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Efficient Relational Calculation
for Software Analysis

Dirk Beyer, Member, IEEE, Andreas Noack, Member, IEEE Computer Society, and Claus Lewerentz

Abstract—Calculating with graphs and relations has many applications in the analysis of software systems, for example, the detection

of design patterns or patterns of problematic design and the computation of design metrics. These applications require an expressive

query language, in particular, for the detection of graph patterns, and an efficient evaluation of the queries even for large graphs. In this

paper, we introduce RML, a simple language for querying and manipulating relations based on predicate calculus, and CrocoPat, an

interpreter for RML programs. RML is general because it enables the manipulation not only of graphs (i.e., binary relations), but of

relations of arbitrary arity. CrocoPat executes RML programs efficiently because it internally represents relations as binary decision

diagrams, a data structure that is well-known as a compact representation of large relations in computer-aided verification. We

evaluate RML by giving example programs for several software analyses and CrocoPat by comparing its performance with calculators

for binary relations, a Prolog system, and a relational database management system.

Index Terms—Logic programming, graph algorithms, data structures, reverse engineering, reengineering.
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1 INTRODUCTION

GRAPHS are widely used as models of software systems.

The mapping of software artifacts and their relation-

ships to graph nodes and graph arcs enables the formaliza-

tion of structural software properties as graph properties

and the use of graph algorithms to analyze software

systems.
Following this approach, we formalized patterns of

proven or problematic design as graph patterns and

explored the use of several popular graph analysis tools

to detect these patterns. However, none of the evaluated

tools succeeded for real-world software systems through

either lack of generality or lack of efficiency.
The detection of patterns in graphs requires generality

because it involves relations of arbitrary arity. Instances of a

pattern with n participating software artifacts are naturally

modeled as n-tuples, thus sets of such pattern instances are

n-ary relations. So, it is difficult to perform these practically

important graph analyses with tools that are limited to

binary relations, like Grok [1], RPA [2], and RelView [3].
Efficiency in terms of runtime and memory is necessary

because graph models of software systems can have
thousands of nodes and arcs. However, efficiency is
difficult to achieve because finding patterns in graphs
involves problems for which no algorithm with polynomial
worst-case time complexity is known. This does not

preclude the existence of heuristics that are fast enough

for many practical problem instances. But, our experiments

(described in Section 5) show that widely used systems with

expressive languages, in particular MySQL [4] as a popular

relational database management system [5] and Quintus

Prolog [6] as a leading implementation of the logic

programming language Prolog [7], are prohibitively ineffi-

cient for practical software analyses of this type.
This article presents concepts for calculating with graphs

and relations in the context of software analysis with a focus

on the requirements of generality and efficiency. In terms of

our experiences with existing tools, our goals were a

language that combines Prolog’s elegant syntax for manip-

ulating n-ary relations with simplicity and a tool imple-

mentation that combines RelView’s efficiency with the

power to manipulate relations of any arity.
The structure of the article follows from these objectives:

Sections 2 and 3 introduce and demonstrate the language,

and Sections 4 and 5 describe and evaluate the implementa-

tion. The relational expressions of our language RML

(Relation Manipulation Language) are based on predicate

calculus. Its expressiveness and ease of use is evaluated by

giving example programs for several design analyses of

object-oriented programs, some of which cannot be natu-

rally expressed with calculators for binary relations. Our

tool implementation, CrocoPat, represents relations as

binary decision diagrams (BDDs [8]), a data structure that

has been successfully used in computer-aided verification

for the efficient representation and manipulation of large

relations. The efficiency is evaluated by comparing its

computation times for two of the most frequent and

expensive operations (namely, the computation of transitive

closures and the detection of graph patterns) with Grok,

RelView, MySQL, and Quintus Prolog.
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2 LANGUAGE

The main goals in the design of the Relation Manipulation
Language (RML), a query and manipulation language for
relations, were expressiveness and ease of use. RML allows
the manipulation of relations of any arity and is thus
sufficiently expressive to specify graph patterns of arbitrary
size. For ease of use, RML is small, and its elements are
well-known from predicate calculus and common impera-
tive programming languages.

This section introduces the relational expressions, nu-
merical expressions, and statements of RML with the help
of examples. A complete and formal definition of the RML
syntax and semantics is given in [9].

2.1 Relational Expressions

A relational expression is an expression whose result is a
relation. A relation of arity n is a set of tuples, where each
tuple has n elements. Binary relations, i.e., relations of
arity 2, are also called (directed) graphs. In RML, all tuple
elements are strings, and relations always contain a finite
number of tuples.

The relational expressions in RML are similar to the
expressions in first-order predicate calculus [10]. In addi-
tion to predicate calculus, RML provides some shortcuts,
e.g., for comparing relations and for transitive closures, and
some predefined relations, e.g., for comparing strings. On
the other hand, RML does not include the functions of
predicate calculus (which would map strings to strings)
because calculating with strings is not essential for RML’s
main purpose of calculating with relations over strings.

In the examples of this section, we use a binary relation
Call that contains the three pairs (A, B), (A, C), and (B, A).
This relation can be considered as a model of a program
with three functions A, B, and C, where A calls B and C, and
B calls A.

Because there exists only one tuple () with 0 elements,
there are two relations of arity 0: the set {()} that contains
this tuple and the empty set {}. Their names in RML are,
respectively, TRUE() and FALSE().

Basic relational expressions have the form

rel_variable(term_list)

A term_list is a list of comma-separated terms. A term is
either a string literal (delimited by double quotes) or an
attribute. For example, Call(”A”,”C”) evaluates to
TRUE() because the pair of strings (A, C) is an element of
the relation Call. The assignment statement Called-

ByB(x) := Call(”B”,x) with the attribute x assigns to
the unary relation variable CalledByB the set of all
functions that are called by B, namely, the set {A}. The
scope of an attribute is a single statement.

RML provides operators for the complement, the
intersection, and the union of relations:

! rel_expression

rel_expression & rel_expression

rel_expression | rel_expression

Attributes can be existentially and universally quantified:

EX(attribute, rel_expression)

FA(attribute, rel_expression)

For example, the statement Caller(x) := EX(y,

Call(x, y)) assigns to the relation variable Caller the

set {A, B} of all functions that call at least one function. The

statement Uncalled(y) := FA(x, ! Call(x,y)) assigns

to Uncalled the set of all functions that are not called by

any function, which is empty here.
The TC operator computes the transitive closure of a

binary relation:

TC(rel_expression)

The statement TCall(x,y) := TC(Call(x,y)) assigns

to TCall all pairs of functions where the first function

directly or indirectly (via other functions) calls the second

function. Thus, TCall contains the six pairs (A, A), (A, B),

(A, C), (B, A), (B, B), (B, C).
Relations can be compared with

rel_expression ~ rel_expression

where ~ can be = (equality), != (inequality), <= (subset),

< (strict subset), >= (superset), or > (strict superset), and the

result is either FALSE() or TRUE().
RML includes the six predefined binary relations =, !=,

<=, <, >=, and > for the lexicographical order of strings. So,

SmallerThanC(x) := <(x,”C”) assigns to the relation

variable SmallerThanC the set of {A, B} of strings which

are lexicographically smaller than C.

2.2 Numerical Expressions

A numerical expression is an expression whose result is a

number. All numbers in RML are floating-point numbers.

The numerical expressions are not specific to RML, but

nevertheless useful in some applications and, therefore,

briefly listed here.
The basic numerical expressions in RML are numerical

literals like 1.23 and numerical variables.
The main purpose of numerical expressions is to

calculate with the cardinality (number of elements) of

relations. The syntax of the cardinality operator is

#(rel_expression)

RML provides the familiar numerical operators +

(addition), - (subtraction), * (multiplication), / (real

division), DIV (truncating division), and MOD (modulo).

Numbers can be compared with =, !=, <=, <, >=, or >, and

the result is either FALSE() or TRUE().

2.3 Statements

RML programs are sequences of semicolon-separated

statements. There are three kinds of statements: assign-

ments, control structures, and output statements. State-

ments for the input of relations are unnecessary because

input relations are read from standard input before the

execution of the program.
The syntax of the assignment statements is

rel_variable(term_list) := rel_expression

num_variable := num_expression

Examples for assignments were given in the Section 2.1.
The syntax of the control structures is similar to well-

known imperative programming languages:
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IF rel_expression {statement_seq} ELSE {statement_seq}

WHILE rel_expression {statement_seq}

FOR string_variable IN rel_expression {statement_seq}

The condition in the IF and WHILE statement is fulfilled if
the relational expression evaluates to TRUE(). The FOR

statement executes its contained statement sequence for
each string in the relation, which must be unary.

Finally, the PRINT statement prints string literals and
results of relational and numerical expressions to the
standard output.

2.4 Discussion

2.4.1 Binary versus n-ary Relations

All n-ary relations over a finite universe can be represented
by binary and even by unary relations over a finite
universe. For example, for an arity n and a finite universe
U , the tuples from Un can be injectively mapped to integers
from f1; . . . ; jU jng and, thus, n-ary relations over U can be
mapped to sets of integers.

Nevertheless, it is often more appropriate to represent
data as a relation of arity greater than 1 or 2. For example,
the obvious representation of a cycle of length 3 in the
relation Call is a triple, and the obvious representation of a
set of such cycles is a ternary relation Cycle3(x,y,z).
Using this representation, we can easily query, e.g., for
functions that participate in a cycle with EX(y, EX(z,

Cycle3(x, y,z))) or for cycles which have A as the first
element with Cycle3(”A”,y,z). The set of cycles could
also be represented as a set of integers, but this representa-
tion makes formulating such queries much more difficult
and is not interpretable by humans without decoding into
triples.

Examples in Section 3 and in [11] show that relations of
arity greater than two are not only more natural representa-
tions for artificial problems, but also for practical software
analyses.

2.4.2 The Universe

In RML, all tuple elements are strings. But, not all strings
may be tuple elements, at least for a given RML program
and given input data. The set of strings that may be tuple
elements is called the universe. It is important to define
the universe because the result of the complement
operator depends on it: The complement of a unary
relation R is the unary relation of all strings in the
universe that are not in R.

We identified two restrictions for the universe. First, it
should be constant during the execution of an RML
program; otherwise, the same relation has different com-
plements at different times. Second, it must be finite
because RML is restricted to finite relations to be efficiently
interpretable. A possible definition that fulfills these

restrictions is that the universe in a given RML program
execution contains all tuple elements of the input relations
and all string literals that appear on the left-hand side of
assignments in the RML program.

The finiteness and immutability of the universe are
sometimes inconvenient for the developer of RML pro-
grams. Ways to circumvent these limitations are proposed
in [9].

3 APPLICATIONS

To validate the expressiveness and ease of use of RML, this
section shows RML programs for several analyses of object-
oriented designs. We focus on analyses that have been
reported to be useful in the literature: the detection of
design pattern instances, the detection of potential design
problems, the calculation of design metrics, and the
abstraction of design models. Three of the analyses in this
section result in relations of arity greater than two and,
thus, could not be naturally expressed with binary
relational algebra. Before the example programs, the first
subsection shortly introduces our underlying metamodel of
object-oriented software systems. The section concludes
with a list of further potential applications of RML.

3.1 A Simple Metamodel of Object-Oriented
Software

A structural model of an object-oriented software system
describes the system’s entities and the relationships
between the entities. Graphs can capture entities and their
relationships in a straightforward way: Entities are repre-
sented by nodes and relationships by arcs.

For the examples in this section, we use the simple
metamodel shown in Fig. 1. It distinguishes only two types
of entities: classes and packages. Packages are high-level
design elements that can be considered as sets of classes.
The unary relation Class represents all classes, and the
unary relation Package represents all packages. The binary
relation PackageOf relates each package to the classes that
it contains.

The models comprise three binary relations for relation-
ships between classes:

. Inherit, which relates each subclass to its direct
superclass(es);

. Call, which relates a class to another class if a
method of the first class calls a method of the second
class; and

. Contain, which relates each class to the types of its
attributes.

These relations can be automatically extracted from source
code in popular object-oriented programming languages
like C++ and Java.
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3.2 Detection of Design Pattern Instances

The knowledge of design pattern instances enables a

more abstract description of an object-oriented design,

and helps to uncover design rationale. Many tools have

been developed or extended for the automatic detection

of design patterns instances, e.g., Pat [12], the tool of

Antoniol et al. [13], VizzAnalyzer [14], SPOOL [15], and

FUJABA [16].
Fig. 2 shows the class diagram of the Composite design

pattern [17]. We consider a triple of a component class, a

composite class, and a leaf class as a possible instance of this

pattern if 1) the composite class and the leaf class are

subclasses of the component, 2) the composite class contains

the component, and 3) the leaf does not contain the

component. The translation of these conditions to the

RML program in Fig. 3 is straightforward.
In general, design patterns are hierarchies of subpatterns.

For example, the Composite design pattern contains an

aggregation relationship from the composite class to the

component class. The implementation of this relationship in

an object-oriented program can be nontrivial, e.g., involving

a container class. So, aggregation is itself a pattern whose

instances have to be detected in lower-level information

extracted from the source code. In RML, patterns can be

easily combined to larger patterns. For example, the relation

Contain used in the pattern definition in Fig. 3 can be an

input relation, but also a set of subpattern instances

computed by earlier RML statements.

3.3 Detection of Design Problems

3.3.1 Cyclic References

A group of classes with cyclic references can only be
understood and reused as a whole and is hard to modify
because changes are likely to propagate through the group.
Many tools were applied to detect cyclic usage structures,
e.g., Hy+ [18], Pattern-Lint [19], RPA [2], IAPR [20], Goose
[21], and Grok [22].

The RML program in Fig. 4 detects cyclic uses of classes,
where the uses include calls, containment, and inheritance.
In the first statement, the use relation is computed as the
union of the call, the containment, and the inheritance
relation. In the second statement, the transitive closure of the
use relation is computed, yielding a relation that also
includes all indirect uses. Classes that are related to itself in
this transitive closure participate in a cycle of the use relation.

In many large software systems, hundreds of classes
participate in cycles, and it is very tedious for a human
analyst to find the actual cycles in the list of these classes. In
our experience, it is more useful to detect cycles in the order
of ascending length. As a part of such a program, the
statements in Fig. 5 detect all cycles of three classes.

To see the purpose of the third statement, consider
three classes A, B, and C that form a cycle. After the
second statement, the relation variable Cycle3 contains
three representatives of this cycle: (A, B, C), (B, C, A), and
(C, A, B). The third statement removes two of these
representatives from Cycle3 and keeps only the tuple
with the lexicographically smallest class at the first
position, namely, (A, B, C).
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3.3.2 Degenerate Inheritance

When a class inherits from another class directly and
indirectly, the direct inheritance is redundant and probably
even misleading. For example, the subclass may inherit
implementations of abstract methods of the superclass from
other classes and, thus, does not need to implement these
methods itself. As shown in Fig. 6, we model a degenerate
inheritance structure as triple of classes, where the first and
the second class are direct superclasses of the third class,
and the first class is a (not necessarily direct) superclass of
the second class. Fig. 7 shows the straightforward RML
program for this pattern.

3.3.3 Subclass Knowledge

Superclasses should not know their subclasses because
superclasses should be understandable and reusable in-
dependently of their subclasses, and modifications of
subclasses should not affect the superclass. Subclass knowl-
edge is a special case of the cyclic usage structures
discussed earlier and was also detected, e.g., with the tools
Pattern-Lint [19] and Goose [21].

A basic version of this pattern is a pair of classes such
that the second class is a (not necessarily direct) subclass of
the first class and the first class (possibly indirectly) calls or
contains the second class. The corresponding RML program
is shown in Fig. 8.

3.4 Calculation of Design Metrics

Design metrics are essential in the assessment of design
quality [23], [24]. Mens and Lanza argue that a large
number of object-oriented design metrics can be defined in
an unambiguous, simple, and language independent way
based on a graph representation of software [25]. Using the
language of a graph analysis tool to define the metrics adds
the advantage that tool support for the automatic calcula-
tion of metric values is immediately available. Graph query
languages that have been used to specify design metrics
include GraphLog [18] and GReQL [26].

As an example for the calculation of nontrivial metrics
with RML, Fig. 9 shows a program that calculates Martin’s
instability metric for packages [27, chapter 20]. The metric is
defined as ce=ðca þ ceÞ, where ca is the number of classes
outside the package that use classes inside the package, and
ce is the number of classes inside the package that use
classes outside the package. In the RML program in Fig. 9,
the FOR loop calculates ca, ce, and the value of the instability
metric for each package.

3.5 Abstraction of Design Models

The examination of large systems requires views on
different levels of abstraction. For example, class-level call
graphs of large object-oriented programs have too many
nodes and arcs to be understandable. So, views at higher
levels of abstraction, e.g., package level, and means to zoom
into parts of interest are needed. Usually, only low-level
relationships, like method-level calls, are directly extracted
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Fig. 7. RML program for the detection of degenerate inheritance.

Fig. 8. RML program for the detection of subclass knowledge.

Fig. 9. RML program for the calculation of the instability metric.



from the source code, and the relationships between high-
level entities have to be derived from these low-level
relationships. This is called lifting and is a common
application of relational calculators [1], [2].

Our example program derives the calls between
packages from the calls between classes. Formally, a
package p1 calls a package p2 if and only if there is a
class c1 in p1 and a class c2 in p2 such that c1 calls c2 (see
Fig. 10). This can be directly translated into the RML
program in Fig. 11.

3.6 Other Applications

Querying and manipulating graphs and relations has many
further applications in the analysis of software designs. The
forward traversal of call and inheritance graphs is used to
detect dead code, and the backward traversal is applied for
change impact analysis [28], [2]. Computing and analyzing
the difference between two graphs is useful for checking the
conformance of the as-built architecture to the as-designed
architecture [19], [2], [29], [22], [30] and for studying the
evolution of software systems between different versions.
Besides the detection of instances of design patterns and
antipatterns in models of source code, graph pattern
matching can also be used to extract scenarios [31], to
identify code clones [32], to support the inductive inference
of design patterns [33], [34], and to detect design problems
in databases [35].

Up to now, we have mentioned only applications from
software design. This is rather because we are most familiar
with this area than because relational querying is useless
elsewhere. For example, Berndl et al. [36] present an
algorithm for computing the points-to relation between
pointer variables and allocation sites (a problem from
compiler optimization) which is based on the manipulation
of relations, and an implementation that uses the same data
structure (namely, BDDs) as our RML interpreter described
in the next section.

4 IMPLEMENTATION

The main goals in the design of CrocoPat, our interpreter
for RML programs, were efficiency and easy integration

with other tools. Integration is facilitated by the import and
export of relations in the simple Rigi Standard Format (RSF
[37], [9]), which can be loaded into and saved from many
reverse engineering tools and can be easily processed by
scripts in common scripting languages. Efficient storage
and manipulation of large relations is achieved by
representing the relations as binary decision diagrams
(BDDs [8]), a data structure that is widely used in
computer-aided verification. The two sections below de-
scribe the representation of relations as BDDs and the
manipulation of relations with BDDs.

4.1 Representation of Relations

An important problem in the representation of graphs and
relations is efficiency. In Section 3, we used k-ary relations
for detecting graph patterns with k nodes. Such relations
can be very large: For a set M with 1; 000 elements, k-ary
relations over M can have up to 1; 000k elements.

The data structure binary decision diagram (BDD [8])
exploits regularities in relations to represent them in a
compressed form. It is important to note that not all
relations are compressible and, thus, the use of BDDs does
not improve the worst-case space complexity. However,
experience in computer-aided verification shows that many
practical relations are drastically compressible [38], and our
experiments in Section 5 confirm this. In the following, we
briefly introduce BDDs and give an example of how they
represent large relations efficiently. For a more detailed
introduction to BDDs, see [39].

A BDD is a rooted directed acyclic graph which is
derived by reducing a binary decision tree. A binary
decision tree has decision nodes, 0-terminal nodes, and
1-terminal nodes. Each decision node is labeled with a
Boolean variable and has two children, called low child and
high child. We only use ordered decision trees and ordered
BDDs, which means that the Boolean variables occur in the
same order on every path from the root to a terminal node.

A binary decision tree represents a relation over f0; 1g,
i.e., a set of bit vectors. The bit vectors represented by a
decision tree correspond to the paths from the root node to
the 1-terminals. The vector element that corresponds to a

142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005
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node has the value 0 if the path descends to the low child
and the value 1 if the path descends to the high child.

The bottom-up application of the following two reduc-
tion rules transforms a binary decision tree into a BDD:

1. Merge any isomorphic subtrees.
2. Eliminate any node whose low child and high child

are identical.

As an example, consider the following binary relation
Call over fA;B;Cg:

Call ¼ fðA;BÞ; ðA;CÞ; ðB;AÞ; ðC;AÞg:

To represent this relation as binary decision tree or BDD,
it must be transformed into a relation over f0; 1g. Encoding
A by ð0; 0Þ, B by ð0; 1Þ, and C by ð1; 0Þ results in:

Call0 ¼ fð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 1; 0; 0Þ; ð1; 0; 0; 0Þg:

The decision tree representation of the relation Call0

(and, thus, of Call) is shown in Fig. 12a. Arcs to low
children are represented as dashed lines, and arcs to high
children are represented as solid lines. The four bit vectors
in the relation Call0 correspond to the four paths from the
root node to the four 1-terminal nodes in the decision tree.
For example, the bit vector ð0; 0; 0; 1Þ corresponds to the
path x1, dashed line, x2, dashed line, x3, dashed line, x4,
solid line, 1-terminal.

Applying the two reduction rules to the decision tree
results in the BDD in Fig. 12b. In this figure, arcs to the
0-terminal are omitted to avoid clutter. The reduction
preserves the paths from the root node to the 1-terminal
node and, thus, the represented relation.

An extension of this example shows how BDDs can stay
small, even for large relations. Consider all chains of k

calls, i.e., all tuples of kþ1 classes ðc1; c2; . . . ; ckþ1Þ with
ðci; ciþ1Þ2Call for all i 2 f1; . . . ; kg. For k ¼ 1, the set of these
tuples is Call¼fðA;BÞ; ðA;CÞ; ðB;AÞ; ðC;AÞg, for k¼2, it is
fðA;B;AÞ; ðA;C;AÞ; ðB;A;BÞ; ðB;A;CÞðC;A;BÞ; ðC;A;CÞg,
for k ¼ 3, there are eight such tuples, etc. In general, there are
2ðkþ3Þ=2 such tuples for odd k � 1, so the size of the relation
grows exponentially with k.

However, the BDD representation grows only linearly
with k. To see this, compare the BDD for k ¼ 1 in Fig. 12b

with the BDD for k ¼ 3 in Fig. 13a. The BDD for k ¼ 1 can be
transformed into the BDD for k ¼ 3 by relabeling the
x3-nodes to x7 and the x4-nodes to x8, and adding the
10 nodes labeled with x3, x4, x5, and x6, which are, in fact,
two copies of the subgraph induced by the nodes labeled
with x5 and x6. Each further increase of k by 1 will again
add one copy of this subgraph, i.e., only five nodes.

The BDD representation of a relation is only unique for a
given variable order. In the BDD in Fig. 13a, the variable
order (from the root to the terminals) is x1; x2; . . . ; x8. The
BDD in Fig. 13b represents the same relation with the
variable order x1; x3; x5; x7; x2; x4; x6; x8. A comparison of
the two BDDs shows that the BDD size is highly dependent
on the variable order. In fact, it can even make the
difference between linear and exponential BDD growth [39].

Because finding the optimal variable order of a BDD is
algorithmically intractable [40], we have to apply heuristics.
A particularly important heuristic is that strongly depen-
dent variables should be placed closely in the variable order
[41], [42], [43]. Thus, CrocoPat places all bits that encode the
same tuple element at successive positions. The BDD in
Fig. 13a conforms to this rule because x2 is placed directly
after x1, x4 directly after x3, etc. The BDD in Fig. 13b violates
the rule because there are several variables between x1 and
x2, between x3 and x4, etc.

The detection of chains in call graphs is a simple example
for the practically important problem of detecting graph
patterns. It illustrates that the size of intermediate results
obtained in searching graph patterns often grows exponen-
tially with the size of the pattern and that BDDs can
represent these large relations efficiently.

4.2 Manipulation of Relations

Besides memory, computation time is also a bottleneck in
the manipulation of relations. Relational models of real
systems can be large, and no polynomial-time algorithms
are known for many practically important problems. For
example, graph pattern detection—more precisely, the
decision if there is a subgraph of one graph which is
isomorphic to another graph—is NP-complete [44]. This
does not preclude the existence of heuristics that are
sufficiently efficient for many problem instances that occur

BEYER ET AL.: EFFICIENT RELATIONAL CALCULATION FOR SOFTWARE ANALYSIS 143

Fig. 12. Representations of the relation Call. (a) Decision tree representation. (b) BDD representation.



in practice. BDD-based algorithms are promising candi-
dates for such heuristics.

The evaluation of RML’s relational expressions (intro-
duced in Section 2.1) in CrocoPat is organized into three
layers:

1. The representation and manipulation of relations
over f0; 1g. This layer provides operations for the
complement, the intersection, the union, and the
comparison of relations, and for the quantification
of bits.

2. The representation and manipulation of relations
over strings. This layer provides operations for the
quantification of entire attributes and for calculating
the predefined relations for the lexicographical
order.

3. The evaluation of RML’s relational expressions. This
layer provides operations for computing transitive
closures and for the evaluation of compound
expressions that contain more than one relational
operator.

In the remainder of this subsection, we describe the three
layers in turn.

The bottom layer is directly based on BDDs. Together with
this data structure, Bryant introduced algorithms for
elementary operations on relations over f0; 1g [8]. The
worst-case time required for these algorithms is bounded
by polynomials of the sizes of the operand BDDs. So, when
the BDDs are small, their manipulation is efficient, even if
they represent huge relations.

Reusable libraries for set manipulation that are based on
BDDs and Bryant’s algorithms are called BDD packages.
The BDD package of CrocoPat was developed by the
authors, but many other BDD packages are publicly

available (see [45] for an overview). The implementation

of an efficient BDD package requires several advanced

techniques like hashing, caching, and garbage collection. A

detailed description is beyond the scope of this article; we

refer the reader to [46].

A benefit of the caching in the BDD package is that it

frees the RML programmer from the responsibility for some

optimizations and, thus, enables simpler and more explicit

RML programs. For example, it is not necessary to factor

out common subexpressions or constant expressions in a

loop to avoid their repeated computation. Such repeated

computations are avoided automatically by the BDD

package, which looks up results in its cache instead of

computing them twice.
The second layer employs the bit-level operations of the

bottom layer to provide attribute-level operations. This

seems fairly straightforward, but several implementation

details are crucial for the overall efficiency. As an example,

consider the computation of the BDD for the lexicographical

comparison relation < over all strings. This relation has

nðn� 1Þ=2 elements, where n is the number of strings, so

naive algorithms for computing its BDD use at least

quadratic time. However, it turns out that the size of the

BDD representation of the relation is only linear, thus it can

be created in linear time.
The most interesting part of the top layer is the

implementation of the transitive closure operator. In our

experiments with different algorithms, we observed that the

empirical complexity for practical graphs sometimes

deviated strongly from the theoretical worst-case complex-

ity, thus some algorithms with a relatively bad worst-case

complexity were very competitive in practice.

144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

Fig. 13. BDD representations of all chains of three Calls. (a) Good variable order. (b) Bad variable order.



Fig. 14a shows in RML notation a simple and empirically

fast algorithm which performs a fixed point iteration to

compute the transitive closure. After the ith iteration, the

relation Result contains all pairs of nodes that are

connected by a path of at most 2i arcs.
The RML program in Fig. 14b is a straightforward

implementation of the well-known transitive closure

algorithm of Warshall [47]. It iterates through all nodes

node of the graph that have ingoing and outgoing arcs.

After each iteration, the relation Result contains all pairs

of nodes that are connected by a path whose interior

nodes were already considered in an iteration. This

implementation needs less memory than the first because

it uses no ternary relations, but much more time. The

BDD representation works like a map from the start

nodes of the arcs to their sets of adjacent end nodes, so

finding all outgoing arcs of a node is fast, but finding all

ingoing arcs—as in Result(x,node)—is slow.
The algorithm in Fig. 14c replaces this expensive

expression with the more efficient InvResult(node,x),

where InvResult is the inverse of Result. In our

experiments, this algorithm is about as fast as the first

algorithm, but uses less memory, and is therefore the

standard implementation of the transitive closure operator

in CrocoPat.

5 PERFORMANCE

To evaluate the efficiency of our tool implementation
CrocoPat, we determined its runtime for two operations
on graphs of different sizes. We chose operations that
repeatedly occur in the analyses in Section 3 and that
together account for a large part of the overall runtime of
these analyses: the transitive closure and the detection of
graph patterns. Through the use of these general building
blocks of software analyses instead of concrete analysis
scenarios, we expect to obtain more generalizable results.

Statements about the theoretical worst-case complexity
of CrocoPat’s algorithms for both problems are not
difficult to derive, but such statements are not necessarily
relevant in practice. Indeed, the worst-case runtime even
of the best known algorithms is prohibitive for large
graphs, but our goal was efficiency for graphs that occur
in practical applications. For this reason, we evaluate the
performance experimentally and use the call relations
between classes of real software systems in our experi-
ments. To illustrate the scaling behavior, we chose five
systems of different sizes: JHotDraw 5.2, the AWT of the
Java 2 Platform Standard Edition 1.4.2 (JDK 1.4.2 AWT),
JWAM 1.8, the complete Java 2 Platform Standard Edition
1.4.2 (JDK 1.4.2), and Eclipse 2.1.2. Table 1 shows their
characteristics. The call graphs were extracted from the
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Fig. 14. Algorithms for the transitive closure of a binary relation R. (a) Empirically fast algorithm. (b) Warshall’s algorithm. (c) CrocoPat’s algorithm,

based on Warshall’s algorithm.



bytecode of the systems using the tool Sotograph.1 For
maximum comparability, the input data of the different
tools is not only equivalent with respect to graph
isomorphism, but also with respect to the node names
and to the order of the arcs.

For each operation and each graph, we report the
computation times of CrocoPat 2.1 and four other tools:
the calculators for binary relations RelView 7.0.2 [3] and
Grok 83 [1], the Prolog system Quintus Prolog 3.5 [6], and
the relational database management system MySQL 4.0.15
[4]. We chose these tools because they were often applied
for analyses similar to those in Section 3, and efficiency was
a major concern in their development [3], [1, Section 5], [6,
chapter 2.5], [4, chapter 1.2]. An additional advantage of
Quintus Prolog in comparison with other Prolog imple-
mentations is its efficient implementation of a transitive
closure predicate. Unlike MySQL, some commercial data-
base management systems support recursive queries [48,
Clause 7.12] that enable simpler (but not necessarily more
efficient) queries for transitive closures, but these systems
are not comparable to the four other tools in terms of
complexity and expense.

The computation times are given in seconds on a Linux
PC with 1.0 GHz AMD Athlon processor and 1,280 MB
memory. Computations that took more than 5 hours were
aborted. The loading of the input relation is not included in
the given times to avoid biases caused by different input
formats. To improve the performance of MySQL we used
appropriate indexes and memory tables (i.e., hash tables
stored in main memory, not on hard disc).

5.1 Transitive Closure

The programs for the computation of the transitive closure
are shown in Fig. 15. The programs for CrocoPat, RelView,
and Grok simply apply the respective transitive closure
operators. Quintus Prolog provides an implementation of
Warshall’s transitive closure algorithm as predicate
warshall. The Prolog program for computing the transi-
tive closure includes some additional rather technical code
for loading modules and building data structures (that is
why it is not shown in Fig. 15), but the predicate warshall
accounts for most of the runtime. For more information on
transitive closure implementations in Prolog, see [49,
chapter 5.4].

Queries for transitive closures cannot be expressed in
basic SQL (i.e., relational algebra), as shown by Aho and

Ullman [50]. So, we translated the body of the WHILE loop

in Fig. 14a into the SQL script in Fig. 15d. This script was

executed repeatedly until the fixed point was reached.

Initially, the table TCall contains the relation Call and the

table TCallNew is empty. After the ith iteration, the table

TCall contains all pairs of classes that are connected by a

sequence of at most 2i calls.
The times in Table 2 show that CrocoPat, RelView, and

Grok compute transitive closures much faster than Prolog

and MySQL. For the largest graph (Eclipse 2.1.2), the BDD-

based tools use significantly less memory than Grok, which

is based on conventional data structures (CrocoPat 50 MB,

RelView 100 MB, Grok 500 MB).

5.2 Graph Patterns

For the performance evaluation of graph pattern detection,

we used cycles of different lengths as particularly simple,

scalable, and practically relevant patterns. The detection of

cycles of lengths greater than 2 cannot be naturally

expressed with the languages of RelView and Grok because

they are restricted to binary relations. The CrocoPat, Prolog,

and MySQL queries for all cycles of length 4 are given in

Fig. 16. Table 3 shows that, in our experiments, CrocoPat

scaled better to large graphs and large patterns than Prolog,

and Prolog scaled better than MySQL.
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TABLE 1
Example Systems for Performance Evaluation

The column LOC gives the total number of carriage returns in the source
code.

1. http://www.software-tomography.com/.

Fig. 15. Programs for the transitive closure of the relation Call.

(a) CrocoPat. (b) RelView. (c) Grok. (d) MySQL.



6 RELATED WORK

This section discusses languages and tools for querying and

manipulating graphs and relations. We focus on approaches

that have been used in software analysis and on their

suitability for applications that we have identified as

practically important but difficult, like graph pattern

matching and the computation of transitive closures.
SQL is a well-known language for querying and

manipulating relations. The lack of a transitive closure

operator and the insufficient performance of relational

database management systems for large graphs were

already discussed in Section 5.
The logic programming language Prolog [7] has been

used to detect design patterns and design problems in the

tools Pat [12], Pattern-Lint [19], and Goose [21]. Its syntax

for manipulating relations is similar to that of RML.

However, RML is simpler than Prolog, and CrocoPat scales

better to large relations than Prolog systems for the queries

in Section 5.

Calculators for binary relational algebra that have been

used to analyze software systems include Grok [1], RPA [2],

and RelView [3]. As discussed in the introduction, the

detection of graph patterns with more than two nodes

cannot be naturally expressed in binary relational algebra.

Grok was extended to provide graph pattern matching [31],

but this resulted in a more complex language that still does

not support other operations on n-ary relations.
The program understanding toolset GUPRO [51] pro-

vides the textual graph querying language GReQL [26].

GReQL focuses on querying binary relations (query results

can have arbitrary arity), while RML also enables the

creation and manipulation of arbitrary relations. Visual

graph querying languages include GraphLog in the tool

Hy+ [18], annotated graphs in IAPR [20], and a subset of

UML in FUJABA [16].
The graph rewriting rule-based specification and rapid

prototyping language PROGRES [52] has a purely textual

and a combination of visual and textual notation. It is

expressive, but also much more complicated than CrocoPat.
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TABLE 2
Computation Times for the Transitive Closure of Call

Fig. 16. Programs for cycles of length 4 of the relation Call. (a) CrocoPat. (b) Prolog. (c) MySQL.

TABLE 3
Computation Times for Cycles in Call



Querying graphs and relations is related to NP-hard
problems like subgraph isomorphism and, therefore, effi-
ciency is a central problem. Binary decision diagrams are
successfully applied in computer-aided verification for the
efficient representation and manipulation of huge relations
(see, e.g., [38]). However, the only available BDD-based
calculator for relations was RelView [3], which is limited to
binary relations. The experimental results in Section 5
confirm the excellent performance of our BDD-based
implementation in analyses of large software systems.

7 CONCLUSION

Modeling the structure of software systems as a graph
enables the application of graph analysis tools for software
analyses. However, existing tools for querying and manip-
ulating graphs and relations do not fulfill all requirements
of this application domain. In particular, calculators for
binary relations are not powerful enough to detect general
graph patterns with more than two nodes, and Prolog
interpreters and relational database management systems
are inefficient for practically important operations like the
computation of transitive closures.

We proposed using the predicate calculus as basis of a
language for the manipulation of n-ary relations and the
data structure BDD for the efficient internal representation
of n-ary relations. We evaluated our language RML by
giving example programs for several analyses of object-
oriented designs, and our tool implementation CrocoPat by
performance measurements for typical expensive opera-
tions on large real-world software models. The evaluation
confirmed that RML is sufficiently expressive and reason-
ably easy to use, and that CrocoPat scales well to the
analysis of large software systems.

The tool CrocoPat is released as open source under GNU
LGPL and is publicly available from the following website:
http://www.software-systemtechnik.de/CrocoPat/.

REFERENCES

[1] R.C. Holt, “Structural Manipulations Of Software Architecture
Using Tarski Relational Algebra,” Proc. Fifth Working Conf. Reverse
Eng. (WCRE 1998), pp. 210-219, 1998.

[2] L.M.G. Feijs, R.L. Krikhaar, and R.C. van Ommering, “A
Relational Approach to Support Software Architecture Analysis,”
Software: Practice and Experience, vol. 28, no. 4, pp. 371-400, 1998.

[3] R. Berghammer, B. Leoniuk, and U. Milanese, “Implementation of
Relational Algebra Using Binary Decision Diagrams,” Proc. Sixth
Int’l Conf. Relational Methods in Computer Science (RelMiCS 2001),
pp. 241-257, 2002.

[4] M. Widenius, D. Axmark, and MySQL AB, MySQL Reference
Manual. Sebastopol, Calif.: O’Reilly, 2002.

[5] C.J. Date, An Introduction to Database Systems, eighth ed. Addison-
Wesley, 2003.

[6] Swedish Inst. of Computer Science, Quintus Prolog User’s Manual.
2003.

[7] W.F. Clocksin and C.S. Mellish, Programming in Prolog, fifth ed.
Springer-Verlag, 2003.

[8] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-
691, Aug. 1986.

[9] D. Beyer and A. Noack, “Crocopat 2.1 Introduction and Reference
Manual,” Technical Report UCB//CSD-04-1338, Computer
Science Division (EECS), Univ. of California, Berkeley, 2004,
http://arxiv.org/abs/cs/0409009.

[10] H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,
second ed. Springer-Verlag, 1994.

[11] H. Fahmy, R.C. Holt, and J.R. Cordy, “Wins and Losses of
Algebraic Transformations of Software Architectures,” Proc. 16th
Int’l Conf. Automated Software Eng. (ASE 2001), pp. 51-60, 2001.
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