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MULTIVARIATE FORECAST EVALUATION AND RATIONALITY
TESTING

IVANA KOMUNJER AND MICHAEL T. OWYANG

ABSTRACT. In this paper, we propose a new family of multivariate loss functions that can
be used to test the rationality of vector forecasts without assuming independence across
individual variables. When only one variable is of interest, the loss function reduces to
the flexible asymmetric family recently proposed by Elliott, Komunjer, and Timmermann
(2005). Following their methodology, we derive a GMM test for multivariate forecast
rationality that allows the forecast errors to be dependent, and takes into account forecast
estimation uncertainty. We use our test to study the rationality of macroeconomic vector
forecasts in the growth rate in nominal output, the CPI inflation rate, and a short-term

interest rate. [JEL: C32, C53]

1. INTRODUCTION

Forecasting models typically rely on the interaction of a large number of correlated
variables to generate predictions. For example, VAR forecasting models build-in an in-
terdependence of key macroeconomic variables such as output, prices, employment, and
interest rates; see Sims (1986) and, more recently, Christiano, Eichenbaum, and Evans
(1999). Stock and Watson (1999) and Boivin and Ng (2006) construct forecasts with

the idea that the state of the economy is influenced by large numbers of comoving data
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2 MULTIVARIATE FORECASTS

series acting through dynamic factors. Even the belief in the most elementary macro-
economic relationships—such as the Phillips curve or the Fisher hypothesis—introduces
an interdependence in the forecasted variables.!? It is, therefore, not unusual for fore-
casts to involve two or more correlated variables. A prominent example is the Survey of
Professional Forecasters (SPF), which reports forecasts of both output and inflation.

Tests of these forecasts’ properties, on the other hand, are generally conducted
ignoring—either explicitly or implicitly—the multivariate nature of the underlying model.
In particular, most of literature on forecast rationality testing assumes that the losses for
individual variables are independent; see Kirchgéissner and Miiller (2006), for example.
Under independence, multivariate losses are additively separable, i.e. they reduce to sums
of univariate losses in each of the variables taken separately. When there is dependence
among variables being forecast, this decomposition no longer necessarily holds.

The consequence of additive separability may be reflected in a biased evaluation of the
forecaster. As an example, suppose that forecasts are made conditional on an assumed
path for, say, monetary policy. The forecast errors for other variables—e.g., output and
inflation—might be viewed in the context of that assumption. If the premise is violated,
relationships underlying the forecasting model might lead to an increase in the errors
for other variables. In an additively separable loss function, the penalty for missing the
policy variable is compounded by the consequent errors in output and inflation. Under
some circumstances, however, the forecaster’s recognition of the multivariate relationships
could mitigate the loss, altering either our conclusions about the behavior or rationality
of the forecaster.

Since the seminal works of Muth (1961) and Lucas (1973), rationality in expecta-
tion formation has been the cornerstone of economic models. The notion that agents
form expectations rationally is found, for example, in the early work on monetary policy
(Friedman, 1968), the natural rate hypothesis (Sargent, 1973; Shiller, 1978), and bond

IThe viability of these relationships for forecasting is discussed at length in Stock and Watson (1999)

and Barsky (1987), respectively.
2Perhaps the most telling evidence for multivariate forecasting is FRBUS, the model used by the

Federal Reserve Board of Governors to construct forecasts for monetary policymaking (Brayton, Levin,

Tryon, and Williams, 1997).
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markets (Modigliani and Shiller, 1973; Poole, 1976), among others. Consequently, a large
body of empirical work has been devoted to testing the rational expectations hypothesis
(REH). Market-based studies typically consider the REH in financial markets.® Survey-
based studies, on the other hand, exploit cross-sections (and often panels) of data collected
from forecasters to test rationality.*

While survey-based tests have, on average, rejected the rationality of professional fore-
casters, these tests tend to treat expectations formation as independent across variables.
That is, forecast rationality is tested for each variable individually under the assumption
that the forecast errors are independent. Most economic theories, on the other hand,
are contrived from multivariate models with comoving variables. It therefore seems con-
trary to test rationality in either univariate or independent multivariate frameworks, as
both treatments belie Muth’s (1961) characterization of rational expectations as “distrib-
uted, for the same information set, about the prediction of the theory (or the ‘objective’
probability distributions of outcomes).”

In addition to assuming independence, rationality tests typically assume that the fore-
caster’s loss function is quadratic. Thus, the forecaster’s objective is simply to minimize
the magnitude of the forecast error, regardless of its directionality. Conclusions drawn
using tests bearing this assumption have, for the most part, revealed a lack of forecast
rationality. Recently, however, Elliott, Komunjer, and Timmermann (2005) (EKT here-
after) argued that a simple quadratic loss may not be sufficiently flexible for evaluating
forecast rationality. They argue that asymmetric loss, in which positive and negative
forecast errors may be weighted differently (Zellner, 1986; Christoffersen and Diebold,
1997; Batchelor and Peel, 1998; Elliott, Komunjer, and Timmermann, 2005, 2006), might
better represent the forecaster’s objective function. In particular, Elliott, Komunjer, and
Timmermann (2006) find evidence for asymmetric loss in the output and inflation SPF
forecasts.

3In financial markets, rationality has implications for the realization of interest rate spreads (Fama,

1990; Campbell and Shiller, 1987; Bekaert and Hodrick, 2001) and exchange rates (Engel and West, 2005).
4These papers examine either the consensus, i.e., the distributions of expectations (see Pesaran (1987)

for a survey), or pooled agents (Figlewski and Wachtel, 1981). Bonham and Cohen (2001) examine

conditions under which either of these methodologies are valid.
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In light of these facts, we propose a test of multivariate forecast rationality that accounts
for both interdependence of the forecast errors and directional asymmetries. The test is
based on a novel multivariate objective (loss) function that explicitly models codependence
in the forecasted variables. Desirable properties of such loss include: (1) it does not treat
the components of the forecast vectors as independent; (2) it allows for asymmetry in
the treatment of over- and under-prediction of the individual variables being forecast. If
agents have symmetric preferences, our multivariate loss function reduces to the sum of
univariate losses. In this case, our test is equivalent to a joint test of univariate rationality.
However, if agents have directional preferences, assuming independence across forecasted
variables produces two biases: First, the independence assumption can alter the result
of rationality tests; second, the econometrician may incorrectly infer a greater degree
of directional preference on the part of the forecaster. In this sense, the assumption of
independence amounts to a misspecification of the forecaster’s loss function. Accounting
for potential correlation across forecasted variables can, in some cases, lessen the degree
of asymmetry found in the panel of forecasters.

Empirically, the misspecification due to the assumption of independence is highlighted
if the correlation of variables differs across subperiods. One such event occurred in early
1994 when the Federal Reserve began to announce the federal funds target, altering the
informational environment for forecasters. Under the assumption of independence, one
might not expect a change in Fed policy to affect the forecaster’s loss associated with, say,
output or inflation. Neglecting the codependence between variables can, thus, bias the
estimation of the forecaster’s directional preferences. Under the multivariate framework,
on the other hand, we can properly account for the codependence of output and inflation
with the policy variable.

The remainder of the paper is organized as follows: Section 2 develops the theoretical
foundation for our multivariate approach. Here, we review the notation and assumptions,
propose a new family of multivariate loss functions, and derive their properties. Where
appropriate, we emphasize the differences between the univariate and multivariate loss
functions. Section 3 outlines the testing procedures for multivariate forecast rationality.

Section 4 describes the data used in our empirical application and presents the results. In
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particular, we focus on the results of the rationality tests and the values of the asymmetry
coefficients in the estimated loss functions obtained in the pre- and post-1994 subsamples.

Section 5 concludes.

2. MULTIVARIATE FORECASTS AND L0Ss FUNCTION

2.1. Setup and Notation. Consider a stochastic process Z = {z : Q —
R™™ (n,m) € N2t =1,2,...} defined on a complete probability space (€2, F,P), where
F = {F,t =1,2,...} and F; is the o-field F; = o{zs,s < t}. In what follows, we
let z; = (y;, w;)’, where y; denotes the subvector of interest of the observed vector z,—
y; € R"—and where the remaining subvector w,—w, € R™—stands for other variables.’

We denote by F?(-) the distribution of y; conditional on F;, i.e., FP(y) = P(y; <y) for

any y € R" where < denotes the usual partial order on R™.% We shall assume that

Al. For all t = 1,2, ... the conditional distribution F(-) is continuously differentiable

and the corresponding conditional density f2(-) > 0 on R™.

In the forecasting problem considered here, we let fi,,; denote the time-¢ forecast of
the n-vector y; s, where s is the prediction horizon of interest, s > 1. The forecast vector
f; s+ contains all the information comprised in F;, which is informative for y,, including
lagged values of y; in addition to other variables w, used to predict y; . For simplicity, we
focus on the one-step-ahead predictions of y;;—denoted f;; ;—knowing that all results
developed in this case can readily be generalized to any s > 1. Using the standard
notation, we let e,;; denote the time-t 4- 1 forecast error n-vector, e,11 = yir1 — fiy14.

Hereafter, for any scalar u, u € R, we let 1: R — [0, 1] be the Heaviside (or indicator)
function, ie., T(u) = 0 if uw < 0, M(u) = 1 if w > 0, and T(0) = 5 (Bracewell, 2000).
Similarly, we use sgn : R — {—1,0,1} to denote the sign function: sgn(u) = M(u) —
I(—u) = 20M(u) — 1, and let § : R — R be the Dirac delta function. Note that the
Heaviside function is the indefinite integral of the Dirac function, i.e., T(u) = fau do,

where a is an arbitrary (possibly infinite) negative constant, a < 0. For any real function

SFollowing the standard convention, we use bold letters for vectors (e.g., z;) and matrices (e.g., Bg).

0For any (a,b) € R?™ with a = (ay,...,a,), b = (by,...,b,), a < b means a; < b; for all 1 < i < n.
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f : R" — R that is continuously differentiable to order R > 2 on R", we let V,f(u)
denote the gradient of f(-) with respect to u, Vy f(u) = (0f(u)/du;, ...,0f (u)/du,)’, and
use Ayyf(u) to denote its Hessian matrix, Ay f(u) = (02 f(0)/0u;0u;)1<i j<n-

For any n-vector u, u = (ui, ..., u,)" € R", we denote by [[ul|, its [,-norm, i.e., [ul/, =
(Jua|P + ...+ |un|P)/P for 1 < p < 00, and ||u||, = max;<ic,(|ui|). We define the open unit
ball B} in R" as B) = {u € R" : [[u][, < 1}. v,(u), V,(u) and W,(u) are an n-vector
and two n x n-diagonal matrices defined as: v,(u) = (sgn(uq)|uq [P, ..., sgn(u,)|u, [P,
V,(u) = diag(d(ur)|us [P, ..., 6 (un)|un|P~1), and W, (u) = diag(|ui[P72, ..., [u.|P~?), re-
spectively. Then Vy [[ul|, = ||u||11;p vy(u) and Ay [lull, = ||u||11;p {2V, (u) + (p - 1)
[Wp(u) — [[ull;” Vp(u)ug,(u)} }, which we shall often be using in what follows.

Finally, for any m x n-matrix A = (a;;)1<i<m,1<j<n, We let ||Al]l = maxi<; j<n(]aij])-
Moreover, if B = (by)1<k<p1<i<q 1S @ p X ¢-matrix, we let A @ B be the direct product of
A and B (also called their Kronecker product), i.e., C = A ® B is an (mp) x (ng)-matrix
with elements defined by c¢,5 = a;;bg, where a =p(i — 1)+ k and S =q(j — 1) + L.

2.2. Multivariate Loss Function. In this paper, we generalize the flexible family of
loss functions introduced by EKT to n—variate forecasts. In the univariate case, EKT
map an exponent p, 1 < p < 0o, and an asymmetry parameter o, 0 < o < 1, into a
non-negative function of an error e € R; the resulting family of losses is flexible enough
to accommodate the absolute value or quadratic loss, yet allows the latter to become
asymmetric. We now extend their definition to a vector-valued argument, e € R". Fix a
scalar p, 1 < p < oo, and let 7 be an n-vector with /,-norm less than unity, i.e., T € B,
where 1/p 4+ 1/q = 1 with the convention that ¢ = oo when p = 1. For any e € R", we

then define an n-variate loss function as follows:

Definition 1 (n-variate Loss). The n-variate loss function L, (p,T,e) : [1,+00) X Bl X

q
R" — R (with 1/p+1/q = 1) is defined as
La(p,7,0) = (Jlell, +7e) lle]s™ M

When p = 1, the multivariate loss L,(1,7,-) can be used to define the geometric

quantile of the forecast n-vector error e, as proposed in Chaudhuri (1996), for example.
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In a sense, L, (1, T,-) is a multivariate extension of the univariate loss 2[1 —a+71(e)]|e/?,
well-known in the literature on quantile estimation (Koenker and Bassett, 1978). When
p > 1, the expression of the n-variate loss L, (p, T, -) is entirely novel and not yet seen in

the literature. We start by establishing some of its useful properties.

Proposition 1. Let L,(p, T,e) be the n-variate loss in Definition 1. Then, the following
properties hold: (i) L, (p,T,-) is continous and non-negative on R"; (ii) L, (p,7,e) =0

if and only if e =0, and limye| o0 Ln (p, T,€) = oo; (#i) L,(p,T,-) is convex on R™.

The shape of the n-variate loss L,, (p, T, -) is characterized by the exponent p, 1 < p <
oo, and the n-vector T that quantifies the extent of asymmetry in L, (p,7,-). When
7 = 0, the n-variate loss in Equation (1) reduces to [le[|;, which is perfectly symmetric.
On the other hand, for a nonzero 7, its magnitude ||7||, measures the extent of deviation
of the n-variate loss from the perfectly symmetric case; the direction of this deviation is
determined by the direction of 7. In a sense, both the direction and the magnitude of the
n-vector 7 influence the degree of asymmetry in the forecaster’s loss (see left and middle
panels in Figure 1).

When the variable of interest is of dimension n = 1 and the forecasts are univariate, the
loss in Equation (1) reduces to L; (p, 7, e) = [le| + 7¢] ||’ " = 2[1 — a + 71(e)]|e|?, where
T=2a—1,a € (0,1), and p > 1 as previously (Elliott, Komunjer, and Timmermann,
2005, 2006).” In the univariate case, this flexible loss family includes (i) the squared loss
function L;(2,0,e) = €® and (ii) the absolute deviation loss function L;(1,0,¢) = |e|, as
well as their asymmetrical counterparts obtained when 7 # 0 (i.e., a # 1/2) called (iii)

the quad-quad loss, L1(2,7,¢e), and (iv) the lin-lin loss, L;(1, 7, €).

2.3. Asymmetry and Dependence Properties. In order to gain further insight into
the features of the loss L, (p, T,e) in Equation (1), we consider in more detail the case
n = 2. In this bivariate case, it is assumed that the forecaster cares about the magnitude
and the sign of her errors e; and ey, committed when forecasting jointly the two variables

of interest, y; and y,. The iso-loss curves corresponding to Ls (p, T,€) = constant, where

"Note that we have the following useful identity: 1 + 7sgn(z) = 2[1 — o + 71(z)], for all z € R.
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FIGURE 1. Lo(1,7,-) (left), Ly(2,7,-) (middle), and L1(2, 71, -)+L1(2, 72, *)
(right) contour plots with a = (.50,.50)’,(.50,.25)", (.75, .25)", (.85, .25)’
(top to bottom).

e = (e1,e2) and 7 =(2a; — 1,2a — 1)/, are then as plotted in the left and middle panels
of Figure 1.

For example, when p = 1, we have Ly (1,7,€) = |e1| + |ea| + 711 + T2€2 and the loss
corresponding to the bivariate error e = (eq, e3)" equals the sum of individual lin-lin losses
corresponding to e; and ey: Lo (1,7,€) = Ly (1,71,e1) + L1(1,72,e3). In other words,

when the shape parameter p = 1, the forecaster behaves as if the variables of interest, 1,
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and 15, were independent. However, her loss in each of the two forecasts taken separately
is still allowed to be asymmetric.

When, on the other hand, p = 2, we have Ly (2,7,e) = |ei]* + |ea]® +
(1161 + T2€2) (Jer]® + ]62]2)1/ ?  which is no longer additively separable in individual losses
of either e; or ey alone: unless 71 = 79 = 0, we have Ly (2,7,€) # Li(2,71,€e1) +
L1(2, 79, e3) for general values of the forecast errors. In this case, the trivariate loss differs
from a simple sum of the individual quad-quad losses, as demonstrated by the middle and
right panels in Figure 1.

When the shape parameter p of the n-variate loss in Equation (1) is strictly greater
than 1, L, (p, T, e) will in general differ from the sum of coordinate-wise univariate losses
Ly (p,71,€1) + ... + L1 (p,Tn,€n). Hence, minimizing the n-variate loss L, (p, T, e) will
in general produce an optimal n-vector e* whose coordinates e; do not necessarily each
minimize L (p, 7;,€;). In other words, L, (p, T,e) captures not only the asymmetry but

also the dependence between different coordinates of e.

3. MULTIVARIATE FORECAST RATIONALITY: ESTIMATION AND TESTING

We now define multivariate forecast rationality. Intuitively, the n-variate forecasts shall
be called rational with respect to the n-variate loss L, (p, T, ) defined in Equation (1), if
they minimize its expected value. Since the information sets available to the forecasters
change in time, the expectation of the loss is conditional on F;; hence, any forecast in the
sequence necessarily satisfies an orthogonality condition We shall use this condition as a

starting point of our estimation and multivariate forecast rationality testing procedures.

3.1. Rationality Condition. Throughout the paper we assume that the forecaster’s

n-vector optimal forecasts of y; 1, forecasts which we denote £}, ;, satisfy the following:

A2. Forall t =1,2,... we have: £, , = argming,,, 3 E[L, (po, To,Yer1 — fri1.0)| Fil,
where Ly, (po, To, ) is the n-variate loss function with parameters py, 1 < pyg < oo, and

To € By, 1/po+1/q0 = 1, as defined in Equation (1).

Implicit in Assumption A2 are two properties: (1) when constructing her optimal fore-

casts, the forecaster has in mind a loss function whose argument is the forecast error
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n-vector e, alone; (2) the forecaster’s loss is parametrized by py and 7¢ as introduced
in Equation (1).

We now derive a necessary and sufficient condition for multivariate forecast rationality,
which provides the basis of our test for multivariate forecast rationality (Section 3). We
need the following property:

A3. Given py € [1,+00), and for all t = 1,2, ... we have: E(||yt\|’1’°71}‘7-"t) < o0 a.s.-P

—1
}11)0 < o0 a.s.-P.

*
and ||ff,, |

The conditions in Assumption A3 combined with the convexity of the n-variate loss in
Equation (1) together ensure—by Lebesgue’s dominated convergence theorem—that we
can safely differentiate the loss L, with respect to the error e;,; inside the conditional
expectation operator in Assumption A2. This yields the following necessary and sufficient

condition of multivariate forecast optimality.

Proposition 2. Let Assumptions A1 and A3 hold. Then the optimality of {f},,,} in A2
holds if and only if for allt =1,2,... we have

Vpo (e;‘/k+1)

o
et ll,,

* * 71 *
E | povy,(€j11) + To ‘ et+1Hz2 + (po — )Tp€t 14

}"t] =0,a.s.— P. (2)

Note that while the necessity of the above first-order condition is obvious, the sufficiency
part of the above result heavily relies on the convexity of the loss L, (po, To, -) established

in Proposition 1.

3.2. Identification of Multivariate Loss Function Parameters. Identification of
the true multivariate loss parameters used by the forecasters exploits the orthogonality
condition derived in Proposition (2). Consider an F;-measurable d-vector x; and denote
by g(-,-;€},1,X¢) an nd-vector-valued function g(-,-; €}, ,%¢) : [1,400) x By — R such

that

g, ief %) = (pp(ein) + 7 [[eil) " + (0 = Dr'ei et valerin)) @xi. (3)

The key element of our identification strategy is the following: under rationality, we have
Elg(po,To;€f,1,%x)] =0 forall t =1,2,.... If for a given py € [1,+00), 7o is the unique
value of the n-variate asymmetry parameter 7 € Bj (with 1/py 4+ 1/go = 1) that satisfies
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those nd orthogonality conditions, then the latter can be utilized by the forecast evaluator
(econometrician) to estimate 7 using Hansen’s (1982) GMM approach. For this, we shall
first make the assumption that all of the variables appearing in Equations (9) and (3)

come from a process that is stationary:
A4. The process {(e},;,x})'} is strictly stationary.
We further restrict the d-vector of instruments x; to satisfy the following properties:
. . * po*l . .. * p071
A5. Given py € [1,+00), (i) E[|lef || Ixelly] < oo (id) rankE[HetHHpO (Id, ®
* -1 * *
Xt) + (po — 1) HetHHpO (Vo (€741) @ X0)ef ] = .

We can then characterize the true forecaster’s asymmetry parameter 7y as follows.

Lemma 3. Let Assumptions A1 through A5 hold. Given py € [1,400) and for any
TeB

q0’

let Q(T) = Elg(po, T; €511, %¢t)'ST E[g(po, T €511, X¢)], with S positive definite.

Then T is the unique minimum of Q(T) on By, -

The weighting matrix S in Lemma 3 is usually set to be equal to S =
Elg(po, To; et 1,%:)8(Po, To; €1, %¢)']. In order to ensure that S is positive definite, we

need that the covariance matrix of d-vector of instruments x; be of full rank.
A6. rank E[x;x}] = d.

We then have the following result:

Lemma 4. Let Assumptions A1l through A6 hold. Given py € [1,4+00) and for any
T e By, let S(T) = E [g(po, T €] 11,%)8(po, T3 €f,1, %) | . Then S(7) is positive definite.

3.3. GMM Estimation. Now, given p, € [l,400) and given the observations
(L, € ) (X yp_q,€ 7)), the GMM estimator of the n-variate loss asymmetry pa-

rameter 7, denoted 7, can be defined as a solution to the minimization problem:

/

T+R-1 T+R-1

. -1 A S—1 -1 A
min T E g(Poa T et+1,Xt) S T E g(poﬂ', et—&-l»Xt) ) (4)
B, =R =R

where S is a consistent estimator of S = E[g(po, To; ef, 1, %:)&(Po, To; €11, X1)']-
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It is worth pointing out that the optimal forecast errors e, ; are unobservable in reality.
Instead, for every ¢, R <t < T+ R—1, the forecast evaluator observes &1 ; = yi+1—fiy14,
which implicitly incorporates all of the forecast estimation uncertainty embodied in f;4 .
In order to make sure that this uncertainty does not interfere with our rationality test
we need to impose a set of restrictions on how the observed forecaster’s n-vector errors

{er1 04! differ from their optimal counterparts {e},; };f2

A7, Foreveryt, R<t<T+R-1, and any € > 0, limp 7o Pr (Hét+1 — e’t"HH1 > 5) =
0.

In addition, we need to ensure that appropriate sample averages converge to their
expected values. Recall that Assumption A4 restricts the heterogeneity of the process
{(ef1,¥)'} by guaranteeing that the latter is strictly stationary. We now impose a

similar condition on {(&;,,,x;)'} and further restrict its dependence structure.

AS8. The process {(&,,x;)'} is strictly stationary and o-mizing with mizing coefficient
a of size —r/(r —2), r > 2, and, given py € [1,+00), there exist some € > 0, A; > 0 and
Ay > 0 such that E[||ét+1||§p071)(2r+5)] <Ay < 00 and E[||x]|2] < Ay < 0.

In particular, using the fact that {g(po, 70; €} ,%:), F} is a martingale difference se-

quence, as shown in Equation (2), a consistent estimator of S is given by

T+R—-1

SH=T" > glpo,T: 1, %)8(p0, 75 8141, %1) (5)
t=R

where 7T is some initial consistent estimate of 7y. As already pointed out, the optimal
sequence {e;, ,} is in reality unobservable; what the forecast evaluator (econometrician)
observes instead are the forecaster’s n-vector errors {éHLt}tTij_l. Given that the fore-
caster produces forecasts that are “close” to optimal as quantified in Assumption A7, the
consistency of S in Equation (5) holds, despite the presence of the forecast estimation
uncertainty.

We are now able to show that our GMM estimator 71 of the asymmetry parameter 7

1S consistent:
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Theorem 5. Let Assumptions Al through A8 hold. Then, given py € [1,+00) we have

775 1y as (R, T) — oc.

3.4. Forecast Rationality Test Statistic. Our test for multivariate forecast rationality
comes in a form of a J-test. Hence, it necessitates the derivation of the asymptotic
distribution of our GMM estimator 77, which we derive next. We start by strengthening

our stationarity assumption A4 as follows:

A4'. The process {(e}\,,x})'} is strictly stationary and a-mizing with mizing coefficient
a of size —r/(r —2), r > 2, and, given py € [1,+00), there exist some € > 0, Az > 0

such that E| eIHngO*l)(ZHe)] < Ag < 0.

Above conditions, similar to those stated in Assumption A8, ensure that appropriate
laws of large numbers and central limit theorems apply. We shall also strengthen our

assumption A7 by requiring the following:

AT, (i) For some small ¢ in (0,1) R*2%/T — o0 as R — oo and T — oo; (ii) for any

6 > 0 we have: imp oo Pr (SUPgescrip1 Hét+1 — e;"HH1 >0) = 0.

The above condition ensures that the forecast estimation uncertainty, embodied in €&,
does not affect the asymptotic distribution of our GMM estimator #7. Note that A7(i)
imposes a condition on the relative growth of sample sizes R and 7. Assumption A7 (ii),
on the other hand, strengthens the requirement in A7 by making it uniform in ¢. Finally,

we need two additional new assumptions:

A9. Given py € [1,400), we have: E (Supce(o,l) |81+ (1 — c)e;l”fod) < oo and

E <th||1 SUDce(0,1) |8+ (1 - C)e;tk—lefOiQ) < 00.

A10. The marginal densities fo(-) are such that maxi<;<, f9(y) < M for any y € R.
We are now ready to state our asymptotic distribution result for 7.

Theorem 6. Let Assumptions AI1-A3, A4’, A5-A6, A7, A8-A10 hold. Then, given

po € [1,400) we have: VT(#1 — 7o) <, N(0,(B¥S™'B*)™1), as R, T — oo, where

*7 (1, @ %)) + (po —

S = E[g(po,TO;e;‘+1,xt)g(p0,7-0;ej[H,xt)’] and B* = E[|e2‘+1|

* -1 * *
1) ‘ et+1Hp0 (Vpo<et+1) ® Xt)etjrl]-
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The asymptotic normality result of Theorem 6 is the basis for our forecast rationality
test. When the dimension of the d-vector x; used in Equation (3) is large enough, d > 1,
then a test for overidentification provides a joint test of rationality of the n-vector forecasts
{f'tﬂyl} under the n-variate loss L(pg, 77, -). More formally, we have the following corollary

to our Theorem 6:

Corollary 7. Let the assumptions of Theorem 6 hold. Then a joint test of n-vector
forecast rationality under the n-variate loss function L(po,Tr,-) can be conducted with

d > 1 instruments x; through the test statistic

R+T-1 ! R+T—1
Jr=T" Z g(PO,‘T'T;ét+1,Xt)] S [ Z g(po, T1; €411, X¢) NXi(dq),
t=R =R

A

where S is as defined in Equation (5).

4. EMPIRICAL APPLICATION

We illustrate the performance of our multivariate forecast rationality test in a situation
in which the forecasters have reason to believe that the forecasts are codependent. We
focus on three macro variables: the growth rate in output, y, the CPI inflation rate,
7, and a short-term interest rate, r. Examples of models using these variables include
Taylor’s (1993) interest rate targeting rule, monetary VARs (Christiano, Eichenbaum, and
Evans, 1999), optimizing ISLM models (McCallum and Nelson, 1999), and reduced-form
New Keynesian models (Clarida, Gali, and Gertler, 2000). Common to these models is
a relationship—either estimated or imposed—between output and prices combined with
the Federal Reserve’s control of short-term interest rates. We would therefore expect
the forecasters to account for the covariation of output, prices, and interest rates when

constructing their optimal forecasts.

4.1. Data. Forecast data are taken from the Blue Chip Economic Indicators (BCEI),
a compilation of industry forecasts of a number of economic variables. Each month,

participating firms report forecasts of the current- or next-year growth rate in output and
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prices and the current- or next-year average short-term interest rate.® The BCEI began
collecting data in 1976:08. Our sample includes forecasts through 2004:12.°

We assume that the forecaster’s objective is to predict true values and that revisions
to the realizations are a more accurate reflection of the true values. Thus, in constructing
the forecast errors, we use the latest revision of the variable in question. The realizations
are yearly growth rates of GDP, GNP, and CPI inflation.!® Short-term interest rate
realizations are the yearly average.

Over time, some forecasters leave the sample while others are added. In addition,
firms occasionally fail to report forecasts for any given month. We therefore omit any
observation in which forecasts for all three variables are not reported.!! Finally, forecasters
with fewer than 100 valid observations are dropped from the sample. For the full sample,
this leaves 57 firms with an average of 171 valid observations per firm.

As we have shown above, rationality depends on the set of variables included in the
forecaster’s information set. The set of instruments includes combinations of the lagged
growth rates of output, inflation, the unemployment rate, and the short-term interest
rate. Instruments are, for each month, a snapshot of the real-time data available at that
time.!? The change in the forecast is also included as a possible instrument. For each
forecaster, we conduct tests employing different information sets, described in Table 1.

8Prior to 1984, firms reported current-year forecasts for the first five or six months of the year. In
later months, they reported next-year forecasts. Starting in 1984, both current- and next-year forecasts

were reported each month.
9The sample of output forecasts is split between GNP (1976:08 through 1991:12) and GDP (1992:01

through 2004:12). The BCEI began collecting CPT inflation forecasts in 1979:01 through the end of our
sample in 2004:12. The short-term interest rate forecasts are split between the 3-month commercial paper
(1976:08 through 1980:06), the 6-month commercial paper (1980:07 through 1981:12), and the 3-month
T-bill (1982:01 through 2004:12) rates.

For output and inflation, the target variable is the rate of change between the average of the levels

for that year. This method is described by the BCEI in their monthly newsletter.

HThese observations may affect both the period in which the forecast is made and the information set

of the forecaster. In these cases, both observations are omitted.
12These data are taken from the Federal Reserve Bank of St. Louis’s archival dataset Archival Federal

Reserve Economic Data (ALFRED), available at www.stlsfrb.org. The short-term interest rate, which is

not typically revised, was taken from the Federal Reserve Board.
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As a baseline for comparison, we repeat each test under the assumption of independence

and the joint assumption of independence and symmetry.

4.2. Multivariate Rationality Test Results. The multivariate rationality test out-
lined in the previous sections is essentially a test of overidentifying restrictions. It exam-
ines whether the series of forecast errors can be reconciled with rationality for some set
of asymmetry parameters.

Table 2 illustrates the effect of testing rationality jointly. We report the percentage of
forecasts for which rationality is not rejected. Results are reported for three confidence
levels—90, 95, and 99 percent—for each set of instruments. In addition, each instrument
set is estimated for fixed values of p = 1,2.!3 The salient result is that for each instrument
set, both the univariate asymmetric and multivariate asymmetric loss functions accept
rationality at a much higher rate than the univariate symmetric baseline reported in the
last three columns. The rate at which rationality is accepted under multivariate loss is
nearly identical to that under univariate asymmetric loss. For most instrument sets, the

difference in acceptances between flexible loss methods is smaller than 10 percent.'

4.3. Asymmetry Coefficients. For a given specification of the forecaster’s loss function,
our procedure delivers estimates of the asymmetry parameters (a¥, o™, a”) most consistent
with the orthogonality conditions implied by rationality of joint forecasts of y, 7, and r.

EKT found that the addition of symmetric loss alone can increase the rate at which
rationality is confirmed in forecasters. However, this finding often requires substantial
directional asymmetry in the forecasters’ loss functions. Accounting for the codepen-
dence of the forecasted variables may mitigate this problem. Recall that interpretation
of the asymmetry parameters (o, o™, ") depends on their values relative to the baseline

0.5. Values greater (less) than 0.5 indicate greater losses for negative (positive) forecast

I3Recall from the discussion above that for p = 1, the univariate and multivariate cases are equivalent.

Thus, results of both the rationality tests and the sets of asymmetry parameters are identical.
MDifferences in the rate of acceptance of rationality between the univariate and multivariate approaches

when varying p were minor.
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errors. Table 3 provides summary statistics for the cross-forecaster distributions of the es-
timated asymmetry parameters for different instrument sets. Figure 2 provides graphical
representations of these distributions for a subset of instruments.

The joint directionality in preferences appears pervasive across forecasters. More than
half of the forecasters exhibit higher loss when jointly overpredicting output, overpredict-
ing the short-term interest rate, and underpredicting inflation. These directional prefer-
ences are each associated with an unexpectedly worse economic outcome, i.e., lower-than-
expected output growth, looser-than-expected monetary policy, and higher-than-expected
inflation.

In addition, the asymmetry for each forecaster is typically preserved when the loss
is estimated jointly rather than independently. That is, if the asymmetry parameters
indicate that a forecaster has a preference for overpredicting GDP under independence,
joint estimation of her loss function does not tend to reverse this preference. For each
forecasted variable, only about 10 percent of the total number of forecasters experience
preference reversals, with the majority of these being statistically indistinguishable from
symmetric loss.

The salient result for multivariate rationality lies in the difference between the estimated
loss function parameters. We find that the degree of directional asymmetry is reduced
once independence is relaxed. Figure 3 plots the ratio of the absolute deviation from
symmetry (! = 0.5) for the multivariate case to the univariate case. With few exceptions,
the distribution of this ratio across forecasters lies below 1, indicating the decline in
the estimated asymmetry when accounting for the comovement of variables. Neglecting
the comovement of variables then leads the econometrician to assume more directional

asymmetry than may actually be warranted.

4.4. Pre- vs. post-1994 dependence structure. We have observed that accounting
for the comovement of variables may lead to a decline in the estimated asymmetric pref-
erences of forecasters. However, the main advantage of a multivariate approach may be
revealed by changes in the relationships between correlated variables. An example of such

a change occurred when the Federal Reserve began releasing statements describing policy
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actions in early 1994.'% This shift in policy has been thought to cause changes in the
behavior of forecasters, possibly increasing the information of private forecasters.'® Here,
we consider whether accounting for this innovation in Fed policy alters the rationality
results and/or directional preferences of forecasters. To accomplish this, we reestimate
the forecasters’ loss functions over the split sample periods up to and beginning in 1994.

Table 4 reports the asymmetry coefficients from the announcement subsample alongside
results for the pre-1994 sample and the full sample.!” Two results are readily apparent.
First, cross-period results suggest a change in forecaster behavior at the onset of the
announcement period. Prior to 1994, forecasters appeared to exhibit more sensitivity
to overshooting interest rates. During the same period, forecasters appeared virtually
symmetric to output forecast errors. On the other hand, during the announcement period,
forecasters receive signals from the Fed about future policy actions. This appears to shift
their preferences toward higher losses for overshooting output.

Comparing across frameworks, however, reveals that the multivariate approach assigns
less asymmetry to short-term interest rate errors than if the errors were assumed inde-
pendent. During the announcement period, the forecasting environment and, thus, the
relationship between these three variables changed substantially. The differences across
methodologies are depicted in Figure 4, which shows cross-sections of the iso-loss contours.
In the first panel, forecasters have symmetric preferences as to output and inflation but
have extreme directional preference for interest rate errors. The second panel shows the
change in the iso-loss contours as preferences become more symmetric for interest rates

but less symmetric for output.

15Poole, Rasche, and Thornton (2002) and Eijffinger, Geraats, and van der Cruijsen (2006) documented

this change in the Fed’s transparency, dubbed “the announcement period.”

16Swanson (2006) suggests an increase in forecasting accuracy of the private sector during the an-

nouncement period.
I"Reducing the sample size reduces the number of forecasters eligible for consideration. Prior to 1994,

34 forecasters had at least 100 valid observations. For the post-1994 sample period, 32 forecasters had
at least 100 valid observations. These sets of forecasters overlap but are not identical. In this section,
results for the full sample are for the same 32 forecasters with 100 valid observations in the announcement

period.
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If the forecaster’s preferences are assumed to be determined by the sum of independent
losses, the interaction between output, inflation, and interest rates is neglected. In this
case, the econometrician would account for biases in the short-term interest rate fore-
casts by assigning more asymmetric loss to these forecasts. However, accounting for the
comovements reduces the estimated asymmetry in forecaster losses, particularly for the
short-term interest rate. For the 32 forecasters in our sample, the reduction in asymmetry
for overshooting the short rate is up to 50 percent. The multivariate approach takes into
account the fact that overpredicting the short rate may often be associated with overpre-
dicting output and underpredicting inflation. Once this type of systematic covariation is
controlled for, forecaster losses may appear dramatically less asymmetric.

As a final test, Table 5 presents the results of tests against symmetry for various com-
binations of the forecaster’s preference parameters. The table shows the percentage of
forecasters for which the Wald test cannot reject the given null hypothesis. While many
of the columns indicate the differences across methodologies are small, we focus on the
restriction o = 0.5. Here, we can clearly see that accounting for covariation substantially

increases the number of forecasters for which interest rate symmetry cannot be rejected.

5. CONCLUSIONS AND IMPLICATIONS FOR RATIONALITY

The results of the preceding tests have important implications for the prospects of
rational expectations in macroeconomic models. In univariate tests, EK'T argue that ra-
tionality requires the econometrician to allow forecasters to have asymmetric loss across
directional errors for output and inflation. These conclusions are drawn from a model that
considers the forecasted series in isolation. Our multivariate tests indicate that asymmet-
ric loss for output and inflation may an aberration rather than the norm. These findings
show that symmetric rationality over output and inflation is the predominant finding once
the econometrician accounts for forecast errors in the short-term interest rates. In other
words, imposing zero correlation between the three variables leads to a misspecification

that biases the result toward asymmetry.
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From a macroeconomic point of view, the preceding argument amounts to the following
conclusion: agents account for monetary policy when establishing their forecasts for out-
put and inflation.’® Neglecting the correlations in the forecast errors for these variables is
akin to the assumption that output, inflation, and monetary policy are independent. Our
findings suggest that, in light of the forecasters’ expectation of future monetary policy,
their predictions for output and inflation appear rational with less directional asymmetry.
One final concern, however, is the rate at which directional asymmetry for short-term
interest rates is rejected even in the multivariate framework. A number of alternatives to
true directional asymmetry can be posited. For example, the loss function may still be
misspecified if key correlations are omitted. A second possibility is that the asymmetry
is produced by the process by which monetary policy is conducted, i.e., monetary policy

tightenings are more predictable than easings.'”

APPENDIX A. ASSUMPTIONS

Al. For all t = 1,2, ... the conditional distribution F(-) is continuously differentiable
and the corresponding conditional density f2(-) > 0 on R™.

A2. Forall t = 1,2,.. we have £}, ,, = argming,,, 3 £ [L, (po, To,ye+1 — fir1.)| Fil,
where L, (po, To,*) is the n-variate loss function with parameters py, 1 < py < 00, and
To € By, 1/po +1/q0 = 1, as defined in Equation (1).

A3. Given py € [1,+00), and for all t = 1,2,... we have E(||yt\|zl’°71}‘7-"t) < o0 a.8.-P

1
< o0 a.s.-P.

* pPo—
and ‘ ft+1,tH1

Ad4. The process {(e},,,x})'} is strictly stationary.
A4'. The process {(ef |, x;)'} is strictly stationary and a-mizing with mizing coefficient
a of size —r/(r —2), r > 2, and, given py € [1,+00), there exist some € > 0, Az > 0

such that E| eIHngO*l)(ZHe)] < Ajg < 0.

181 this, we treat the short-term interest rate as a proxy for the policy instrument.

We conducted a back-of-the-envelope test of this hypothesis by omitting from the estimation months
in which the FOMC made an intermeeting move. We found no significant differences in either the rates

of rationality rejections or the distributions of the asymmetry parameters.
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A5. Given py € [1,400), (i) Blflef |7 IIxell,] < oo; (i) rank Ef][ef, |2 (Id, ®
%) + (po — 1) [[efa]| " (vpo(€f11) @ X)) = .
A6. rank F[x;x}| = d.
A7, Foreveryt, R<t<T+R-1, and any € > 0, limp 7o Pr (Hét+1 — e;‘HHl > 8) =
0.
AT, (i) For some small ¢ in (0,1) R*2%/T — o0 as R — oo and T — oo; (ii) for any
6 > 0 we have: limp oo Pr (SUPgescrin Hét+1 — eZ‘HH1 > 5) =0.
A8. The process {(&,,x;)'} is strictly stationary and o-mizing with mizing coefficient
« of size —r/(r—2), r > 2, and, given py € [1,400), there exist some € >0, A; > 0 and
Ay > 0 such that E[||&,1]|° V) < A < 0o and E[||x]7") < Ay < 0.
A9. Given py € [1,+00), we have E (SUpce(o,l) |81 + (1 — C)e;tk+1|ﬁ0_2> < oo and
E (Jxelly supeeqoy [[edes + (1 = dJefa[[1*™") < oc.

A10. The marginal densities fo(-) are such that maxi<;<, fo(y) < M for any y € R.

APPENDIX B. PROOFS

Proof of Proposition 1. Fix p, 1 < p < oo, T € By (1/p+1/q = 1), and consider the n-
variate loss function L (p,T,-) : R* — R as in Definition 1. That L (p, T, ") is continuous
on R" follows by the continuity of the p-norm e — |le[|, and the Euclidean inner product
e — 7'e on R". We now establish that L (p, T,e) > 0 for every e € R" with equality if and
only if e = 0. By Holder’s inequality, we have |7'e| < |7, [le], < [[e[|,, where the second
inequality uses the fact that 7 € B} so that ||7]|, < 1. Hence, |le[, + 7'e > 0 for every
e € R". This implies that L (p, T,e) = (Her —I—T’e) ||eH£71 > 0 for every e € R" with
equality if and only if ||e|\§_1 = 0, which holds if and only if e = 0. Since x — z? (p > 1)
is a strictly increasing function on R, we moreover have lim”er_)oo L(p,7,e) = oco. This
establishes (i) and (ii) of Proposition 1. We now show (iii) that L, (p,T,-) is a convex

function on R™: i.e., that

Ln (p7Ta (1 - )‘)el + )\92) < (1 - )‘)Ln (pu T7e1) + )‘Ln (p7Ta e2) 3 0<A< ]-7
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for every (e;,e;) € R*™ (see, e.g., Theorem 4.1 in Rockafellar (1970)). We have
L, (p,7,(1 —Xes + Aes)
= [0 = Ner + Aesll, + 7' (1= Ner + Aea)] (1 = Ner + reall !
<=0 (leill, + 1) + A (lleall, +7'e2) | 111 = Ner +deaf5™, (6)

where the last inequality uses the convexity of e — |[[e||, when p > 1 and the linearity
of e — 7'e on R". We now show that ||(1 — \)e; + )\e2||£_1 < ||e1||£_1 + ||e2||§_1. First

consider the case 1 < p < 2: we have
- p—1
10 =Ner+dexlp™ < (1= flewll, + Az,

(=X Jleall, ] + [Aeall

< leally™ + lleallp™ (7)

p—1

N

where the first inequality uses triangular inequality, the second follows from Theorem 19
in Hardy, Littlewood, and Pdlya (1952) applied with » = p — 1 and s = 1, and the last
inequality uses 0 < A < 1.2 When p > 2, we have

- p—1
10 =Ner+Aealz™ < [(1= N llewll, + ez,
< =N ledl + A flealfy
< el + lesf2™ (8)

where the first inequality again uses triangular inequality, the second uses the convexity
of x — x” (p > 1) on R, and the third inequality follows from 0 < A < 1. Combining
the inequalities (6) — (8) then yields

L, (p,7,(1—XNe; + \es)

<[ = (lleill, +7'er) + A (lleall, +7e2) | [lealz™ + fleall™]
< (1= (lletll, + e ) leal5™ + A (lleall, + ™'ez) llealls™
=(1—=MNL,(p,T,e1) + AL, (p,T,€2),

20Theorem 19 in Hardy, Littlewood, and Pélya (1952) shows that, for every (a;,as) € R and 0 <

r < s, we have (a5 + a3)'/* < (af + ab)'/".
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where the second inequality uses the non-negativity of [lei[|, + 7'e; and [esf|, + 7'e;
(established in item (i) of the Proposition). This shows (iii) and thus completes the proof
of Proposition 1. O

Proof of Proposition 2. Fix py, 1 < py < oo, and 79 € B!, where 1/py + 1/q0 = 1.

qo0°?

Differentiating the loss L (po, 7o, -) in Equation (1), we have

_ vV, (e
VeL (pg,"l'o,@) - pOVpo(e) +To He”go) ! + (pO - ]')T,e H];)”( )a (9)
Po

for all e € R". Note that in the univariate case n = 1, the expression in Equation (9)
reduces to V.L (py, To,€) = [To + sgn(e)]|e/P°~! (see Equation (8) in Elliott, Komunjer,
and Timmermann (2005), p. 1121). By triangular inequality and norm equivalence,
V6L (o, Tor )l < pollel2=t + el + (po — Vel el / el < Ca lell?"™,
with C; < oo when e # 0 and ||VeL (po, 7o, 0)||; < C2 < 0o. By assumption A3, we have
E(|ly][”"|F) < oo a.s.-P and | ft*H’leo_l < 00 a.s.-P, which together with the fact that
||ef+1H11)0_1 <Gy <||yt||]1’°_1 + Hftﬁr171HTO_l) a.s.-P then ensure E[VeL (po, To, €},,) |F] <

oo a.s.-P. This last condition combined with the convexity of L (pg, 7o, ), which implies

that L (po, To,-) is locally Lipschitz, allows us to interchange the order of differentia-
tion and expectation to get VeE [L (po, To,€}41) [Fi] = E[VeL (po, To,€}.,) |F]. This,
combined with the gradient expression in Equation (9) and with the convexity of the loss
L (po, To, ), shows that the first-order condition in Equation (2) is necessary and sufficient

for A2 to hold. O

Proof of Lemma 3. Given that S (and hence S™') is positive definite, then for any 7 € B}
we have Q(7) > 0 with equality if and only if £[g(po, T; €1, %¢)] = 0. Now, the optimality

condition derived in Proposition 2 implies that E[g(po, To;€},1,%:)] = 0. Hence, T is a

mn

o We can write

minimum of Q(7) on B, . Given py € [1,+00) and for any 7 € B

g(po, 5 €741, X1)

=m0 (etn) ® %) + ([[efal2 7 (du @ x) + (o = 1) [[efal],) (v (€f10) @ x)eff ) 7

= a(po, e:+1a x¢) + B(po, e:—&-l? X¢)T, (10)
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where Id,, denotes an n X n identity matrix, and we define the nd x 1 vector

a(po, €41 X;) = pO(Vpo(eZJrl) ® Xy) (11)

and the nd X n matrix

B(p07et+17xt) = ‘ et+1l|§z (Id, ® x;) + (po — 1) Het+1Hp0 (Vpo<et+1) ® Xt)etjrl (12)

A necessary condition for Q(7) to be minimized at T is that the latter solves the first-
order condition: V.Q(1¢) = 0, ie., V-E[g(po, To; €51, %t)|S T E[g(po, To; €)1, %) =
0. We first show that V,E[g(po, To;€f 1, %:)] = E[V:8(po, To;€f1,%:)], where V.g
denotes the n x nd-matrix of partial derivatives [0g;/07;,1 <i <n,1 < j <nd]. Using

the equality in 10, given py € [1,4+00) and for any T € B, we have

Vrg(po, Tiei %) = Bpo,ej,x:)
= et " @da @ x) + (b0 = 1) lefa ], €1 (Vo (€f10) @)

po—1

Po 1 *
t+1 Po—

Po

Note that SUPr¢(—1,1)n HVTg(pO, T et+1,Xt)||1 < ‘

[¢el+(po—1) el |

and by assumption A5(i) the expected value of the latter is finite; hence, we can ap-

*
€11 ‘

ply Lebesgue’s dominated convergence theorem to show that V.E[g(po, To;€;,1,%Xt)] =

E[V-g(po, To; ef,1,%:)]. The first-order condition can then be written as

0 = E[V.g(po, o€ 1,%:)]S ' Elg(po, To; €11, Xt)]

= E[B(po. €11, %:)]'S"{ Ela(po, €f41,%:)] + E[B(po, €11, %:)|To}

S0
—E[B(po, ef,1,%)]'S™ Ela(po, €},1.%:)] = E[B(po, 7,1, %)|'S™ E[B(po, €},1. %:)] To.
(13)
Now note that the n x n matrix H = E[B(py,e€},1,%)]'S T EB(po, €}, 1, %t)]

is positive semidefinite. In addition, for any ¢ € R", we have {H¢ =
E[B(po, €} 1,%:)'S T E[B(po, €1, %:)€]; and, since S™! is positive definite, {HE = 0
only if E[B(po, €}, ,,%x:)¢] = 0. The latter implies { = 0, since the rank of the n x n
matrix E[B(po, €}, 1, %) E[B(po, €, 1,%:)] is the same as that of E[B(po, e, %;)], which
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under assumption A5(ii) equals n. So H is positive definite, and Q(7) is strictly concave

and minimized at the unique solution to the equation 13 given by

To — (14)

—{EB(po, €741, %:)'S T E[B(po, e; 11, %:)]} " E[B(po, €41, %:)]'S T Ela(po, €f,1, %))
]

Proof of Lemma 4. Given py € [l,4+00) and for any 7 € Bp, let S(r) =

E [g(po,T;e;;rl,xt)g(po,T;e;*+1,xt)’]. For any xy € R™, v = (x},...,x.)" (with x;, € R%
1 <i<n)wehave X'S(T)x = E [(X’g(po, T €1, %)) (X'g(po, T ez‘ﬂ,xt))’}, where

X'8(po, T; €51, Xt)

=X <p0’/po(et+1) + 7 [|efy] iz +(po = 1)7'ef ”et+1Hp0 Vpo (et—l—l)) ® Xy

* po—1 ! _* * -1 *
et+1||p0 + (po — 1)7'ef;, Het+1Hpo Vpo(et+1))

= (%) (povp(€1) + 7|

= (T/Xt)/ VeLn(p07 T, e;‘/k+1)7

where T is an d X n matrix with columns y,, 1 < i < n. Note that
(X'g(po, T3 €f41,%1)) (X/g(po,r;e,’fﬂ,xt))l > 0 a.s. so S(7) is positive semidefinite. In
addition x'S(7)x = 0 only if (X'g(po, T;€}.1,%¢)) (X’g(pO,T;ez‘H,xt))/ = 0 a.s. which
is equivalent to (Y'x;)' VeLy(po, T, €f1)VeLn(po, T,€f,1) (T'x;) = 0 a.s. Now, given
that the n-variate loss is strictly convex and such that L,(pg,7,0) = 0, we have that
VeLn(po, 7,€}1)VeLn(po, T,€}1) > 0 with equality only if VeL,(po, T,€}.1) = 0,
ie., only if e/ ; = 0. Since by assumption Al y; is continuously distributed, we
have that Pr(ef,; = 0|F;) = 0 so VeLy,(po, T,€;1)Veln(po, T,€f; 1) > 0 as.. Then,
(Y'%;) VeLn(po, T €f1)VeLn(po, Toefq) (T'x;) = 0 a.s. implies Y'x; = 0 a.s., which
in turn implies Y'E(x;x;) = 0. If E(x;x}) is of full rank as assumed in A6, then it is
invertible and Y'F(x;x}) = 0 only holds if T = 0, i.e., x = 0. Hence, S(7) is positive
definite. O
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A

Proof of Theorem 5. From equation (4) we have 77 = —[B,S™'By] 'B,-S'a, with the

nd x 1 vector

T+R—1
ap =T Z Po(Vpo (8141) @ x¢) (15)
t=R
and the nd X n matrix
T+R—1
> Je o | po—1 ~ -1 ~ A/
Br=T" Y [éw]27 (Idy ®x;) + (po — 1) [8r51ll,,, (Vpo(8151) @ x4)8],.  (16)
t=R

To show #r = T, it is sufficient to show that (i) &7 — Ela(po,ef,;,%;)] — 0 and
(1) Br — E[B(po, ef;1,%¢)] 2,°0. Then, by using Lemma 3, the consistency of S,
S & S, the positive definiteness of S (and thus of S7') established in Lemma 4, and
the continuity of the inverse function (away from zero), we have that ¥ L. 7o. By the
triangle inequality we have ||ar — Ela(po, €.y, x1)]||, < [ar — Ela(po, &1, %0)]||; +

and  [Br — BB, ety %)

||E{a(p07 ét-‘rh Xt)] - E[a(p()a e;‘,k+17 Xt)] <

HBT — E[B(po, &11,%)] H+||E[B<P0; &+1,%t)] — E[B(po, SHITD Xy)] ||, where by norm of the

nd x n matrix B we mean the following: ||B|| = max|b;; We first show that

|1§i§nd,l§j§n'

2, 0 by using a

as T — oo, ”éT - E[a(po,ét+1,xt)]H1 = 0 and HBT - E[B(pOa ét+1>xt)]
law of large numbers (LLN) for a-mixing sequences [e.g., Corollary 3.48 in White (2001)].
From Theorems 3.35 and 3.49 in White (2001) measurable functions of strictly stationary

and mixing processes are strictly stationary and mixing of the same size. Hence, by A8 we

have {po (¥, (&1)@x.)} and {[[&1 7" (Tda @) +(Po—1) [8eall,, (Vpo (8re1) @%:)8) 1}
strictly stationary and a-mixing of size —r/(r — 2) with r > 2. Now let § = ¢/2 > 0; we

have

Efl (v (&r41) © %) 7] (17)

< nE[l&l| V0 x| 7]

/2
7+25) r+26
< 0 { Bl |09 B 2]}

< n{A1A2}1/2 < 00,

where the second inequality follows by Cauchy-Schwartz inequality and the third

uses assumption AS. Hence, ar in equation (15) satisfies the LLN and
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lar — Ela(po, &1, %1)]|, = 0 as T — oc. Similarly, we have

&l ™" )| (Id, © %)) (18)

< Bl Il
< om0 Lo 2049 B

< C{A1A2}1/2 < 00,

where the second inequality uses the norm equivalence, i.e., there exists some (¢, d) > 0
such that d|[&.1][, < [|&1ll,, < c[|&1];, and Cauchy-Schwartz inequality. The third

inequality uses assumption A8. In addition,

T+6

E|[&, | (Vpo (8111) ® x0)&) 4| (19)

s

A () 5 5
< E[Het+1||p0r+ (¥ (81) @ %) [T 803 [11F]

< (1/d) P E)|(p (8111) ® %) 7] < o0,

where the second inequality uses again the norm equivalence and the third fol-
lows from equation (17). Combining equations (18) — (19) with triangular in-
equality and the fact that, for any (a,b) € R, there exists some n,,s >
0 such that |a + "™ < mn,sfjal’™® + [b]"™%], shows that By in equation
(16) satisfies the LLN and so HBT—E[B(pO,étH,Xt)]H L0 as T — oo
Next we need to show that HE[a(po,étH,xt)]—E[a(pg,ez‘ﬂ,xt)]Hl — 0 and

|E[B(po, &1, %:)] — EB(po, €],1,%:)]|| — 0 as T — co. We have

HE[a(pm &111,%¢) — a(po, e:Jrl; X)) ||1
S E[”a(va ét+17xt) - a(vae:erXt)Hl]

= pOE{H[VPo ét+1) - Vpo(e;rl)] ® XtHl}

}Pol

S po?’LEH‘étJrl et+1‘ ||XtH1]

2= )

< porn{ E[||&r1 — €4 [ [xi|[3]}* — 0 as t — oo,
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where the last statement follows by assumptions A7 and A8. Similarly,

||E{B<p07 ét+17 Xt) - B(po, e:+l, Xt)] H

< E[HB<I707 €rr1,%¢) — Blpo, €74, Xt)H]

el [ )(Id, @ x,)

~ -1
= B [||teesle - |

|

N —1 N N * -1 * *
+(Po = D81l (Vpo(811) @ x)&1 41 — [lefa |, (Vpo(efir) @ x0)ef]

<FE Hét+1H§§’l - |

" -1
il Il
+ (o = DE el | (Brin) ©x0) (&1 — it
+ (o = DE (81l {100 (€10) = ()] @ e

+ (o= DB | (&l |

eZ+1H;01> H(Vpo<e:+1) ® Xt)e;fﬁrlH} —0ast— oo.

Hence, as R — oo we have ||E[a(p0,ét+1,xt)—a(po,ez‘ﬂ,xt)]Hl — 0 and

| E[B(po, &1, x:) — B(po, €41, %:)]|| — 0, so 7 L 1o as (R, T) — 0. O

Proof of Theorem 6. To show that T'/?(#¢ — T¢) is asymptotically normal, note that we

have

A~ A A A A

VT(#p —79) = —[B.S™'By] 'BL.S VT (ar + Brro)] (20)

A A

= —[BLS'B; ] 'BLS T VT + VT + VT (ihy — th — 1)),

where we have let 1h = Fla(po, &11,%:)] + F[B(po, €11, X¢)] 70, and

T+R-1 T+R-1
~ _ m-1 LA A > A% _ —1 Lk
mr = T E g<p077-0aet+17xt) - aT+BTTO7 and my = T E g<p077-07et+17xt)-
t=R t=R

(21)
The idea then is to show that the terms v/ T and /T (1 — i — ) on the right-hand
side of equation (20) are 0,(1). We start by showing that the first term is o(1). Let m* =
Ela(po,e;,1,%x¢)] + EB(po, €}, 1,%:)|To. First, we show that VeE[g(po, To; €1,%:)] =

E[Veg(po, To; €141, %)) for every €41 = &1+ (1 —c)ej,; with ¢ € (0,1). Differentiating
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VeL (po, To, -) in Equation (9) we get

AceL (po, To,€) = 2poVp,(€) + po(po — 1) Wy, (e) (22)
TV, (e ! v, (e (e
+(p0 1) 9 0 Po( )+ Top€ (pO_l)Wpo(e)_LppoO() ,
lell,, el lellz,
/
where we have used the fact that for any 1 < py < oo, ﬁVpo(e) = 0 for all e €
po

R™. Note that in the univariate case n = 1, the Hessian in Equation (22) reduces to
AceL (po, To,€) = 2{pod(e)|e[r°™* + po(po — 1)[1 + Tosgn(e)]|e[*~2} [see Equation (9) in
Elliott, Komunjer, and Timmermann (2005), p.1121]. Hence

||AeeL (pO: To, ét-&—l)”
< 200 || Vo (8441) || + Polpo — 1)ez [|8ra ][0
+ (po — 1) [2d3 |81 ][5 + (po — L)es |8 |72 + 3 [ [0 7]

= 20 || Vo (81) | +2(po — 1) (pocs + da) [[&e |7, (23)

where we have used the norm equivalences: ¢ [[€41]]; < ||€41]] o2 <02 €411, for
some (c1,¢3) > 0 and ¢35 = c§°‘1 if po > 2 and = c%_p ° otherwise and, similarly,
di [[841ll; < l€4all,, < dal|€41]; for some (di,ds) > 0 and d3 = a1 if py > 2 and
— d>7" otherwise. Under A9, we have that Elsup, (o) |81 + (1 — c)e;‘+1||lj0_2] < 00.
Moreover, under A10, when py = 1 we have E[||V1(€:11)]|] < M and when py > 1 we have
E[||Vi(€1)]]] = 0, so the right-hand side of equation (23) is bounded above by a quan-
tity that is integrable; hence, we can apply Lebesgue’s dominated convergence theorem

to interchange the derivation and integration in

VeE[g(pm T0; €141, Xt)] = VeE[veL (po, To, ét+1) & Xt]
= E[AceL (po, To, 8111) @ X¢] = E[Veg(Po, To; 841, X))
Second, we can use a mean value expansion around ej,; that yields 0 = VTm* =

VTt — E[T-! ZtT:é%_l Ve&(Po, To; 811, %) VT (811 — €f,,)], where for every t, R <
t < T+ R-—1, we have &1 = &1 + (1 — ¢)ej,; with ¢ € (0,1). We now show that
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T-1/2 tT:Jré%fl Veg(Po, To; €41, X1) (8141 — €}11) 2, 0as R— oo and T — o0o: we have
—1/2 T+R-1 — 1A
HT / t=R Veg(p077-0;et+laxt) (et+1 _e:+1)“1

B HT_1/2 Sn PV eg(po, T0s Brgr, x0) T (841 — €] 44)

< s [P @ — e )] TR Ve (P, Toi B x| ¢

Moreover, ||Veg(po, To; €41, Xt)|| < ||[Aeel (po, To, €41)| - [|1%¢]|; so that under A9

E ( sup, |Veg(po, To; 8111 + (1 — C)efﬂ,xt)H)
cc

~ . -2
S 2(p0 — 1) (png =+ dg) E (HXI‘/Hl S}lp) HCet+1 + (1 — C)etJrngljo ) < Q.
ce(0,1
Now, for any given v > 0, by Chebyshev’s inequality we have

Pr <T71/2 215_1 ||Veg(]9077'0; ét+1,xt)|| e s V)

_ ~ * -2 _ —1,_
<p (thnl o s + 1 e >T e T e
ce(0,1

, T o\ 2
<v'E <||Xt||1 sup ||Cét+1 +(1- C)e:+1||11)0 ) <R1—25> —0
c€(0,1)

as R — oo and T" — oo, where the last limit results uses assumptions A9 and A7'(i).
Hence v/Tth — 0 as R — oo and T — oc. The term /T (fhy — rh — 1i) on the right-
hand side of equation (20) is 0,(1) provided that g satisfies a certain Lipshitz condition
(given below) and we have, for any ¢ > 0, Pr (SupRgthJrR,l ||ét+1 — e;"JrlHl > 6) — 0 as

R — oo. This follows because for any 1 > 0 and dz > 0 we have

lim Pr<\/_|\mT—m mTH1>77>

R, T—o0

< lim Pr (\/_HmT —m—mp, >n  sup ||ég — e;fHHl < 53)
RT—00 R<t<T+R—1

+ lim Pr ( sup ||ét+1 — e’t"HHl > (5R>
R,T—o0 R<t<T+R—1

Pr (ﬁ [y — i — iy, > 7, sup  [|&41 —efyy], < 63) ,
R<t<T+R-1
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where the last inequality uses A7'(ii). Now, let 77(35) = sup{ru1(&m1) : ||&1 — €f4q H1 <

dr, R<t<T+ R— 1}, where we let

Te1(€41) (24)

— Hg<p07 To; ét+17 Xt) - g(p07 To; e:+17 Xt) - [AeeL (p(Ja To, e;;_l) X Xt] (étJrl - e?""l)Hl

A *
|61 — el

Y

where AeeL (po, To,€j,1) is as defined in equation (22). Then, by the definition of

Tt+1 (ét—|—1>:

VT ||ty — i — iy,

— E{[AceL (po, T0,€111) @ x4] (8111 — €}11) 11 )

1 T+R—1
T > (@) |ee — el ||, + B (resa (@) [[8140 — ef+1”1)}

t=R
1 T+R-1
S \/T {T Z H[AeeL (pOaT07e:+1) X Xt] - E{[AeeL (p07T0>e:+1) X Xt]}Hl :
t=R

sup &1 —efs ||, + [rr(0r) + E(rr(dr))]  sup - [|&n — eé‘ﬂlll} :
R<t<T+R—1 R<t<T+R-1

Using standard arguments for stochastic equicontinuity such as those given in Andrews
(1994), we can show that r441(&41) — 0 as Pr(|[&41 — e;;rl”l >¢) — 0 for any € > 0, so
that 77 (dr) — 0 with probability 1, which by the dominated convergence theorem ensures
E(rr(6g)) — 0 as 6 — 0. Next, we show that the sample mean of {AeeL (po, 7o, €}41) ®
x;} converges in probability to its expected value. By assumption A4’ we know that
{AceL (po, To, €)1 ) ®%¢} is strictly stationary and a-mixing with a of size —r/(r—2) with

r > 2 [see Theorems 3.35 and 3.49 in White (2001)]. Moreover, for 6 = min{e/2,¢/2} >0
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in assumptions A4’ and A8, we have

E[||AceL (po, 7o €511) @ x| "]

< {B[[|AceL (po. 7o, €100 ) || Bl |23
T+€ 1/2 e 1/2
< (maX{E[HAeeL (po; To, €511) H2 ™, 1}) (ma,x{E[thHi ), 1}) < 00,

since from equation (23) we know

HAeeL (p0> To, eZ+1) H2T+€

7€ * 2r+-e e —2)(2r+e
< ne{ 2] HVP0<et+1)H ’ +[2(po — 1) (pocs + ds)]*"* ‘ (Po—2)( Jr)}7

*
€1 Hl

where again n, is such that for any (a,b) > 0 we have (a + b)**¢ < n,(a®¢ + b*+°);
and A10 and A4' imply that E[||Vi(ef, )" < M, E[||[Vu(ery)|”] = 0 and

E[||e; +1‘}5112()_2)(27HL6)] < 00. Using the weak LLN for a-mixing sequences [e.g., Corollary

3.48 in White (2001)] then gives

T+R-1

71 Z AeeL (po, To, e:+1) K Xy 2 E[AeeL (p07 To, e:Jrl) ® Xt]
t=R

as T' — oco. Then, by using the Markov inequality

lim Pr <\/T||1rhT—1ril—1rhT||1 >,  sup Hétﬂ—efﬂﬂl §5R) =0
T—o0 R<t<T+R-1

and the term /T (thy —1h —1i%) on the right-hand side of equation (20) is 0,(1) as R — oo
and 7" — oo. Finally, we use the central limit theorem (CLT) for strictly stationary and
a-mixing sequences [e.g., Theorem 5.20 in White (2001)] to show that v/7Tri- LN (0,8).
Using Theorems 3.35 and 3.49 in White (2001), which together show that time-invariant
measurable functions of strictly stationary and mixing sequences are strictly stationary
and mixing of the same size, we know by A4/ that {g(po, To; €f,, %)} is strictly stationary
and a-mixing with mixing coefficient of size —r/(r — 2), 7 > 2. In the proof of Theorem
5 we have moreover shown that E[||g(po, To; €},1, xt)HTre] < 00. The CLT [e.g., Theorem

5.20 in White (2001)] then ensures

VT %5 N(0,8). (25)
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The remainder of the asymptotic normality proof is similar to the standard case: the
positive definiteness of 71, S % S and By % B* = E[B(po, e},,,%)] as R — oo and
T — oo (B was defined in equation (12)) together with A5(ii) ensure that (B¥S~'1B*)~!
exists, so by using vVT'(#7 —1¢) = —[B,S™'By] 'B,S~![\/T1ivi. +0,(1)], the limit result
in (25) and the Slutsky theorem we have vT'(#7 — 79) % N(0, (B*S~!B*)~!), which

completes the proof of asymptotic normality. O
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0.5 0.5 0.5
Info = AQ = = %
set9 g 0.25 . -48- o g 0.25 g 0.25 @-::
SR . . 0
0B 0 0 .
0 0.25 0.5 0 0 0.25 0.5
uni uni
. Rationality not rejected under J-test @] Rationality rejected under J-test — 45 degree line

FIGURE 3. Proximity to Symmetry
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Table 1: Information Sets for Regressions

Info Set C GDP/GNP CPI UR SR F Err
1 1 n/a n/a n/a n/a 1
2 1 1 n/a n/a n/a n/a
3 1 n/a 1 n/a n/a n/a
4 1 n/a n/a n/a 1 n/a
5 1 1 1 n/a n/a n/a
6 1 n/a 1 n/a 1 n/a
7 1 1 n/a n/a 1 n/a
8 1 n/a n/a n/a 3 n/a
9 1 1 1 n/a 1 n/a

10 1 1 1 n/a 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 n/a
13 1 1 3 n/a n/a n/a
14 1 1 3 n/a n/a 1
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Table 5

Pre-1994 (P = 2)

Info Set Univariate Multivariate

al=a2=05 al=05 a2=05 a3=05| al=a2=05 al=05 a2=05 a3=05
1 0.2353 0.5588  0.2647 0 0.2647 0.5588  0.2941 0
2 0.3235 0.4706  0.3529 0 0.2647 0.5294  0.2647 0
3 0.1176 0.5294  0.1176 0 0.0882 0.5882  0.1176 0
4 0.2647 0.5882  0.4706  0.0294 0.2647 0.6471 03529  0.0294
5 0.0588 0.5 0.0882 0 0.0588 0.6471  0.0588 0
6 0.0588 0.5882  0.0588  0.0294 0.0294 0.6471  0.0588 0
7 0.2353 0.3529  0.4412 0 0.2059 0.5 0.3824 0
8 0.2059 0.4118 0.4118  0.0294 0.1765 0.5882 0.3235  0.0294
9 0.0588 0.4118 0.1176 0 0.0588 0.5294  0.1471 0
10 0.0294 0.2647  0.0588 0 0.0294 0.4412  0.0882 0
11 0 0.3235 0.0294 0 0.0294 0.2941 0.0882  0.0294
12 0 0.4412 0 0 0 0.4118  0.0588 0
13 0.0294 0.5294  0.0588 0 0.0588 0.5882  0.0882 0
14 0.0294 0.4118 0.0588 0 0.0588 0.4706  0.0882 0

Post-1994 (P = 2)
Info Set Univariate Multivariate

al=a2=05 al=05 a2=05 a3=05| al=a2=05 al=05 a2=05 a3=05
1 0.125 0.1562 0.6562  0.3438 0.0938 0.1562 0.625 0.3438
2 0.1562 0.4062 0.5 0.5625 0.1875 0.3438 0.5 0.5
3 0.0938 0.2188 0.5312  0.1875 0.0312 0.0625 0.5312  0.2188
4 0.1562 0.3438  0.4062 0.125 0.0938 0.3125 0.375 0.4062
5 0.0625 0.25 0.375 0.1875 0.0312 0.0625 0.3125 0.1875
6 0.0312 0.2812 0.125 0.125 0.0625 0.1875 0.4375 0.1875
7 0.0938 0.2812 0.2812  0.2188 0 0.25 0.25 0.5625
8 0.0312 0.2812 0.1875  0.1875 0 0.1562  0.1562 0.5
9 0.0312 0.25 0.125 0.125 0.0312 0.1562 0.375 0.2188
10 0 0.0625 0.0938  0.0625 0 0.125 0.3125 0.2812
11 0 0.0625 0.0312 0 0 0 0.0938  0.0625
12 0 0.125 0 0 0 0.0312 0.0312 0.1875
13 0.0312 0.0625 0.375 0.125 0.0312 0.0312 0.2812 0.125
14 0 0.0625 0.3125 0.2188 0 0 0.3125 0.125
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