from their
drive to equate utility in levels across states at the margin. In the CEU and MEU settings,
uncertainty makes agents “more” risk averse.

One of the most important features of previous models of uncertainty aversion has been
the possibility of indeterminacy of equilibria. This point was first raised by Dow and Werlang
(1992) in a partial equilibrinm setting. They study a portfolio choice problem under uncertainty
in which the agent is a Choquet expected utility maximizer with convex capacity. They show
that if such a decision-maker starts from an initial riskless position, then there is an interval of
(exogenously given) prices at which the agent will neither buy nor sell short a given risky asset.
This result might suggest that the Choquet expected utility model of uncertainty aversion could
generate absence of trade in the face of uncertainty and robust indeterminacies in prices.

193105t CEU applications restrict attention to the case in which agents use a convex capacity. As discussed
in Section 2, this assumption renders CEU equivalent to MEU where the set of probability distributions is the
core of the capacity.
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Although their conclusions are suggestive, Dow and Werlang (1992) work in a partial equi-
librium setting, leaving open the question of whether the endogenously determined equilibrium
prices display indeterminacy or support no trade. Motivated in part by this work, Epstein and
Wang (1994) show that equilibrium prices may also exhibit significant indeterminacy when
agents are Choquet expected utility maximizers. They study the extension of Lucas’s as-
set pricing model to the CEU setting, and show that this representative agent economy may
permit a continuum of equilibrium prices. From this, Epstein and Wang conclude that the
determination of a particular equilibrium price process is left to “animal spirits” and that sig-
nificant price volatility might result. Since they work in a representative agent model, however,
equilibrium prices are simply prices supporting the representative agent’s initial endowment
and no trade in the assets; there are no nontrivial opportunities for risk sharing. Even in
their representative agent setting, however, equilibrium indeterminacy is not always obtained.
Indeterminacy in equilibrium prices requires asset payoffs to vary across states over which the
agent’s endowment is constant. The intuition for this fact can be derived simply from thinking
of a two-state picture: with CEU preferences, the representative agent’s indifference curves
have a kink along the certainty line and nowhere else. A consumption bundle varying across
the states has a unique supporting price, so indeterminacy in supporting prices requires an
initial position involving certainty across the states.

The implications of these results for heterogeneous agent economies are even more unclear,
as Epstein and Wang (1994) note. The fact that there may be a contimium of prices supporting
a given Pareto optimal allocation does not mean there are a continuum of equilibrium prices
supporting this allocation. Again, a simple Edgeworth box illustrates the problem: unless the
endowment is Pareto optima)l and hence there is no trade in equilibrium, there is a unique price
that both supports the allocation and goes through the initial endowment allocation.?0

The fact that these indeterminacy results break down in heterogeneous agent CEU economies
is further clarified by the work of Dana (2000), Dana (2001), and Chateauneuf, Dana, and Tal-
lon (2000). The latter shows that in the CEU model with common convex capacity, Pareto
optimal allocations (and hence equilibrium allocations) are necessarily comonotonic. Since
CEU preferences satisfy the independence axiom over comonotonic bundles, these preferences
are (locally) like expected utility over the consumption bundles relevant for equilibrium anal-
ysis. Morcover, Dana (2000} shows that in the same setting, the degree of equilibrium price
indeterminacy is linked to the variation in aggregate endowments across states. If there is no
aggregate uncertainty, any prior in the core of the agents’ common capacity is an equilibrium
price, and the set of equilibrium allocations is a convex polyhedron. If instead the aggregate

298ee also Epstein (2001) for a heterogeneous agent model with this feature. Epstein (2001) argues that
uncertainty aversion can help explain the home-bias puzzle in international trade. The paper gives a parametric
two-agent, two-period MEU model in which the (robustly) unique equilibrium is consistent with underinvestment
in “foreign” securities relative to “home” securities due to greater uncertainty about the returns to ‘“foreign”
securities.
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endowment is state-revealing (i.e. is a one-to-one mapping on the state space), however, then
equilibria correspond to those in a standard risk economy with a fixed common prior, and hence
are generically determinate. Since the set of state-revealing endowment vectors is itself an open
and dense set in the positive cone, generically there is no indeterminacy in either equilibrium
allocations or prices in this case, and generically there are no observable distinctions between
these models and standard expected utility. Finally, in Rigotti and Shannon (2001), we show
that the generic determinacy of equilibria holds for general MEU preferences, and in particular
for CEU preferences with convex but differing capacities.

Mukeriji and Tallon {forthcoming) further investigate the possibility that uncertainty aver-
sion in a heterogeneous agent CEU model might lead to an endogenous breakdown in markets
for some risky assets. In a model with heterogeneous agents and incomplete markets, they show
that the condition identified by Epstein and Wang (1994), that asset payofls are “idiosyncratic”
in that they vary across states over which endowments are constant, is sufficient to guarantee
that with sufficiently large uncertainty every equilibrium involves no trade over these assets.

In contrast, we show that when uncertainty is modeled by incomplete preferences, agents’
behavior differs in response to risk or uncertainty, allowing us to capture the intuition that there
is a trade-off between risk and uncertainty. Moreover, every initial endowment allocation gives
rise to equilibrium price indeterminacy, regardless of whether there is aggregate uncertainty or
not, and regardless of agents’ beliefs (provided there is suflicient overlap).

These results can be illustrated using a series of Edgeworth boxes. Figure 6 presents the
same situation illustrated in Figure 3 (which depicted a no-trade equilibrium in our setting),
but assumes instead that individuals have CEU preferences with common convex capacity.
Here the initial endowment vector is w, and the shaded area represents consumption bundles
preferred to this initial endowment vector by both individuals. In this example, there are many
such bundles, while instead with incomplete preferences (represented by the thin indifference
curves) no-trade is an equilibrium, and is the unique equilibrium with inertia. As is evident
here, individuals with CEU preferences have a strong incentive to insure, regardless of whether
they are facing risk or uncertainty.

Figure 6 also illustrates equilibria in the CEU model with commeon convex capacity. As.
Chateauneuf, Dana, and Tallon (2000) show, Pareto optimal and equilibrium allocations are
comonotonic; in the diagram, the comonotonic allocations are those between the two certainty
lines. As the picture illustrates, allocations that are not comonotonic cannot be Pareto optimal.
With only two states, aggregate uncertainty implies immediately that the aggregate endowment
is state-revealing, since it differs across the two states. Thus in this case we see & simple example
of Dana’s (2000) results: the equilibria correspond to equilibria in a standard risk economy with
a fixed common prior.

In contrast, Figure 7 illustrates the case of no aggregate uncertainty. Here with CEU
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State 2

State 1

Figure 6: Incentives to Insure with MEU Preferences

preferences Pareto optimal allocations involve full insurance, so are on the (common) certainty
line. As Dana (2000) shows, every prior in the intersection of the cores of the agents’ capacities
is an equilibrium price supporting some equilibrium allocation. Moreover, Billot, Chateauneuf,
Gilboa, and Tallon (2000) show that full insurance is Pareto optimal in this setting with
differing capacities whenever individuals’ beliefs have at least one prior in common. This result
can also be derived as a simple consequence of necessary conditions for Pareto optimality.
Pareto optimality requires the existence of a common support to each agent’s preferred set.
With CEU preferences, the set of supports at a bundle on the certainty line is simply the set of
priors in core of the agent’s capacity. Thus an allocation involving full insurance can be Pareto
optimal only if there is some common prior in each agent’s set of priors.
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State 2

Figure 7: No Aggregate Uncertainty

7 Conclusions

In this paper, we have developed a simple Arrow-Debreu economy in which Knightian uncer-
tainty is modeled using incomplete preferences. This model exhibits an important trade-off
between risk and uncertainty that in turn generates two intuitive features of equilibria: ro-
bust indeterminacies in both equilibrium allocations and prices and no trade in equilibrium
for sufficient degrees of uncertainty. These results are in sharp contrast with what obtains us-
ing other approaches to Knightian uncertainty, such as Choquet expected utility and maxmin
expected utility. In those cases, generically equilibria may be determinate and identical to
equilibria in a standard expected utility model with fixed priors. This contrast highlights the
danger in drawing inferences about equilibrium behavior from features of individual choices
in a decision-theoretic framework. In this respect, the cautiousness implicit in preferences in
our model allows incentives for mutnal insurance to depend on this trade-off between risk and
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uncertainty, which is entirely novel in an equilibrium setting.

An added benefit of this model is its relative tractability. Despite the apparent complications
arising from incomplete preferences, we are able to give a simple characterization of Pareto
optimal allocations and equilibria using agents’ sets of normalized gradients generated by their
sets of priors. In a straightforward generalization of standard results, optimal allocations
here are simply those at which some selection of priors yields equality of marginal rates of
substitution across agents.

OQur work suggests several natural and promising areas for further exploration. One that
we have briefly discussed here is the connection between uncertainty and incomplete markets,
and the extent to which Knightian uncertainty aversion can explain the endogenous failure of
some insurance and asset markets. A second is to cast the model in a dynamic framework and
examine the interplay between spot markets and asset markets in the face of uncertainty about
fundamentals as well as future prices. '

A Appendix

Lemma 3 Under assumptions Al-A3, II* : Rﬁ L= ORI s a closed-, conver-valued, conlinu-
ous correspondence.

Proof: Fix z € R . First, we show that IT(z) is convex for every . To that end, pick a
X € [0,1] and 7,7 € II*. Then define

1 N 1
= «-——.——and = =TT s e
T St (@) Yo Ao (@)

One can easily verify:

}\Wsui’_(:zs) (1—X) ﬁ.,.u"’ (zs)
Zt Tt (ze) > Teut ()

A'Yﬁsuél(ws) + (I - A) %suﬂ(m’s)

_ ~ Ay o~ (1_)();? i
= D=9 (e R )

Teu' (z,)

> T ()

where

_ My ~  {(1-AM7%
TN -NG At (- N7

Ts
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and

1 Ay 1 1-N5 1

— = —= ==
MY+ (1—-A)F M+(1-A)v'r x\7+(1—f\)~m

i ______,_,.,,.,_ 3/ }‘)Af s zf
= /\‘r-i-(l— AZ?T{LL (:L‘t)-i-)\ -l-(l Zt:':r (z¢)

_ St ~_ (1-A)F @
N Z(’”)\7+(1—A)$+“‘A7+(1—A)ﬁ)“ ()

t

= Z ﬁtui’ (sct)

Now since IT? is convex, 7 € IF%. Thus 3, Tu¥(x:) € II'(z), which establishes that II¥(z) is
CONVex.

To see that II*(z) is closed, let ¢" € IT(x) such that ¢" — g. Since ¢" € II¥(z), there exists
7™ e II* such that

n Ty u’ (zs)

&= T arut (o)

Since IIf is compact, choose a convergent subsequence {=™}, converging to T € IT*. Then
g™ — g, and

. 75U (Ts)
b= T wed ()
Thus g € ITI*(z).

Next we establish that IT*(-) is upper hemi-continuous at z. Let z" — z and ¢" € *(z™)
such that ¢ — g. Then for each n there exists 7" € II* such that

nPut ()
z ahud (.’E

As above, take {77} to be a convergent subsequence, converging to 7 € II*. Since ¢ — g
and £ — z, the continuity of u* implies that

’n

wou¥ ()

s = S (@)
Thus ¢ € II*(z).
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Finally, to see that IT*() is also lower hemi-continuous at z, let z" — z and g € IT¥(z).
Then there exists m € II* such that

_ et (Ts)
% = Zﬂ'tui’(zt)
For each n define " by
n Wsui’(a:?)

O = Trad(af)

Then ¢"* € ITI(z") for each n and clearly ¢" — g. Thus IT:(-) is lower hemi-continuous at z. As
= was arbitrary, the proof is completed. ]

Lemma 4 Suppose assumptions AT-AS hold. If z is an equilibrium allocation for which
;I (z*) has full dimension, and p is an equilibrium price supporting = such thatp € int ) TH{(z?),
then there exists a neighborhood O C [; II(z%) of p and a neighborhood W of = such that for
every € W, O € N, IE(&). In porticular, ; () £ 0 forallT € W.

Proof: Let x and p satisfy the hypotheses. Choose a neighborhood O of p such that C{0) C
int (), ("), where

C(O)E{peA:Psz 'frs,s:l,...,S}

min
me(); (%)
Foreach s=1,...,5, let

M= min T,
we ), MHzt)

and let {e°} be the extreme points of C(O), thus

o8 = my if t £ s
P - T =

For each s, define

W, = {TF c intﬂﬂ"(:zi) imy < e fort+# s} .

T

Note that W, is non-empty and open for each s.
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Figure 8: Construction of W,

Now fix i. Since II*(-) is lower hemi-continuous, for each s there exists a neighborhood Vj
of z* such that

M (z)NW, #0
for all € V,. Let V = NV,. Then for every z € V,
(' YNW, £ Vs
Fix z € V. For each s, choose ¢° € IT{(x) N W,. Since II*(z) is convex,
con {g*,... ,¢°} € ()

where con{z!,...,2°} denotes the convex hull of the set {z,...,2°}. But by construction,
gince q° € W, for each s,

O C C(0) Ccon {¢,...,¢"} C TI'{x)
Thus O C ITI¥(z) for all z € V™.

As i was arbitrary, there exists a neighborhood V of the allocation = such that O c N Iy
forally e V. B
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