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MULTIVARIATE FORECAST EVALUATION AND RATIONALITY
TESTING

IVANA KOMUNJER AND MICHAEL T. OWYANG

Abstract. In this paper, we propose a new family of multivariate loss functions that can

be used to test the rationality of vector forecasts without assuming independence across

individual variables. When only one variable is of interest, the loss function reduces to

the flexible asymmetric family recently proposed by Elliott, Komunjer, and Timmermann

(2005). Following their methodology, we derive a GMM test for multivariate forecast

rationality that allows the forecast errors to be dependent, and takes into account forecast

estimation uncertainty. We use our test to study the rationality of macroeconomic vector

forecasts in the growth rate in nominal output, the CPI inflation rate, and a short-term

interest rate. [JEL: C32, C53]

1. Introduction

Forecasting models typically rely on the interaction of a large number of correlated

variables to generate predictions. For example, VAR forecasting models build-in an in-

terdependence of key macroeconomic variables such as output, prices, employment, and

interest rates; see Sims (1986) and, more recently, Christiano, Eichenbaum, and Evans

(1999). Stock and Watson (1999) and Boivin and Ng (2006) construct forecasts with

the idea that the state of the economy is influenced by large numbers of comoving data
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2 MULTIVARIATE FORECASTS

series acting through dynamic factors. Even the belief in the most elementary macro-

economic relationships–such as the Phillips curve or the Fisher hypothesis–introduces

an interdependence in the forecasted variables.1,2 It is, therefore, not unusual for fore-

casts to involve two or more correlated variables. A prominent example is the Survey of

Professional Forecasters (SPF), which reports forecasts of both output and inflation.

Tests of these forecasts’ properties, on the other hand, are generally conducted

ignoring–either explicitly or implicitly–the multivariate nature of the underlying model.

In particular, most of literature on forecast rationality testing assumes that the losses for

individual variables are independent; see Kirchgässner and Müller (2006), for example.

Under independence, multivariate losses are additively separable, i.e. they reduce to sums

of univariate losses in each of the variables taken separately. When there is dependence

among variables being forecast, this decomposition no longer necessarily holds.

The consequence of additive separability may be reflected in a biased evaluation of the

forecaster. As an example, suppose that forecasts are made conditional on an assumed

path for, say, monetary policy. The forecast errors for other variables–e.g., output and

inflation–might be viewed in the context of that assumption. If the premise is violated,

relationships underlying the forecasting model might lead to an increase in the errors

for other variables. In an additively separable loss function, the penalty for missing the

policy variable is compounded by the consequent errors in output and inflation. Under

some circumstances, however, the forecaster’s recognition of the multivariate relationships

could mitigate the loss, altering either our conclusions about the behavior or rationality

of the forecaster.

Since the seminal works of Muth (1961) and Lucas (1973), rationality in expecta-

tion formation has been the cornerstone of economic models. The notion that agents

form expectations rationally is found, for example, in the early work on monetary policy

(Friedman, 1968), the natural rate hypothesis (Sargent, 1973; Shiller, 1978), and bond

1The viability of these relationships for forecasting is discussed at length in Stock and Watson (1999)

and Barsky (1987), respectively.
2Perhaps the most telling evidence for multivariate forecasting is FRBUS, the model used by the

Federal Reserve Board of Governors to construct forecasts for monetary policymaking (Brayton, Levin,

Tryon, and Williams, 1997).
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markets (Modigliani and Shiller, 1973; Poole, 1976), among others. Consequently, a large

body of empirical work has been devoted to testing the rational expectations hypothesis

(REH). Market-based studies typically consider the REH in financial markets.3 Survey-

based studies, on the other hand, exploit cross-sections (and often panels) of data collected

from forecasters to test rationality.4

While survey-based tests have, on average, rejected the rationality of professional fore-

casters, these tests tend to treat expectations formation as independent across variables.

That is, forecast rationality is tested for each variable individually under the assumption

that the forecast errors are independent. Most economic theories, on the other hand,

are contrived from multivariate models with comoving variables. It therefore seems con-

trary to test rationality in either univariate or independent multivariate frameworks, as

both treatments belie Muth’s (1961) characterization of rational expectations as “distrib-

uted, for the same information set, about the prediction of the theory (or the ‘objective’

probability distributions of outcomes).”

In addition to assuming independence, rationality tests typically assume that the fore-

caster’s loss function is quadratic. Thus, the forecaster’s objective is simply to minimize

the magnitude of the forecast error, regardless of its directionality. Conclusions drawn

using tests bearing this assumption have, for the most part, revealed a lack of forecast

rationality. Recently, however, Elliott, Komunjer, and Timmermann (2005) (EKT here-

after) argued that a simple quadratic loss may not be sufficiently flexible for evaluating

forecast rationality. They argue that asymmetric loss, in which positive and negative

forecast errors may be weighted differently (Zellner, 1986; Christoffersen and Diebold,

1997; Batchelor and Peel, 1998; Elliott, Komunjer, and Timmermann, 2005, 2006), might

better represent the forecaster’s objective function. In particular, Elliott, Komunjer, and

Timmermann (2006) find evidence for asymmetric loss in the output and inflation SPF

forecasts.
3In financial markets, rationality has implications for the realization of interest rate spreads (Fama,

1990; Campbell and Shiller, 1987; Bekaert and Hodrick, 2001) and exchange rates (Engel and West, 2005).
4These papers examine either the consensus, i.e., the distributions of expectations (see Pesaran (1987)

for a survey), or pooled agents (Figlewski and Wachtel, 1981). Bonham and Cohen (2001) examine

conditions under which either of these methodologies are valid.
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In light of these facts, we propose a test of multivariate forecast rationality that accounts

for both interdependence of the forecast errors and directional asymmetries. The test is

based on a novel multivariate objective (loss) function that explicitly models codependence

in the forecasted variables. Desirable properties of such loss include: (1) it does not treat

the components of the forecast vectors as independent; (2) it allows for asymmetry in

the treatment of over- and under-prediction of the individual variables being forecast. If

agents have symmetric preferences, our multivariate loss function reduces to the sum of

univariate losses. In this case, our test is equivalent to a joint test of univariate rationality.

However, if agents have directional preferences, assuming independence across forecasted

variables produces two biases: First, the independence assumption can alter the result

of rationality tests; second, the econometrician may incorrectly infer a greater degree

of directional preference on the part of the forecaster. In this sense, the assumption of

independence amounts to a misspecification of the forecaster’s loss function. Accounting

for potential correlation across forecasted variables can, in some cases, lessen the degree

of asymmetry found in the panel of forecasters.

Empirically, the misspecification due to the assumption of independence is highlighted

if the correlation of variables differs across subperiods. One such event occurred in early

1994 when the Federal Reserve began to announce the federal funds target, altering the

informational environment for forecasters. Under the assumption of independence, one

might not expect a change in Fed policy to affect the forecaster’s loss associated with, say,

output or inflation. Neglecting the codependence between variables can, thus, bias the

estimation of the forecaster’s directional preferences. Under the multivariate framework,

on the other hand, we can properly account for the codependence of output and inflation

with the policy variable.

The remainder of the paper is organized as follows: Section 2 develops the theoretical

foundation for our multivariate approach. Here, we review the notation and assumptions,

propose a new family of multivariate loss functions, and derive their properties. Where

appropriate, we emphasize the differences between the univariate and multivariate loss

functions. Section 3 outlines the testing procedures for multivariate forecast rationality.

Section 4 describes the data used in our empirical application and presents the results. In
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particular, we focus on the results of the rationality tests and the values of the asymmetry

coefficients in the estimated loss functions obtained in the pre- and post-1994 subsamples.

Section 5 concludes.

2. Multivariate Forecasts and Loss Function

2.1. Setup and Notation. Consider a stochastic process Z ≡ {zt : Ω −→
Rn+m, (n,m) ∈ N2, t = 1, 2, . . .} defined on a complete probability space (Ω,F ,P), where
F = {Ft, t = 1, 2, . . .} and Ft is the σ-field Ft ≡ σ{zs, s ≤ t}. In what follows, we
let zt ≡ (y0t,w0

t)
0, where yt denotes the subvector of interest of the observed vector zt–

yt ∈ Rn–and where the remaining subvector wt–wt ∈ Rm–stands for other variables.5

We denote by F 0
t (·) the distribution of yt conditional on Ft, i.e., F 0

t (y) = P(yt 6 y) for
any y ∈ Rn where 6 denotes the usual partial order on Rn.6 We shall assume that

A1. For all t = 1, 2, ... the conditional distribution F 0
t (·) is continuously differentiable

and the corresponding conditional density f0t (·) > 0 on Rn.

In the forecasting problem considered here, we let ft+s,t denote the time-t forecast of

the n-vector yt+s, where s is the prediction horizon of interest, s ≥ 1. The forecast vector
ft+s,t contains all the information comprised in Ft, which is informative for yt+s, including

lagged values of yt in addition to other variableswt used to predict yt+s. For simplicity, we

focus on the one-step-ahead predictions of yt+1–denoted ft+1,t–knowing that all results

developed in this case can readily be generalized to any s > 1. Using the standard

notation, we let et+1 denote the time-t+ 1 forecast error n-vector, et+1 = yt+1 − ft+1,t.
Hereafter, for any scalar u, u ∈ R, we let 1I : R→ [0, 1] be the Heaviside (or indicator)

function, i.e., 1I(u) = 0 if u < 0, 1I(u) = 1 if u > 0, and 1I(0) = 1
2
(Bracewell, 2000).

Similarly, we use sgn : R → {−1, 0, 1} to denote the sign function: sgn(u) = 1I(u) −
1I(−u) = 21I(u) − 1, and let δ : R → R be the Dirac delta function. Note that the

Heaviside function is the indefinite integral of the Dirac function, i.e., 1I(u) =
R u
a
dδ,

where a is an arbitrary (possibly infinite) negative constant, a 6 0. For any real function

5Following the standard convention, we use bold letters for vectors (e.g., zt) and matrices (e.g., B0).
6For any (a,b) ∈ R2n with a = (a1, ..., an)0, b = (b1, ..., bn)0, a 6 b means ai 6 bi for all 1 6 i 6 n.



6 MULTIVARIATE FORECASTS

f : Rn → R that is continuously differentiable to order R > 2 on Rn, we let ∇uf(u)
denote the gradient of f(·) with respect to u, ∇uf(u) ≡ (∂f(u)/∂ui, ..., ∂f(u)/∂un)0, and
use ∆uuf(u) to denote its Hessian matrix, ∆uuf(u) ≡ (∂2f(u)/∂ui∂uj)16i,j6n.
For any n-vector u, u = (u1, ..., un)0 ∈ Rn, we denote by kukp its lp-norm, i.e., kukp =

(|u1|p+ ...+ |un|p)1/p for 1 6 p <∞, and kuk∞ = max16i6n(|ui|). We define the open unit
ball Bn

p in Rn as Bn
p = {u ∈ Rn : kukp < 1}. νp(u), Vp(u) and Wp(u) are an n-vector

and two n× n-diagonal matrices defined as: νp(u) ≡ (sgn(u1)|u1|p−1, ..., sgn(un)|un|p−1)0,
Vp(u) ≡ diag(δ(u1)|u1|p−1, ..., δ(un)|un|p−1), and Wp(u) ≡ diag(|u1|p−2, ..., |un|p−2), re-
spectively. Then ∇u kukp = kuk1−pp νp(u) and ∆uu kukp = kuk1−pp {2Vp(u) + (p− 1)·h
Wp(u)− kuk−pp νp(u)ν

0
p(u)

io
, which we shall often be using in what follows.

Finally, for any m × n-matrix A = (aij)16i6m,16j6n, we let kAk∞ = max16i,j6n(|aij|).
Moreover, if B = (bkl)16k6p,16l6q is a p× q-matrix, we let A⊗B be the direct product of
A and B (also called their Kronecker product), i.e., C = A⊗B is an (mp)× (nq)-matrix
with elements defined by cαβ = aijbkl, where α = p(i− 1) + k and β = q(j − 1) + l.

2.2. Multivariate Loss Function. In this paper, we generalize the flexible family of

loss functions introduced by EKT to n—variate forecasts. In the univariate case, EKT

map an exponent p, 1 6 p < ∞, and an asymmetry parameter α, 0 6 α 6 1, into a

non-negative function of an error e ∈ R; the resulting family of losses is flexible enough
to accommodate the absolute value or quadratic loss, yet allows the latter to become

asymmetric. We now extend their definition to a vector-valued argument, e ∈ Rn. Fix a

scalar p, 1 6 p <∞, and let τ be an n-vector with lq-norm less than unity, i.e., τ ∈ Bn
q ,

where 1/p + 1/q = 1 with the convention that q = ∞ when p = 1. For any e ∈ Rn, we

then define an n-variate loss function as follows:

Definition 1 (n-variate Loss). The n-variate loss function Ln (p, τ , e) : [1,+∞)×Bn
q ×

Rn → R (with 1/p+ 1/q = 1) is defined as

Ln (p, τ , e) ≡
³
kekp + τ 0e

´
kekp−1p . (1)

When p = 1, the multivariate loss Ln(1, τ , ·) can be used to define the geometric
quantile of the forecast n-vector error e, as proposed in Chaudhuri (1996), for example.
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In a sense, Ln(1, τ , ·) is a multivariate extension of the univariate loss 2[1−α+τ1I(e)]|e|p,
well-known in the literature on quantile estimation (Koenker and Bassett, 1978). When

p > 1, the expression of the n-variate loss Ln(p, τ , ·) is entirely novel and not yet seen in
the literature. We start by establishing some of its useful properties.

Proposition 1. Let Ln(p, τ , e) be the n-variate loss in Definition 1. Then, the following

properties hold: (i) Ln (p, τ , ·) is continous and non-negative on Rn; (ii) Ln (p, τ , e) = 0

if and only if e = 0, and limkekp→∞ Ln (p, τ , e) =∞; (iii) Ln(p, τ , ·) is convex on Rn.

The shape of the n-variate loss Ln (p, τ , ·) is characterized by the exponent p, 1 6 p <

∞, and the n-vector τ that quantifies the extent of asymmetry in Ln (p, τ , ·). When
τ = 0, the n-variate loss in Equation (1) reduces to kekpp, which is perfectly symmetric.
On the other hand, for a nonzero τ , its magnitude kτkq measures the extent of deviation
of the n-variate loss from the perfectly symmetric case; the direction of this deviation is

determined by the direction of τ . In a sense, both the direction and the magnitude of the

n-vector τ influence the degree of asymmetry in the forecaster’s loss (see left and middle

panels in Figure 1).

When the variable of interest is of dimension n = 1 and the forecasts are univariate, the

loss in Equation (1) reduces to L1 (p, τ , e) = [|e|+ τe] |e|p−1 = 2[1− α+ τ1I(e)]|e|p, where
τ = 2α − 1, α ∈ (0, 1), and p > 1 as previously (Elliott, Komunjer, and Timmermann,

2005, 2006).7 In the univariate case, this flexible loss family includes (i) the squared loss

function L1(2, 0, e) = e2 and (ii) the absolute deviation loss function L1(1, 0, e) = |e|, as
well as their asymmetrical counterparts obtained when τ 6= 0 (i.e., α 6= 1/2) called (iii)
the quad-quad loss, L1(2, τ , e), and (iv) the lin-lin loss, L1(1, τ , e).

2.3. Asymmetry and Dependence Properties. In order to gain further insight into

the features of the loss Ln (p, τ , e) in Equation (1), we consider in more detail the case

n = 2. In this bivariate case, it is assumed that the forecaster cares about the magnitude

and the sign of her errors e1 and e2, committed when forecasting jointly the two variables

of interest, y1 and y2. The iso-loss curves corresponding to L2 (p, τ , e) = constant, where

7Note that we have the following useful identity: 1 + τ sgn(x) = 2[1− α+ τ1I(x)], for all x ∈ R.
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Figure 1. L2(1, τ , ·) (left), L2(2, τ , ·) (middle), and L1(2, τ 1, ·)+L1(2, τ 2, ·)
(right) contour plots with α = (.50, .50)0, (.50, .25)0, (.75, .25)0, (.85, .25)0

(top to bottom).

e = (e1, e2)
0 and τ =(2α1 − 1, 2α2 − 1)0, are then as plotted in the left and middle panels

of Figure 1.

For example, when p = 1, we have L2 (1, τ , e) = |e1| + |e2| + τ 1e1 + τ 2e2 and the loss

corresponding to the bivariate error e = (e1, e2)0 equals the sum of individual lin-lin losses

corresponding to e1 and e2: L2 (1, τ , e) = L1 (1, τ 1, e1) + L1(1, τ 2, e2). In other words,

when the shape parameter p = 1, the forecaster behaves as if the variables of interest, y1
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and y2, were independent. However, her loss in each of the two forecasts taken separately

is still allowed to be asymmetric.

When, on the other hand, p = 2, we have L2 (2, τ , e) = |e1|2 + |e2|2 +
(τ 1e1 + τ 2e2) (|e1|2 + |e2|2)1/2 , which is no longer additively separable in individual losses
of either e1 or e2 alone: unless τ 1 = τ 2 = 0, we have L2 (2, τ , e) 6= L1 (2, τ 1, e1) +

L1(2, τ 2, e2) for general values of the forecast errors. In this case, the trivariate loss differs

from a simple sum of the individual quad-quad losses, as demonstrated by the middle and

right panels in Figure 1.

When the shape parameter p of the n-variate loss in Equation (1) is strictly greater

than 1, Ln (p, τ , e) will in general differ from the sum of coordinate—wise univariate losses

L1 (p, τ 1, e1) + ... + L1 (p, τn, en). Hence, minimizing the n-variate loss Ln (p, τ , e) will

in general produce an optimal n-vector e∗ whose coordinates e∗i do not necessarily each

minimize L1(p, τ i, ei). In other words, Ln (p, τ , e) captures not only the asymmetry but

also the dependence between different coordinates of e.

3. Multivariate Forecast Rationality: Estimation and Testing

We now define multivariate forecast rationality. Intuitively, the n-variate forecasts shall

be called rational with respect to the n-variate loss Ln (p, τ , ·) defined in Equation (1), if
they minimize its expected value. Since the information sets available to the forecasters

change in time, the expectation of the loss is conditional on Ft; hence, any forecast in the

sequence necessarily satisfies an orthogonality condition We shall use this condition as a

starting point of our estimation and multivariate forecast rationality testing procedures.

3.1. Rationality Condition. Throughout the paper we assume that the forecaster’s

n-vector optimal forecasts of yt+1, forecasts which we denote f∗t+1,t, satisfy the following:

A2. For all t = 1, 2, ... we have: f∗t+1,t = argmin{ft+1,t} E [Ln (p0, τ 0,yt+1 − ft+1,t)| Ft],

where Ln (p0, τ 0, ·) is the n-variate loss function with parameters p0, 1 6 p0 < ∞, and
τ 0 ∈ Bn

q0
, 1/p0 + 1/q0 = 1, as defined in Equation (1).

Implicit in Assumption A2 are two properties: (1) when constructing her optimal fore-

casts, the forecaster has in mind a loss function whose argument is the forecast error
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n-vector et+1 alone; (2) the forecaster’s loss is parametrized by p0 and τ 0 as introduced

in Equation (1).

We now derive a necessary and sufficient condition for multivariate forecast rationality,

which provides the basis of our test for multivariate forecast rationality (Section 3). We

need the following property:

A3. Given p0 ∈ [1,+∞), and for all t = 1, 2, ... we have: E
¡
kytkp0−11

¯̄
Ft

¢
< ∞ a.s.-P

and
°°f∗t+1,t°°p0−11

<∞ a.s.-P .

The conditions in Assumption A3 combined with the convexity of the n-variate loss in

Equation (1) together ensure–by Lebesgue’s dominated convergence theorem–that we

can safely differentiate the loss Ln with respect to the error et+1 inside the conditional

expectation operator in Assumption A2. This yields the following necessary and sufficient

condition of multivariate forecast optimality.

Proposition 2. Let Assumptions A1 and A3 hold. Then the optimality of {f∗t+1,t} in A2
holds if and only if for all t = 1, 2, . . . we have

E

"
p0νp0(e

∗
t+1) + τ 0

°°e∗t+1°°p0−1p0
+ (p0 − 1)τ 00e∗t+1

νp0(e
∗
t+1)°°e∗t+1°°p0

¯̄̄̄
¯Ft

#
= 0, a.s.− P. (2)

Note that while the necessity of the above first-order condition is obvious, the sufficiency

part of the above result heavily relies on the convexity of the loss Ln(p0, τ 0, ·) established
in Proposition 1.

3.2. Identification of Multivariate Loss Function Parameters. Identification of

the true multivariate loss parameters used by the forecasters exploits the orthogonality

condition derived in Proposition (2). Consider an Ft-measurable d-vector xt and denote

by g(·, ·; e∗t+1,xt) an nd-vector-valued function g(·, ·; e∗t+1,xt) : [1,+∞)× Bn
q → Rnd such

that

g(p, τ ; e∗t+1,xt) ≡
³
pνp(e

∗
t+1) + τ

°°e∗t+1°°p−1p
+ (p− 1)τ 0e∗t+1

°°e∗t+1°°−1p νp(e
∗
t+1)

´
⊗xt. (3)

The key element of our identification strategy is the following: under rationality, we have

E[g(p0, τ 0; e
∗
t+1,xt)] = 0 for all t = 1, 2, . . . . If for a given p0 ∈ [1,+∞), τ 0 is the unique

value of the n-variate asymmetry parameter τ ∈ Bn
q0
(with 1/p0 + 1/q0 = 1) that satisfies
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those nd orthogonality conditions, then the latter can be utilized by the forecast evaluator

(econometrician) to estimate τ 0 using Hansen’s (1982) GMM approach. For this, we shall

first make the assumption that all of the variables appearing in Equations (9) and (3)

come from a process that is stationary:

A4. The process {(e∗0t+1,x0t)0} is strictly stationary.

We further restrict the d-vector of instruments xt to satisfy the following properties:

A5. Given p0 ∈ [1,+∞), (i) E[
°°e∗t+1°°p0−11

kxtk1] < ∞; (ii) rankE
£ °°e∗t+1°°p0−1p0

(Idn ⊗
xt) + (p0 − 1)

°°e∗t+1°°−1p0 (νp0(e∗t+1)⊗ xt)e∗0t+1¤ = n.

We can then characterize the true forecaster’s asymmetry parameter τ 0 as follows.

Lemma 3. Let Assumptions A1 through A5 hold. Given p0 ∈ [1,+∞) and for any
τ ∈ Bn

q0
, let Q(τ ) ≡ E[g(p0, τ ; e

∗
t+1,xt)]

0S−1E[g(p0, τ ; e
∗
t+1,xt)], with S positive definite.

Then τ 0 is the unique minimum of Q(τ ) on Bn
q0
.

The weighting matrix S in Lemma 3 is usually set to be equal to S ≡
E[g(p0, τ 0; e

∗
t+1,xt)g(p0, τ 0; e

∗
t+1,xt)

0]. In order to ensure that S is positive definite, we

need that the covariance matrix of d-vector of instruments xt be of full rank.

A6. rankE[xtx0t] = d.

We then have the following result:

Lemma 4. Let Assumptions A1 through A6 hold. Given p0 ∈ [1,+∞) and for any
τ ∈ Bn

q0
, let S(τ ) ≡ E

£
g(p0, τ ; e

∗
t+1,xt)g(p0, τ ; e

∗
t+1,xt)

0¤. Then S(τ ) is positive definite.
3.3. GMM Estimation. Now, given p0 ∈ [1,+∞) and given the observations

((x0τ , ê
0
τ+1)

0, ..., (x0τ+T−1, ê
0
τ+T )

0)0, the GMM estimator of the n-variate loss asymmetry pa-

rameter τ 0, denoted τ̂ T , can be defined as a solution to the minimization problem:

min
τ∈Bnq0

"
T−1

T+R−1X
t=R

g(p0, τ ; êt+1,xt)

#0
Ŝ−1

"
T−1

T+R−1X
t=R

g(p0, τ ; êt+1,xt)

#
, (4)

where Ŝ is a consistent estimator of S = E[g(p0, τ 0; e
∗
t+1,xt)g(p0, τ 0; e

∗
t+1,xt)

0].
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It is worth pointing out that the optimal forecast errors e∗t+1 are unobservable in reality.

Instead, for every t, R 6 t 6 T+R−1, the forecast evaluator observes êt+1,t = yt+1−ft+1,t,
which implicitly incorporates all of the forecast estimation uncertainty embodied in ft+1,t.

In order to make sure that this uncertainty does not interfere with our rationality test

we need to impose a set of restrictions on how the observed forecaster’s n-vector errors

{et+1,t}T+R−1t=R differ from their optimal counterparts {e∗t+1}T+R−1t=R .

A7. For every t, R ≤ t ≤ T +R−1, and any ε > 0, limR,T→∞Pr
¡°°êt+1 − e∗t+1°°1 > ε

¢
=

0.

In addition, we need to ensure that appropriate sample averages converge to their

expected values. Recall that Assumption A4 restricts the heterogeneity of the process

{(e∗0t+1,y0t)0} by guaranteeing that the latter is strictly stationary. We now impose a

similar condition on {(ê0t+1,x0t)0} and further restrict its dependence structure.

A8. The process {(ê0t+1,x0t)0} is strictly stationary and α-mixing with mixing coefficient

α of size −r/(r− 2), r > 2, and, given p0 ∈ [1,+∞), there exist some ε > 0, ∆1 > 0 and

∆2 > 0 such that E[kêt+1k(p0−1)(2r+ε)1 ] 6 ∆1 <∞ and E[kxtk2r+ε1 ] 6 ∆2 <∞.

In particular, using the fact that {g(p0, τ 0; e∗t+1,xt),Ft} is a martingale difference se-
quence, as shown in Equation (2), a consistent estimator of S is given by

Ŝ(τ̃ ) ≡ T−1
T+R−1X
t=R

g(p0, eτ ; êt+1,xt)g(p0, eτ ; êt+1,xt)0, (5)

where eτ is some initial consistent estimate of τ 0. As already pointed out, the optimal
sequence {e∗t+1} is in reality unobservable; what the forecast evaluator (econometrician)
observes instead are the forecaster’s n-vector errors {êt+1,t}T+R−1t=R . Given that the fore-

caster produces forecasts that are “close” to optimal as quantified in Assumption A7, the

consistency of Ŝ in Equation (5) holds, despite the presence of the forecast estimation

uncertainty.

We are now able to show that our GMM estimator τ̂ T of the asymmetry parameter τ 0

is consistent:
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Theorem 5. Let Assumptions A1 through A8 hold. Then, given p0 ∈ [1,+∞) we have
τ̂ T

p→ τ 0 as (R,T )→∞.

3.4. Forecast Rationality Test Statistic. Our test for multivariate forecast rationality

comes in a form of a J-test. Hence, it necessitates the derivation of the asymptotic

distribution of our GMM estimator τ̂ T , which we derive next. We start by strengthening

our stationarity assumption A4 as follows:

A40. The process {(e∗0t+1,x0t)0} is strictly stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ [1,+∞), there exist some � > 0, ∆3 > 0

such that E[
°°e∗t+1°°(p0−1)(2r+�)1

] 6 ∆3 <∞.

Above conditions, similar to those stated in Assumption A8, ensure that appropriate

laws of large numbers and central limit theorems apply. We shall also strengthen our

assumption A7 by requiring the following:

A70. (i) For some small ε in (0, 1) R1−2ε/T →∞ as R→∞ and T →∞; (ii) for any
δ > 0 we have: limR,T→∞Pr

¡
supR6t6T+R−1

°°êt+1 − e∗t+1°°1 > δ
¢
= 0.

The above condition ensures that the forecast estimation uncertainty, embodied in ê,

does not affect the asymptotic distribution of our GMM estimator τ̂ T . Note that A70(i)

imposes a condition on the relative growth of sample sizes R and T . Assumption A70(ii),

on the other hand, strengthens the requirement in A7 by making it uniform in t. Finally,

we need two additional new assumptions:

A9. Given p0 ∈ [1,+∞), we have: E
³
supc∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

´
< ∞ and

E
³
kxtk1 supc∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

´
<∞.

A10. The marginal densities f0it(·) are such that max1≤i≤n f0it(y) ≤M for any y ∈ R.

We are now ready to state our asymptotic distribution result for τ̂ T .

Theorem 6. Let Assumptions A1-A3, A4’, A5-A6, A7’, A8-A10 hold. Then, given

p0 ∈ [1,+∞) we have:
√
T (τ̂ T − τ 0)

d→ N (0, (B∗0S−1B∗)−1), as R, T → ∞, where
S = E[g(p0, τ 0; e

∗
t+1,xt)g(p0, τ 0; e

∗
t+1,xt)

0] and B∗ ≡ E[
°°e∗t+1°°p0−1p0

(Idn ⊗ xt) + (p0 −
1)
°°e∗t+1°°−1p0 (νp0(e∗t+1)⊗ xt)e∗0t+1].
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The asymptotic normality result of Theorem 6 is the basis for our forecast rationality

test. When the dimension of the d-vector xt used in Equation (3) is large enough, d > 1,

then a test for overidentification provides a joint test of rationality of the n-vector forecasts

{f̂t+1,1} under the n-variate loss L(p0, τ̂ T , ·). More formally, we have the following corollary
to our Theorem 6:

Corollary 7. Let the assumptions of Theorem 6 hold. Then a joint test of n-vector

forecast rationality under the n-variate loss function L(p0, τ̂ T , ·) can be conducted with
d > 1 instruments xt through the test statistic

ĴT ≡ T−1

"
R+T−1X
t=R

g(p0, τ̂ T ; êt+1,xt)

#0
Ŝ−1

"
R+T−1X
t=R

g(p0, τ̂ T ; êt+1,xt)

#
∼ χ2n(d−1),

where Ŝ is as defined in Equation (5).

4. Empirical Application

We illustrate the performance of our multivariate forecast rationality test in a situation

in which the forecasters have reason to believe that the forecasts are codependent. We

focus on three macro variables: the growth rate in output, y, the CPI inflation rate,

π, and a short-term interest rate, r. Examples of models using these variables include

Taylor’s (1993) interest rate targeting rule, monetary VARs (Christiano, Eichenbaum, and

Evans, 1999), optimizing ISLM models (McCallum and Nelson, 1999), and reduced-form

New Keynesian models (Clarida, Galí, and Gertler, 2000). Common to these models is

a relationship–either estimated or imposed–between output and prices combined with

the Federal Reserve’s control of short-term interest rates. We would therefore expect

the forecasters to account for the covariation of output, prices, and interest rates when

constructing their optimal forecasts.

4.1. Data. Forecast data are taken from the Blue Chip Economic Indicators (BCEI),

a compilation of industry forecasts of a number of economic variables. Each month,

participating firms report forecasts of the current- or next-year growth rate in output and
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prices and the current- or next-year average short-term interest rate.8 The BCEI began

collecting data in 1976:08. Our sample includes forecasts through 2004:12.9

We assume that the forecaster’s objective is to predict true values and that revisions

to the realizations are a more accurate reflection of the true values. Thus, in constructing

the forecast errors, we use the latest revision of the variable in question. The realizations

are yearly growth rates of GDP, GNP, and CPI inflation.10 Short-term interest rate

realizations are the yearly average.

Over time, some forecasters leave the sample while others are added. In addition,

firms occasionally fail to report forecasts for any given month. We therefore omit any

observation in which forecasts for all three variables are not reported.11 Finally, forecasters

with fewer than 100 valid observations are dropped from the sample. For the full sample,

this leaves 57 firms with an average of 171 valid observations per firm.

As we have shown above, rationality depends on the set of variables included in the

forecaster’s information set. The set of instruments includes combinations of the lagged

growth rates of output, inflation, the unemployment rate, and the short-term interest

rate. Instruments are, for each month, a snapshot of the real-time data available at that

time.12 The change in the forecast is also included as a possible instrument. For each

forecaster, we conduct tests employing different information sets, described in Table 1.
8Prior to 1984, firms reported current-year forecasts for the first five or six months of the year. In

later months, they reported next-year forecasts. Starting in 1984, both current- and next-year forecasts

were reported each month.
9The sample of output forecasts is split between GNP (1976:08 through 1991:12) and GDP (1992:01

through 2004:12). The BCEI began collecting CPI inflation forecasts in 1979:01 through the end of our

sample in 2004:12. The short-term interest rate forecasts are split between the 3-month commercial paper

(1976:08 through 1980:06), the 6-month commercial paper (1980:07 through 1981:12), and the 3-month

T-bill (1982:01 through 2004:12) rates.
10For output and inflation, the target variable is the rate of change between the average of the levels

for that year. This method is described by the BCEI in their monthly newsletter.
11These observations may affect both the period in which the forecast is made and the information set

of the forecaster. In these cases, both observations are omitted.
12These data are taken from the Federal Reserve Bank of St. Louis’s archival dataset Archival Federal

Reserve Economic Data (ALFRED), available at www.stlsfrb.org. The short-term interest rate, which is

not typically revised, was taken from the Federal Reserve Board.
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As a baseline for comparison, we repeat each test under the assumption of independence

and the joint assumption of independence and symmetry.

4.2. Multivariate Rationality Test Results. The multivariate rationality test out-

lined in the previous sections is essentially a test of overidentifying restrictions. It exam-

ines whether the series of forecast errors can be reconciled with rationality for some set

of asymmetry parameters.

Table 2 illustrates the effect of testing rationality jointly. We report the percentage of

forecasts for which rationality is not rejected. Results are reported for three confidence

levels–90, 95, and 99 percent–for each set of instruments. In addition, each instrument

set is estimated for fixed values of p = 1, 2.13 The salient result is that for each instrument

set, both the univariate asymmetric and multivariate asymmetric loss functions accept

rationality at a much higher rate than the univariate symmetric baseline reported in the

last three columns. The rate at which rationality is accepted under multivariate loss is

nearly identical to that under univariate asymmetric loss. For most instrument sets, the

difference in acceptances between flexible loss methods is smaller than 10 percent.14

4.3. Asymmetry Coefficients. For a given specification of the forecaster’s loss function,

our procedure delivers estimates of the asymmetry parameters (αy, απ, αr)most consistent

with the orthogonality conditions implied by rationality of joint forecasts of y, π, and r.

EKT found that the addition of symmetric loss alone can increase the rate at which

rationality is confirmed in forecasters. However, this finding often requires substantial

directional asymmetry in the forecasters’ loss functions. Accounting for the codepen-

dence of the forecasted variables may mitigate this problem. Recall that interpretation

of the asymmetry parameters (αy, απ, αr) depends on their values relative to the baseline

0.5. Values greater (less) than 0.5 indicate greater losses for negative (positive) forecast

13Recall from the discussion above that for p = 1, the univariate and multivariate cases are equivalent.

Thus, results of both the rationality tests and the sets of asymmetry parameters are identical.
14Differences in the rate of acceptance of rationality between the univariate and multivariate approaches

when varying p were minor.
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errors. Table 3 provides summary statistics for the cross-forecaster distributions of the es-

timated asymmetry parameters for different instrument sets. Figure 2 provides graphical

representations of these distributions for a subset of instruments.

The joint directionality in preferences appears pervasive across forecasters. More than

half of the forecasters exhibit higher loss when jointly overpredicting output, overpredict-

ing the short-term interest rate, and underpredicting inflation. These directional prefer-

ences are each associated with an unexpectedly worse economic outcome, i.e., lower-than-

expected output growth, looser-than-expected monetary policy, and higher-than-expected

inflation.

In addition, the asymmetry for each forecaster is typically preserved when the loss

is estimated jointly rather than independently. That is, if the asymmetry parameters

indicate that a forecaster has a preference for overpredicting GDP under independence,

joint estimation of her loss function does not tend to reverse this preference. For each

forecasted variable, only about 10 percent of the total number of forecasters experience

preference reversals, with the majority of these being statistically indistinguishable from

symmetric loss.

The salient result for multivariate rationality lies in the difference between the estimated

loss function parameters. We find that the degree of directional asymmetry is reduced

once independence is relaxed. Figure 3 plots the ratio of the absolute deviation from

symmetry (αi = 0.5) for the multivariate case to the univariate case. With few exceptions,

the distribution of this ratio across forecasters lies below 1, indicating the decline in

the estimated asymmetry when accounting for the comovement of variables. Neglecting

the comovement of variables then leads the econometrician to assume more directional

asymmetry than may actually be warranted.

4.4. Pre- vs. post-1994 dependence structure. We have observed that accounting

for the comovement of variables may lead to a decline in the estimated asymmetric pref-

erences of forecasters. However, the main advantage of a multivariate approach may be

revealed by changes in the relationships between correlated variables. An example of such

a change occurred when the Federal Reserve began releasing statements describing policy
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actions in early 1994.15 This shift in policy has been thought to cause changes in the

behavior of forecasters, possibly increasing the information of private forecasters.16 Here,

we consider whether accounting for this innovation in Fed policy alters the rationality

results and/or directional preferences of forecasters. To accomplish this, we reestimate

the forecasters’ loss functions over the split sample periods up to and beginning in 1994.

Table 4 reports the asymmetry coefficients from the announcement subsample alongside

results for the pre-1994 sample and the full sample.17 Two results are readily apparent.

First, cross-period results suggest a change in forecaster behavior at the onset of the

announcement period. Prior to 1994, forecasters appeared to exhibit more sensitivity

to overshooting interest rates. During the same period, forecasters appeared virtually

symmetric to output forecast errors. On the other hand, during the announcement period,

forecasters receive signals from the Fed about future policy actions. This appears to shift

their preferences toward higher losses for overshooting output.

Comparing across frameworks, however, reveals that the multivariate approach assigns

less asymmetry to short-term interest rate errors than if the errors were assumed inde-

pendent. During the announcement period, the forecasting environment and, thus, the

relationship between these three variables changed substantially. The differences across

methodologies are depicted in Figure 4, which shows cross-sections of the iso-loss contours.

In the first panel, forecasters have symmetric preferences as to output and inflation but

have extreme directional preference for interest rate errors. The second panel shows the

change in the iso-loss contours as preferences become more symmetric for interest rates

but less symmetric for output.

15Poole, Rasche, and Thornton (2002) and Eijffinger, Geraats, and van der Cruijsen (2006) documented

this change in the Fed’s transparency, dubbed “the announcement period.”
16Swanson (2006) suggests an increase in forecasting accuracy of the private sector during the an-

nouncement period.
17Reducing the sample size reduces the number of forecasters eligible for consideration. Prior to 1994,

34 forecasters had at least 100 valid observations. For the post-1994 sample period, 32 forecasters had

at least 100 valid observations. These sets of forecasters overlap but are not identical. In this section,

results for the full sample are for the same 32 forecasters with 100 valid observations in the announcement

period.
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If the forecaster’s preferences are assumed to be determined by the sum of independent

losses, the interaction between output, inflation, and interest rates is neglected. In this

case, the econometrician would account for biases in the short-term interest rate fore-

casts by assigning more asymmetric loss to these forecasts. However, accounting for the

comovements reduces the estimated asymmetry in forecaster losses, particularly for the

short-term interest rate. For the 32 forecasters in our sample, the reduction in asymmetry

for overshooting the short rate is up to 50 percent. The multivariate approach takes into

account the fact that overpredicting the short rate may often be associated with overpre-

dicting output and underpredicting inflation. Once this type of systematic covariation is

controlled for, forecaster losses may appear dramatically less asymmetric.

As a final test, Table 5 presents the results of tests against symmetry for various com-

binations of the forecaster’s preference parameters. The table shows the percentage of

forecasters for which the Wald test cannot reject the given null hypothesis. While many

of the columns indicate the differences across methodologies are small, we focus on the

restriction αr = 0.5. Here, we can clearly see that accounting for covariation substantially

increases the number of forecasters for which interest rate symmetry cannot be rejected.

5. Conclusions and Implications for Rationality

The results of the preceding tests have important implications for the prospects of

rational expectations in macroeconomic models. In univariate tests, EKT argue that ra-

tionality requires the econometrician to allow forecasters to have asymmetric loss across

directional errors for output and inflation. These conclusions are drawn from a model that

considers the forecasted series in isolation. Our multivariate tests indicate that asymmet-

ric loss for output and inflation may an aberration rather than the norm. These findings

show that symmetric rationality over output and inflation is the predominant finding once

the econometrician accounts for forecast errors in the short-term interest rates. In other

words, imposing zero correlation between the three variables leads to a misspecification

that biases the result toward asymmetry.
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From a macroeconomic point of view, the preceding argument amounts to the following

conclusion: agents account for monetary policy when establishing their forecasts for out-

put and inflation.18 Neglecting the correlations in the forecast errors for these variables is

akin to the assumption that output, inflation, and monetary policy are independent. Our

findings suggest that, in light of the forecasters’ expectation of future monetary policy,

their predictions for output and inflation appear rational with less directional asymmetry.

One final concern, however, is the rate at which directional asymmetry for short-term

interest rates is rejected even in the multivariate framework. A number of alternatives to

true directional asymmetry can be posited. For example, the loss function may still be

misspecified if key correlations are omitted. A second possibility is that the asymmetry

is produced by the process by which monetary policy is conducted, i.e., monetary policy

tightenings are more predictable than easings.19

Appendix A. Assumptions

A1. For all t = 1, 2, ... the conditional distribution F 0
t (·) is continuously differentiable

and the corresponding conditional density f0t (·) > 0 on Rn.

A2. For all t = 1, 2, ... we have f∗t+1,t = argmin{ft+1,t} E [Ln (p0, τ 0,yt+1 − ft+1,t)| Ft],

where Ln (p0, τ 0, ·) is the n-variate loss function with parameters p0, 1 6 p0 < ∞, and
τ 0 ∈ Bn

q0
, 1/p0 + 1/q0 = 1, as defined in Equation (1).

A3. Given p0 ∈ [1,+∞), and for all t = 1, 2, ... we have E
¡
kytkp0−11

¯̄
Ft

¢
< ∞ a.s.-P

and
°°f∗t+1,t°°p0−11

<∞ a.s.-P .

A4. The process {(e∗0t+1,x0t)0} is strictly stationary.
A40. The process {(e∗0t+1,x0t)0} is strictly stationary and α-mixing with mixing coefficient

α of size −r/(r − 2), r > 2, and, given p0 ∈ [1,+∞), there exist some � > 0, ∆3 > 0

such that E[
°°e∗t+1°°(p0−1)(2r+�)1

] 6 ∆3 <∞.

18In this, we treat the short-term interest rate as a proxy for the policy instrument.
19We conducted a back-of-the-envelope test of this hypothesis by omitting from the estimation months

in which the FOMC made an intermeeting move. We found no significant differences in either the rates

of rationality rejections or the distributions of the asymmetry parameters.
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A5. Given p0 ∈ [1,+∞), (i) E[
°°e∗t+1°°p0−11

kxtk1] < ∞; (ii) rankE[
°°e∗t+1°°p0−1p0

(Idn ⊗
xt) + (p0 − 1)

°°e∗t+1°°−1p0 (νp0(e∗t+1)⊗ xt)e∗0t+1] = n.

A6. rankE[xtx0t] = d.

A7. For every t, R ≤ t ≤ T +R−1, and any ε > 0, limR,T→∞Pr
¡°°êt+1 − e∗t+1°°1 > ε

¢
=

0.

A70. (i) For some small ε in (0, 1) R1−2ε/T →∞ as R→∞ and T →∞; (ii) for any
δ > 0 we have: limR,T→∞Pr

¡
supR6t6T+R−1

°°êt+1 − e∗t+1°°1 > δ
¢
= 0.

A8. The process {(ê0t+1,x0t)0} is strictly stationary and α-mixing with mixing coefficient

α of size −r/(r− 2), r > 2, and, given p0 ∈ [1,+∞), there exist some ε > 0, ∆1 > 0 and

∆2 > 0 such that E[kêt+1k(p0−1)(2r+ε)1 ] 6 ∆1 <∞ and E[kxtk2r+ε1 ] 6 ∆2 <∞.
A9. Given p0 ∈ [1,+∞), we have E

³
supc∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

´
< ∞ and

E
³
kxtk1 supc∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

´
<∞.

A10. The marginal densities f0it(·) are such that max1≤i≤n f0it(y) ≤M for any y ∈ R.

Appendix B. Proofs

Proof of Proposition 1. Fix p, 1 6 p < ∞, τ ∈ Bn
q (1/p + 1/q = 1), and consider the n-

variate loss function L (p, τ , ·) : Rn → R as in Definition 1. That L (p, τ , ·) is continuous
on Rn follows by the continuity of the p-norm e 7→ kekp and the Euclidean inner product
e 7→ τ 0e on Rn. We now establish that L (p, τ , e) > 0 for every e ∈ Rn with equality if and

only if e = 0. By Hölder’s inequality, we have |τ 0e| 6 kτkq kekp < kekp, where the second
inequality uses the fact that τ ∈ Bn

q so that kτkq < 1. Hence, kekp + τ 0e > 0 for every

e ∈ Rn. This implies that L (p, τ , e) =
³
kekp + τ 0e

´
kekp−1p > 0 for every e ∈ Rn with

equality if and only if kekp−1p = 0, which holds if and only if e = 0. Since x 7→ xp (p > 1)
is a strictly increasing function on R+, we moreover have limkekp→∞ L (p, τ , e) =∞. This
establishes (i) and (ii) of Proposition 1. We now show (iii) that Ln (p, τ , ·) is a convex
function on Rn: i.e., that

Ln (p, τ , (1− λ)e1 + λe2) 6 (1− λ)Ln (p, τ , e1) + λLn (p, τ , e2) , 0 < λ < 1,
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for every (e1, e2) ∈ R2n (see, e.g., Theorem 4.1 in Rockafellar (1970)). We have

Ln (p, τ , (1− λ)e1 + λe2)

=
h
k(1− λ)e1 + λe2kp + τ 0 ((1− λ)e1 + λe2)

i
k(1− λ)e1 + λe2kp−1p

6
h
(1− λ)

³
ke1kp + τ 0e1

´
+ λ

³
ke2kp + τ 0e2

´i
k(1− λ)e1 + λe2kp−1p , (6)

where the last inequality uses the convexity of e 7→ kekp when p > 1 and the linearity

of e 7→ τ 0e on Rn. We now show that k(1− λ)e1 + λe2kp−1p 6 ke1kp−1p + ke2kp−1p . First

consider the case 1 6 p < 2: we have

k(1− λ)e1 + λe2kp−1p 6
h
(1− λ) ke1kp + λ ke2kp

ip−1
6

h
(1− λ) ke1kp

ip−1
+
h
λ ke2kp

ip−1
6 ke1kp−1p + ke2kp−1p , (7)

where the first inequality uses triangular inequality, the second follows from Theorem 19

in Hardy, Littlewood, and Pólya (1952) applied with r ≡ p − 1 and s ≡ 1, and the last
inequality uses 0 < λ < 1.20 When p > 2, we have

k(1− λ)e1 + λe2kp−1p 6
h
(1− λ) ke1kp + λ ke2kp

ip−1
6 (1− λ) ke1kp−1p + λ ke2kp−1p

6 ke1kp−1p + ke2kp−1p , (8)

where the first inequality again uses triangular inequality, the second uses the convexity

of x 7→ xρ (ρ > 1) on R+, and the third inequality follows from 0 < λ < 1. Combining

the inequalities (6)− (8) then yields

Ln (p, τ , (1− λ)e1 + λe2)

6
h
(1− λ)

³
ke1kp + τ 0e1

´
+ λ

³
ke2kp + τ 0e2

´i h
ke1kp−1p + ke2kp−1p

i
6 (1− λ)

³
ke1kp + τ 0e1

´
ke1kp−1p + λ

³
ke2kp + τ 0e2

´
ke2kp−1p

= (1− λ)Ln (p, τ , e1) + λLn (p, τ , e2) ,

20Theorem 19 in Hardy, Littlewood, and Pólya (1952) shows that, for every (a1, a2) ∈ R2+ and 0 <

r < s, we have (as1 + as2)
1/s 6 (ar1 + ar2)

1/r.
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where the second inequality uses the non-negativity of ke1kp + τ 0e1 and ke2kp + τ 0e2

(established in item (i) of the Proposition). This shows (iii) and thus completes the proof

of Proposition 1. ¤

Proof of Proposition 2. Fix p0, 1 6 p0 < ∞, and τ 0 ∈ Bn
q0
, where 1/p0 + 1/q0 = 1.

Differentiating the loss L (p0, τ 0, ·) in Equation (1), we have

∇eL (p0, τ 0, e) = p0νp0(e) + τ 0 kek
p0−1
p0

+ (p0 − 1)τ 0e
νp0(e)

kekp0
, (9)

for all e ∈ Rn. Note that in the univariate case n = 1, the expression in Equation (9)

reduces to ∇eL (p0, τ 0, e) = [τ 0 + sgn(e)]|e|p0−1 (see Equation (8) in Elliott, Komunjer,
and Timmermann (2005), p. 1121). By triangular inequality and norm equivalence,

k∇eL (p0, τ 0, e)k1 6 p0 kekp0−1p0−1 + n kekp0−1p0−1 + (p0 − 1)n kek1 kek
p0−1
p0−1 / kekp0 6 C1 kekp0−11 ,

with C1 <∞ when e 6= 0 and k∇eL (p0, τ 0,0)k1 6 C2 <∞. By assumption A3, we have
E(kytkp0−11 |Ft) <∞ a.s.-P and

°°f∗t+1,1°°p0−11
<∞ a.s.-P , which together with the fact that°°e∗t+1°°p0−11

6 C3
³
kytkp0−11 +

°°f∗t+1,1°°p0−11

´
a.s.-P then ensure E[∇eL

¡
p0, τ 0, e

∗
t+1

¢
|Ft] <

∞ a.s.-P . This last condition combined with the convexity of L (p0, τ 0, ·), which implies
that L (p0, τ 0, ·) is locally Lipschitz, allows us to interchange the order of differentia-
tion and expectation to get ∇eE

£
L
¡
p0, τ 0, e

∗
t+1

¢
|Ft

¤
= E[∇eL

¡
p0, τ 0, e

∗
t+1

¢
|Ft]. This,

combined with the gradient expression in Equation (9) and with the convexity of the loss

L (p0, τ 0, ·), shows that the first-order condition in Equation (2) is necessary and sufficient
for A2 to hold. ¤

Proof of Lemma 3. Given that S (and hence S−1) is positive definite, then for any τ ∈ Bn
q0

we haveQ(τ ) ≥ 0 with equality if and only ifE[g(p0, τ ; e∗t+1,xt)] = 0. Now, the optimality
condition derived in Proposition 2 implies that E[g(p0, τ 0; e∗t+1,xt)] = 0. Hence, τ 0 is a

minimum of Q(τ ) on Bn
q0
. Given p0 ∈ [1,+∞) and for any τ ∈ Bn

q0
, we can write

g(p0, τ ; e
∗
t+1,xt)

= p0(νp0(e
∗
t+1)⊗ xt) +

³°°e∗t+1°°p0−1p0
(Idn ⊗ xt) + (p0 − 1)

°°e∗t+1°°−1p0 (νp0(e∗t+1)⊗ xt)e∗0t+1´ τ
= a(p0, e

∗
t+1,xt) +B(p0, e

∗
t+1,xt)τ , (10)
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where Idn denotes an n× n identity matrix, and we define the nd× 1 vector

a(p0, e
∗
t+1,xt) ≡ p0(νp0(e

∗
t+1)⊗ xt) (11)

and the nd× n matrix

B(p0, e
∗
t+1,xt) ≡

°°e∗t+1°°p0−1p0
(Idn ⊗ xt) + (p0 − 1)

°°e∗t+1°°−1p0 (νp0(e
∗
t+1)⊗ xt)e∗0t+1 (12)

A necessary condition for Q(τ ) to be minimized at τ 0 is that the latter solves the first-

order condition: ∇τQ(τ 0) = 0, i.e., ∇τE[g(p0, τ 0; e
∗
t+1,xt)]S

−1E[g(p0, τ 0; e
∗
t+1,xt)] =

0. We first show that ∇τE[g(p0, τ 0; e
∗
t+1,xt)] = E[∇τg(p0, τ 0; e

∗
t+1,xt)], where ∇τg

denotes the n × nd-matrix of partial derivatives [∂gj/∂τ i, 1 ≤ i ≤ n, 1 ≤ j ≤ nd]. Using

the equality in 10, given p0 ∈ [1,+∞) and for any τ ∈ Bn
q0 we have

∇τg(p0, τ ; e
∗
t+1,xt) = B(p0, e

∗
t+1,xt)

0

=
°°e∗t+1°°p0−1p0

(Idn ⊗ xt)0 + (p0 − 1)
°°e∗t+1°°−1p0 e∗t+1 ¡νp0(e∗t+1)⊗ xt¢0 .

Note that supτ∈(−1,1)n k∇τg(p0, τ ; et+1,xt)k1 ≤
°°e∗t+1°°p0−1p0

kxtk1+(p0−1) kxtk1
°°e∗t+1°°p0−1p0−1

and by assumption A5(i) the expected value of the latter is finite; hence, we can ap-

ply Lebesgue’s dominated convergence theorem to show that ∇τE[g(p0, τ 0; e
∗
t+1,xt)] =

E[∇τg(p0, τ 0; e
∗
t+1,xt)]. The first-order condition can then be written as

0 = E[∇τg(p0, τ 0; e
∗
t+1,xt)]S

−1E[g(p0, τ 0; e
∗
t+1,xt)]

= E[B(p0, e
∗
t+1,xt)]

0S−1{E[a(p0, e∗t+1,xt)] +E[B(p0, e
∗
t+1,xt)]τ 0}

so

−E[B(p0, e∗t+1,xt)]0S−1E[a(p0, e∗t+1,xt)] = E[B(p0, e
∗
t+1,xt)]

0S−1E[B(p0, e
∗
t+1,xt)]τ 0.

(13)

Now note that the n × n matrix H ≡ E[B(p0, e
∗
t+1,xt)]

0S−1E[B(p0, e
∗
t+1,xt)]

is positive semidefinite. In addition, for any ξ ∈ Rn, we have ξ0Hξ =

E[B(p0, e
∗
t+1,xt)ξ]

0S−1E[B(p0, e
∗
t+1,xt)ξ]; and, since S

−1 is positive definite, ξ0Hξ = 0

only if E[B(p0, e∗t+1,xt)ξ] = 0. The latter implies ξ = 0, since the rank of the n × n

matrix E[B(p0, e∗t+1,xt)]
0E[B(p0, e

∗
t+1,xt)] is the same as that of E[B(p0, e

∗
t+1,xt)], which
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under assumption A5(ii) equals n. So H is positive definite, and Q(τ ) is strictly concave

and minimized at the unique solution to the equation 13 given by

τ 0 = (14)

− {E[B(p0, e∗t+1,xt)]0S−1E[B(p0, e∗t+1,xt)]}−1E[B(p0, e∗t+1,xt)]0S−1E[a(p0, e∗t+1,xt)].

¤

Proof of Lemma 4. Given p0 ∈ [1,+∞) and for any τ ∈ Bn
q0
, let S(τ ) ≡

E
£
g(p0, τ ; e

∗
t+1,xt)g(p0, τ ; e

∗
t+1,xt)

0¤. For any χ ∈ Rnd, χ = (χ01, . . . , χ
0
n)
0 (with χi ∈ Rd,

1 ≤ i ≤ n) we have χ0S(τ )χ ≡ E
h¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢ ¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢0i
, where

χ0g(p0, τ ; e
∗
t+1,xt)

= χ0
³
p0νp0(e

∗
t+1) + τ

°°e∗t+1°°p0−1p0
+ (p0 − 1)τ 0e∗t+1

°°e∗t+1°°−1p0 νp0(e
∗
t+1)

´
⊗ xt

= (Υ0xt)
0
³
p0νp0(e

∗
t+1) + τ

°°e∗t+1°°p0−1p0
+ (p0 − 1)τ 0e∗t+1

°°e∗t+1°°−1p0 νp0(e
∗
t+1)

´
= (Υ0xt)

0∇eLn(p0, τ , e
∗
t+1),

where Υ is an d × n matrix with columns χi, 1 ≤ i ≤ n. Note that¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢ ¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢0 ≥ 0 a.s. so S(τ ) is positive semidefinite. In

addition χ0S(τ )χ = 0 only if
¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢ ¡
χ0g(p0, τ ; e

∗
t+1,xt)

¢0
= 0 a.s. which

is equivalent to (Υ0xt)
0∇eLn(p0, τ , e

∗
t+1)∇eLn(p0, τ , e

∗
t+1)

0 (Υ0xt) = 0 a.s. Now, given

that the n-variate loss is strictly convex and such that Ln(p0, τ ,0) = 0, we have that

∇eLn(p0, τ , e
∗
t+1)∇eLn(p0, τ , e

∗
t+1)

0 ≥ 0 with equality only if ∇eLn(p0, τ , e
∗
t+1) = 0,

i.e., only if e∗t+1 = 0. Since by assumption A1 yt is continuously distributed, we

have that Pr(e∗t+1 = 0|Ft) = 0 so ∇eLn(p0, τ , e
∗
t+1)∇eLn(p0, τ , e

∗
t+1)

0 > 0 a.s.. Then,

(Υ0xt)
0∇eLn(p0, τ , e

∗
t+1)∇eLn(p0, τ , e

∗
t+1)

0 (Υ0xt) = 0 a.s. implies Υ0xt = 0 a.s., which

in turn implies Υ0E(xtx
0
t) = 0. If E(xtx0t) is of full rank as assumed in A6, then it is

invertible and Υ0E(xtx
0
t) = 0 only holds if Υ = 0, i.e., χ = 0. Hence, S(τ ) is positive

definite. ¤
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Proof of Theorem 5. From equation (4) we have τ̂ T ≡ −[B̂0T Ŝ−1B̂T ]
−1B̂0T Ŝ

−1âT with the

nd× 1 vector

âT ≡ T−1
T+R−1X
t=R

p0(νp0(êt+1)⊗ xt) (15)

and the nd× n matrix

B̂T ≡ T−1
T+R−1X
t=R

kêt+1kp0−1p0
(Idn ⊗ xt) + (p0 − 1) kêt+1k−1p0 (νp0(êt+1)⊗ xt)ê

0
t+1. (16)

To show τ̂ T
p→ τ 0, it is sufficient to show that (i) âT − E[a(p0, e

∗
t+1,xt)]

p→ 0 and

(ii) B̂T − E[B(p0, e
∗
t+1,xt)]

p→ 0. Then, by using Lemma 3, the consistency of Ŝ,

Ŝ
p→ S, the positive definiteness of S (and thus of S−1) established in Lemma 4, and

the continuity of the inverse function (away from zero), we have that τ̂ T
p→ τ 0. By the

triangle inequality we have
°°âT −E[a(p0, e

∗
t+1,xt)]

°°
1
6 kâT −E[a(p0, êt+1,xt)]k1 +°°E[a(p0, êt+1,xt)]−E[a(p0, e

∗
t+1,xt)]

°°
1

and
°°°B̂T − E[B(p0, e

∗
t+1,xt)]

°°° 6°°°B̂T − E[B(p0, êt+1,xt)]
°°°+°°E[B(p0, êt+1,xt)]−E[B(p0, e

∗
t+1,xt)]

°°, where by norm of the
nd× n matrix B we mean the following: kBk = max |bij|1≤i≤nd,1≤j≤n. We first show that
as T →∞, kâT −E[a(p0, êt+1,xt)]k1

p→ 0 and
°°°B̂T −E[B(p0, êt+1,xt)]

°°° p→ 0 by using a

law of large numbers (LLN) for α-mixing sequences [e.g., Corollary 3.48 in White (2001)].

From Theorems 3.35 and 3.49 in White (2001) measurable functions of strictly stationary

and mixing processes are strictly stationary and mixing of the same size. Hence, by A8 we

have {p0(νp0(êt+1)⊗xt)} and {kêt+1k
p0−1
p0

(Idn⊗xt)+(p0−1) kêt+1k−1p0 (νp0(êt+1)⊗xt)ê
0
t+1}

strictly stationary and α-mixing of size −r/(r − 2) with r > 2. Now let δ = ε/2 > 0; we

have

E[k(νp0(êt+1)⊗ xt)k
r+δ
1 ] (17)

≤ nE[kêt+1k(p0−1)(r+δ)1 kxtkr+δ1 ]

≤ n
n
E[kêt+1k(p0−1)(2r+2δ)1 ]E[kxtk2r+2δ1 ]

o1/2
≤ n {∆1∆2}1/2 <∞,

where the second inequality follows by Cauchy-Schwartz inequality and the third

uses assumption A8. Hence, âT in equation (15) satisfies the LLN and
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kâT −E[a(p0, êt+1,xt)]k1
p→ 0 as T →∞. Similarly, we have

E[kêt+1k(p0−1)(r+δ)p0
k(Idn ⊗ xt)kr+δ] (18)

≤ E[kêt+1k(p0−1)(r+δ)p0
kxtkr+δ1 ]

≤ c(p0−1)(r+δ)
n
E[kêt+1k(p0−1)(2r+2δ)1 ]E[kxtk2r+2δ1 ]

o1/2
≤ c {∆1∆2}1/2 <∞,

where the second inequality uses the norm equivalence, i.e., there exists some (c, d) > 0

such that d kêt+1k1 ≤ kêt+1kp0 ≤ c kêt+1k1, and Cauchy-Schwartz inequality.The third
inequality uses assumption A8. In addition,

E[kêt+1k−(r+δ)p0

°°(νp0(êt+1)⊗ xt)ê0t+1
°°r+δ] (19)

≤ E[kêt+1k−(r+δ)p0
k(νp0(êt+1)⊗ xt)k

r+δ
1 kêt+1k(r+δ)1 ]

≤ (1/d)r+δE[k(νp0(êt+1)⊗ xt)k
r+δ
1 ] <∞,

where the second inequality uses again the norm equivalence and the third fol-

lows from equation (17). Combining equations (18) − (19) with triangular in-

equality and the fact that, for any (a, b) ∈ R, there exists some nr+δ >

0 such that |a + b|r+δ ≤ nr+δ[|a|r+δ + |b|r+δ], shows that B̂T in equation

(16) satisfies the LLN and so
°°°B̂T −E[B(p0, êt+1,xt)]

°°° p→ 0 as T → ∞.
Next we need to show that

°°E[a(p0, êt+1,xt)]−E[a(p0, e
∗
t+1,xt)]

°°
1
→ 0 and°°E[B(p0, êt+1,xt)]−E[B(p0, e

∗
t+1,xt)]

°°→ 0 as T →∞. We have

°°E[a(p0, êt+1,xt)− a(p0, e∗t+1,xt)]°°1
≤ E[

°°a(p0, êt+1,xt)− a(p0, e∗t+1,xt)°°1]
= p0E{

°°[νp0(êt+1)− νp0(e
∗
t+1)]⊗ xt

°°
1
}

≤ p0nE[
°°êt+1 − e∗t+1°°(p0−1)1

kxtk1]

≤ p0n{E[
°°êt+1 − e∗t+1°°2(p0−1)1

]E[kxtk21]}1/2 → 0 as t→∞,
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where the last statement follows by assumptions A7 and A8. Similarly,

°°E[B(p0, êt+1,xt)−B(p0, e∗t+1,xt)]°°
≤ E[

°°B(p0, êt+1,xt)−B(p0, e∗t+1,xt)°°]
= E

h°°°[kêt+1kp0−1p0
−
°°e∗t+1°°p0−1p0

](Idn ⊗ xt)

+(p0 − 1)[kêt+1k−1p0 (νp0(êt+1)⊗ xt)ê
0
t+1 −

°°e∗t+1°°−1p0 (νp0(e
∗
t+1)⊗ xt)e∗0t+1]

°°°i
≤ E

h¯̄̄
kêt+1kp0−1p0

−
°°e∗t+1°°p0−1p0

¯̄̄
kxtk1

i
+ (p0 − 1)E

h
kêt+1k−1p0

°°(νp0(êt+1)⊗ xt)(ê0t+1 − e∗0t+1)
°°i

+ (p0 − 1)E
h
kêt+1k−1p0

°°{[(νp0(êt+1)− νp0(e
∗
t+1)]⊗ xt}e∗0t+1

°°i
+ (p0 − 1)E

h³
kêt+1k−1p0 −

°°e∗t+1°°−1p0 ´°°(νp0(e∗t+1)⊗ xt)e∗0t+1°°i→ 0 as t→∞.

Hence, as R → ∞ we have
°°E[a(p0, êt+1,xt)− a(p0, e∗t+1,xt)]°°1 → 0 and°°E[B(p0, êt+1,xt)−B(p0, e∗t+1,xt)]°°→ 0, so τ̂ T

p→ τ 0 as (R,T )→∞. ¤

Proof of Theorem 6. To show that T 1/2(τ̂ T − τ 0) is asymptotically normal, note that we
have

√
T (τ̂ T − τ 0) = −[B̂0T Ŝ−1B̂T ]

−1B̂0T Ŝ
−1[
√
T (âT + B̂Tτ 0)] (20)

= −[B̂0T Ŝ−1B̂T ]
−1B̂0T Ŝ

−1[
√
Tm̂∗

T +
√
Tm̂+

√
T (m̂T − m̂− m̂∗

T )],

where we have let m̂ ≡ E[a(p0, êt+1,xt)] +E[B(p0, êt+1,xt)]τ 0, and

m̂T ≡ T−1
T+R−1X
t=R

g(p0, τ 0; êt+1,xt) = âT + B̂Tτ 0, and m̂∗
T ≡ T−1

T+R−1X
t=R

g(p0, τ 0; e
∗
t+1,xt).

(21)

The idea then is to show that the terms
√
Tm̂ and

√
T (m̂T − m̂− m̂∗

T ) on the right-hand

side of equation (20) are op(1). We start by showing that the first term is o(1). Letm∗ ≡
E[a(p0, e

∗
t+1,xt)] + E[B(p0, e

∗
t+1,xt)]τ 0. First, we show that ∇eE[g(p0, τ 0; ēt+1,xt)] =

E[∇eg(p0, τ 0; ēt+1,xt)] for every ēt+1 ≡ cêt+1+(1− c)e∗t+1 with c ∈ (0, 1). Differentiating
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∇eL (p0, τ 0, ·) in Equation (9) we get

∆eeL (p0, τ 0, e) = 2p0Vp0(e) + p0(p0 − 1)Wp0(e) (22)

+(p0 − 1)
"
2
τ 0ν

0
p0
(e)

kekp0
+

τ 00e

kekp0

Ã
(p0 − 1)Wp0(e)−

νp0(e)ν
0
p0
(e)

kekp0p0

!#
,

where we have used the fact that for any 1 6 p0 < ∞,
τ 00e

kekp0
Vp0(e) = 0 for all e ∈

Rn. Note that in the univariate case n = 1, the Hessian in Equation (22) reduces to

∆eeL (p0, τ 0, e) = 2{p0δ(e)|e|p0−1 + p0(p0 − 1)[1 + τ 0 sgn(e)]|e|p0−2} [see Equation (9) in
Elliott, Komunjer, and Timmermann (2005), p.1121]. Hence

k∆eeL (p0, τ 0, ēt+1)k

≤ 2p0 kVp0(ēt+1)k+ p0(p0 − 1)c3 kēt+1kp0−21

+ (p0 − 1)
£
2d3 kēt+1kp0−21 + (p0 − 1)c3 kēt+1kp0−21 + c3 kēt+1kp0−21

¤
= 2p0 kVp0(ēt+1)k+ 2(p0 − 1) (p0c3 + d3) kēt+1kp0−21 , (23)

where we have used the norm equivalences: c1 kēt+1k1 ≤ kēt+1kp0−2 ≤ c2 kēt+1k1 for
some (c1, c2) > 0 and c3 = cp0−12 if p0 ≥ 2 and = c2−p01 otherwise and, similarly,

d1 kēt+1k1 ≤ kēt+1kp0 ≤ d2 kēt+1k1 for some (d1, d2) > 0 and d3 = dp0−12 if p0 ≥ 2 and
= d2−p01 otherwise. Under A9, we have that E[supc∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

] < ∞.
Moreover, under A10, when p0 = 1 we have E[kV1(ēt+1)k] ≤M and when p0 > 1 we have

E[kV1(ēt+1)k] = 0, so the right-hand side of equation (23) is bounded above by a quan-
tity that is integrable; hence, we can apply Lebesgue’s dominated convergence theorem

to interchange the derivation and integration in

∇eE[g(p0, τ 0; ēt+1,xt)] = ∇eE[∇eL (p0, τ 0, ēt+1)⊗ xt]

= E[∆eeL (p0, τ 0, ēt+1)⊗ xt] = E[∇eg(p0, τ 0; ēt+1,xt)].

Second, we can use a mean value expansion around e∗t+1 that yields 0 =
√
Tm∗ =

√
Tm̂ − E[T−1

PT+R−1
t=R ∇eg(p0, τ 0; ēt+1,xt)0

√
T (êt+1 − e∗t+1)], where for every t, R 6

t 6 T + R − 1, we have ēt+1 ≡ cêt+1 + (1 − c)e∗t+1 with c ∈ (0, 1). We now show that
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T−1/2
PT+R−1

t=R ∇eg(p0, τ 0; ēt+1,xt)0(êt+1 − e∗t+1)
p→ 0 as R→∞ and T →∞: we have°°°T−1/2PT+R−1

t=R ∇eg(p0, τ 0; ēt+1,xt)0(êt+1 − e∗t+1)
°°°
1

=
°°°T−1/2PT+R−1

t=R t−1/2+ε∇eg(p0, τ 0; ēt+1,xt)0t1/2−ε(êt+1 − e∗t+1)
°°°
1

6 sup
R6t6T+R−1

°°t1/2−ε(êt+1 − e∗t+1)°°1 T−1/2PT+R−1
t=R k∇eg(p0, τ 0; ēt+1,xt)k t−1/2+ε.

Moreover, k∇eg(p0, τ 0; ēt+1,xt)k ≤ k∆eeL (p0, τ 0, ēt+1)k · kxtk1 so that under A9

E

Ã
sup
c∈(0,1)

°°∇eg(p0, τ 0; cêt+1 + (1− c)e∗t+1,xt)
°°!

≤ 2(p0 − 1) (p0c3 + d3)E

Ã
kxtk1 sup

c∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

!
<∞.

Now, for any given ν > 0, by Chebyshev’s inequality we have

Pr
³
T−1/2

PT+R−1
t=R k∇eg(p0, τ 0; ēt+1,xt)k t−1/2+ε > ν

´
≤ ν−1E

Ã
kxtk1 sup

c∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

!
T−1/2

PT+R−1
t=R t−1/2+ε

≤ ν−1E

Ã
kxtk1 sup

c∈(0,1)

°°cêt+1 + (1− c)e∗t+1
°°p0−2
1

!µ
T

R1−2ε

¶1/2
→ 0

as R → ∞ and T → ∞, where the last limit results uses assumptions A9 and A70(i).
Hence

√
Tm̂ → 0 as R → ∞ and T → ∞. The term

√
T (m̂T − m̂− m̂∗

T ) on the right-

hand side of equation (20) is op(1) provided that g satisfies a certain Lipshitz condition

(given below) and we have, for any ε > 0, Pr
¡
supR6t6T+R−1

°°êt+1 − e∗t+1°°1 > ε
¢
→ 0 as

R→∞. This follows because for any η > 0 and δR > 0 we have

lim
R,T→∞

Pr
³√

T km̂T − m̂− m̂∗
Tk1 > η

´
≤ lim

R,T→∞
Pr

µ√
T km̂T − m̂− m̂∗

Tk1 > η, sup
R6t6T+R−1

°°êt+1 − e∗t+1°°1 ≤ δR

¶
+ lim

R,T→∞
Pr

µ
sup

R6t6T+R−1

°°êt+1 − e∗t+1°°1 > δR

¶
≤ Pr

µ√
T km̂T − m̂− m̂∗

Tk1 > η, sup
R6t6T+R−1

°°êt+1 − e∗t+1°°1 ≤ δR

¶
,
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where the last inequality uses A70(ii). Now, let rT (δR) ≡ sup{rt+1(êt+1) :
°°êt+1 − e∗t+1°°1 ≤

δR, R 6 t 6 T +R− 1}, where we let

rt+1(êt+1) (24)

≡
°°g(p0, τ 0; êt+1,xt)− g(p0, τ 0; e∗t+1,xt)− [∆eeL

¡
p0, τ 0, e

∗
t+1

¢
⊗ xt](êt+1 − e∗t+1)

°°
1°°êt+1 − e∗t+1°°1 ,

where ∆eeL
¡
p0, τ 0, e

∗
t+1

¢
is as defined in equation (22). Then, by the definition of

rt+1(êt+1),

√
T km̂T − m̂− m̂∗

Tk1

≤
√
T

(°°° 1
T

T+R−1X
t=R

[∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗ xt](êt+1 − e∗t+1)

−E{[∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗ xt](êt+1 − e∗t+1)}1

°°°
1

+
1

T

T+R−1X
t=R

rt+1(êt+1)
°°êt+1 − e∗t+1°°1 +E

¡
rt+1(êt+1)

°°êt+1 − e∗t+1°°1¢
)

≤
√
T

(
1

T

T+R−1X
t=R

°°[∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗ xt]− E{[∆eeL

¡
p0, τ 0, e

∗
t+1

¢
⊗ xt]}

°°
1
·

sup
R6t6T+R−1

°°êt+1 − e∗t+1°°1 + [rT (δR) +E(rT (δR))] sup
R6t6T+R−1

°°êt+1 − e∗t+1°°1¾ .

Using standard arguments for stochastic equicontinuity such as those given in Andrews

(1994), we can show that rt+1(êt+1)→ 0 as Pr(
°°êt+1 − e∗t+1°°1 > ε)→ 0 for any ε > 0, so

that rT (δR)→ 0 with probability 1, which by the dominated convergence theorem ensures

E(rT (δR))→ 0 as δR → 0. Next, we show that the sample mean of {∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗

xt} converges in probability to its expected value. By assumption A40 we know that

{∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗xt} is strictly stationary and α-mixing with α of size−r/(r−2) with

r > 2 [see Theorems 3.35 and 3.49 in White (2001)]. Moreover, for δ = min{ε/2, �/2} > 0



32 MULTIVARIATE FORECASTS

in assumptions A40 and A8, we have

E[
°°∆eeL

¡
p0, τ 0, e

∗
t+1

¢
⊗ xt

°°r+δ]
≤ {E[

°°∆eeL
¡
p0, τ 0, e

∗
t+1

¢°°2r+2δ]E[kxtk2r+2δ1 ]}1/2

≤
³
max{E[

°°∆eeL
¡
p0, τ 0, e

∗
t+1

¢°°2r+�], 1}´1/2 ³max{E[kxtk2r+ε1 ], 1}
´1/2

<∞,

since from equation (23) we know°°∆eeL
¡
p0, τ 0, e

∗
t+1

¢°°2r+�
≤ nr{[2p0]2r+�

°°Vp0(e
∗
t+1)

°°2r+� + [2(p0 − 1) (p0c3 + d3)]
2r+�

°°e∗t+1°°(p0−2)(2r+�)1
},

where again nr is such that for any (a, b) > 0 we have (a + b)2r+� ≤ nr(a
2r+� + b2r+�);

and A10 and A40 imply that E[
°°V1(e

∗
t+1)

°°2r+�] ≤ M , E[
°°Vp0(e

∗
t+1)

°°2r+�] = 0 and

E[
°°e∗t+1°°(p0−2)(2r+�)1

] < ∞. Using the weak LLN for α-mixing sequences [e.g., Corollary

3.48 in White (2001)] then gives

T−1
T+R−1X
t=R

∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗ xt

p→ E[∆eeL
¡
p0, τ 0, e

∗
t+1

¢
⊗ xt]

as T →∞. Then, by using the Markov inequality

lim
T→∞

Pr

µ√
T km̂T − m̂− m̂∗

Tk1 > η, sup
R6t6T+R−1

°°êt+1 − e∗t+1°°1 ≤ δR

¶
= 0

and the term
√
T (m̂T−m̂−m̂∗

T ) on the right-hand side of equation (20) is op(1) asR→∞
and T →∞. Finally, we use the central limit theorem (CLT) for strictly stationary and

α-mixing sequences [e.g., Theorem 5.20 in White (2001)] to show that
√
Tm̂∗

T
d→ N (0,S).

Using Theorems 3.35 and 3.49 in White (2001), which together show that time-invariant

measurable functions of strictly stationary and mixing sequences are strictly stationary

and mixing of the same size, we know by A40 that {g(p0, τ 0; e∗t+1,xt)} is strictly stationary
and α-mixing with mixing coefficient of size −r/(r − 2), r > 2. In the proof of Theorem
5 we have moreover shown that E[

°°g(p0, τ 0; e∗t+1,xt)°°r+ε1
] <∞. The CLT [e.g., Theorem

5.20 in White (2001)] then ensures

√
Tm̂∗

T
d→ N (0,S). (25)
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The remainder of the asymptotic normality proof is similar to the standard case: the

positive definiteness of S−1, Ŝ
p→ S and B̂T

p→ B∗ ≡ E[B(p0, e
∗
t+1,xt)] as R → ∞ and

T →∞ (B was defined in equation (12)) together with A5(ii) ensure that (B∗0S−1B∗)−1

exists, so by using
√
T (τ̂ T −τ 0) = −[B̂0T Ŝ−1B̂T ]

−1B̂0T Ŝ
−1[
√
Tm̂∗

T +op(1)], the limit result

in (25) and the Slutsky theorem we have
√
T (τ̂ T − τ 0)

d→ N (0, (B∗0S−1B∗)−1), which
completes the proof of asymptotic normality. ¤
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Figure 5. L3(2, τ , e) representation, with α = (0.1, 0.7, 0.5).



Table 1: Information Sets for Regressions

Info Set C GDP/GNP CPI UR SR F Err
1 1 n/a n/a n/a n/a 1
2 1 1 n/a n/a n/a n/a
3 1 n/a 1 n/a n/a n/a
4 1 n/a n/a n/a 1 n/a
5 1 1 1 n/a n/a n/a
6 1 n/a 1 n/a 1 n/a
7 1 1 n/a n/a 1 n/a
8 1 n/a n/a n/a 3 n/a
9 1 1 1 n/a 1 n/a

10 1 1 1 n/a 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 n/a
13 1 1 3 n/a n/a n/a
14 1 1 3 n/a n/a 1



T
ab

le
 2

: R
at

io
na

lit
y 

T
es

ts

M
ul

tiv
ar

ia
te

U
ni

va
ria

te
Sy

m
m

et
ry

 a
nd

 In
de

pe
nd

en
ce

A
cc

ep
ta

nc
es

 o
f R

at
io

na
lit

y
A

cc
ep

ta
nc

es
 o

f R
at

io
na

lit
y

A
cc

ep
ta

nc
es

 o
f R

at
io

na
lit

y
In

fo
 

Se
t

P 
 =

 1
P 

= 
2

P 
 =

 1
P 

= 
2

J9
0

J9
5

J9
9

J9
0

J9
5

J9
9

J9
0

J9
5

J9
9

J9
0

J9
5

J9
9

J9
0

J9
5

J9
9

1
1

1
1

0.
98

25
1

1
1

1
1

0.
96

49
0.

98
25

0.
98

25
0.

19
30

0.
38

60
0.

82
46

2
0.

84
21

0.
92

98
1

0.
85

96
0.

98
25

1
0.

84
21

0.
92

98
1

0.
85

96
0.

96
49

1
0.

01
75

0.
05

26
0.

15
79

3
0.

40
35

0.
57

89
0.

98
25

0.
70

18
0.

82
46

1
0.

40
35

0.
57

89
0.

98
25

0.
70

18
0.

82
46

0.
96

49
0.

01
75

0.
01

75
0.

05
26

4
0.

64
91

0.
77

19
0.

92
98

0.
52

63
0.

71
93

0.
92

98
0.

64
91

0.
77

19
0.

92
98

0.
43

86
0.

66
67

0.
92

98
0

0.
01

75
0.

08
77

5
0.

54
39

0.
78

95
1

0.
82

46
0.

92
98

1
0.

54
39

0.
78

95
1

0.
87

72
0.

91
23

1
0

0.
07

02
0.

14
04

6
0.

43
86

0.
70

18
0.

96
49

0.
45

61
0.

68
42

0.
96

49
0.

43
86

0.
70

18
0.

96
49

0.
59

65
0.

82
46

0.
96

49
0

0
0.

12
28

7
0.

70
18

0.
82

46
1

0.
68

42
0.

91
23

1
0.

70
18

0.
82

46
1

0.
63

16
0.

85
96

1
0.

01
75

0.
05

26
0.

28
07

8
0.

94
74

0.
98

25
1

0.
89

47
1

1
0.

94
74

0.
98

25
1

0.
91

23
0.

96
49

1
0.

08
77

0.
21

05
0.

61
40

9
0.

56
14

0.
82

46
0.

98
25

0.
77

19
0.

92
98

0.
98

25
0.

56
14

0.
82

46
0.

98
25

0.
80

70
0.

89
47

0.
98

25
0

0.
07

02
0.

38
60

10
0.

96
49

1
1

1
1

1
0.

96
49

1
1

1
1

1
0.

50
88

0.
68

42
0.

96
49

11
0.

92
98

0.
98

25
1

0.
96

49
1

1
0.

92
98

0.
98

25
1

0.
98

25
1

1
0.

54
39

0.
75

44
0.

96
49

12
0.

45
61

0.
68

42
0.

96
49

0.
57

89
0.

78
95

1
0.

45
61

0.
68

42
0.

96
49

0.
63

16
0.

87
72

1
0

0.
05

26
0.

45
61

13
0.

96
49

0.
98

25
1

1
1

1
0.

96
49

0.
98

25
1

0.
98

25
1

1
0.

17
54

0.
36

84
0.

73
68

14
0.

98
25

1
1

1
1

1
0.

98
25

1
1

0.
98

25
1

1
0.

78
95

0.
92

98
1



T
ab

le
 3

: A
sy

m
m

et
ry

 C
oe

ff
ic

ie
nt

s

M
ul

tiv
ar

ia
te

In
fo

 S
et

M
ea

ns
M

ed
ia

ns
P 

 =
 1

P 
= 

2
P 

 =
 1

P 
= 

2
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
1

0.
41

33
0.

63
79

0.
44

85
0.

45
08

0.
57

06
0.

26
75

0.
40

11
0.

64
11

0.
43

92
0.

45
42

0.
56

64
0.

26
89

2
0.

41
77

0.
63

39
0.

44
27

0.
46

53
0.

57
63

0.
28

27
0.

41
28

0.
64

07
0.

44
10

0.
45

90
0.

57
93

0.
28

22
3

0.
42

57
0.

63
39

0.
42

15
0.

44
35

0.
58

95
0.

27
91

0.
42

43
0.

61
96

0.
42

51
0.

43
02

0.
59

68
0.

28
50

4
0.

41
63

0.
64

77
0.

44
80

0.
43

52
0.

56
46

0.
27

41
0.

40
71

0.
64

87
0.

43
49

0.
42

08
0.

56
33

0.
26

03
5

0.
43

13
0.

63
77

0.
41

65
0.

43
11

0.
59

75
0.

26
78

0.
42

68
0.

63
27

0.
42

03
0.

42
25

0.
59

22
0.

27
30

6
0.

42
87

0.
66

81
0.

43
12

0.
42

85
0.

58
98

0.
25

64
0.

42
12

0.
66

70
0.

42
97

0.
42

80
0.

58
60

0.
25

59
7

0.
41

09
0.

64
71

0.
44

51
0.

42
68

0.
57

23
0.

27
40

0.
40

51
0.

65
83

0.
44

01
0.

42
67

0.
57

22
0.

25
56

8
0.

41
56

0.
64

40
0.

46
02

0.
42

91
0.

57
87

0.
27

62
0.

40
33

0.
64

07
0.

45
27

0.
43

20
0.

56
85

0.
25

95
9

0.
43

36
0.

66
75

0.
42

85
0.

42
32

0.
59

50
0.

25
65

0.
42

95
0.

67
03

0.
41

97
0.

41
88

0.
59

68
0.

25
33

10
0.

44
45

0.
68

49
0.

43
56

0.
42

88
0.

60
14

0.
23

95
0.

43
18

0.
68

67
0.

44
62

0.
42

10
0.

59
50

0.
22

32
11

0.
42

86
0.

74
14

0.
42

32
0.

41
83

0.
63

05
0.

23
14

0.
39

46
0.

72
41

0.
40

84
0.

41
29

0.
61

97
0.

19
94

12
0.

43
46

0.
72

82
0.

42
18

0.
41

89
0.

62
64

0.
24

52
0.

42
76

0.
71

73
0.

39
99

0.
41

32
0.

62
14

0.
23

75
13

0.
43

04
0.

65
14

0.
40

64
0.

41
91

0.
58

69
0.

24
52

0.
41

76
0.

64
35

0.
41

09
0.

42
11

0.
58

56
0.

24
67

14
0.

43
21

0.
66

77
0.

41
40

0.
41

59
0.

58
91

0.
23

14
0.

41
53

0.
66

59
0.

41
88

0.
42

64
0.

59
77

0.
22

14

U
ni

va
ria

te

In
fo

 S
et

M
ea

ns
M

ed
ia

ns
P 

 =
 1

P 
= 

2
P 

 =
 1

P 
= 

2
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
A

lp
ha

 G
N

P
A

lp
ha

 IN
F

A
lp

ha
 S

R
1

0.
41

33
0.

63
79

0.
44

85
0.

44
04

0.
64

53
0.

23
12

0.
40

11
0.

64
11

0.
43

92
0.

39
67

0.
65

33
0.

23
35

2
0.

41
77

0.
63

39
0.

44
27

0.
45

51
0.

64
44

0.
24

42
0.

41
28

0.
64

07
0.

44
10

0.
45

00
0.

65
63

0.
24

62
3

0.
42

57
0.

63
39

0.
42

15
0.

43
57

0.
67

09
0.

24
24

0.
42

43
0.

61
96

0.
42

51
0.

40
54

0.
71

14
0.

24
73

4
0.

41
63

0.
64

77
0.

44
80

0.
42

51
0.

62
09

0.
22

66
0.

40
71

0.
64

87
0.

43
49

0.
40

44
0.

62
21

0.
21

13
5

0.
43

13
0.

63
77

0.
41

65
0.

43
36

0.
69

65
0.

23
43

0.
42

68
0.

63
27

0.
42

03
0.

39
92

0.
72

51
0.

23
32

6
0.

42
87

0.
66

81
0.

43
12

0.
41

87
0.

67
36

0.
20

00
0.

42
12

0.
66

70
0.

42
97

0.
40

22
0.

72
79

0.
17

95
7

0.
41

09
0.

64
71

0.
44

51
0.

42
21

0.
62

61
0.

22
10

0.
40

51
0.

65
83

0.
44

01
0.

39
06

0.
64

75
0.

20
66

8
0.

41
56

0.
64

40
0.

46
02

0.
42

73
0.

63
84

0.
22

83
0.

40
33

0.
64

07
0.

45
27

0.
39

51
0.

63
50

0.
21

16
9

0.
43

36
0.

66
75

0.
42

85
0.

42
23

0.
68

15
0.

19
23

0.
42

95
0.

67
03

0.
41

97
0.

40
15

0.
72

45
0.

16
26

10
0.

44
45

0.
68

49
0.

43
56

0.
42

30
0.

69
96

0.
17

63
0.

43
18

0.
68

67
0.

44
62

0.
40

62
0.

74
92

0.
14

89
11

0.
42

86
0.

74
14

0.
42

32
0.

38
12

0.
74

49
0.

15
35

0.
39

46
0.

72
41

0.
40

84
0.

35
90

0.
85

11
0.

13
72

12
0.

43
46

0.
72

82
0.

42
18

0.
40

90
0.

75
57

0.
16

84
0.

42
76

0.
71

73
0.

39
99

0.
40

33
0.

82
29

0.
14

34
13

0.
43

04
0.

65
14

0.
40

64
0.

41
08

0.
68

43
0.

20
61

0.
41

76
0.

64
35

0.
41

09
0.

40
52

0.
70

81
0.

19
94

14
0.

43
21

0.
66

77
0.

41
40

0.
42

52
0.

70
58

0.
19

56
0.

41
53

0.
66

59
0.

41
88

0.
42

41
0.

72
92

0.
18

80



T
ab

le
 4

: A
sy

m
m

et
ry

 C
oe

ff
ic

ie
nt

s, 
Su

bs
am

pl
e 

E
st

im
at

es

M
ul

tiv
ar

ia
te

In
fo

 S
et

Po
st

-1
99

4
Pr

e-
19

94
Fu

ll 
Sa

m
pl

e*
M

ea
ns

 (P
=2

)
M

ed
ia

ns
 (P

=2
)

M
ea

ns
 (P

=2
)

M
ed

ia
ns

 (P
=2

)
M

ea
ns

 (P
=2

)
M

ed
ia

ns
 (P

=2
)

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

1
0.

33
14

0.
53

76
0.

38
23

0.
30

69
0.

54
26

0.
36

44
0.

53
77

0.
60

08
0.

19
01

0.
52

00
0.

60
23

0.
18

10
0.

41
96

0.
55

15
0.

29
06

0.
40

74
0.

54
87

0.
27

59
2

0.
37

10
0.

54
73

0.
39

74
0.

35
35

0.
55

98
0.

38
17

0.
55

02
0.

59
87

0.
22

68
0.

54
88

0.
60

91
0.

22
40

0.
43

51
0.

55
71

0.
29

72
0.

42
27

0.
56

48
0.

30
09

3
0.

29
38

0.
54

89
0.

33
60

0.
27

06
0.

56
20

0.
31

93
0.

54
22

0.
62

81
0.

24
20

0.
54

84
0.

64
30

0.
24

20
0.

40
33

0.
56

11
0.

28
56

0.
39

41
0.

56
91

0.
28

22
4

0.
38

29
0.

53
12

0.
34

54
0.

36
07

0.
53

70
0.

37
32

0.
50

12
0.

58
62

0.
21

94
0.

50
12

0.
58

09
0.

22
20

0.
42

19
0.

54
25

0.
28

22
0.

39
67

0.
54

91
0.

25
94

5
0.

29
52

0.
56

91
0.

33
68

0.
26

59
0.

57
71

0.
32

71
0.

52
13

0.
63

15
0.

21
81

0.
52

22
0.

64
01

0.
20

25
0.

39
82

0.
56

93
0.

27
78

0.
39

86
0.

57
79

0.
27

48
6

0.
33

45
0.

54
11

0.
28

94
0.

29
69

0.
54

30
0.

25
69

0.
49

77
0.

62
37

0.
21

03
0.

49
53

0.
61

55
0.

18
86

0.
41

03
0.

55
91

0.
26

16
0.

40
24

0.
56

47
0.

25
20

7
0.

37
24

0.
55

00
0.

38
69

0.
34

70
0.

57
36

0.
40

61
0.

50
09

0.
59

10
0.

21
36

0.
48

84
0.

58
70

0.
21

53
0.

41
17

0.
55

47
0.

28
69

0.
39

41
0.

56
37

0.
25

16
8

0.
34

63
0.

56
79

0.
39

83
0.

31
55

0.
60

08
0.

42
26

0.
49

77
0.

59
14

0.
21

27
0.

50
12

0.
58

73
0.

21
39

0.
41

21
0.

55
84

0.
28

71
0.

40
20

0.
56

05
0.

26
39

9
0.

33
89

0.
55

37
0.

29
18

0.
30

74
0.

53
88

0.
23

73
0.

49
74

0.
63

02
0.

20
43

0.
47

72
0.

62
15

0.
19

04
0.

40
47

0.
56

42
0.

26
11

0.
39

35
0.

56
19

0.
24

44
10

0.
29

33
0.

55
75

0.
31

39
0.

25
90

0.
55

40
0.

26
81

0.
52

27
0.

63
26

0.
17

30
0.

53
77

0.
63

07
0.

15
08

0.
39

78
0.

57
80

0.
25

51
0.

40
10

0.
57

48
0.

21
62

11
0.

21
09

0.
62

01
0.

54
01

0.
15

79
0.

63
87

0.
62

00
0.

53
88

0.
66

81
0.

18
67

0.
53

93
0.

65
16

0.
18

83
0.

37
27

0.
60

86
0.

25
39

0.
38

56
0.

60
88

0.
20

21
12

0.
28

54
0.

63
83

0.
49

76
0.

25
26

0.
66

25
0.

57
89

0.
51

20
0.

65
00

0.
19

11
0.

50
54

0.
64

72
0.

17
27

0.
38

57
0.

60
51

0.
26

56
0.

38
76

0.
61

65
0.

23
35

13
0.

26
16

0.
57

44
0.

33
45

0.
23

38
0.

58
23

0.
31

26
0.

50
91

0.
60

87
0.

18
04

0.
50

88
0.

61
99

0.
17

02
0.

38
51

0.
57

03
0.

27
07

0.
38

72
0.

57
91

0.
26

19
14

0.
22

78
0.

57
63

0.
34

77
0.

21
63

0.
57

57
0.

32
74

0.
50

48
0.

61
00

0.
14

95
0.

48
54

0.
61

44
0.

13
65

0.
38

10
0.

57
78

0.
26

58
0.

38
22

0.
58

84
0.

23
74

U
ni

va
ria

te

In
fo

 S
et

Po
st

-1
99

4
Pr

e-
19

94
Fu

ll 
Sa

m
pl

e*
M

ea
ns

 (P
=2

)
M

ed
ia

ns
 (P

=2
)

M
ea

ns
 (P

=2
)

M
ed

ia
ns

 (P
=2

)
M

ea
ns

 (P
=2

)
M

ed
ia

ns
 (P

=2
)

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

A
lp

ha
 G

N
P

A
lp

ha
 IN

F
A

lp
ha

 S
R

1
0.

28
77

0.
54

89
0.

35
22

0.
26

20
0.

56
55

0.
33

02
0.

55
20

0.
71

99
0.

16
09

0.
54

79
0.

75
94

0.
15

51
0.

39
90

0.
59

36
0.

25
07

0.
37

02
0.

59
62

0.
24

34
2

0.
34

02
0.

59
14

0.
37

38
0.

31
48

0.
61

76
0.

36
81

0.
57

79
0.

69
48

0.
19

19
0.

56
69

0.
70

08
0.

18
80

0.
41

21
0.

61
20

0.
26

06
0.

39
48

0.
63

40
0.

25
52

3
0.

27
63

0.
58

08
0.

28
94

0.
24

34
0.

59
69

0.
27

87
0.

56
56

0.
76

98
0.

21
04

0.
59

11
0.

81
20

0.
20

74
0.

38
16

0.
60

52
0.

24
25

0.
35

28
0.

62
28

0.
24

15
4

0.
35

49
0.

54
83

0.
24

23
0.

33
35

0.
56

96
0.

17
43

0.
52

50
0.

66
05

0.
18

67
0.

51
76

0.
63

77
0.

16
55

0.
39

49
0.

58
38

0.
21

80
0.

37
53

0.
60

82
0.

19
57

5
0.

28
93

0.
63

73
0.

28
90

0.
26

58
0.

68
01

0.
29

07
0.

57
70

0.
78

17
0.

20
03

0.
55

63
0.

81
59

0.
20

32
0.

38
16

0.
63

18
0.

23
59

0.
35

32
0.

66
25

0.
22

09
6

0.
31

35
0.

54
97

0.
18

33
0.

30
46

0.
66

70
0.

13
90

0.
50

86
0.

74
95

0.
15

70
0.

48
74

0.
80

49
0.

13
50

0.
39

46
0.

61
31

0.
19

46
0.

38
39

0.
64

60
0.

17
24

7
0.

34
32

0.
55

89
0.

28
09

0.
31

81
0.

62
17

0.
20

38
0.

55
76

0.
65

75
0.

17
29

0.
50

77
0.

66
10

0.
15

31
0.

38
50

0.
59

85
0.

22
40

0.
37

61
0.

64
12

0.
19

63
8

0.
33

80
0.

61
51

0.
26

88
0.

30
85

0.
70

45
0.

21
18

0.
57

40
0.

66
24

0.
19

03
0.

54
74

0.
67

45
0.

18
53

0.
38

49
0.

61
09

0.
22

73
0.

36
36

0.
63

15
0.

20
00

9
0.

30
68

0.
56

49
0.

18
55

0.
30

30
0.

70
45

0.
14

16
0.

54
91

0.
75

63
0.

14
34

0.
53

79
0.

77
66

0.
13

54
0.

38
84

0.
61

53
0.

18
96

0.
38

31
0.

65
13

0.
16

40
10

0.
24

84
0.

57
03

0.
18

06
0.

25
27

0.
70

68
0.

11
14

0.
58

37
0.

77
64

0.
14

02
0.

60
46

0.
82

94
0.

11
64

0.
37

11
0.

64
56

0.
16

74
0.

36
33

0.
68

24
0.

14
71

11
0.

21
78

0.
65

74
0.

33
25

0.
17

91
0.

89
07

0.
14

48
0.

55
59

0.
83

95
0.

11
25

0.
56

80
0.

91
42

0.
09

22
0.

33
36

0.
69

07
0.

16
86

0.
34

10
0.

80
45

0.
12

57
12

0.
27

94
0.

61
65

0.
23

20
0.

27
59

0.
88

60
0.

14
47

0.
56

81
0.

86
79

0.
12

56
0.

56
90

0.
89

45
0.

11
70

0.
36

14
0.

68
59

0.
18

39
0.

37
27

0.
79

98
0.

14
71

13
0.

23
36

0.
64

89
0.

27
81

0.
19

96
0.

67
74

0.
26

14
0.

55
93

0.
75

32
0.

15
15

0.
56

27
0.

80
13

0.
13

09
0.

35
92

0.
64

16
0.

22
75

0.
34

61
0.

67
58

0.
21

92
14

0.
20

65
0.

65
41

0.
27

63
0.

18
63

0.
70

09
0.

25
12

0.
57

71
0.

77
57

0.
14

36
0.

56
47

0.
81

57
0.

12
15

0.
36

62
0.

66
51

0.
21

67
0.

33
60

0.
70

34
0.

20
07

* 
In

di
ca

te
s s

am
e 

fo
re

ca
st

er
s a

s i
n 

th
e 

po
st

-b
re

ak
 sa

m
pl

e



Table 5

Pre-1994 (P = 2)

Info Set Univariate Multivariate
a1 = a2 = 0.5 a1 = 0.5 a2 = 0.5 a3 = 0.5 a1 = a2 = 0.5 a1 = 0.5 a2 = 0.5 a3 = 0.5

1 0.2353 0.5588 0.2647 0 0.2647 0.5588 0.2941 0
2 0.3235 0.4706 0.3529 0 0.2647 0.5294 0.2647 0
3 0.1176 0.5294 0.1176 0 0.0882 0.5882 0.1176 0
4 0.2647 0.5882 0.4706 0.0294 0.2647 0.6471 0.3529 0.0294
5 0.0588 0.5 0.0882 0 0.0588 0.6471 0.0588 0
6 0.0588 0.5882 0.0588 0.0294 0.0294 0.6471 0.0588 0
7 0.2353 0.3529 0.4412 0 0.2059 0.5 0.3824 0
8 0.2059 0.4118 0.4118 0.0294 0.1765 0.5882 0.3235 0.0294
9 0.0588 0.4118 0.1176 0 0.0588 0.5294 0.1471 0

10 0.0294 0.2647 0.0588 0 0.0294 0.4412 0.0882 0
11 0 0.3235 0.0294 0 0.0294 0.2941 0.0882 0.0294
12 0 0.4412 0 0 0 0.4118 0.0588 0
13 0.0294 0.5294 0.0588 0 0.0588 0.5882 0.0882 0
14 0.0294 0.4118 0.0588 0 0.0588 0.4706 0.0882 0

Post-1994 (P = 2)

Info Set Univariate Multivariate
a1 = a2 = 0.5 a1 = 0.5 a2 = 0.5 a3 = 0.5 a1 = a2 = 0.5 a1 = 0.5 a2 = 0.5 a3 = 0.5

1 0.125 0.1562 0.6562 0.3438 0.0938 0.1562 0.625 0.3438
2 0.1562 0.4062 0.5 0.5625 0.1875 0.3438 0.5 0.5
3 0.0938 0.2188 0.5312 0.1875 0.0312 0.0625 0.5312 0.2188
4 0.1562 0.3438 0.4062 0.125 0.0938 0.3125 0.375 0.4062
5 0.0625 0.25 0.375 0.1875 0.0312 0.0625 0.3125 0.1875
6 0.0312 0.2812 0.125 0.125 0.0625 0.1875 0.4375 0.1875
7 0.0938 0.2812 0.2812 0.2188 0 0.25 0.25 0.5625
8 0.0312 0.2812 0.1875 0.1875 0 0.1562 0.1562 0.5
9 0.0312 0.25 0.125 0.125 0.0312 0.1562 0.375 0.2188

10 0 0.0625 0.0938 0.0625 0 0.125 0.3125 0.2812
11 0 0.0625 0.0312 0 0 0 0.0938 0.0625
12 0 0.125 0 0 0 0.0312 0.0312 0.1875
13 0.0312 0.0625 0.375 0.125 0.0312 0.0312 0.2812 0.125
14 0 0.0625 0.3125 0.2188 0 0 0.3125 0.125
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