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Abstract

New asymptotic approximations are established for the Wald and t statistics in the
presence of unknown but strong autocorrelation. The asymptotic theory extends the
usual �xed-smoothing asymptotics under weak dependence to allow for near unit root
and weak unit root processes. As the locality parameter that characterizes the neighbor-
hood of the autoregressive root increases from zero to in�nity, the new �xed-smoothing
asymptotic distribution changes smoothly from the unit-root �xed-smoothing asymp-
totics to the usual �xed-smoothing asymptotics under weak dependence. Simulations
show that the new approximation is more accurate than the usual �xed-smoothing
approximation.
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1 Introduction

In order to robustify statistical inferences to heteroskedasticity and autocorrelation, it

is now a standard practice to make use of heteroskedasticity and autocorrelation robust

(HAR) standard errors in time series analysis. The last decade of research on this topic has

been largely focused on more accurate approximations to the test statistics constructed on

the basis of HAR standard errors and variances. There are now two types of asymptotic

approximations: the conventional increasing-smoothing asymptotic approximation and the

relatively new �xed-smoothing asymptotic approximation. For kernel HAR inference, the

�xed-smoothing asymptotics is the so-called �xed-b asymptotics of Kiefer, Vogelsang and

Bunzel (2000, KVB hereafter) and Kiefer and Vogelsang (2002a, 2002b, 2005, KV here-

after). For series HAR inference, the �xed-smoothing asymptotics is the so-called �xed-K

asymptotics of Sun (2011, 2013a). While the �xed-smoothing asymptotic approximation

is more accurate than the conventional increasing-smoothing asymptotics approximation,

i.e. the chi-square approximation (Jansson, 2004; Sun, Phillips and Jin, 2008), the quality

of the �xed-smoothing approximation is not completely satisfactory when the underlying

time series has strong autocorrelation. To confront with this problem, the paper develops

a new �xed-smoothing asymptotics that accommodates strong autocorrelation.

We start by considering a multivariate time series whose mean value is the parameter

of interest. Each component of the time series follows an autoregressive process with the

autoregressive parameter � changing with the sample size T:More speci�cally, � = 1�cm=T
for some positive sequence cm: Depending on the limiting thought experiments employed,

cm may be held �xed as the sample size T ! 1 or grow with the sample size. The

former case is the conventional local-to-unit-root speci�cation and the latter case speci�es

a moderate deviation from the unit root. Park (2003) refers to these two cases as �near unit

root� and �weak unit root,� respectively. For more discussions, see Giraitis and Phillips

(2006), Phillips and Magdalinos (2007), and Phillips, Magdalinos and Giraitis (2010).

We establish the �xed-smoothing asymptotics for the Wald and t statistics when cm

is held �xed. This leads to our pivotal near-unit-root �xed-smoothing asymptotics. As

cm ! 1; we show that the near-unit-root �xed-smoothing asymptotics converges to the
�xed-smoothing asymptotics under weak dependence. Depending on the value of cm; the

near-unit-root �xed-smoothing asymptotics thus provides a smooth transition from the

usual stationary �xed-smoothing asymptotics to the unit-root �xed-smoothing asymptotics.

The near-unit-root �xed-smoothing asymptotic distribution is nonstandard but can be

simulated. The critical values from this distribution are larger than the corresponding ones

from the usual �xed-smoothing asymptotic distribution, which in turn are larger than those
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from the conventional chi-square distribution. A direct implication is that statistical infer-

ence based on the chi-square approximation and stationary �xed-smoothing approximation

may lead to the �nding of statistical signi�cance that does not actually exist.

In the case of series variance estimation, we can judiciously design a set of basis functions

such that the near-unit-root �xed-smoothing asymptotic distribution becomes a standard

F or t distribution. The designing process involves projection and orthogonalization. The

F and t approximations are very handy in empirical applications, as the F and t criti-

cal values are readily available from statistical programs and software packages. There is

no need to simulate nonstandard critical values. The possibility of deriving a standard ap-

proximation under the �xed-smoothing asymptotics is an advantage of using series variance

estimators. For this type of estimators, we have the complete freedom in choosing the basis

functions. This is in contrast with the kernel variance estimators where the basis functions

are implicitly given and cannot be changed.

Monte Carlo simulations show that the chi-square tests have the largest size distortion,

the tests based on the near-unit-root �xed-smoothing asymptotics have the smallest size

distortion, and the tests based on the usual �xed-smoothing asymptotics are in the middle.

The near-unit-root �xed-smoothing tests, which include tests based on F and t approxima-

tion, achieves triple robustness in the following sense: it is asymptotically valid regardless

of whether autocorrelation is present or not; whether the autocorrelation is strong or not

and whether the level of smoothing is held �xed or is allowed to increase with the sample

size.

The rest of the paper is organized as follows. Section 2 describes the basic setting

and the problem at hand. Section 3 develops the �xed-smoothing asymptotics in the

presence of near-unit roots. This section also establishes the behavior of the near-unit-

root �xed-smoothing asymptotic distribution as cm ! 1. Section 4 presents the F and t
approximations based on a set of judiciously designed basis functions. Section 5 discusses

the applicability of our �xed-smoothing approximation for location models to more general

models. The subsequent section reports simulation evidence, and the last section provides

some concluding discussions. Proofs of the main results are given in the Appendix.

2 The Basic Setting and the Problem

Assume that p-dimensional time series yt follows the process:

yt = � + et; t = 1; 2; : : :; T (1)
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where yt = (y1t; : : : ; ypt)
0, � = (�1; : : : ; �p)

0, and et = (e1t; : : : ; ept)
0 is a zero mean process.

The location model, as simple as it is, is empirically relevant in a number of situations. For

example, the data might consist of a multivariate time series of forecasting loss that are

produced by di¤erent forecasting methods. We can test equal predictive accuracy of these

forecasting methods by examining whether the loss di¤erential series has mean zero. There

is also a large and active literature on inference for the mean of simulated time series. See

for example Alexopoulos (2006, 2007) and references therein. More importantly, our points

can be made more clearly in the simple location model.

We are interested in testing the null H0 : � = �0 against the alternative H1 : � 6= �0: The
OLS estimator of � is the average of fytg ; i.e., �̂ = �y := T�1

PT
t=1 yt: The F test version of

the Wald statistic based on the OLS estimator is then given by

FT = DT

�
�̂ � �0

�0

̂�1DT

�
�̂ � �0

�
=p = D2T

�
�̂ � �0

�0

̂�1

�
�̂ � �0

�
=p

where DT is a real-valued scaling factor that characterizes the rate of convergence of �̂ to

�0; and 
̂ is an estimator of the asymptotic variance of DT (�̂� �0): Usually DT =
p
T but

the exact magnitude of DT is not important in practice, as it will be canceled out. When

p = 1; we can construct the t-statistic as follows:

tT =
DT

�
�̂ � �0

�
p

̂

:

Many nonparametric estimators of the asymptotic variance matrix are available in the

literature. In this paper, we consider a class of quadratic variance estimators, which includes

the conventional kernel variance estimators of Andrews (1991), Newey and West (1987),

Politis (2011), and the series variance estimators of Phillips (2005), Müller (2007), and Sun

(2006, 2011, 2013a) as special cases. The quadratic variance estimators take the following

form:


̂ =
D2T
T 2

TX
t=1

TX
s=1

Qh

�
t

T
;
s

T

�
êtê

0
s (2)

where êt = yt � �̂ = et � �e for �e = T�1
PT
t=1 et and Qh (r; s) is a weighting function that

depends on the smoothing parameter h: A reasonable choice of Qh (r; s) should satisfy:

(i) Qh( tT ;
s
T ) decays to zero as jt� sj =T approaches 1; (ii) Qh( tT ;

s
T ) increases to 1 as

jt� sj =T approaches 0: The speed of change is controlled by h: For conventional kernel

variance estimators, Qh (r; s) = k ((r � s) =b) and we take h = 1=b; where k (�) is a kernel
function. For the series variance estimators, Qh (r; s) = K�1PK

j=1 �j (r)�j (s) and we

take h = K; where f�j (r)g are basis functions on L2[0; 1] satisfying
R 1
0 �j (r) dr = 0: We

parametrize h in such a way that h indicates the level or amount of smoothing in both

cases.
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De�ne

Q�T;h (r; s) = Qh (r; s)�
1

T

TX
�1=1

Qh

��1
T
; s
�
� 1

T

TX
�2=1

Qh

�
r;
�2
T

�
+
1

T

TX
�1=1

TX
�2=1

Qh

��1
T
;
�2
T

�
;

then


̂ =
D2T
T 2

TX
t=1

TX
s=1

Q�T;h

�
t

T
;
s

T

�
ete

0
s; (3)

where the demeaning operation on et and es has been moved to the weighting function.

The Wald statistic is then equal to

FT =

 
TX
t=1

et

!0 " TX
t=1

TX
s=1

Q�Th

�
t

T
;
s

T

�
ete

0
s

#�1 TX
t=1

et

!
=p:

Similarly, the t-statistic becomes

tT =

PT
t=1 ethPT

t=1

PT
s=1Q

�
Th

�
t
T ;

s
T

�
etes

i1=2 :
Note that the scaling factor DT has been canceled out in both FT and tT :

The question is how to approximate the sampling distributions of FT and tT : If T�1=2
P[Tr]
t=1 et

converges weakly to a Brownian motion process, then under some conditions on Qh; it can

be shown that, for a �xed h :

FT !d F1 :=Wp (1)
0
�Z 1

0

Z 1

0
Q�h (r; s) dWp (r) dW

0
p (s)

��1
Wp (1) =p; (4)

tT !d t1 :=
Wp (1)qR 1

0

R 1
0 Q

�
h (r; s) dWp (r) dW 0

p (s)
; (5)

where Wp(r) is a p� 1 vector of standard Wiener processes and

Q�h (r; s) = Qh (r; s)�
Z 1

0
Qh (�1; s) d�1 �

Z 1

0
Qh (r; �2) d�2 +

Z 1

0

Z 1

0
Qh (�1; �2) d�1d�2

is the �continuous�version of Q�T;h (r; s). See for example, Kiefer and Vogelsang (2005) for

the kernel case and Sun (2013a) for the series case.

For both variance estimators, Wp (1) is independent of
R 1
0

R 1
0 Q

�
h (r; s) dWp (r) dW

0
p (s) :

So F1 resembles an F distribution in the sense that both can be written as a quadratic

form in standard normals with an independent weighting matrix. Similarly, t1 resembles

a t distribution in the sense that both can be written as a standard normal scaled by an

independent random variable.
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The asymptotic approximation obtained under a �xed h as T ! 1 is the �xed-

smoothing asymptotic approximation. This approximation improves the traditional chi-

square or normal approximation, which is obtained under the increasing-smoothing as-

ymptotics where h increases with T but at a slower rate. However, the �xed-smoothing

asymptotic approximation is still not satisfactory when the underlying process has strong

autocorrelation. Our goal is to establish a further improved approximation when et may

be strongly autocorrelated.

3 Fixed-Smoothing Asymptotics under the Local-to-Unity

Speci�cation

To model strong autocorrelation, we maintain the following assumption on fetg :

Assumption 1 (i) For some positive sequence fcmg

et = �T;met�1 + ut where e0 = Op(1) and �T;m = 1�
cm
T
;

(ii) T�1
PT
t=1

PT
s=1 kEutu0sk is bounded uniformly in T ;

(iii) futg satis�es a FCLT:

1p
T

[Tr]X
t=1

ut !d �Wp(r); as T !1; (6)

where Wp(r) is a p � 1 vector of standard Wiener processes and � = 
1=2 is the matrix

square root of the long run variance matrix 
 of ut :


 = ��0 =
1X

j=�1
Eutu

0
t�j :

The data generating process in Assumption 1 is similar to that used in Phillips, Magdali-

nous and Giraitis (2010), which establishes a smooth transition between the conventional

unit root distribution and the standard norm distribution. When cm is �xed, each com-

ponent of fetg has a local-to-unity root in the conventional sense (Phillips, 1987). When
cm ! 1 as T ! 1; each component of fetg has a moderate unit root in the sense that
the root belongs to a larger neighborhood of unity than the conventional local-to-unity

roots. We could allow for di¤erent cm�s for di¤erent components of fetg : For notational
simplicity, we assume that all components have the same local-to-moderate unit root. The

FCLT assumption holds for serially correlated and heterogeneously distributed data that

satisfy certain regularity conditions on moments and the dependence structure over time.
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These primitive regularity conditions can be found in Phillips and Durlauf (1986), Phillips

and Solo (1992), Davidson (1994), among others.

Under Assumption 1, we have

1p
T
e[Tr] ! �Jcm (r)

for each �xed cm; where Jcm (r) is the Ornstein-Uhlenbeck (OU) process de�ned by

dJcm (r) = �cmJcm (r) dr + dWp(r)

with Jcm(0) = 0 or Jcm(r) =
R r
0 e

�cm(r�s)dWp (s) :

Assumption 2 (i) For kernel variance estimators, the kernel function k (�) satis�es: for
any b 2 (0; 1], kb (x) := k(x=b) is symmetric, continuous, piecewise monotonic, and piece-
wise continuously di¤erentiable on [�1; 1]. (ii) For the series variance estimator, f�j (�)g
are piecewise monotonic, continuously di¤erentiable, and orthonormal in L2 [0; 1] and

R 1
0 �j (x) dx =

0 for each j:

Assumption 2 is similar to Assumption 1 in Sun (2013b). Under this assumption, we

can replace Q�Th (r; s) in (3) by Q
�
h (r; s) and all our asymptotic results continue to hold.

For our theoretical development, we can assume that such a replacement has been made.

Furthermore, under Assumption 2, Q�h (r; s) has the following uni�ed representation for

both types of variance estimators we consider:

Q�h (r; s) =
1X
j=1

�j�j (r) �j (s) ; (7)

where f�j (r)g is a sequence of continuously di¤erentiable functions satisfying
R 1
0 �j (r) dr =

0. The right hand side of (7) converges absolutely and uniformly over (r; s) 2 [0; 1]� [0; 1]:
The representation holds trivially for the case of series variance estimation, as

Q�h (r; s) = Qh (r; s) =
1

K

KX
j=1

�j (r)�j (s) ;

and so we can take f�jg =
�
K�1; : : : ;K�1; 0; : : : ; 0; : : :

	
and �j = �j : For the case of kernel

variance estimation, Sun (2013b) proves that the representation holds with the following

choices of �j and �j :

�j (r) =

(
cos
�
1
2�jr

�
; j is even

sin
�
1
2� (j + 1) r

�
�
R 1
0 sin

�
1
2� (j + 1) �

�
d�; j is odd

(8)
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and

�j =

(
~�j=2; j is even
~�(j+1)=2; j is odd

where f~�jg are the Fourier transforms of kb (�) ; i.e., ~�j =
R 1
0 k(x=b) cos (j�x) dx: For easy

reference, we de�ne �0 (r) � 1:

Theorem 1 Let Assumptions 1 and 2 hold. Then for �xed cm and h;

FT !d F1 (cm) :=

�Z 1

0
Jcm (r) dr

�0
�
�Z 1

0

Z 1

0
Q�h (r; s) Jcm (r) J

0
cm (s) drds

��1 �Z 1

0
Jcm (r) dr

�
=p:

If we further assume that Qh (r; s) is positive de�nite, then

tT !d t1 (cm) :=

R 1
0 Jcm (r) drhR 1

0

R 1
0 Q

�
h (r; s) Jcm (r) J

0
cm (s) drds

i1=2 :
Since

cov (Jcm(r); Jcm(s)) =
1

2cm
fexp [�cm jr � sj]� exp [�cm (r + s)]g Ip;

where Ip is the p� p identity matrix, we have

cov

�Z 1

0
�j1 (r) Jcm (r) dr;

Z 1

0
�j2 (r) Jcm (r) dr

�
=

1

2cm

Z 1

0

Z 1

0
�j1 (r) �j2 (s) fexp [�cm jr � sj]� exp [�cm (r + s)]g drds� Ip

for all j1 � 0 and j2 � 0: In general, the covariance matrix is not zero. A direct implica-
tion is that the weighting matrix

R 1
0

R 1
0 Q

�
h (r; s) Jcm (r) J

0
cm (s) drds is not independent ofR 1

0 Jcm (r) dr: Hence the limiting distribution F1 (cm) cannot be written as a quadratic form

in standard normals with an independent random weighting matrix. This is in contrast

with F1 which takes such a form.

The limiting distribution depends not only on the kernel/basis functions, the smoothing

parameter h; the number of joint hypotheses p but also on the local-to-unit-root parameter

cm. In the extreme case when cm = 0; et has unit roots and F1 (cm) becomes

F1 (0) :=

�Z 1

0
Wp(r)dr

�0 �Z 1

0

Z 1

0
Q�h (r; s)Wp (r)W

0
p (s) drds

��1 �Z 1

0
Wp (r) dr

�
=p:

This case seems to be of only theoretical interest. The empirically more relevant case is

when cm is large. The theorem below characterizes the behaviors of F1 (cm) and t1 (cm)

as cm !1:
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Figure 1: Critical values from F1 (c) with p = 1 and the Bartlett kernel

Theorem 2 As cm !1 for a �xed h; we have

F1 (cm) = F1 (1) + op (1) and t1 (cm) = t1 (1) + op (1)

where F1 (1) := F1 and t1 (1) := t1 de�ned in (4) and (5) respectively.

Theorem 2 shows that the sequential limits when T !1 followed by cm !1 lead to

the usual �xed-smoothing asymptotics under weak dependence. Depending on the value of

cm; the limiting distributions F1 (cm) and t1 (cm) provide a smooth transition from the

usual �xed-smoothing asymptotics to the unit-root �xed smoothing asymptotics.

Figures 1�3 present the 5% critical values from F1 (cm) with p = 1 for two kernel

variance estimators and one series variance estimator. For the series variance estimator, we

take K to be even and use �2j�1(x) =
p
2 cos(2j�x), �2j(x) =

p
2 sin(2j�x); j = 1; : : : ;K=2

as the basis functions. In the �gure, �c = 1�corresponds to the usual �xed-smoothing
asymptotics, and the solid line indicates the critical value from the �21 distribution. For

any given variance estimator, the critical values increase monotonically as cm approaches

zero. That is, the more persistent the underlying processes are, the higher the critical values

will be. While the critical values from the usual �xed-smoothing asymptotic distribution are

larger than those from the chi-square distribution, they are still not large enough when the

process is highly autocorrelated. Figures 1�3 also demonstrate the smooth transition from

the near-unit-root �xed-smoothing asymptotics to the usual �xed-smoothing asymptotics.
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Figure 3: Critical values from F1 (c) with p = 1 and the series LRV estimator
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4 F Approximation in the Case of Series Variance Estima-

tion

In this section, we consider the series variance estimation and show that F1 (cm) can be

approximated by an F distribution for some (transformed) basis functions.

In the case of series variance estimation, we have

pF1 (cm) =

�Z 1

0
�0 (r) Jcm (r) dr

�0
�
(
1

K

KX
`=1

�Z 1

0
�` (r) Jcm (r) dr

� �Z 1

0
�` (r) Jcm (r) dr

�0)�1 �Z 1

0
�0 (r) Jcm (r) dr

�
=p

for �0 (r) � 1: We want to select the basis functions such that
R 1
0 �` (r) Jcm (r) dr s

iidN(0; Ip) across ` = 0; 1; : : :;K: Note that
R 1
0 �` (r) Jcm (r) dr for ` = 0; 1; : : :;K are

jointly normal, it su¢ ces to select f�` (r) ; ` = 1; : : :;Kg such that f
R 1
0 �` (r) Jcm (r) dr; ` =

0; 1; : : :;Kg are not correlated with each other. But

cov

�Z 1

0
�`1 (r) Jcm (r) dr;

Z 1

0
�`2 (r) Jcm (r) dr

�
=

Z 1

0

Z 1

0
�`1 (r)�`2 (s)�cm(r; s)drds� Ip

where

�cm(r; s) := fexp [�cm jr � sj]� exp [�cm (r + s)]g = (2cm)

is the covariance kernel of Jcm (�) : When cm = 0; we de�ne

�cm(r; s)jcm=0 = lim
cm!0

�cm(r; s) = min(r; s);

which is the covariance kernel of the standard Brownian motion. So it su¢ ces to select the

basis functions to satisfy:Z 1

0

Z 1

0
�`1 (r)�`2 (s)�cm(r; s)drds = �`1`2 for all `1; `2 = 1; : : :;K; (9)Z 1

0

Z 1

0
�`�cm(r; s)drds = 0 for all ` = 1; 2; : : :;K; (10)Z 1

0
�` (r) dr = 0 for all ` = 1; 2; : : :;K: (11)

The last set of equations maintains the �zero mean�conditions.

Instead of directly searching for the appropriate basis functions, for computational

reasons we consider the discrete analogue of (9)�(11). Let A = (aij) be the T � T matrix
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with elements aij = �cm(i=T; j=T ): By de�nition, A is a positive de�nite symmetric matrix.

For any two vectors `1; `2 2 RT , we de�ne the inner product:

h`1; `2i = `01A`2=T 2: (12)

Then RT is a Hilbert space with the above weighted inner product. Let

�` = [�` (1=T ) ; �` (2=T ) ; : : :; �` (T=T )]
0

be the basis vector associated with the basis function �` (�) for ` = 0; 1; : : :;K: The �nite

sample versions of (9)�(11) are:

�`1 ;�`2

�
= �`1`2 for all `1; `2 = 1; : : :;K; (13)

�0`A�0 = 0 for all ` = 1; 2; : : :;K; (14)

�0`�0 = 0 for all ` = 1; 2; : : :;K: (15)

Note that (13) is di¤erent from the usual orthonormality in the Euclidian sense. In

general, the basis vectors f�`g do not satisfy (13) even if the basis functions f�`g are
orthonormal in L2[0; 1]: However, given any candidate basis functions or vectors, we can
make them satisfy the above conditions via transformation and orthogonalization. We

follow the steps below:

(i) Let VT = [�0; A�0] be a T � 2 matrix and compute

~�` =
h
IT � VT

�
V 0TVT

��1
V 0T

i
�`

for ` = 1; : : :;K:

(ii) Employ the Gram-Schmidt scheme to orthogonalize the vectors f~�`gK`=1 under the
inner product h�; �i : More speci�cally, we let

~q1 = ~�1;

~q2 = ~�2 �
h~�2;~q1i
h~q1;~q1i

~q1;

...

~qK = ~�K �
h~�K ;~qK�1i
h~qK�1;~qK�1i ~qK�1 � : : :�

h~�K ;~q1i
h~q1;~q1i

~q1:

Note that ~�` is the projection of �` onto the orthogonal complement of the space

spanned by �0 and A�0: By construction ~�
0
`A�0 = 0 and ~�

0
`�0 = 0: Since ~q` is a linear

combination of ~�`, we have ~q
0
`A�0 = 0 and ~q

0
`�0 = 0: Also by construction,



~q`1 ; ~q`2

�
= 0

for `1 6= `2: Let q` = ~q`=
p
h~q`; ~q`i; then fq1; : : :; qKg is a set of bases in RT that satis�es

the conditions in (13)�(15).
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Let ~�:=
�
~�1; ~�2; : : :; ~�K

�
and ~Q := (~q1; ~q2; : : :; ~qK). Then ~� = ~Q ~R where R is the

upper triangular matrix given by

~R =

26666664
1

h~�2;~q1i
h~q1;~q1i

� � � h~�K ;~q1i
h~q1;~q1i

0 1 � � � � � �

� � � � � � . . . h~�K ;~qK�1i
h~qK�1;~qK�1i

0 � � � 0 1

37777775
To represent ~� in terms ofQ := (q1; q2; : : :; qK), we letD = diag(h~q1; ~q1i1=2 ; : : :; h~qK ; ~qKi1=2)
be a K �K diagonal matrix. Then ~Q = QD and

~� = QR

where R = D ~R: The above decomposition is related to the QR decomposition but the

columns of Q are not orthonormal in the usual Euclidean sense but instead they are ortho-

normal under the inner product de�ned in (12).

In a matrix programming environment, we can compute Q easily. Let R� be the upper

triangular factor of the Cholesky decomposition of ~�0A~�=T 2; that is, ~�0A~�=T 2 = (R�)0R�:

Then we can let Q = ~� (R�)�1, which satis�es

Q0AQ=T 2 =
�
R�0
��1 ~�0A~� (R�)�1 =T 2 = �R�0��1 (R�)0R� (R�)�1 = IK ;

as desired.

Using the basis vectors fq1; : : :; qKg, we can construct the variance estimator:


̂q =
D2T
T 2

1

K

KX
`=1

 
TX
t=1

q`têt

! 
TX
s=1

q`sês

!0

=
D2T
T 2

1

K

KX
`=1

 
TX
t=1

q`tet

! 
TX
s=1

q`ses

!0
where q`t is an element of q` so that q` = (q`1; : : :; q`T )

0 and the second equality holds

because
PT
t=1 q`t = q

0
`�0 = 0: The associated FT statistic is

FT;q = DT

�
�̂ � �0

�0

̂�1q DT

�
�̂ � �0

�
=p

=

 
1

T

TX
t=1

etp
T

!0 24 1
K

KX
j=1

 
1

T

TX
t=1

q`t
etp
T

! 
1

T

TX
s=1

q`s
esp
T

!035�1 1
T

TX
t=1

etp
T

!
=p

and the tT statistic is

tT;q =
DT

�
�̂ � �0

�
q

̂q

=

"
1

T

TX
t=1

etp
T

#24 1
K

KX
j=1

 
1

T

TX
t=1

q`t
etp
T

!235�1=2 :
12



As T !1 for a �xed cm and h; we have 
1p

h�0;�0i
1

T

TX
t=1

etp
T
;
1

T

TX
t=1

q1t
etp
T
; : : :;

1

T

TX
t=1

qKt
etp
T

!
!d � (�0; �1; : : :; �K)

where (�0; �1; : : :; �K) are jointly normal. Since hq`;�0i = 0 for ` = 1; :::;K and


q`1 ; q`2

�
=

�`1;`2 , we know that �` s iidN(0; Ip) for ` = 0; 1; : : :;K: Hence

h�0;�0i�1 FT;q !d F1 (cm) = �
0
0

(
1

K

KX
`=1

�`�
0
`

)�1
�0=p:

Note that pF1 (cm) follows Hotelling�s T 2p;K distribution. Using the relationship between

the T 2 distribution and the F distribution, we have

F �T;q :=
K � p+ 1

K
h�0;�0i�1 FT;q

!d K � p+ 1
K

F1 (cm) =
d K � p+ 1

Kp
T 2p;K =

d Fp;K�p+1; (16)

where Fp;K�p+1 is the F distribution with degrees of freedom (p;K � p+ 1) : Similarly,

t�T;q := h�0;�0i
�1 tT;q !d tK ; (17)

where tK is the t distribution with degrees of freedom K:

Note that

h�0;�0i =
1

T 2

TX
t=1

TX
s=1

�cm

�
t

T
;
s

T

�
!
Z 1

0

Z 1

0
�cm (r; s) drds =

1

c2m
� 1

2c3m

�
e�2cm � 4e�cm + 3

�
;

as T ! 1; we can replace h�0;�0i by the above limit in the de�nitions of F �T;q and t�T;q
and still get the same limit distributions.

Our asymptotic development justi�es the use of standard F and t approximations in

hypothesis testing, even if the underlying process has strong autocorrelation. More specif-

ically, we can employ the modi�ed test statistic ~FT and a standard F distribution as the

reference distribution to test joint hypotheses. When there is a single hypothesis, we can

employ the modi�ed t statistic and the standard t distribution. This leads to our asymptotic

F test and t test.

The limiting distributions Fp;K�p+1 and tK are exactly the same as what Sun (2013a)

obtained in the absence of strong autocorrelation. More speci�cally, when � is a �xed

constant less than 1 in absolute value, Sun (2013a) employs orthonormal basis functions,
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say f�o`(�)g ; in L2[0; 1] with
R 1
0 �o`(r)dr = 0 to construct the series variance estimator, and

establishes the following weak convergence results for the associated F and t statistics:

FT !d F1 (1) and tT !d t1 (1)

where
K � p+ 1

K
F1 (1) =d Fp;K�p+1 and t1 (1) =d tK :

That is
K � p+ 1

K
FT !d Fp;K�p+1 and tT !d tK :

To relate the above approximations to those in (16) and (17), we consider the case when

cm is large. As cm !1; we haveZ 1

0

Z 1

0
�o`1 (r)�o`2(s)c

2
m�cm(r; s)drds =

Z 1

0
�o`1 (r)�o`2 (r) dr + o (1) ;Z 1

0

Z 1

0
�o`1 (r) c

2
m�cm(r; s)drds =

Z 1

0
�o`1 (r) dr + o(1):

So if f�o` (�)g is a set of orthonormal basis functions in L2[0; 1] with
R 1
0 �o`(r)dr = 0;

then fcm�o` (r)g will satisfy (9)�(11) approximately. That is, as cm ! 1; the e¤ects of
transformation and orthogonalization on fcm�o` (�)g becomes negligible. We can just use
f�o` (�)g as the basis functions to construct the series variance estimator, leading to the
modi�ed F statistic F �T;�o . We have

F �T;�o :=
K � p+ 1

K
h�0;�0i�1 FT;�o !d K � p+ 1

K
F �o1 (cm)

where

F �o1 (cm) =

�Z 1

0
Jcm (r) dr

�0
�
(
1

K

KX
`=1

�Z 1

0
�o` (r) Jcm (r) dr

� �Z 1

0
�o` (r) Jcm (r) dr

�0)�1 �Z 1

0
Jcm (r) dr

�
=p

=

�Z 1

0

Z 1

0
c2m�cm(r; s)drds

�24 R 1
0 cmJcm (r) drqR 1

0

R 1
0 c

2
m�cm(r; s)drds

350�
(
1

K

KX
`=1

�Z 1

0
�o` (r) cmJcm (r) dr

� �Z 1

0
�o` (r) cmJcm (r) dr

�0)�1

�

24 R 1
0 cmJcm (r) drqR 1

0

R 1
0 c

2
m�cm(r; s)drds

35 =p
!d �00

(
1

K

KX
`=1

�`�
0
`

)�1
�0=p =

d F1 (1)
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as cm ! 1; where we have used limcm!1
R 1
0

R 1
0 c

2
m�cm(r; s)drds = 1: So F �T;�o converges

weakly to Fp;K�p+1 under the sequential limits. This is consistent with Theorem 2.

5 Extension to a General Setting

In the previous section, we use the simple multivariate location model to highlight the e¤ect

of strong autocorrelation on distributional approximations. Hypothesis testing in location

models, as simple as it seems, includes more general testing problems as special cases.

Consider an M-estimator, �̂T , of a n� 1 parameter vector �0 that satis�es

�̂T = argmin
�2�

QT (�) = argmin
�2�

1

T

TX
t=1

�(�; Zt)

where � is a compact parameter space, and �(�; Zt) is the criterion function based on

observation Zt. M-estimators are a broad class of estimators and include, for example, the

maximum likelihood estimator (MLE), ordinary least squares (OLS) estimator, quantile

regression estimator as special cases.

Suppose we want to test the null hypothesis that H0 : � = �0 against H1 : � 6= �0: Then
by the usual identi�cation assumption for the M-estimator, under the null hypothesis and

additional regularity assumptions, � = �0 is the unique minimizer of

Q(�) = E�(�; Zt):

That is

Est(�) = 0 where st(�) =
@�(�; Zt)

@�
,

if and only if � = �0: So the null hypothesis H0 : � = �0 is equivalent to the hypothesis that

the multivariate process st(�0) has mean zero. We have just converted a general testing

problem into testing for zero mean of a multivariate process. The latter problem is exactly

the testing problem we consider in the previous sections. All results there remain valid if

the multivariate process st(�0) satis�es the assumptions imposed on yt:

The above extension applies to hypothesis testing that involves the whole parameter

vector �: Suppose we are only interested in some linear combinations of � such that the

null hypothesis is H0 : R� = r and the alternative hypothesis is H1 : R� 6= r; where R is a
p� n matrix. Under the usual regularity conditions, we have

p
T
�
R�̂T � r

�
= � 1p

T

TX
t=1

RHT (��T )
�1st (�0) for HT (�) =

1

T

TX
t=1

@st (�)

@�0
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and some value ��T between �0 and �̂T : Let ~st (�1; �2) = �RHT (�1)�1st (�2) be the trans-
formed score process, then the F-test version of the Wald statistic is

~FT = T
�
R�̂T � r

�0
~
�1

�
R�̂T � r

�
=p; (18)

where

~
 =
1

T

TX
t=1

TX
�=1

Q�Th

�
t

T
;
�

T

�
~st

�
�̂T ; �̂T

�
~s0�

�
�̂T ; �̂T

�
Under the assumptions given in KV (2005) and Sun (2013a), ~FT is asymptotically

equivalent to

FT =

"
1p
T

TX
t=1

et

#0

̂�1

"
1p
T

TX
t=1

et

#
=p; (19)

where et = �RH�1 (�0) st (�0), H(�0) = plimT!1HT (��T ); and


̂ =
1

T

TX
t=1

TX
s=1

Q�Th

�
t

T
;
s

T

�
(et � �e) (es � �e)0 :

It follows that the FT statistic can be viewed as a Wald statistic for testing whether the

mean of the multivariate process et is zero. So the asymptotic approximation in Theorem

1 applies to the Wald statistic. The same observation remains valid for the t statistic.

More generally, consider a standard GMM framework with the moment conditions

Ef (Zt; �0) = 0; t = 1; 2; : : :; T

where �0 2 � � Rn and f (�) is anm�1 vector of twice continuously di¤erentiable functions
with m � n and rank E [@f (Zt; �0) =@�0] = n: The GMM estimator of �0 is then given by

�̂T = argmin
�2�

 
1

T

TX
t=1

f (Zt; �)

!0
WT

 
1

T

TX
t=1

f (Zt; �)

!
where WT is an m�m positive semide�nite weighting matrix and plimT!1WT =W1:

Suppose we test H0 : R� = r against the alternative H1 : R� 6= r: Let GT (�) =

plimT!1
h
1
T

PT
t=1 @f (Zt; �) =@�

0
i
: Then under the usual regularity conditions for GMM

estimation, we have

p
T
�
R�̂T � r

�
= � 1p

T

TX
t=1

R
h
GT (�̂T )

0WTGT

�
�̂T

�i�1
GT (�̂T )

0WT f (Zt; �0) + op (1) (20)

As before, we let ~st (�1; �2) = R [GT (�1)0WTGT (�1)]
�1GT (�1)

0WT f (Zt; �2) : Then the Wald

statistic can be computed in the same way as in (18), which is asymptotically equivalent

to FT in (18) with

et = �R
�
G00W1G0

��1
G00W1f(Zt; �0):

With this new de�nition of et; the asymptotic approximations in the previous sections are

applicable to both the Wald statistic and t statistic.
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6 Implementation and Simulation

6.1 Implementation

The near-unit-root �xed-smoothing asymptotic approximations F1 (cm) and t1 (cm) de-

pend on the near-unit-root parameter cm; which cannot be consistently estimated. There

are many ways to gauge the value of cm in the literature on optimal unit root testing. Sun

(2014) constructs con�dence intervals for cm and uses the method of Bonferroni bound to

obtain tests with good size properties. Here for simplicity we use the OLS estimator:

�̂i =

PT
t=2 êitêi;t�1PT
t=2 ê

2
i;t�1

where for the location model, we let êit = yit � �yi;�, for the model estimated by the M

estimator, we let êit be the i-th component of RH�1
T (�̂T )st(�̂T ); for the model estimated by

the GMM estimator, we let êit be the i-th component of R
h
Ĝ0TWT ĜT

i�1
ĜTWT f(Zt; �̂T )

with ĜT = GT (�̂T ): Given the average of the estimated autoregressive parameters: �̂ =

p�1
Pp
i=1 �̂i; we take cm to satisfy 1 � ĉm=T = �̂; that is, ĉm = T (1� �̂) : To reduce the

randomness of �̂ and hence ĉm; we can discretize the interval [�1; 1] and use the grid point
that is closest to �̂ as the autoregressive parameter. Let ~� be this grid point, we can let

ĉm = T (1� ~�) :
It is important to point out that while we propose using F1 (cm) or t1 (cm) as the

reference distributions to perform hypothesis testing, it does not mean that we literally

treat cm as �xed. Whether we hold cm �xed or let it increase with the sample size can be

viewed as di¤erent asymptotic speci�cations to obtain approximations to the �nite sample

distribution. The near-unit-root �xed-smoothing asymptotics does not require that we �x

the value of cm in �nite samples. In fact, if et is stationary with a �xed autoregressive

coe¢ cient, then with probability approaching one, ĉm will increase with the sample size.

This will not cause any problem, as we have shown that as cm increases, F1 (cm) will

become very close to F1 (1) ; the �xed-smoothing asymptotic distribution under weak
dependence. So the near-unit-root �xed-smoothing approximation is asymptotically valid

under weak dependence. To some extent, F1 (cm) is a more robust approximation than

F1 (1) :

6.2 Simulations

For the Monte Carlo experiments, we �rst consider a simple multivariate location model

with 4 time series:

yt = � + ut (21)
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where the error ut follows either a VAR(1) or VMA(1) process:

ut = Aut�1 + "t or ut = A"t�1 + "t

where A = �I4; "t = (v1t + �ft; v2t + �ft; :::; vnt + �ft)
0 =
p
1 + �2 and (vt; ft)0 is a multi-

variate Gaussian white noise process with unit variance. In the case of VAR(1), we set

u0 s N(0; I4): Under this speci�cation, the four time series all follow the same VAR(1) or
VMA(1) process with "t s iidN(0;�) for

� =
1

1 + �2
I4 +

�2

1 + �2
J4;

where J4 is a 4� 4 matrix of ones. The parameter � determines the degree of dependence
among the time series considered. When � = 0; the four series are uncorrelated with each

other. The large � is, the larger the correlation is.

For the model parameters, we take � = �0:5; 0; 0:1; 0:3; 0:5; 0:7; 0:9; and 0:95 and set
� = 0 and 1: We set the intercepts to zero as the tests we consider are invariant to them.

For each test, we consider two signi�cance levels � = 5% and � = 10% and two di¤erent

sample sizes T = 200 and 400:

We consider the following null hypotheses:

H01 : �1 = 0;

H02 : �1 = �2 = 0;

H03 : �1 = �2 = �3 = 0;

H04 : �1 = �2 = �3 = �4 = 0;

where p = 1; 2; 3; 4; respectively. The corresponding matrix R is the �rst p rows of the

identity matrix I4:
We examine the �nite sample performance of three di¤erent groups of tests. The �rst

group of tests consists of the standard �xed-smoothing Wald tests of KVB (2000) and Sun

(2013a). The KVB test employs the Bartlett kernel variance estimator based with b = 1,

and the test in Sun (2013a) employs the series variance estimator with K = 6; 12; and

24. The basis functions used are �2j�1(x) =
p
2 cos(2j�x), �2j(x) =

p
2 sin(2j�x); j =

1; : : : ;K=2: For both the KVB test and the test in Sun (2013a), we use standard �xed-

smoothing critical values, which are obtained from simulations (the KVB test) or directly

from the standard F distributions (the test in Sun (2013a)). The second group of tests is

similar to the �rst group but uses critical values from the near-unit-root �xed-smoothing

asymptotic distributions developed in Section 3. The critical values are obtained via sim-

ulations with 999 simulation replications. The third group of tests is based on the F ap-

proximation in Section 4. The basis functions/vectors are transformed and orthogonalized
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version of �2j�1(x) =
p
2 cos(2j�x), �2j(x) =

p
2 sin(2j�x); j = 1; : : : ;K=2. These three

groups of tests will be referred to as the �Stationary Fixed-smoothing Tests�, �Near-Unity

Fixed-smoothing Tests�, and �Near-Unity F Tests.�We could add the conventional chi-

square tests but a large literature has already shown that the chi-square tests have much

larger size distortion than the corresponding �xed-smoothing tests.

Table 1 reports the empirical null rejection probability of the three groups of tests for

VAR(1) error. The sample size is 200 and the number of simulation replications is 10000.

A few observations can be drawn from the table. First, it is clear that the stationary �xed-

smoothing asymptotic approximation works very well when the processes are not strongly

autocorrelated. When the processes become more autocorrelated, the size distortion starts

to increase. This is especially true when the number of joint hypotheses is more than one.

The size distortion of the stationary �xed-smoothing tests can be as high as 0.795. This

happens when K = 24 and p = 4: Even for the KVB test with b = 1; the size distortion

is 0.488 when p = 4: Second, the near-unity �xed-smoothing asymptotic tests outperform

the stationary �xed-smoothing tests in terms of size accuracy. When the processes are

not strongly autocorrelated, the near-unity �xed-smoothing asymptotic tests have more or

less the same size properties as the stationary �xed-smoothing asymptotic tests. However,

when the processes approach unit root nonstationarity, the near-unity �xed-smoothing

asymptotic tests succeed in reducing the size distortion. Comparing the tests in the second

group, the series test with K = 6 and the KVB test have the most accurate size. Third, the

near-unity asymptotic F tests are also more accurate than the stationary �xed-smoothing

tests, which in the case of series variance estimation use also the F critical values. When

K is relatively small, the near-unity asymptotic F test is as accurate as the test based on

nonstandard simulated critical values. However, whenK is large, the near-unity asymptotic

F test has somewhat larger size distortion.

Table 2 is the same as Table 1 except that the sample size is T = 400: The qualitative

observations we make for Table 1 apply to Table 2. As expected, all tests become more

accurate. We omit the Tables for the VMA(1) cases as all three groups of tests have

similar good size properties for both sample sizes T = 200 and 400: There is no adverse

e¤ect of using the near-unity �xed-smoothing asymptotic distribution when the underlying

processes are not strongly persistent. This is consistent with our theoretical �ndings.

Figure 4 is a representative �gure for size-adjusted power curves. The sample size is

200 and the number of joint hypotheses is 2. Of course, size-adjustment is not feasible in

practice; and this is exactly the reason we want to develop an asymptotically valid test

that has accurate size in �nite samples. Since tests based on the same statistic have the

same size-adjusted power, a test in the �rst group has the same power as the corresponding
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test in the second group. So it su¢ ces to report the power curves of the tests in the �rst

and second groups. In Figure 4, �K6�, �K12�, �K24�and �KVB�are the tests in the �rst

group while �K6*�, �K12*�, �K24*�are the tests in the second group. It is clear from the

�gure that the power of the series test increases with K, as shown in Sun (2013a). What

is new here is that the power of the �xed-smoothing nonstandard test is close to that of

the �xed-smoothing F test. Transformation and orthogonalization underlying the F test

do not lead to power loss.

7 Conclusions

The paper develops a new �xed-smoothing asymptotic theory that accommodates strongly

autocorrelated time series while also working very well in the absence of strong autocor-

relation. Our proposed near-unity �xed-smoothing tests achieve triple robustness in the

following sense: they are asymptotically valid regardless of whether the amount of smooth-

ing is �xed or increases with the sample size; whether there is temporal dependence of

unknown form or not; and whether the temporal dependence is strong or not when pre-

sented.

The near-unity �xed-smoothing asymptotic distribution is nonstandard. By choosing

the basis functions appropriately, the nonstandard distribution can be reduced to a stan-

dard F approximation. See Sun and Kim (2013) for an implementation of this idea in a

di¤erent setting. An alternative way to characterize the strong autocorrelation is to model

the moment process as a fractional process. In this case, we can follow Sun (2004) to

develop a new asymptotic approximation. Our testing procedures can be combined with

prewhitening. This may lead to a test with potentially very accurate size, even if the

underlying processes are highly autocorrelated. We leave all these to future research.
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Table 1: Empirical size of 5% Fixed-smoothing Asymptotic Tests with T = 200 under
VAR(1) Errors

Stationary Fixed-smoothing Near-Unity Fixed-smoothing Near-Unity F Tests

� K6 K12 K24 KVB K6 K12 K24 KVB K6* K12* K24*

p = 1
-0.5 0.048 0.051 0.050 0.043 0.039 0.045 0.043 0.044 0.048 0.050 0.049

0.0 0.049 0.051 0.052 0.048 0.039 0.045 0.042 0.045 0.049 0.050 0.047

0.1 0.049 0.051 0.052 0.049 0.039 0.044 0.042 0.045 0.048 0.050 0.046

0.3 0.049 0.052 0.054 0.050 0.040 0.044 0.043 0.045 0.048 0.050 0.045

0.5 0.049 0.055 0.062 0.053 0.040 0.046 0.044 0.047 0.048 0.050 0.044

0.7 0.051 0.063 0.087 0.060 0.041 0.049 0.050 0.047 0.048 0.051 0.047

0.9 0.076 0.138 0.254 0.094 0.053 0.066 0.071 0.055 0.059 0.076 0.088

0.95 0.143 0.264 0.415 0.136 0.083 0.103 0.111 0.073 0.091 0.124 0.146

p = 2
-0.5 0.051 0.050 0.050 0.041 0.052 0.043 0.044 0.044 0.052 0.047 0.046

0.0 0.052 0.050 0.051 0.049 0.053 0.043 0.043 0.046 0.052 0.048 0.045

0.1 0.052 0.050 0.052 0.051 0.053 0.043 0.043 0.045 0.051 0.048 0.045

0.3 0.053 0.051 0.056 0.056 0.053 0.044 0.043 0.044 0.051 0.049 0.044

0.5 0.053 0.053 0.067 0.062 0.054 0.044 0.043 0.045 0.050 0.049 0.043

0.7 0.055 0.064 0.101 0.074 0.051 0.045 0.047 0.048 0.050 0.049 0.046

0.9 0.083 0.169 0.353 0.137 0.059 0.073 0.086 0.063 0.062 0.078 0.095

0.95 0.157 0.359 0.590 0.229 0.085 0.120 0.142 0.085 0.096 0.142 0.184

p = 3
-0.5 0.050 0.050 0.048 0.036 0.047 0.050 0.048 0.043 0.050 0.051 0.044

0.0 0.051 0.051 0.049 0.050 0.046 0.050 0.048 0.044 0.051 0.050 0.043

0.1 0.051 0.052 0.050 0.052 0.046 0.050 0.049 0.045 0.051 0.049 0.043

0.3 0.051 0.053 0.054 0.058 0.044 0.051 0.049 0.046 0.052 0.049 0.042

0.5 0.052 0.055 0.065 0.069 0.042 0.051 0.050 0.046 0.053 0.049 0.040

0.7 0.053 0.066 0.110 0.090 0.045 0.055 0.059 0.048 0.052 0.050 0.043

0.9 0.079 0.189 0.428 0.201 0.063 0.085 0.100 0.062 0.058 0.079 0.098

0.95 0.152 0.427 0.710 0.354 0.090 0.150 0.172 0.088 0.089 0.150 0.205

p = 4
-0.5 0.051 0.050 0.048 0.033 0.047 0.050 0.043 0.051 0.052 0.051 0.044

0.0 0.051 0.051 0.050 0.051 0.046 0.052 0.042 0.052 0.051 0.050 0.043

0.1 0.050 0.051 0.051 0.054 0.047 0.052 0.043 0.052 0.050 0.050 0.042

0.3 0.050 0.052 0.055 0.062 0.048 0.051 0.044 0.051 0.050 0.048 0.041

0.5 0.050 0.055 0.066 0.075 0.049 0.052 0.046 0.051 0.049 0.048 0.041

0.7 0.052 0.065 0.117 0.108 0.049 0.052 0.053 0.053 0.050 0.048 0.043

0.9 0.072 0.202 0.493 0.275 0.065 0.083 0.096 0.078 0.057 0.074 0.102

0.95 0.129 0.473 0.795 0.488 0.081 0.154 0.188 0.130 0.081 0.155 0.229
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Table 2: Empirical size of 5% Fixed-smoothing Asymptotic Tests with T = 400 under
VAR(1) Errors

Stationary Fixed-smoothing Near-Unity Fixed-smoothing Near-Unity F Tests

� K6 K12 K24 KVB K6 K12 K24 KVB K6* K12* K24*

p = 1
-0.5 0.051 0.047 0.047 0.048 0.049 0.039 0.042 0.037 0.049 0.047 0.046

0.0 0.051 0.048 0.046 0.050 0.044 0.040 0.044 0.035 0.049 0.046 0.045

0.1 0.050 0.048 0.046 0.051 0.044 0.040 0.045 0.035 0.049 0.046 0.045

0.3 0.050 0.048 0.047 0.052 0.044 0.040 0.045 0.036 0.049 0.046 0.044

0.5 0.050 0.049 0.049 0.054 0.045 0.041 0.044 0.037 0.049 0.046 0.044

0.7 0.051 0.050 0.057 0.056 0.046 0.041 0.044 0.037 0.049 0.046 0.044

0.9 0.058 0.076 0.134 0.072 0.047 0.051 0.058 0.043 0.051 0.053 0.059

0.95 0.080 0.138 0.252 0.090 0.056 0.071 0.086 0.050 0.062 0.079 0.095

p = 2
-0.5 0.049 0.047 0.047 0.043 0.057 0.048 0.045 0.045 0.050 0.046 0.047

0.0 0.048 0.047 0.047 0.048 0.059 0.046 0.045 0.046 0.050 0.046 0.046

0.1 0.048 0.047 0.047 0.048 0.060 0.047 0.046 0.045 0.050 0.047 0.045

0.3 0.048 0.047 0.048 0.050 0.062 0.046 0.047 0.046 0.049 0.046 0.045

0.5 0.049 0.048 0.050 0.053 0.062 0.046 0.048 0.044 0.050 0.045 0.045

0.7 0.050 0.050 0.058 0.058 0.059 0.047 0.048 0.047 0.048 0.045 0.044

0.9 0.058 0.081 0.166 0.088 0.062 0.053 0.062 0.058 0.051 0.054 0.059

0.95 0.081 0.171 0.355 0.134 0.071 0.077 0.095 0.072 0.061 0.080 0.104

p = 3
-0.5 0.049 0.047 0.048 0.042 0.043 0.039 0.043 0.044 0.050 0.047 0.047

0.0 0.048 0.048 0.048 0.047 0.041 0.038 0.044 0.042 0.050 0.047 0.046

0.1 0.048 0.048 0.049 0.049 0.041 0.038 0.044 0.043 0.050 0.047 0.046

0.3 0.048 0.048 0.050 0.052 0.042 0.038 0.043 0.045 0.050 0.048 0.046

0.5 0.049 0.049 0.052 0.057 0.044 0.037 0.040 0.045 0.051 0.047 0.045

0.7 0.051 0.051 0.062 0.067 0.046 0.037 0.039 0.048 0.049 0.048 0.045

0.9 0.058 0.084 0.192 0.119 0.048 0.042 0.059 0.058 0.051 0.054 0.063

0.95 0.082 0.188 0.438 0.200 0.060 0.063 0.087 0.071 0.061 0.081 0.112

p = 4
-0.5 0.049 0.048 0.048 0.040 0.058 0.043 0.048 0.045 0.051 0.047 0.047

0.0 0.050 0.049 0.049 0.049 0.051 0.044 0.047 0.048 0.052 0.048 0.048

0.1 0.050 0.049 0.049 0.051 0.053 0.044 0.047 0.049 0.052 0.048 0.047

0.3 0.050 0.049 0.050 0.055 0.051 0.045 0.046 0.048 0.052 0.048 0.046

0.5 0.051 0.049 0.052 0.061 0.046 0.044 0.045 0.049 0.051 0.047 0.045

0.7 0.050 0.051 0.063 0.076 0.044 0.044 0.047 0.044 0.049 0.046 0.045

0.9 0.055 0.088 0.216 0.154 0.049 0.051 0.060 0.052 0.051 0.053 0.063

0.95 0.072 0.206 0.505 0.285 0.057 0.081 0.102 0.078 0.058 0.083 0.120

22



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

δ2

Po
w

er

ρ = 0

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

δ2
Po

w
er

ρ = 0.5

K6
K12
K24
KVB
K6*
K12*
K24*

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

δ2

Po
w

er

ρ = 0.7

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

δ2

Po
w

er

ρ = 0.9

K6
K12
K24
KVB
K6*
K12*
K24*

Figure 4: Size-adjusted Power of Di¤erent Testing Procedures for VAR(1) Error with sample
size T = 200 and the number of joint hypotheses p = 2 (�K6�, �K12�, �K24�and �KVB�
are the Near-Unity Fixed-smoothing tests while �K6*�, �K12*�, �K24*�are the Near-Unity
F tests)
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8 Appendix

The following lemma will be used in our proofs. It is a slight modi�cation of Lemma 1 in

Sun (2013b) and can be proved in the same way. The details are omitted here.

Lemma 1 Suppose !T = �T;M + �T;M and !T does not depend on M: Assume that there

exist ��1;M and ��1;1 such that

(i) P (�T;M < �)� P
�
��1;M < �

�
= o(1) for each �xed M and each � 2 R as T !1;

(ii) P
�
��1;M < �

�
� P

�
��1;1 < �

�
= o(1) for each � 2 R as M !1;

(iii) the CDF of ��1;1 is continuous on R,
(iv) For every � > 0; supT P (j�T;M j > �)

p! 0 as M !1: Then

P (!T < �) = P
�
��1;1 < �

�
+ o(1) for each � 2 R as T !1:

Proof of Theorem 1. Under the null hypothesis, we have

1

T

TX
t=1

ytp
T
=
1

T

TX
t=1

etp
T
!d

Z 1

0
Jc (r) dr (22)

by the continuous mapping theorem. Under Assumption 2, it is not hard to show that

1

T 3

TX
t=1

TX
s=1

Q�Th

�
t

T
;
s

T

�
(yt � �y) (ys � �y)0 =

1

T 3

TX
t=1

TX
s=1

Q�h

�
t

T
;
s

T

�
(yt � �y) (ys � �y)0+op (1) :

It remains to show that

1

T 3

TX
t=1

TX
s=1

Q�h

�
t

T
;
s

T

�
(yt � �y) (ys � �y)0 !d

Z 1

0

Z 1

0
Q�h (r; s) Jcm (r) J

0
cm (s) drds (23)

jointly with (22) and
R 1
0

R 1
0 Q

�
h (r; s) Jcm (r) J

0
cm (s) drds is nonsingular with probability one.

We focus on proving the marginal convergence in (23), as the joint convergence results can

be proved using the Cramer-Wold device and the nonsingularity of the limiting matrix can

be proved easily.

Note that (23) is equivalent to

1

T 3

TX
t=1

TX
s=1

Q�h

�
t

T
;
s

T

�
(et � �e)0A (es � �e)!d
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0

Z 1

0
Q�h (r; s) J

0
cm (r)AJcm (s) drds (24)

for all p� p symmetric matrix A: In view of the spectral decomposition of A =
P
�`a`a

0
`,

the above holds if

1
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(25)
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for all p� 1 vector a: But
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So it su¢ ces to show that
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1
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�
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0
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for all p� 1 vector a:
Given that

P
j �j�j (r) �j (s) converges uniformly over (r; s) 2 [0; 1]

2 to Q�h (r; s) ; we

have, for any " > 0; there exists an M > 0 such that������Q�h
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T
;
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T

�
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We use Lemma 1 to complete the proof. Condition (i) of Lemma 1 holds because for each

�xed M; we have

�T;M =
MX
j=1

�j

"
1

T

TX
t=1

�j

�
t

T

�
e0tp
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0
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0Jcm (s) ds := �
�
1;M :

To verify condition (ii) of Lemma 1, we let

��1;1 =

Z 1

0

Z 1

0

24 1X
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�j�j (r) �j (s)

35J 0cm (r) aa0Jcm (s) ds
=
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0
cm (r) aa
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Then
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0

Z 1
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24 1X
j=M+1

�j�j (r) �j (s)

35J 0cm (r) aa0Jcm (s) drds:
Since

PM
j=1 �j�j (r) �j (s) converges to Q

�
h (r; s) uniformly in (r; s) as M ! 1; we have:

for any " > 0; there exist M� > 0 such that
���P1

j=M+1 �j�j (r) �j (s)
��� < " for all M > M�:

So when M is large enough,

����1;M � ��1;1
�� � " Z 1
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Z 1

0

��J 0cm (r) aa0Jcm (s)�� drds
� "
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0
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�2
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� "
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kJcm (r)k2 dr

�
kak = "Op (1) :

Since " is arbitrary, we have ��1;M � ��1;1 = op (1) as M ! 1: Hence condition (ii) of
Lemma 1 holds. It is easy to see that Condition (iii) of Lemma 1 also holds. It remains to

verify the last condition in Lemma 1. We have
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In view of
e0tap
T
=

1p
T

t�1X
j=0

�jT;mu
0
t�ja+

1p
T
�tT;me

0
0a;

and de�ning �u(j1 � j2) := Eut�j1u0t�j2 ; we have

var

�
e0tap
T

�
� 2var

0@ 1p
T

t�1X
j=0

�jT;mu
0
t�ja

1A+ 2

T
var (e0)

=
2

T

t�1X
j1=0

t�1X
j2=0

�j1T;m�
j2
T;ma

0ut�j1u
0
t�j2a+O

�
1

T

�

� 2

T

t�1X
j1=0

t�1X
j2=0

��a0�u(j1 � j2)a��+O� 1
T

�

� 2

T

t�1X
j1=0

t�1X
j2=0

k�u(j1 � j2)k kak2 +O
�
1

T

�
= O(1)

uniformly in T: Hence
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for some constant C that does not depend on T: This implies that, for every � > 0;
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p! 0 as M !1:

Given that all conditions in Lemma 1 hold, we have
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as desired.

The proof for t-statistic tT is similar and is omitted here.

Proof of Theorem 2. In view of Jcm(t) =
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But
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When �0j (r) 6= 0 for large enough j as in the kernel case, we need to strengthen the

above result. In this case,
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0

�Z 1

s
e�cm(r�s)�0j (r) dr

�2
ds � 2� (j + 1)2

�2 (j + 1)2 + 4c2m
: (27)

Combining (26) with (27), we haveZ 1

0

�Z 1

s
e�cm(r�s)�0j (r) dr

�
dWp (s) = Op

 s
�2j2

�2j2 + 4c2m

!
:

To sum up, we have proved the following

cm

Z 1

0
�j (r) Jcm (r) dr =

Z 1

0
�j (s) dWp (s) +

h
j�j (1)j+



�0j (r)

22i op (1) ;
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which holds for both the series case and the kernel case. In the kernel case, we have proved:

cm

Z 1

0
�j (r) Jcm (r) dr =

Z 1

0
�j (s) dWp (s) + j�j (1)j op (1) +Op

 s
�2j2

�2j2 + 4c2m

!
:

Both results hold uniformly over j = 1; 2; : : ::

It follows that

cm

Z 1

0
�j (r) Jcm (r) dr =

Z 1

0
�j (s) dWp (s) + op (1) as cm !1

uniformly over j = 0; 1; : : : for both the series case and the kernel case. Therefore,Z 1

0

Z 1

0
Q�h (r; s) cmJcm (r) cmJ

0
cm (s) drds

=

Z 1

0

Z 1

0

1X
j=1

�j�j (r) �j (s) cmJcm (r) cmJ
0
cm (s) drds

=
1X
j=1

�j

�
cm

Z 1

0
�j (r) Jcm (r) dr

� �
cm

Z 1

0
�j (s) Jcm (s) ds

�0

=
1X
j=1

�j

�Z 1

0
�j (r) dWp (r)

� �Z 1

0
�j (s) dWp (s)

�0
+

24 1X
j=1

j�j j

35 op (1)
=

Z 1

0

Z 1

0

24 1X
j=1

�j�j (r) �j (s)

35 dWp (r) dW
0
p (s) + op(1)

=

Z 1

0

Z 1

0
Qh (r; s) dWp (r) dW

0
p (s) + op(1):

As a consequence,

F1 (cm)

=

�Z 1

0
�0 (s) dWp (s) + op (1)

�0
�
�Z 1

0

Z 1

0
Qh (r; s) dWp (r) dW

0
p (s) + op(1)

��1
�
�Z 1

0
�0 (s) dWp (s) + op (1)

�
=p

= F1 (1) + op (1) as cm !1:

The proof for t1 (cm) is similar and is omitted here.
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