
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Real-time fire detection in low quality video

Permalink
https://escholarship.org/uc/item/7px2287c

Author
True, Nicholas James

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7px2287c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Real-Time Fire Detection in Low Quality Video

A Thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Nicholas James True

Committee in charge:

Professor Serge Belongie, Chair
Professor David Kriegman
Professor Truong Nguyen

2010

Copyright

Nicholas James True, 2010

All rights reserved.

The Thesis of Nicholas James True is approved and it is acceptable in qual-

ity and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To my Mom and Dad for all of their love and support.

iv

EPIGRAPH

”Time is the fire in which we burn.” - Delmore Schwartz

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Abstract of the Thesis . 1

Chapter 1. Introduction . 3
1.1. Problem . 4
1.2. Why Is Fire Detection A Non-Trivial Problem? 5
1.3. Previous Work . 6
1.4. Thesis Structure . 7

Chapter 2. The History of Fire and Smoke Detection Systems 8
2.1. Introduction . 8
2.2. Heat Sensors . 8
2.3. Smoke Detectors . 9
2.4. Point vs Line sensors . 11
2.5. Flame-Based Fire Detection . 11
2.6. The Motivation for a Robust Video-based Fire Detection System 12

Chapter 3. Setup and Data . 14
3.1. Hardware Setup . 14
3.2. Training and Testing Sets . 15

Chapter 4. Region of Interest Detection . 18
4.1. Introduction . 18
4.2. Detecting Fire Only Using Color . 20
4.3. Motion Detection . 22

4.3.1. Common Motion Detection Algorithms 22
4.3.2. The Motion Detection Algorithm . 23

4.4. Color Classification . 24
4.4.1. Color Classification of Fire . 24

vi

4.4.2. Neural Networks . 27
4.4.3. Color Classifier Training and Results 31

Chapter 5. Region of Interest Classification . 34
5.1. Introduction . 34
5.2. Dynamic Texture Recognition . 35

5.2.1. Introduction . 35
5.2.2. Formal Definition of Dynamic Textures 36
5.2.3. Finding the Model Parameters . 36
5.2.4. Dynamic Texture Classification . 37
5.2.5. Results . 39

5.3. SVM-based Fire Detection . 40
5.3.1. Introduction . 40
5.3.2. Support Vector Machines . 40
5.3.3. Features . 45
5.3.4. Putting Everything Together . 50
5.3.5. Results . 55
5.3.6. Run Time . 56

Chapter 6. Conclusions and Future Work . 59
6.1. Conclusions . 59
6.2. Future Work . 63

References . 65

vii

LIST OF FIGURES

Figure 2.1: A diagram of a photoelectric smoke detector (3). 10
Figure 2.2: A diagram of an ionizing smoke detector (2). 10

Figure 3.1: Screen shots of training videos with fire in them. 16
Figure 3.2: Screen shots of training videos with no fire in them. 17

Figure 4.1: The green outline shows a hybrid fire-and-non-fire segmented output
from the feature detection stage. The red outline indicates a “clean” segmented
output from the feature detection stage. 19
Figure 4.2: Fire color is not unique to fire! The left-hand picture is the original and
the right-hand picture shows a fire pixel and a non-fire pixel have the same color. 20
Figure 4.3: The number of candidate sequences using a neural network trained on
RGB, HSV, L*a*b* input data. Clearly, classifying fire-colored moving objects as
being fire will return poor results in any of these color spaces. 21
Figure 4.4: An example of fire color classification. The top row are the original
images. The bright red color in the bottom row indicates where pixels have been
classified as being fire colored. 25
Figure 4.5: A two-layer perceptron. The input is x = (x1, x2, ..., xn)T and the
output is y = (y1, y2, ..., ym)T . There are M hidden nodes, m output nodes, and
there are two bias values set to 1.0 at the input and hidden layers (the triangles).
These bias inputs are crucial for the perceptron to work properly. 28

Figure 5.1: The top picture shows two clusters being separated by a randomly
chosen hyperplane. The bottom picture shows the hyperplane with the largest
margin (4). 41
Figure 5.2: The left-hand image shows the two-class input data. No linear classifier
can separate the two classes of data. The right hand image shows the data after it
has been projected into 3D space using the kernel trick. The data is now separable
by a plane (31). 44
Figure 5.3: Top left: frame 1, top right: frame 2, middle left: inner, middle right:
outer, bottom left: raw motion image, bottom right: annotated motion image. For
the annotated motion image, the green line is the inner contour, the orange line is
the outer contour, and the red line between the green and orange lines demonstrates
edge distance for one inner contour point. 48
Figure 5.4: A conceptual demonstration of how edge motion is localized to mo-
tion regions. In this image, there are eight motion regions corresponding to eight
motion features values. 48
Figure 5.5: A graph of classification rates vs the number of edge motion bins. All
other feature parameters are held steady. 51
Figure 5.6: A graph of fire classification using an SVM and edge normal-line
angles. All other feature parameters are fixed. 51

viii

Figure 5.7: A graph of fire classification using a support vector machine and edge
normal-line angles. All other parameters are fixed. 52
Figure 5.8: Pixel flicker ROC curve used to determine the flicker count threshold
value for the sequence flicker feature. Note that this ROC curve is an alternate
representation of the data from table 5.2. 54
Figure 5.9: A graph of classification rates vs SVM kernel. All other feature pa-
rameters are held steady. 55
Figure 5.10: A graph of 50-frame sequence pixel run times. 57

Figure 6.1: Fire shape outlines (27). 60
Figure 6.2: Top row: non-fire shape outlines derived from the feature detection
stage. Bottom row: blown up versions of the shape outlines from the top row
images. 61

ix

LIST OF TABLES

Table 4.1: This table shows the perceptron training results for night videos. 32
Table 4.2: This table shows the perceptron training results for bright day videos. . 32
Table 4.3: This table shows the perceptron training results for dim day videos. . . 33

Table 5.1: Dynamic texture test results from a nearest neighbor classifier using
Martin Distance. 39
Table 5.2: Pixel flicker table showing the relationship between the flicker thresh-
old value and the subsequent true/false positive classification rate of pixel-level
classification. 53
Table 5.3: 20-fold cross validation results on the training set. 56
Table 5.4: Total classification results for the training set and for the test set. 56

Table 6.1: Each training and testing file was composed of 1000 circles and 1000
squares. 62

x

ACKNOWLEDGEMENTS

I would like to thank Chris for the new box, without which I’d still be waiting

for my research results! I would also like to thank Prof. Serge Belongie, Prof. David

Kriegman, and Prof. Truong Nguyen for their advice and help on my thesis.

xi

ABSTRACT OF THE THESIS

Real-Time Fire Detection in Low Quality Video

by

Nicholas James True

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Serge Belongie, Chair

For over fifty years, simple smoke and heat sensors have been the primary means of

automated fire detection. We are now at the point where computer processing power is

cheap enough and machine vision technology is sophisticated enough for a new gen-

eration of automated fire detection systems: video-based fire detection (VBFD). While

current smoke and fire detection technology has proven to be reliable and effective,

VBFD technology promises to go where existing systems can’t and to detect fires faster

than its venerable predecessors ever could.

This thesis explores a few methods for achieving real-time video-based fire de-

xii

tection in low quality data. Assuming a stationary source camera, we describe an algo-

rithm that uses a support vector machine to classify short, targeted video sequences as

fire/non-fire. The algorithm achieves a classification rate of 96.0% on a holdout set of

real world data. Furthermore, the system is robust with respect to the distance from the

fire source, works day or night, and only requires the processing power of a common

desktop computer.

xiii

Chapter 1

Introduction

Every year, thousands of structure fires destroy property and hurt people in the

United States (37). On the front line in the defense against fire disasters are automated

fire detection systems such as smoke alarms and heat sensors. These systems work well

at providing warning to unsuspecting victims, thus saving lives and reducing property

damage.

However, these fire detection systems are far from perfect. Take the common

smoke alarm for example. It depends on there being sufficient quantities of smoke to

build up before it will go off. If the room is big or if irregular heating and cooling of

different parts of the room cause the smoke to stratify 1, it can take a very long time for

the smoke alarm to go off.

Heat sensors face problems similar to those of fire alarms. In large rooms it can

take a long time for heat to build up enough to set off an alarm. As common sense

suggests, the more time it takes to set off the alarm, the more time the fire has to grow

and do damage.

A video-based fire detection (VBFD) system has none of these problems. VBFD

systems can detect fire at small or large distances and they can sound the alarm in as little

time as it takes to process the input video. There is no unnecessary waiting for smoke

1Stratification of smoke and hot gases is an uneven and often layered distribution of these fire byprod-
ucts in an enclosed space (1, 33).

1

2

or heat to build up. Furthermore, cameras are area sensors meaning that each sensor

is designed to cover a large area efficiently. Point sensors such as smoke alarms and

heat sensors need to be sprinkled all throughout an area in order to effectively cover

the target region. While it is true that smoke and heat will eventually travel to a set of

far flung point sensors, the extra time it takes to reach the necessary conditions for the

alarms to go off means more property damage and increased risk of injury or death to

any occupants of the burning structure. In other words, you need more point sensors to

cover the same amount of space that area sensors can cover. Lastly, cameras can work

effectively both indoors and outdoors. In outdoor settings, smoke and heat sensors are

virtually useless.

So why don’t people have VBFD systems monitoring their homes and businesses

instead smoke alarms? The answer is a combination of economic and technological

factors. Smoke alarms are very cheap and high quality cameras and processors aren’t.

Furthermore, the computer vision technology behind the fire detection has only been

reliable with toy examples or under limited and specific circumstances. However, as

processing power gets cheaper and computer-vision based fire detection algorithms get

more sophisticated VBFD systems will become more prominent in the real world.

1.1 Problem

The goal of this thesis is to find a reliable and robust algorithm for detecting fire

in low quality video data. In other words, say we have a regular closed circuit television

(CCTV) surveillance system setup in a building, it would be nice to send the video

from the CCTV cameras to a computer and have the computer monitor the video feed,

turning a “blind” surveillance system into an automated fire detection network. Thus it

is necessary for the fire detection algorithm to handle video with a low resolution and

frame rate.

For this project, we expect that the camera generating the input video is station-

ary. We consider fire detection using non-stationary cameras as a completely separate

3

problem. Also, we restrict the problem to detecting fire using a camera which can only

visualize the (human) visible light spectrum, i.e. a color video camera.

The point of this project is to visually detect fire like a human would. The reasons

for focusing on detecting fire in color cameras are two-fold. The algorithm put forth by

this thesis can easily be applied to existing networks of color cameras without the need

for investment in additional hardware such as infrared cameras. Furthermore, the flame

recognition algorithms described in this thesis can be applied to infrared cameras and

yet this VBFD algorithm is not dependent on the use of such specialized hardware.

1.2 Why Is Fire Detection A Non-Trivial Problem?

At first blush, it probably seems like detecting fire with a camera should boil

down to looking for orange and yellow blobs that move about. However, our research

definitively shows that there are many visual phenomenon in real life situations which

would produce false positives from such a simple heuristic.

Simply put, the difficulty in creating a machine-vision-based fire detection algo-

rithm is that most of the common techniques for tackling vision problems simply don’t

apply to fire detection. For example, a significant percentage of computer vision re-

search relies on feature point extraction, detection, and/or matching. Unfortunately, fire

has a number of characteristics which effectively thwart such an approach.

First off, fire is completely deformable. This makes tracking and matching very

difficult at best. Even worse than this is the fact that feature points are usually deter-

mined using a corner detector which depends on consistent changes in intensities. Fire

is a semi-translucent object which means that it has no defined edges, no consistent

intensity changes on it’s ‘surface’, and no corners of any kind on it’s surface.

Another common approach to solving computer vision problems is to perform

some version of shape or template matching on the input data. This works fairly well for

objects like doors or faces but would fail miserably on fire which has no defined shape

of any kind.

4

While it is currently quite hard to scientifically explain how humans and animals

recognize fire, intuition suggests that it is not through any of the methods mentioned

so far. Sure, we humans use color to weed out non-fire colored objects, but we also

use the behavior of fire and an excellent understanding of the surrounding scene to

make our final decision of fire/non-fire. Computer vision research has not yet reached a

point where a computer can classify everything in a scene except a possible fire object.

However, in this thesis we can and do leverage fire behavior to help use create a fire

detection and recognition algorithm.

1.3 Previous Work

Probably the most common first step in current VBFD algorithms is to detect

fire colored objects. Common methods for achieving this are to classify pixels as being

fire/non-fire using a segmented color space model (9, 18, 26, 39). Others use statistical

color models such as Gaussian models for each color channel in various color spaces

(35). Still others training a neural network to classify pixels based on color (23). For

some of these researchers this was the one and only step performed. Invariably, the

data sets used by these researchers were very specialized and usually focused on fire

detection in natural and very green environments.

An interesting approach taken by (34, 35) is to search for pixels with the right

amount of flicker from background color to fire color and back again. In (35), a discrete

wavelet transform is used to distinguish the flicker transitions and if the flicker count is

above a threshold, the pixel in question is labeled as being fire. In (34), a hidden Markov

model is used to detect flame flicker for each pixel.

Another tactic used to detect fire is to classify candidate fire blobs based on their

shape. The authors of (27) used the Fourier Descriptors to model the spatial frequency

information of the target blob’s shape. They then used an auto-regressive model along

with a support vector machine to classify blobs based on their shape. The results re-

ported were quite good. However, the fire blobs needed to be large to overcome edge

5

sampling and quantization issues.

In this thesis, we re-explore a number of the methods mentioned so far, incorpo-

rating the more successful and robust techniques into our research. We also introduce

techniques that have been successful in other areas of machine vision research but have

yet to find their way into the fire detection sub-community.

1.4 Thesis Structure

This thesis is organized into six chapters. Chapter 1 is the introduction. Chapter

2 provides a historical background of fire and smoke detection systems and it gives a

rational for developing a robust video-based fire detection system. Chapter 3 specifies

the system setup used for this research include the hardware and situational setups used

to gather and classify the input video data. Chapter 4 describes the methods used to

detect regions of interest in videos. Chapter 5 describes the methods used to classify

regions of interest in videos. Chapter 5 also enumerates the results achieved. Chapter

6 summarizes this thesis. Chapter 6 also analyzes the results with an eye for real-world

usefulness as well as opportunities for future work.

Chapter 2

The History of Fire and Smoke

Detection Systems

2.1 Introduction

Fire detectors are dime a dozen. Over the years, a myriad of different technolo-

gies and methodologies have been applied to automated fire detection. Each technology

offers its own set of strengths and weaknesses. This chapter focuses on describing many

of the most common and successful fire detection devices and the technologies behind

them. We then show why there’s a need for a vision-based fire detection system.

2.2 Heat Sensors

Developed in the 1860s, heat sensors were among the first automated fire detec-

tion devices (5). Like their name implies, these devices use the heat of the surrounding

environment to detect if a fire is present. Heat sensors fall into two categories.

The first type of heat sensor is the fixed temperature heat detector. Fixed tem-

perature devices activate an alarm after the sensor detects that the temperature has risen

above a predefined threshold which is usually 135◦F (58◦C) or higher (5). These de-

vices work best when placed on a ceiling or in an area where heat from a fire can build

6

7

up sufficiently to set of the alarm.

The second type of heat sensor is the rate of rise heat sensor. Like their name

implies, these devices activate when the surrounding temperature rises at a rate exceed-

ing the inbuilt threshold which is usually around 12 to 15 degrees Fahrenheit (7-8◦C).

These devices do not work reliably in areas which experience rapid temperature changes

such as kitchens, laundries, or near heaters and vents (5).

Overall, heat sensors are very reliable and don’t see many false positives if used

in the right locations with the proper conditions. However, they are slow to react to fires

and only work well in settings with the right environmental makeup.

2.3 Smoke Detectors

Smoke detectors are a common sight in commercial and domestic buildings.

There are currently a number of different smoke detector variants, each with its strengths

and weaknesses.

The first type of smoke detector is the photoelectric smoke detector. Photoelec-

tric smoke detectors have a light sensor and a light source in a chamber secluded from

external light. The light source is blocked from view of the light sensor. However, when

smoke enters the chamber, light bounces off of the smoke into the light sensor, setting

off the alarm. Photoelectric smoke detectors respond quickly to smoldering fires, but

take more time to detect flame-heavy fires (5).

The second type of smoke detector is the ionizing smoke detector. This type of

smoke detector uses a small amount of radioactive material to ionize air in a chamber.

The ionized air allows a small current to pass from electrodes on opposite sides of the

chamber. When smoke enters the chamber, the ionization effect is reduced and the

current drops, setting off the alarm (2).

A benefit of ionizing smoke alarms is that they do not experience as many false

alarms as photoelectric smoke alarms. Furthermore, ionizing smoke detectors are good

at detecting flame-heavy fires. However, ionizing smoke detectors are slower than pho-

8

Figure 2.1: A diagram of a photoelectric smoke detector (3).

Figure 2.2: A diagram of an ionizing smoke detector (2).

9

toelectric smoke detectors to detect smoldering fires (5).

2.4 Point vs Line sensors

Up until this point, all of the smoke and heat devices described in this thesis have

been point sensors. Point sensors simply check for the target condition at one specific

location. Point sensors rely on environmental factors to bring the requisite trigger (like

smoke or heat) from a fire to the sensor. Still, it is necessary to disperse multiple point

sensors over region to cover an are effectively.

Another type of sensor is the line sensor. These sensors check for a specific

condition over a long sensor line. For a heat sensor, this consists of a long tube or pipe

which is sensitive to heat over its entire length. For smoke sensors, a laser beam is shot

across a room or hallway to a receiver. Should the beam get blocked—hopefully by

smoke and not dust or a balloon—the alarm goes off.

On the positive side, line sensors can cover more area than a single point sensor.

Of course, these sensors suffer from most of the same problems that their point-sensor

brethren do.

2.5 Flame-Based Fire Detection

Many of the problems and short comings suffered by the point and line sensor

from the previous section can be overcome by a visually-based fire detection device.

This fact has not gone unnoticed and people have tried to implement visually-based fire

detectors. In fact, simple if not somewhat crude devices have existed on the market for

some time now.

The first flame-detection device is the ultraviolet-based flame detector. These

devices are set off by the presence of ultraviolet light which is commonly emitted by a

fire. On the positive side, these devices can cover an area, not just a point, and they don’t

suffer from any of the false alarm issues of the previously-mentioned devices. However,

10

ultraviolet-based flame detectors are susceptible to detecting non-fire UV sources such

as the sun. Sunlight can be hard to avoid and for this reason, ultraviolet-based fire

detectors only work well in specific situations. Lastly, UV detectors don’t work well

when the flames are far away from the device, making UV detectors useful only in

specific situations (3).

The second type of flame-detection device is the infrared-based flame detector.

As the name suggests, infrared-based flame detectors use a camera that is sensitive to in-

frared radiation to detect flames. Like ultraviolet-based flame detectors, infrared-based

flame detectors are among the fastest fire detection devices (2) out there but they do

suffer from a rather high false alarm rate. Infrared detectors often use flicker detection

to reduce the false alarm rate (2). Still, things like infrared lamps, cigarette lighters, car

headlights, neon signs, and solar reflection off of water can all trigger false positives in

an IR-based fire detection device (3).

2.6 The Motivation for a Robust Video-based Fire De-

tection System

If we analyze the various fire and smoke detection devices, two facts stand out:

each technology has it’s strengths and weaknesses, and one always needs specialized

hardware to ensure a vigorous watch for fires. Clearly there is room for improvement.

Video-based fire detection is an obvious answer to many of the problems listed

in the previous sections. VBFD devices are area sensors which means that one device

can efficiently and effectively cover a large amount of space. Furthermore, most of the

conditions which cause false alarms in smoke sensors, heat sensors, and flame sensors

don’t trigger VBFD systems. This VBFD algorithm can be “added” to existing secu-

rity camera systems simply with the addition of video processing hardware. Given the

ever increasing capabilities of computers and given that the cost for computers to run

the VBFD system will undoubtedly be lower than the cost of installing many new fire

11

detection devices.

To date, fire detection devices such as smoke alarms and heat sensors have done

a good job at alerting us to fires that would otherwise have hurt and killed more people

and damaged more property. However, the advances in computer vision and computer

hardware have come to a point where the next wave of even more effective and versatile

fire detection devices will probably be computer-vision based.

Chapter 3

Setup and Data

3.1 Hardware Setup

The intent of this project was to develop fire detection algorithms specifically

designed for low quality and low resolution videos based only in the visible light spec-

trum. While this project focused only on color videos, most of this research would still

work well on gray-scale videos so long as candidate fire sequences could still be ac-

curately detected and extracted by a modified region of interest (ROI) detection stage.

The reason for focusing on low quality video is because CCTV cameras used in secu-

rity surveillance systems use relatively cheap low quality cameras. Given that the most

likely initial usage of VBFD systems is to augment existing security surveillance sys-

tems, it makes sense to focus on this particular hardware setup. Furthermore, the fire

detection algorithm that we developed for low quality cameras should also work just as

well on video from expensive, high quality cameras.

To simulate low quality CCTV video data, we used a PowerShot A540 from

Cannon. All the videos created for both the training and testing sets were shot at 32

frames per second with a resolution of 320x240. All videos were shot with a completely

stationary camera.

12

13

3.2 Training and Testing Sets

The training set is composed of night videos, bright day videos, dim day videos

shot at varying distances and altitudes compared to the fire source. There are 28 videos

in all with a variety of backgrounds with a mixture of 17 videos with fire in them and 11

videos with no fire.

The fire detection algorithm is based on detecting candidate ROIs and then clas-

sifying them as being fire or non-fire. We decided upon using 50 frame sequences to

create the fire candidate ROI sequences. There are a total of 1874 training candidate

ROIs at 50 frames a piece. This can be broken down to 604 positive sequences and 1270

negative sequences. The following are a few screen shots from videos with and without

fire in them.

The testing set has a total of 36 videos and is composed of night videos, bright

day videos, dim day videos which were shot with a variety of backgrounds and distances

to the fire. The test set has 766 positive sequences and 1442 negative sequences at 50

frames apiece. Note that the set of training videos and the set of test videos share no

members. Thus, the training set of 50-frame video sequences share no members with

the set of test sequences.

14

Figure 3.1: Screen shots of training videos with fire in them.

15

Figure 3.2: Screen shots of training videos with no fire in them.

Chapter 4

Region of Interest Detection

4.1 Introduction

If we step back for a second to examine what a computer really is, we quickly

see that computers are just glorified calculators with only one innate skill: a prodigious

ability to add. To us humans, an image has instant meaning because we have an incredi-

ble ability to learn, remember, and understand the light patterns hitting the backs of our

retinas. We are designed to understand this information. On the other hand, a computer

“understands” an image to be an array of numbers. That’s it. To give a computer the

ability to see objects in an image, an object recognition algorithm is required to locate

the target items in the image.

The first step of any object recognition algorithm is to identify and extricate re-

gions from the input image. The resulting candidate regions then need to get passed to

the another algorithm which separates the target objects (true positives) from everything

else (false positives). Obviously, finding these candidate regions is very important as

nothing can get classified if no candidate objects are getting passed to the object classi-

fier in the first place. We call this stage of an object recognition algorithm, the “Region

of Interest (ROI) Detection” stage because it finds the candidate ROIs which are then

passed to the object classifier.

Like most object recognition algorithms, the fire detection and recognition algo-

16

17

rithm described in this thesis has an ROI detection stage. To achieve good classification

results, it is of the utmost importance that the ROI detection stage has the following two

properties.

First it is critical that the ROI detection stage find every instance of fire that it

comes across. If it misses any fire sequence ROIs, the fire candidate object classification

stage won’t be able to classify ROIs that it never receives and this will translate into a

larger false negative rate. Ideally we want the ROI detection stage to find and pass along

every fire ROI to the classification stage.

The other important property of the fire ROI detection stage is that it cannot re-

turn hybrid ROIs: sequences with candidate blobs composed of fire and non-fire objects.

The fire classification algorithm separates fire sequences from all non-fire sequences.

Figure 4.1: The green outline shows a hybrid fire-and-non-fire segmented output from

the feature detection stage. The red outline indicates a “clean” segmented output from

the feature detection stage.

Non-fire sequences may have behavior that is completely different from fire, or behav-

ior that is fairly similar to fire. Therefore, it is critical that all fire sequences only be

composed of flames outlines as including non-fire blobs or blob bits will confuse the

classifier. To put this in perspective, human classification of the silhouettes from hybrid

sequences was quite poor as well. Thus it is of of critical importance that the ROI de-

tection stage return no hybrid sequences. The following section describes how this is

18

achieved.

4.2 Detecting Fire Only Using Color

So why don’t we just detect fire using some sort of color detector? As we all

know, fire is (usually) an orangish-yellow color which means that it stands out and

therefore should be easily detectable. Unfortunately, life is never that easy and this

is no exception. Take the left-hand picture from below as an example. It may appear

that the fire is a distinctly different color than any of the other parts of the image. As

the right hand picture tries to show, fire color is not unique or distinct as both fire and

non-fire objects often share the same color in the same image. Furthermore, the color

Figure 4.2: Fire color is not unique to fire! The left-hand picture is the original and the

right-hand picture shows a fire pixel and a non-fire pixel have the same color.

of fire changes drastically depending on the amount of ambient light and the intensity

of light sources in the scene. Plus, there is no way to reasonably guarantee the colors in

the background. Even if there’s no fire color now, an orange squirrel could bound into

the scene and generate quite a few false positives in a color-only fire detection system.

What if we were to add a motion component to color classification? Could we

19

detect fire using color and the presence of motion alone to detect fire? Could we get a

good classification rate simply by classifying all fire-colored, moving regions in a video

as being fire?

To answer this, we created a program that would locate all 50-frame sequences

with a moving, fire-colored object in it. These sequences were then hand classified as

being fire or non-fire. This was done using a perceptron-based color classifiers trained

in the RGB, HSV, and L∗a∗b∗ color spaces. The side effect of this method is that the

sets of sequences from the three color spaces are not the same, even though the videos

from which the sequences were extracted are the same. This makes the comparison

of the effects of color spaces on a color and motion classifier inexact but it makes the

creation of fire-candidate sequence1 sets for the purposes of training and testing much

more manageable.

Figure 4.3: The number of candidate sequences using a neural network trained on RGB,

HSV, L*a*b* input data. Clearly, classifying fire-colored moving objects as being fire

will return poor results in any of these color spaces.

1A fire-candidate sequence is a 50-frame sequence which has a fire-colored moving object in it.

20

After examining figure 4.2 we can clearly see that there are too many fire-colored

moving objects to use the existence of fire color, motion, or both to detect fire. Color

and motion detection is only a good first step in the fire detection process. Additional

discriminative stages are required to complete the classification.

4.3 Motion Detection

4.3.1 Common Motion Detection Algorithms

The goal of motion a detection algorithm is to notice and locate objects that have

moved in the input scene. Most of the time, performance is of critical importance. This

means that we can’t spend the processor cycles trying to recognize and track objects in

the input video. We need to detect motion without understanding what types of objects

are in the scene. As you might imagine, motion detection is quite challenging when

we can’t distinguish objects in the target scene. The follow section describes different

motion detection algorithms and discusses some of the strengths and weaknesses of

these algorithms.

The simplest and probably the fast method for motion detection is frame dif-

ferencing. This idea assumes that the lighting of different objects remains the same as

time changes. Given this lighting assumption, the non-zero difference of two succes-

sive frames indicates where motion has occurred. Of course, shadows, reflectance, and

changes in light source locations can cause the lighting assumption to be wrong and

severely distort the resulting motion map.

A slightly more sophisticated version of frame differencing is median filtering.

This is a commonly used technique in motion detection and general background sub-

traction. For this algorithm, the background image is approximated by creating the

time-averaged median image which is then subtracted from successive images in the

video sequence to determine object motion (29, 21, 14, 15). This method has the ad-

vantage that it helps to remove or reduce minute lighting changes that can create false

21

positives in the motion detection results.

Another method described in (19, 13) for estimating the background image is to

recursively compute a weighted combination of the background image and the current

frame.

βt+1 = αβt + (1− α)γt

Simply put, a background pixel β at time t+1 is a combination of the current background

pixel and the pixel γ from the current frame. Note that α controls the combination of

background pixel and the current pixel. This method has the advantage of being simple

and fast.

A background estimation method (which can easily be turned into a motion de-

tection algorithm) that has become quite popular is to use mixtures of Gaussian (MoG)

to model the color probability of each pixel in an image. First proposed for background

modeling in (20), the MoG method models a pixel distribution as

f(It = u) =
K∑
t=1

wi,t · v(u;µi,t, σi,t)

where K is the number of Gaussianv(u;µi,t, σi,t) is Gaussian i, and µi,t and σi,t are the

intensity mean and standard deviations respectively (11).

There are even more background estimation and motion detection algorithms

out there. However, these methods often make certain assumptions about the scene in

question or the target object(s) that the algorithm is trying to detect movement from.

Invariably these methods don’t translate well to detecting the flicker of flames.

4.3.2 The Motion Detection Algorithm

There are two key concerns when deciding upon which motion detection algo-

rithm to use to find moving objects that might be fire.

The first concern is that the algorithm should be as fast as possible since the input

into the fire detection system is a real-time video stream; any delays in any stage of the

fire detection algorithm ultimately slows down the response time of the overall alarm.

22

The second concern is that we need to make sure that regions of interest that

actually contain flames should fully contain those flames. If the motion detection algo-

rithm is insensitive to the occasional flame flicker at the ends of fire, these edges may

get cut off. This in turn would distort the behavior of the candidate region which could

distort the results of the classification stage.

The algorithm that fit this fire detection problem best in terms of combined ac-

curacy and efficiency was a modified version of frame differencing. The algorithm is as

follows

Algorithm 1 Fire Candidate Motion Detection
Require: F {a sequence of K binarized movie frames}

Require: S {a 2D array of pixel motion counts with the same dimensions as F}

S ← zero(S) {set all of the counts to zero}

for i=1:K do

S← |Fi − Fi−1|

end for

motion mask← threshold(S)

return motion mask

4.4 Color Classification

4.4.1 Color Classification of Fire

Color is one of the primary features humans use to distinguish fire from non-fire

objects and other visual phenomena. While color alone is insufficient to completely

detect and classify objects as being fire/non-fire, it is a good feature for filtering out

obviously non-fire objects. This section discusses different color classification algorithm

that have been used in various fire detection algorithms.

In the simplest class of color classification algorithms are rule-based classifiers.

These methods usually involve human-determined rules and color channel thresholds

23

Figure 4.4: An example of fire color classification. The top row are the original images.

The bright red color in the bottom row indicates where pixels have been classified as

being fire colored.

24

for classifying pixels. A good example of this method is the work done in (6) where the

authors used the following rule set for classifying color using the Y CbCr color model

f(x) =

 1 if Y (x, y) > Ymean, Cb(x, y) < Cbmean, Cr(x, y) > Crmean

0 otherwise

With this method, the authors reported achieving a detection rate on fire data of 0.990

with a false alarm rate of 0.315 (6). These results are pretty good for a rule-of-thumb

algorithm and they can be achieved with a bare minimum of computational effort. The

extreme efficiency of this method makes it a perfect algorithm for low-powered devices

and as a first pass filtering step in an algorithm with a slower but more accurate (lower

false positive rate) second stage.

In (39), a similar approach to the last method was used except instead of using

the Y CbCr color space, the HSV color space was used. In (10) a rule-based color

thresholding algorithm was used in conjunction with the RGB color space. And in

(18), the same style thresholding algorithm was used based on the RGB and HSV

color spaces.

A completely different approach to fire color classification is to build a fire color

probability map and use it to determine whether a pixel is fire or not. This is the method

used in (24). More precisely, a sequence of n color values is accumulated for a specific

pixel in the target image and if the average probability of that sequence is greater than

an experimentally determined constant, the pixel is classified as being fire colored. This

operation is performed for each pixel in an image until the whole image has been labeled.

Just like the last class of fire color classification algorithms, this one has the advantage

of being computationally light weight.

The one downside of this algorithm is that it doesn’t classify each pixel in an

single frame as being fire or non fire. This algorithm classifies a pixel as being fire or non

fire on average over a sequence of frames. Because of this feature, the algorithm does not

work well with the methodologies put forth in this thesis because these methodologies

require that each frame’s pixels be labeled fire or non fire.

25

A more sophisticated approach to fire color classification is to use a neural net-

work as was done in (23). This method is a little slower to compute than the previous

methods but it has the advantage of getting excellent results. Because neural-network-

based color classifiers achieve good results, we decided to use one in our fire detection

algorithm. The following is a cursory introduction to neural networks.

4.4.2 Neural Networks

A neural network, or perceptron2 as it is sometimes known, is a supervised learn-

ing algorithm that is very effective at approximating mathematical functions which have

the form

f : Rn → Rm

x 7→ y = f(x)

where x = (x1, x2, ..., xn)T and y = (y1, y2, ..., yn)T (22). Put more specifically, it has

been proven that “given any ε > 0 and any Riemann-integrable function f : [0, 1]n ⊂

Rn → Rm, there exists a perceptron P (x,M,w) such that”∫
[0,1]n
|f(x)− P (x,M,w)|2dx < ε

where x is an input vector, M is the number of hidden nodes, and w is the weight vector

(22). In other words, for most functions used to model the real world, we can train a

neural network to approximate the function to an arbitrary degree of accuracy where

accuracy is defined as the mean squared error (MSE).

So far, we have seen that it is possible to approximate Riemann-integrable func-

tions using a perceptron. However, to use the perceptron as a classifier, it needs to work

on real world data and real world data is rife with noise. In fact, we find that more often

than not there is no known mathematical function that precisely models data from any

number of real world phenomena. How then can we use a perceptron as a classifier?
2Note, some authors label single layer neural networks as perceptrons and multilayer neural networks

as multilayer perceptrons. No such distinguishing is made in this thesis.

26

The answer is to treat real world data as being the sum of a mathematical function and a

noise factor (22). Therefore, the function that neural networks try to learn is a regression

model of the output values given particular inputs (38, 22).

Up to this point we’ve briefly discussed the capabilities of neural networks and

hinted at why they make excellent classifiers. Logically speaking, the next topics that

should get covered are the perceptron learning and classification algorithms. Before

we delve into the nitty gritty of each of these algorithms, we should mention that there

are many, many perceptron variants. The variant used in this project is a multi-layer

perceptron, specifically a two layer perceptron. Given n inputs, M hidden nodes, and

m outputs and output nodes, the following is the formula for computing the output of

Figure 4.5: A two-layer perceptron. The input is x = (x1, x2, ..., xn)T and the output

is y = (y1, y2, ..., ym)T . There are M hidden nodes, m output nodes, and there are two

bias values set to 1.0 at the input and hidden layers (the triangles). These bias inputs are

crucial for the perceptron to work properly.

27

hidden node zj:

zj = tanh

(
n∑
k=0

ujkxk

)
(22) where j = 1, ...,M and ujk is the weight for hidden node j on input k. The values

computed by the hidden nodes are then used to compute the output of the output nodes.

The output nodes perform their calculations as follows

yi = tanh

(
M∑
j=0

vijzj

)
(22) where vij is the weight for the output node i with input from hidden node j. It

should be noted that input x0 is not actually an input but a bias value 1.0 that is internal

to the perceptron algorithm. The same is true for the hidden node z0.

Before you can use a perceptron as a classifier, you need to train the classifier. In

this training stage, the hidden node and output node weight values are adjusted to reduce

the MSE of the perceptron output vs the expected output. But before you can start the

training process, you need to decide upon two parameter values: the number of hidden

nodes in the perceptron and the learning rate α.

The number of hidden nodes determines the discriminative power of the per-

ceptron. Too few hidden nodes and the perceptron won’t be able to classify data from

certain functions. Too many hidden nodes makes the training process slow. The reason

for all this is because a “perceptron has an effective number of degrees of approximating

freedom equal roughly to the product of the number o hidden and output layer weights”

(22).

The second parameter that controls the perceptron learning is the learning rate

α. The perceptron learning functions use hill climbing methods to adjust the perceptron

node weight values (22). The α parameter controls the learning rate—how far each

weight is adjusted per training epoch—in the learning process.

When we get right down to it, perceptron learning is just an integrative process

of adjusting the weight values. The weight adjustment functions are as follows

vnew
pq = vold

pq + 2α[ykp − Pp(xk,M,wold)]zq(xk, u
old)

28

is the equation for updating the output node weights, (where p = 1, 2, ...,m; q =

0, 1, 2, ...,M)

unew
qr = uold

qr + 2α

(
m∑
j=1

[yjk − Pj(xk,M,wold)]vold
jq

)
[1− z2q (xk, uold)]xkr

is the equation for updating the hidden node weights, (where q = 1, 2, ...,M ; r =

0, 1, 2, ..., n) (22).

Neural networks are powerful learning algorithms which can be utilized to solve

problems in a myriad of arenas. For problems dealing with the approximation of high

input, high output functions, (f : Rn → Rm where n >> 1 and m >> 1), neural

networks are considered by some researchers to be the only viable option (22). On the

other hand, neural networks have the disadvantage of being particularly difficult to train.

The first issue that often complicates perceptron training is the fact that per-

ceptrons are subject to over fitting the training data. It was mentioned earlier that a

perceptrons computational power stems from how many hidden nodes it has. Too few

hidden nodes and the perceptron won’t have the discriminative power to accurately clas-

sifying the target data. However, too many hidden nodes combined with too many train-

ing epochs and the perceptron will effectively memorize the training data (31). This

commonly described as over fitting the data. After over fitting the training data, the per-

ceptron would get terrible results on the test sets because the testing data wouldn’t look

exactly like the training data.

The second weakness of perceptrons is the fact that they are susceptible to get-

ting stuck in local minima and never actually reach the global minima. Given that per-

ceptron learning utilizes gradient descent to update its node weights and given that gra-

dient descent optimization suffers from problems with local minima, it is no surprise

that perceptrons do too. That said, perceptrons are extremely useful so long as sufficient

work is put into running the training stage.

29

4.4.3 Color Classifier Training and Results

The training of the color-classifying neural network can be broken down into

two stages: the data gathering and preparation stage, and the parameter adjustment and

training stage. It should be noted that both stages were repeated to get perceptron weight

values tuned to bright daytime lighting, dark daytime lighting, and nighttime lighting.

This breakdown is critical for the overall accuracy of the fire detection algorithm given

that we ended up using the RGB color space. The RGB color model gave use bet-

ter results at segmenting the training videos than the HSV or L∗a∗b∗ color models.

Undoubtedly, there is a lot of room to create a one size fits all fire color classification

algorithm which achieves a very high true positive rate and a low false positive rate. The

creation of multiple perceptrons based on lighting conditions is a weakness of this fire

detection algorithm but it allows for this concept demonstration.

To create the perceptron training values, images were captured from the fire

training videos. Candidate fire and non-fire pixels were human-labeled, extracted, and

reduced to a set of unique RGB color values. A training set and a testing set were created

from a equal-sized sets of positive and negative color values. When one set was smaller

than the other, the smaller set would have its size increased with copies of values already

in the set.

Using a training rate of α = .01 and 1000 epochs, the following perceptrons

were trained. The perceptron weight values created by the training process where used

for fire color classification in the rest of this thesis.

The training and testing sets were created by hand marking fire and non fire

regions in a set of images. The individual pixel values from each of the marked regions

were then converted into the proper values for the target color space. Finally, each “bag”

of pixel values was filtered so that the result was a true set where each element in the

set is a unique pixel value. This is how the Positive (unique) and Negative (unique) sets

were created. It should be noted that set of pixel values for one color space may be a

different size from another color space because of how different colors are represented

30

Table 4.1: This table shows the perceptron training results for night videos.
Night Lighting

RGB HSV L∗a∗b∗

Hidden Nodes: 1

Training error 7.7× 10−4 1.4× 10−3 2.0× 10−3

Training set size 125,035 116,335 46,894
Testing set size 31,258 29,083 11,723
Positives (unique) 918 908 170
Negatives (unique) 78,262 72,778 29,037

Hidden Nodes: 10

Training error 5.6× 10−4 1.2× 10−3 1.8× 10−3

Training set size 125,035 116,335 46,894
Testing set size 31,258 29,083 11,723
Positives (unique) 918 908 170
Negatives (unique) 78,262 72,778 29,037

Table 4.2: This table shows the perceptron training results for bright day videos.
Bright Daylight Lighting

RGB HSV L∗a∗b∗

Hidden Nodes: 1

Training error 4.6× 10−5 1.9× 10−5 2.6× 10−4

Training set size 32,500 29,781 14,797
Testing set size 8,125 7,445 3,669
Positives (unique) 1,704 1,404 1,002
Negatives (unique) 20,177 18,974 9,478

Hidden Nodes: 10

Training error 5.1× 10−5 1.2× 10−3 2.1× 10−4

Training set size 32,500 29,781 14,797
Testing set size 8,125 7,445 3,669
Positives (unique) 1,704 1,404 1,002
Negatives (unique) 20,177 18,974 9,478

31

Table 4.3: This table shows the perceptron training results for dim day videos.
Dim Daylight Lighting

RGB HSV L∗a∗b∗

Hidden Nodes: 1

Training error 4.7× 10−2 3.3× 10−2 3.6× 10−2

Training set size 15,998 17,960 8,613
Testing set size 3,999 4,489 2,153
Positives (unique) 4630 2993 1906
Negatives (unique) 10,737 10,477 5,048

Hidden Nodes: 10

Training error 2.0× 10−2 2.3× 10−2 2.5× 10−2

Training set size 15,998 17,960 8,613
Testing set size 3,999 4,489 2,153
Positives (unique) 4630 2993 1906
Negatives (unique) 10,737 10,477 5,048

in each color space.

From the Positive (unique) set and the Negative (unique) set, a new set with equal

numbers of positive (fire) and negative (non-fire) pixel values was created by duplicating

elements from the smaller of the Positive (unique) and Negative (unique) sets until both

positive and negative were of equal size and were then added together.

The actual training and test sets were created by dividing the newly created set

using a ratio of 80% training and 20% testing. These sets were then used by the per-

ceptron training algorithm to determine the color classifier weight values for each of the

given color spaces. Lastly, the size of these sets is described in the preceding tables by

the Training set size and Testing set size fields.

In the end, we decided upon using one hidden node since more hidden nodes

did not increase the perceptron’s discriminative power much if any and because fewer

hidden nodes sped up the classification process.

Chapter 5

Region of Interest Classification

5.1 Introduction

Pretend for a moment that we have a magic black box which takes videos as

input and outputs short videos which fall into two classes: non-fire object silhouetted

sequences and fire silhouetted sequences. The output of the black box is always pure in

the sense that fire outlines do not incorporate any non-fire outlines and non-fire outlines

do not contain any flame outlines in them. If we were given such a black box, all

we would need to do to detect fire is to create an algorithm which could differentiate

between the two output types based solely on the behavior of the objects outlined in the

video sequences.

Of course, no magic black box exists. However, we do have a pretty good ap-

proximation of the black box: the fire motion and color ROI generating algorithm. That

algorithm is designed to take a video as input and output short sequences outlining what

it thinks are flickering flames. So long as a fire isn’t burning in front of a fire-colored

backdrop, the algorithm will return nearly pure output with almost no fire + non-fire

hybrids. This next section discusses ways of classifying regions of interest based only

on the outlined object’s behavior.

32

33

5.2 Dynamic Texture Recognition

5.2.1 Introduction

A classic way for approaching object recognition and tracking in video data

is to detect features like edges and interest points in consecutive frames, then exploit

some sort of spatial or temporal relationship between those features to make the final

class determination. These methods are well suited for recognizing objects like cars

and buildings. However, phenomena like smoke, ocean waves, and rustling leaves are

difficult to detect and classify using the aforementioned classification methods. Intuition

suggests that to detect this class of phenomena one should focus on the dynamics of the

input video sequence and the target objects in that sequences. In other words, maybe

we should focus on detecting and differentiating between the way that leaves rustle and

smoke billows. This is exactly what object recognition using dynamic texture analysis

tries to do.

The idea behind dynamic textures is that videos of certain moving objects can be

thought of as a sequence of images which are the output of a stochastic dynamic model

(32). The trick, it would seem, is to map videos to models and then use some sort of

distance metric to compare models for the purpose of classifying the associated videos.

Unfortunately, there are two challenges which need to be overcome.

First, the map from a sequence to a model is not necessarily one-to-
one: very different scenes can be [the] output of the same model. Second,
even the simplest linear models learned from data represent equivalence
classes of statistics: the same scene can result in very different models
depending on the initial conditions (32).

It turns out that there isn’t just one model, but an equivalence class of models

from which the video sequence could have been generated from. Therefore, we must

choose a representative, or canonical model realization, to “describe” the given video

sequence and allow for comparisons of different videos (16, 32, 17). The following sec-

tion goes over the formal definition of the dynamic texture models, the algorithms used

to classify those models, and the distance metric used by the dynamic texture classifier.

34

5.2.2 Formal Definition of Dynamic Textures

Say we’re given a video made up of a sequence of noisy images {Y (t)}t = 1...τ .

A noisy image yt is defined to be y(t) = I(t) + w(t) where I(t) ∈ Rm is an ideal, non-

noisy image and w(t) ∈ Rm (16). This means that the input video can be “represented

as a time-evolving state process xt ∈ Rn, and the appearance of the frame yt ∈ Rm is a

linear function of the current state vector with some observation noise” (8). The formal

definition is as follows xt = Axt−1 + vt

yt = Cxt + wt

where we assume that there exists a positive integer n and a process {x(t)}, x(t) ∈ Rn

with initial condition x0 ∈ Rn and symmetric positive-definite matrices Q ∈ Rn×n and

R ∈ Rm×m (16). Furthermore, A ∈ Rn×n is the state-transition matrix, C ∈ Rm×n is

the observations matrix such that vt ∼iid N (0, Q), wt ∼iid N (0, R), andQ S

ST R

 ≥ 0

is a positive semi-definite matrix where S = E[wtv
T
t] (8, 32).

5.2.3 Finding the Model Parameters

Given a sequence of images yt=1,...,τ we want to compute the maximum likeli-

hood solution

Â, Ĉ, Q̂, R̂ = argmax
A,C,Q,R

P (y1, ..., yτ |A,C,Q)

(16, 32). Unfortunately, current computer simply don’t have the power to compute this

equation in a reasonable amount of time. Fortunately there is a suboptimal closed form

solution which approximates the optimal equation in a reasonable amount of computa-

tional time (16, 17, 32).

35

Let Y τ = [y1, ..., yτ] ∈ Rm×τ . Now compute the singular value decomposition

(SVD) of Y τ to get Y τ = UΣV T . From this we can get the following

Ĉ = U, X̂ = ΣV T

To find Â w need to solve the following problem

Â(τ) = argmin
A
||Xτ

2 − AXτ
1 ||Frobenius

where Xτ
2
.
= [x(2), ..., x(τ)] ∈ Rn×τ . This can can be done in closed form as follows

Â = ΣV TD1V (V TD2V)−1Σ−1

where

D1 =

 0 0

Iτ−1 0

 , D2 =

Iτ−1 0

0 0

 ,
(16). Thus, using the previous equations, one can compute the parameters of the dy-

namic texture model M = {Â, Ĉ}.

5.2.4 Dynamic Texture Classification

So far, we’ve described how to represent video data as a dynamic texture M =

{Â, Ĉ}. Now we need some way to classify dynamic textures. We can use a near-

est neighbor classifier to classify dynamic textures but to do so we need to define the

distance metric used by the nearest neighbor classifier to compare the dynamic textures.

The next step is to recognize different dynamic texture models via a nearest

neighbor classifier which is utilizing Martin Distance (28) as the means to compare

dynamic texture models.

The intuition behind Martin Distance is to compare the subspace angles between

extended observability matrices of two dynamic textures (12). Put more formally, let

Ma = {Aa, Ca} be the first dynamic texture model and letMb = {Ab, Cb} be the second

36

dynamic texture model. The square of the Martin Distance between the two models is

defined to be

d2(Ma,Mb) = − log
n∏
i=a

cosb θi

where θi are the angles between the extended observability matrices of Ma and Mb (12).

The real question is how does one compute θi? First let’s define the extended

observability matrices of Ma and Mb to be

Oi =



Ci

ATi Ci
...

(ATi)nCi
...


where i = {a, b} and Oi ∈ R∞×n (12). It turns out that cos θi for i=1, ..., n are just the

n largest eigenvalues found by solving the generalized eigenvalue problem 0 Oab
OTab 0

x
y

 = λ

Oaa 0

0 OTbb

x
y


object to xTOaax = 1 and yTObby = 1 where

Opq = OTpOq =
∞∑
j=0

(CpA
j
p)
TCqA

j
q

for some dynamic texture models p and q (12). At this stage it is handy to note that

infinite sums of the form

X =
∞∑
j=0

AjQ(Aj)T

can also be written as

Xj = AXj−1A+QT

where in steady state the equation becomes

X = AXA+QT

37

But this is just the Lyapunov equation and can be solved in Matlab using the function

dlyap.m (7).

Thus, all one has to do to compute the Martin Distance between Ma and Mb is to

compute the extended observability matrices, solve the generalized eigenvalue problem,

take the largest n eigenvalues, and compute the Martin Distance. With this distance

metric, a nearest neighbor algorithm can be used to classify dynamic texture models

which by proxy classifies videos as fire/non-fire.

5.2.5 Results

Using 50 frame sequences, we were able to achieve an overall classification rate

of 51.5% using dynamic texture classification. Clearly, these results are not what we’d

hoped for. While there are further improvements, such as kernel-PCA-based dynamic

texture classification (8), that we could have tried there was one impassible roadblock

that stop this line of research: classifier run time.

Table 5.1: Dynamic texture test results from a nearest neighbor classifier using Martin

Distance.
True Positive False Positive True Negative False Negative Classification Rate

718 1011 356 2 51.5%

With a training set of 564 positive dynamic textures and 1211 negative dynamic

textures the nearest neighbor classifier took roughly 1,100 seconds to classify one dy-

namic texture in Matlab using a single core from a 3 GHz quad-core AMD PhenomTM

945 processor and 4GB of RAM! This is “slightly” slower than necessary for a real-time

VBFD system. Clearly there has to be a better way to classify fire videos in real time.

38

5.3 SVM-based Fire Detection

5.3.1 Introduction

Fire lacks many of the features (interest points, rigid shape, etc.) that are com-

monly leveraged in popular object recognition algorithms. The application of dynamic

texture recognition to the detection and recognition of fire in videos is a logical research

course to pursue. Unfortunately, the results achieved by the dynamic texture classifier

leaves much to be desired. Furthermore, the dynamic texture classifier is far too slow

in its current configuration—i.e. using a nearest neighbor classifier—to be applied to

a real-time fire detection system. A different approach is required to solve the fire de-

tection problem in a reasonable and robust way. This is where support vector machines

come to the rescue.

5.3.2 Support Vector Machines

A support vector machine (SVM) is a another type of supervised learning algo-

rithm that can be trained for data classification or regression. Just like neural networks,

SVMs can model complex functions with many inputs and are well adapted for binary

classification problems, like fire detection. Unlike, neural networks, SVMs are easy to

train making them quite popular in machine learning and vision research.

The intuition behind support vector machines is as follows. Say we have have a

set of data living in a two dimensional world and belonging to two different classes. As

the example below shows, a line separating the two classes would classify the data. Ob-

viously, there are an infinite number of lines that separate the data but which one would

be best? Support vector machines work under the assumption that the best separating

line is the separating line with the largest distance or margin from the closest positive

and negative example points. So how does one find the maximum-margin hyperplane

w ·x+b = 0 depicted in the right-hand image? First let’s define a few things. Let w be a

normal line to the separating hyperplane which means that |b|/||w|| is the perpendicular

39

Figure 5.1: The top picture shows two clusters being separated by a randomly chosen

hyperplane. The bottom picture shows the hyperplane with the largest margin (4).

40

distance from the origin to the separating hyperplane (4). Training a SVM basically

boils down to finding a w and b such that the following inequalities hold

xi · w + b ≥ +1 for yi = +1

xi · w + b ≥ −1 for yi = −1

which can be combined into

yi(xi · w + b)− 1 ≥ 0 ∀i (5.1)

(4, 36). The margin is defined by the two hyperplanes H1 and H2 which are perpendic-

ular to and equidistant from the separating hyperplane. They are defined as

xi · w + b = +1 for H1

xi · w + b = −1 for H2

(36). If d+ and d− are the distances from the separating hyperplane to H1 and H2

respectively and d+ = d− = 1/||w|| then the margin is defined to be 2/||w|| (4). To find

the maximum margin hyperplane, we need to minimize ||w||2 subject to the constraints

from 5.1 (4). This can be done using quadratic programming techniques. By introducing

Lagrange multipliers αi where i = 1, ..., l for each constraint from 5.1, we get the

following Lagrangian

LP ≡
1

2
||w||2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi (5.2)

(4). It is required that the derivatives of LP with respect to each αi disappear which

gives us the following conditions

w =
∑
i

αiyixi (5.3)

0 =
∑
i

αiyi (5.4)

41

(4). Substituting constraints 5.3 and 5.4 into 5.2 gives us

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyj(xi · xj)

which we then try to maximize subject to the constraints αi ≥ 0 and
∑

i αiyi = 0

(4, 31). Thankfully, LD has a single global maximum which can be located efficiently.

The two-class case we just used to introduce support vector machines was a two

dimensional, linearly-separable problem which makes it fairly trivial to classify. Obvi-

ously, many problems won’t have this simple form or this low dimensionality. So where

do SVMs go from here? It turns out that in many cases where the data is inseparable

in the input space, if we were to map the data into a higher dimensional space the data

becomes separable by a hyperplane. Put more precisely, given a set of N data points,

we can map these data points to an N − 1 dimensional space (in most cases) (31).

So does one map data points into a higher dimension such that we can then

separate the points by class? It turns out that the mapping is accomplished by what

is known as the “the kernel trick”. The kernel trick is simply to replace the xi · xj

term with some kernel function K(xi, xj). This is an important step because according

to Mercer’s theorem, any kernel where Kij = K(xi, xj) is a positive definite matrix

corresponds to some feature space (30). This is how we map the data into a higher

dimension. Furthermore, if you look back at 5.5 you’ll notice that “data enter[s] the

expression only in the form of dot products of pairs of points” (31), i.e. the xi · xj term.

This is important because F (xi) · F (xj) can be computed without first computing F (·)

for xi and xi (31).

It is important to note that “a linear separator in a space of d dimensions is

defined by an equation with d parameters, so we are in serious danger of over fitting the

data if d ≈ N” (31) where N is the number of data points. Consider equation 5.5 for

a second. It turns out that the weights αi associated with each data point are all zero

except for the points closest to the separating hyperplane. Each of these points are said

to “hold up” the hyperplane and are therefore called the support vectors. Because the

number of support vectors is almost always far smaller than the number of data points,

42

Figure 5.2: The left-hand image shows the two-class input data. No linear classifier can

separate the two classes of data. The right hand image shows the data after it has been

projected into 3D space using the kernel trick. The data is now separable by a plane

(31).

43

we avoid “death by over fitting” (31).

We have seen how to compute w =
∑L

i=1 αiyixi for a linearly separable set of

binary-class data. We know how to get the support vectors S by finding the αi > 0.

Therefore we can compute b as follows

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs)

Finally, we can now classify new data x′ (such as the test set data) by computing

y′ = sign(w · x′ + b)

(36). Support vector machines can also be used to classify data that is not linearly

separable. However, we will not go over the theory behind partially inseparable data

here.

In this thesis, all support vector machine results were gathered using the SVM

Light package (25).

5.3.3 Features

A critical component in this fire detection algorithm is a support vector machine

which we use to classify candidate fire sequences. Perhaps even more important pieces

of the puzzle are the features extracted from the candidate fire sequences. Without high

quality descriptive features—features which (at least some of the time) manifest them-

selves differently when the target sequence is fire as opposed to non-fire—the support

vector machine won’t be able to distinguish between the two classes. In this section

we describe the different features used and why they work so well at differentiating fire

sequence behavior from non-fire sequence behavior.

Fire Motion Feature

The first feature that we use to distinguish between fire and non-fire sequences

is the edge motion of flame outlines. At first glance, fire behavior seems completely

44

unpredictable. Flames bob and weave in unpredictable patterns and the fire as a whole

grows and shrinks seemingly with a mind of its own. However, closer inspection reveals

that there is a pattern hidden in fire’s chaotic behavior: there is much more motion near

the top and sides of a fire then near the base. The trick is to encode this concept into a

feature vector suitable for a SVM classifier. This is were the fire motion feature comes

in.

Algorithm 2 Motion Feature Algorithm
Require: S {a fire candidate sequence with N frames}

for i=2:N do

in = Si AND Si−1

out = Si OR Si−1

Compute the edge distance between in and out.

Bin the edge distance for each point on the contour of in.

end for

motion feature = mean of each bin.

return motion feature

1. Contour: the outer edge (one pixel thick) of a white blob.

2. Edge distance: the closest distance from an out contour point to an in contour

point.

3. Motion Region: a slice of a circular region centered on the centroid of the rectan-

gle that encompasses the cumulative ORing of the blobs frames in the candidate

sequence S.

4. Bin: given an edge distance value derived from an in contour point, the Bin op-

eration adds the edge value to the motion feature bin associated with the motion

region from which the in contour point resides.

45

Say we have a fire candidate sequence of N frames F . The sequence is the

binarized outline of something that is suspected to be fire. Motion along the edge of the

candidate fire blob can be determined via differencing consecutive frames. The motion

is therefore defined to be the non-zero parts of the following image difference

Motion ≡ = |Fi − Fi−1|

= (Fi AND Fi−1) XOR (Fi OR Fi−1)

= in XOR out

Let the concept of quantity of motion be defined to be the distance between a point on the

edge of a flame silhouette at time t and that same edge point’s new edge location at time

t+ 1. The edge motion algorithm tries to approximate this concept in a computationally

quick manner.

Now imagine a circle which is centered on the fire candidate blob and which

circumscribes the blob. The circle is then divided like a pizza into a fixed set of slices

which we will call motion regions. Thus, the motion feature that this fire detection

algorithm tracks is the average quantity of motion observed in each motion region for

the target fire candidate blob.

Edge Angle Feature

Say we are given an outline of some object, one way of describing that object

is to create a histogram of normal angles from the object outline. Even though we are

dealing with sequences of frames, this methodology still applies. The real question is:

why should this distinguish fire sequences at all? If we consider that flames are usually

long and pointy, we can already see that there are probably few vertical normal angles

in a genuine fire sequence. Furthermore there are probably other patterns that a support

vector machine is far better equipped than a human to ascertain. The algorithm for

computing the edge normal angle feature is as follows

46

Figure 5.3: Top left: frame 1, top right: frame 2, middle left: inner, middle right:

outer, bottom left: raw motion image, bottom right: annotated motion image. For the

annotated motion image, the green line is the inner contour, the orange line is the outer

contour, and the red line between the green and orange lines demonstrates edge distance

for one inner contour point.

Figure 5.4: A conceptual demonstration of how edge motion is localized to motion

regions. In this image, there are eight motion regions corresponding to eight motion

features values.

47

Algorithm 3 Edge Angle Algorithm
Require: S {a fire candidate sequence with N frames}

create a feature histogram H and initialize it

for i=1:N do

Compute the contour C of blob in Si

for each point p on contour C do

Compute the normal angle θ to the contour edge centered at p.

Bin θ in the feature histogram

end for

end for

Normalize the feature histogram H

return H

Flicker Count Feature

Another good fire feature to track is flame flicker. As we all have seen, flames

usually move about a lot in a seemingly random but generally repetitive fashion. This

pseudo periodic behavior can be tracked at the pixel granularity level with ease. The idea

is to maintain a flicker counter—where flicker is defined to be when a pixel changes

color from black to white—for every pixel in the input sequence. Pixels with flicker

counts above some threshold are then classified as being a fire pixel and pixels with

flicker counts below the threshold are classified as being non fire.

While this pixel-level fire classification algorithm works pretty well, we would

like something a little more sophisticated since a fire candidate sequence will undoubt-

edly have many fire and non-fire pixels in it, making the sequence hard to classify solely

using pixel level information. To classify the actual input sequence, the SVM uses the

ratio of fire pixels detected using the fire-flicker-based pixel classification algorithm to

the total number of pixels in the target blobs from the input sequence.

In both (35) and (34), pixel-level fire flicker was a prominent feature used to

detect fire. In both cases, wavelets were used to detect the actual flame flicker based

48

on variations on the pixel intensity over a sequence of frames. We didn’t use a bank of

wavelets to detect the flicker because our algorithm has already gone through the work

of determining whether a pixel was fire colored or not. All that it needs to do to detect

flame flicker is to track when a pixel goes from being fire colored to non-fire colored or

vice versa.

5.3.4 Putting Everything Together

In the previous sections we discussed the different features used to distinguish

fire candidate sequence. For both the flame motion and edge angle features, a sampling

rate must be chosen. These sampling rates determine how often to compute the edge

motion or edge normal angle while traversing the edge contour. For the flicker count

feature, the flicker count threshold must be chosen. Lastly, we must decide upon the

SVM kernel that we’re going to use to perform the classification with.

The edge motion feature requires us to decide upon the number of motion re-

gions to use. The more motion regions we have, the more “focused” the analysis of

edge motion. However, more regions require more processing. We can see that the

granularity decision is not affected by any of the other parameters used in this fire de-

tection algorithm. Therefore, we can fix all other parameters and just vary the number

of motion regions to see which setting produces the best results

Finding the best number of edge normal angle bins is virtually the same as find-

ing the best number of edge motion regions. Here too we fix all other parameters and

just vary the number of normal angle histogram bins.

The edge normal angle sampling rate effectively controls the amount of process-

ing required to compute the given feature. We expect that lower sampling rates might

reduce the accuracy of the feature when compared to higher sampling rates. While it is

probable that the edge normal angle sampling distance and the number of edge normal

angle bins are not independent from each other with respect to their affect on classifi-

cation results, we treat them as if they are independent. This independence assumption

49

Figure 5.5: A graph of classification rates vs the number of edge motion bins. All other

feature parameters are held steady.

Figure 5.6: A graph of fire classification using an SVM and edge normal-line angles.

All other feature parameters are fixed.

50

reflects our belief that neither parameter affects the results of the other much, nor is

it absolutely crucial to get the absolute best classification results via the best parame-

ter settings. Good is good enough for this application. Therefore, we can fix all other

parameter values and only vary the sampling rate to determine the best sampling rate.

Figure 5.7: A graph of fire classification using a support vector machine and edge

normal-line angles. All other parameters are fixed.

Just like the case with the sampling rate parameters, the flame flicker feature

is completely independent of any of the other features with respect to their parameter

values. Therefore, we can simply use an ROC curve to determine an acceptable flicker

count threshold value. The flicker threshold that we decided upon is 8 flickers per 50

frames which was chosen because it gives us a true positive rate of 16.2% and a false

positive rate of 0.57%.

Because these rates apply to pixel level classification, it seemed like a good idea

to keep the false positive rate as low as possible and let other features (motion, normal

angle, etc.) pick up the slack.

51

Table 5.2: Pixel flicker table showing the relationship between the flicker threshold value

and the subsequent true/false positive classification rate of pixel-level classification.
Flicker True False Flicker True False

Threshold Positive Positive Flicker Positive Positive
Rate Rate Threshold Rate Rate

1 3.14× 10−1 8.45× 10−2
...

...
...

2 3.11× 10−1 7.12× 10−2 22 9.99× 10−4 8.25× 10−5

3 2.74× 10−1 3.67× 10−2 23 4.70× 10−4 7.07× 10−5

4 2.67× 10−1 2.75× 10−2 24 2.21× 10−4 6.55× 10−5

5 2.25× 10−1 1.59× 10−2 25 8.19× 10−5 5.93× 10−5

6 2.15× 10−1 1.23× 10−2 26 5.16× 10−5 5.49× 10−5

7 1.80× 10−1 7.69× 10−3 27 1.78× 10−5 4.82× 10−5

8 1.62× 10−1 5.73× 10−3 28 3.56× 10−6 4.31× 10−5

9 1.29× 10−1 3.58× 10−3 29 1.78× 10−6 3.68× 10−5

0 1.14× 10−1 2.61× 10−3 30 0.00 3.42× 10−5

11 8.78× 10−2 1.64× 10−3 31 0.00 2.87× 10−5

12 7.31× 10−2 1.16× 10−3 32 0.00 2.50× 10−5

13 5.38× 10−2 7.64× 10−4 33 0.00 1.88× 10−5

14 4.21× 10−2 5.49× 10−4 34 0.00 1.51× 10−5

15 2.93× 10−2 3.66× 10−4 35 0.00 1.07× 10−5

16 2.15× 10−2 2.59× 10−4 36 0.00 8.84× 10−6

17 1.39× 10−2 1.98× 10−4 37 0.00 4.79× 10−6

18 9.26× 10−3 1.55× 10−4 38 0.00 4.79× 10−6

19 5.55× 10−3 1.26× 10−4 39 0.00 1.47× 10−6

20 3.39× 10−3 1.06× 10−4 40 0.00 3.68× 10−7

21 1.86× 10−3 9.09× 10−5 41 0.00 0.00
...

...
...

...
...

...

52

Figure 5.8: Pixel flicker ROC curve used to determine the flicker count threshold value

for the sequence flicker feature. Note that this ROC curve is an alternate representation

of the data from table 5.2.

53

Finally, the best support vector machine kernel type is dependent on the structure

of the input data in projected space to the classifier. The different feature parameters

don’t change the data structure meaning that we can fix all other parameter values and

only vary the SVM kernel parameter to determine which one is best.

Figure 5.9: A graph of classification rates vs SVM kernel. All other feature parameters

are held steady.

5.3.5 Results

Using 20-fold cross validation on the training set, we can get a pretty good idea

how each individual feature classifies fire videos on its own. As the table below shows,

each feature does well at classifying fire videos. However, the individual feature results

max out in the early ninety percent classification range.The end of this section shows

that combining all of these features increases the classification rate into the high ninety

percent range.

The following are the final results achieved using the best parameter values for

the edge motion feature, the edge normal angles feature, and the fire flicker feature.

We compute results for the training set and for the test set which we left untouched

54

Table 5.3: 20-fold cross validation results on the training set.
Solo Feature Results

Edge Motion Edge Normal Angle Sequence Flicker
classification rate 0.9130± 0.029 0.950± 0.021 0.907± 0.0316

(untrained upon) until now. The training set results were computed using 20-fold cross

validation. The testing set results were computed using a single run with the SVM

trained on the complete training set.

Table 5.4: Total classification results for the training set and for the test set.
Training Set Testing Set

True Positives 585 712
True Positives 12 42
True Negative 1258 1400
False Negative 19 54

Classification Rate 0.983± 0.011 0.96

5.3.6 Run Time

The wall clock run time of an algorithm is somewhere between difficult and

impossible to determine in a general, hardware-agnostic sense. The following estimation

of algorithmic wall clock run time is described using the development hardware for this

research project. More specifically, we computed the average run times of ten sample

videos where each is tested ten times. The following graph show the 50-frame, square-

pixel-area normalized, sequence run times of each of the ten videos as well as the global

average sequence computation run time.

These results were obtained using a 3 GHz quad-core AMD PhenomTM 945

processor and 4GB of RAM. It should be noted that the test scripts and the fire detection

algorithms are single-process, single-threaded applications.

In the end, the system was able to achieve a global average run time of one 50-

frame, area-normalized, pixel per 2.0865× 10−5 second. In other words, the algorithm

and hardware were able to process roughly 120, 20x20, 50-frames sequences per second.

55

Figure 5.10: A graph of 50-frame sequence pixel run times.

56

Given that the training and testing videos used in this research project never saw more

than 50 sequences per second, and usually saw far less, the algorithm easily qualifies as

being a real-time fire detection algorithm.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we analyze different vision-based fire detection algorithms and

we describe a new, robust method for detecting fire with low quality cameras. As we

showed the previous section, the VBFD algorithm introduced by this thesis achieves

good results and is very effective. But how does it stack up to other VBFD algorithms?

Unfortunately, given that there currently is no common fire video data set being used

by VBFD researchers, the following is a qualitative analysis and comparison of some of

the current VBFD methods.

Many of the current VBFD algorithms rely solely on color-based classification

to distinguish fire regions from non-fire regions. Some of these algorithms use human-

generated rules based in various color spaces such as (6, 9, 39, 18, 10) and some trained

classifiers, like a neural network, to detect fire color (23). The one big problem with

this class of VBFD algorithm is that color simply is not enough to detect fire in most

real world settings without accepting a significant false alarm rate. For any realistic

application of a VBFD system using color-based fire detection, the alarm would cry

wolf too often to let it be of much use.

Adding flame flicker to the mix of fire features to analyze significantly improves

the effectiveness of a VBFD system by reducing the false alarm rate. After all, far fewer

57

58

visual phenomena exhibit a high rate of luminance flicker than are fire colored. Vision-

based fire detection algorithms such as (35, 34) which have flame flicker detection report

good results. Our experience with this particular feature has also been positive. How-

ever, classification on our data sets shows use that luminance flicker does show up in the

real world in ways that mimic fire flicker. Additional features are required to improve

the classification results from good to great.

Another interesting type of VBFD algorithm uses shape to distinguish fire from

other objects. For example, the authors of (27) used Fast Fourier Transforms to math-

Figure 6.1: Fire shape outlines (27).

ematically featurize candidate blob edge shapes. They then used a support vector ma-

chine to categorize fire shapes and non-fire shapes. While they report excellent results

it is worth noting two weaknesses of this method.

First, quantization errors crop up when sampling the boundary of a small fire

59

candidate blob. Thus, the authors of (27) decided to ignore regions which were too

small. This means that this type of algorithm suffers when fire is far away from the

camera. Furthermore, it means that the algorithm has a hard time detecting fires when

they are just starting which is when you want to catch them and put them out, i.e. before

they grow big and cause a lot of damage.

Second, the algorithm has trouble differentiating between the uneven edges of

flames from a house fire and the ovular shapes of the sun and a lamp (27). The problem

is that the feature detection algorithm put forth in this thesis outputs sequences with

outlines which are much closer to the shape of fire than to such obviously non-fire shapes

as the sun. In other words, the shape classification algorithm is probably not robust

enough to deal with the output of the feature detection stage of this algorithm. We

Figure 6.2: Top row: non-fire shape outlines derived from the feature detection stage.

Bottom row: blown up versions of the shape outlines from the top row images.

conducted some basic experiments along the lines of (27) to see how well a support

vector machine could classify fire candidate sequences based solely on the shape of the

candidate’s outline. To test this classifier, we randomly generated square images with

60

either a circle or a square in each of these images. The shape was randomly sized—from

half the size of the image to the size of the whole image—and was randomly placed in

the image so that the image contained the whole shape. The following are the training

results using 40 Fourier descriptors to represent a shape just like (27). While these

Table 6.1: Each training and testing file was composed of 1000 circles and 1000 squares.
Image width/height (pixels) 50 75 100 125 150

Polynomial Kernel 71.05% 72.10% 71.35% 73.55% 73.55%
Radial Basis Function Kernel 70.11% 78.98% 78.43% 74.85% 73.60%

results are passable, they aren’t nearly as good as we expected. This could be because

of the number of descriptors used, the size of the training sets, or the size of the shapes

in the training and testing images.

When we ran the Fourier descriptor shape classifier on each of the static frames

of the sequences from the training and testing sets for this thesis, we were only able

to achieve a classification rate or 50.55% using a radial basis function for the SVM

kernel. This classification rate is probably the result of very small shapes being classified

(averaging less than 100 pixels to a side) and the result of the positive and negative data

having similarly complicated and irregular shapes.

Because this shape classification algorithm has trouble with small and distant

objects, and because the algorithm requires much “cleaner” data than the candidate se-

quences outputted by the feature detection stage, it seems likely that the algorithm put

for in this thesis is applicable to more real world fire detection situations than a shape-

based fire detection algorithm.

To create the fire detection and recognition algorithm presented in this thesis,

we tried to take the best ideas from the VBFD research community and add some ideas

which were successful in non-VBFD research to create a fast and robust VBFD al-

gorithm. The results achieved by this algorithm are very exciting and show that this

algorithm has a lot of promise for real world applications. However, there are still a

number of significant weaknesses which still need to be addressed.

61

The biggest weakness for this system is the ROI detection algorithm. The ROI

classification stage relies on the ROI detection stage to deliver clean candidate sequences

which contain no fire/non-fire hybrid sequences. Currently, the ROI detection stage

relies on color and motion detection to find these candidate sequences and both color

and motion algorithms have significant Achilles heels. Color detection is always hostage

to variations in lighting conditions. Fast motion detection algorithms lack the specificity

necessary to differentiate motion from lighting changes. The undeniable conclusion is

that more work needs to be done to make this stage more reliable and robust.

Another drawback for this fire detection algorithm is the fact that the cameras

that capture the input data need to be completely stationary. The motion detection al-

gorithms rely on the camera to be stationary since they don’t have any understanding of

the scene that they capture and they don’t track any objects in the scene. Furthermore,

the camera can’t be rotated about the focal axis because both the edge motion feature

and the edge normal angle feature are anisotropic.

6.2 Future Work

Beyond improving the weaknesses mentioned in the previous section, there are

a number of promising avenues of research for improving this VBFD algorithm. These

research trajectories promise to improve the classification rate of the system, and add

new capabilities that would significantly improve a VBFD system.

One interesting avenue for research would be to try to improve the overall classi-

fication rate by examining the spatial and temporal clusters of candidate fire sequences.

Clustering analysis has the potential to dramatically reduce the false alarm rate because

isolated fire sequences could be detected and ignored since fire rarely pops up for a few

seconds and then completely disappears.

Another idea is to incorporate smoke detection capabilities into the algorithm.

This would strengthen the certainty of some classification decisions where the system

thinks it sees both fire and smoke. Furthermore, a fire may start outside the line of site

62

of the camera. Adding smoke detection capabilities would seriously improve a VBFD

system’s overall effectiveness at detecting fire. After all, where there’s smoke, there’s

fire.

In the conclusion, this thesis, demonstrates a new, robust VBFD algorithm that

is perfectly suited for low quality video data. The algorithm achieves good results and

shows a lot of promise toward real world application.

References

[1] Beard, A., and Carvel, R., 2005: The Handbook of Tunnel Fire Safety. Thomas
Telford, Ltd.

[2] Boothroyd, T., 2005: Fire Detection and Suppression Systems. International Fire
Service Training Association.

[3] Bryan, J., 1993: Fire Suppression and Detection Systems. Macmillan.

[4] Burges, C. J. C., 1998: A tutorial on support vector machines for pattern recogni-
tion. Data Mining and Knowledge Discovery, 2, 121–167.

[5] Burke, R., 2007: Fire Protection: Systems and Response. CRC Press.

[6] Çelik, T., and Demirel, H., 2009: Fire detection in video sequences using a generic
color model. Fire Safety Journal, 44, 147–158.

[7] Chan, A., 2005: Computing the martin distance.

[8] Chan, A. B., and Vasconcelos, N., 2007: Classifying video with kernel dynamic
textures. Computer Vision and Pattern Recognition, 1–6.

[9] Chen, T.-H., Kao, C.-L., and Chang, S.-M., 2006: An intelligent real-time fire-
detection method based on video processing. In Joint Conference on Information
Sciences.

[10] Chen, T.-H., Wu, P.-H., , and Chiou, Y.-C., 2004: An early fire-detection method
based on image processing. In Image Processing, volume 3, 1707–1710. ICIP.

[11] Cheung, S.-C. S., and Kamath, C., 2004: Robust techniques for background sub-
traction in urban traffic video. In Visual Communications and Image Processing,
volume 5308. SPIE.

[12] Cock, K. D., Cock, K. D., Moor, B. D., and Moor, B. D., 2000: Subspace angles
between linear stochastic models. In Conference on Decision and Control, 1561–6.
IEEE.

63

64

[13] Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver,
D., Enomoto, N., and Hasegawa, O., 2000: A system for video surveillance and
monitoring. Technical report, Robotics Institute.

[14] Cucchiara, R., Piccardi, M., and Prati, A., 2003: Detecting moving objects, ghosts,
and shadows in video streams. In Pattern Analysis and Machine Intelligence, vol-
ume 25, 1337–1342. IEEE.

[15] Cutler, R., and Davis, L., 1998: View-based detection and analysis of periodic
motion. In International Conference on Pattern Recognition, volume 1, 495–500.

[16] Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S., 2003: Dynamic textures. Inter-
national Journal on Computer Vision, 51, 91–109.

[17] Doretto, G., Cremers, D., Favaro, P., and Soatto, S., 2003: Dynamic texture seg-
mentation. In International Conference on Computer Vision, volume 2, 1236–
1242. IEEE.

[18] Ebert, J., and Shipley, J., 2007: Computer vision based method for fire detection
in color videos.

[19] Eveland, C. K., Konolige, K. G., and Bolles, R. C., 1998: Background modeling
for segmentation of video-rate stereo sequences. In Computer Vision and Pattern
Recognition, 266–271. IEEE.

[20] Friedman, N., and Russell, S., 1997: Image segmentation in video sequences: A
probabilistic approach. In Conference on Uncertainty in Artificial Intelligence,
175–181.

[21] Gloyer, B., Aghajan, H. K., Siu, K.-Y., and Kailath, T., 1995: Video-based freeway
monitoring system using recursive vehicle tracking. In Symposium on Electonic
Imaging: Image and Video Processing, volume 2421, 173–180. SPIE.

[22] Hecht-Nielsen, R., 2008: Perceptrons.

[23] Horng, W.-B., and wen Peng, J., 2006: Image-based fire detection using neural
networks. In Joint Conference on Information Sciences.

[24] III, W. P., Shah, M., and da Vitoria Lobo, N., 2000: Flame recognition in video. In
Workshop on Applications of Computer Vision, 224–229. IEEE.

[25] Joachims, T., 1999: Making large-scale svm learning practical. Advances in Kernel
Methods - Support Vector Learning, 169–184.

[26] Lai, C.-L., and Yang, J.-C., 2008: Advanced real time fire detection in video
surveillance system. In International Symposium on Circuits and Systems.

65

[27] Liu, C.-B., and Ahuja, N., 2004: Vision based fire detection. In International
Conference on Pattern Recognition, volume 4, 134–137. IEEE.

[28] Martin, R. J., 2000: A metric for arma processes. Transactions on Signal Process-
ing, 48(4), 1164–1170.

[29] McFarlane, N., and Schofield, C., 1995: Segmentation and tracking of piglets in
images. Machine Vision and Applications, 3, 187–193.

[30] Mercer, J., 1909: Functions of positive and negative type and their connection with
the theory of integral equations. Philosophical Transactions of the Royal Society
London.

[31] Russell, S. J., and Norvig, P., 2003: Artificial Intelligence: A Modern Approach
(Second Edition). Prentice Hall.

[32] Saisan, P., Doretto, G., Wu, Y. N., and Soatto, S., 2001: Dynamic texture recogni-
tion. In Computer Vision and Pattern Recognition, volume 2, 58–63. IEEE.

[33] Terpak, M. A., 2001: Fireground Size-Up. Fire Engineering Books.

[34] Töreyin, B. U., Dedeoǧlu, Y., and Çetin, A. E., 2005: Flame detection in video
using hidden markov models. In International Conference on Image Processing,
1230–1233. IEEE.

[35] Töreyin, B. U., Dedeoǧlu, Y., Güdükbay, U., and Çetin, A. E., 2006: Computer
vision based method for real-time fire and flame detection. Pattern Recognition
Letters, 27, 49–58.

[36] Tristan, F., 2009: Support vector machines explained. Technical report, University
College London.

[37] United States Federal Emergency Management Agency, 2009: National fire statis-
tics. http://www.usfa.dhs.gov/statistics/national/index.shtm.

[38] Vapnik, V., 1999: The Nature of Statistical Learning, Second Edition.

[39] Zhang, D., Rao, Y., Zhao, J., Zhao, J., Hu, A., and Cai, B., 2007: Feature based
segmentation and clustering on forest fire video. In International Conference on
Robotics and Biomimetics, volume 4. IEEE.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Chapter 1. Introduction
	Problem
	Why Is Fire Detection A Non-Trivial Problem?
	Previous Work
	Thesis Structure

	Chapter 2. The History of Fire and Smoke Detection Systems
	Introduction
	Heat Sensors
	Smoke Detectors
	Point vs Line sensors
	Flame-Based Fire Detection
	The Motivation for a Robust Video-based Fire Detection System

	Chapter 3. Setup and Data
	Hardware Setup
	Training and Testing Sets

	Chapter 4. Region of Interest Detection
	Introduction
	Detecting Fire Only Using Color
	Motion Detection
	Common Motion Detection Algorithms
	The Motion Detection Algorithm

	Color Classification
	Color Classification of Fire
	Neural Networks
	Color Classifier Training and Results

	Chapter 5. Region of Interest Classification
	Introduction
	Dynamic Texture Recognition
	Introduction
	Formal Definition of Dynamic Textures
	Finding the Model Parameters
	Dynamic Texture Classification
	Results

	SVM-based Fire Detection
	Introduction
	Support Vector Machines
	Features
	Putting Everything Together
	Results
	Run Time

	Chapter 6. Conclusions and Future Work
	Conclusions
	Future Work

	References

