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Pollutant with Endogenous Abatement
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Abstract

Non-strategic firms with rational expectations make investment and emis-
sions decisions. The investment rule depends on firms’ beliefs about future
emissions policies. We compare emissions taxes and quotas when the (strategic)
regulator and (nonstrategic) firms have asymmetric information about abate-
ment costs, and all agents use Markov Perfect decision rules. Emissions taxes
create a secondary distortion at the investment stage, unless a particular con-
dition holds; emissions quotas do not create a secondary distortion. We solve a
linear-quadratic model calibrated to represent the problem of controlling green-
house gasses. The endogeneity of abatement capital favors taxes, and it increases
abatement.



Taxes Versus Quantities for a Stock Pollutant with
Endogenous Abatement Costs and Asymmetric

Information

Larry Karp∗ and Jiangfeng Zhang†

July 21, 2008

Abstract

Non-strategic firms with rational expectations make investment and emissions deci-

sions. The investment rule depends on firms’ beliefs about future emissions policies.
We compare emissions taxes and quotas when the (strategic) regulator and (nonstrategic)
firms have asymmetric information about abatement costs, and all agents use Markov Per-

fect decision rules. Emissions taxes create a secondary distortion at the investment stage,
unless a particular condition holds; emissions quotas do not create a secondary distor-
tion. We solve a linear-quadratic model calibrated to represent the problem of controlling

greenhouse gasses. The endogeneity of abatement capital favors taxes, and it increases
abatement.

JEL Classification numbers: C61; D8; H21; Q28.

Key Words: Pollution control; Investment; Asymmetric information; Rational expecta-
tions; Choice of instruments.

∗Department of Agricultural and Resource Economics, University of California, Berkeley,
karp@are.berkeley.edu

†Asian Development Bank, jzhang@adb.org The opinions expressed in this paper do not necessarily reflect
the views of the Asian Development Bank.



1 Introduction

The danger that greenhouse gas (GHG) stocks cause environmental damage has led to a re-
newed interest in the problem of controlling emissions when there is asymmetric information
about abatement costs. Although hybrid policies, e.g. cap and trade with a price ceiling, are
more efficient than either the tax or quantity restriction, the comparision of taxes and quotas re-
mains an important policy question. Since GHGs are a stock pollutant, the regulator’s problem
is dynamic. Most of the current literature on this dynamic problem assumes that nonstrategic
firms solve a succession of static problems. If, however, a firm’s abatement costs depend on
its stock of abatement capital, the firm makes a dynamic investment decision as well as the
static emissions decision. We study the regulatory problem with asymmetric information when
firms invest in abatement capital. Nonstrategic firms and the regulator solve coupled dynamic
problems.

For a variety of pollution problems, capital costs comprise a large part of total abatement
costs (Vogan 1991) and investment in abatement capital depends on the regulatory environment.
In these cases, the endogeneity of investment is an important aspect of the regulatory problem.
Several recent papers, (Buonanno, Carraro, and Galeotti 2001), (Goulder and Schneider 1999),
(Goulder and Mathai 2000), (Norhaus 1999), assume that the regulator can choose emissions
and also induce firms to provide the first-best level of investment, e.g. by means of an invest-
ment tax/subsidy.

We consider the situation where the regulator has a single policy instrument, either a se-
quence of emissions taxes or a sequence of quotas. This assumption is consistent with many
regulations and proposals that involve an emissions policy but ignore endogenous investment
(e.g., the Kyoto Protocol). In virtually any real-world problem, the regulator is likely to have
fewer instruments than targets. Our model is an example of this general disparity between the
number of instruments and targets, and therefore is empirically relevant. We identify a previ-
ously unrecognized difference between taxes and quantity restrictions, and we provide a simple
means of solving the regulatory problem when a certain condition holds.1 We now describe

1Jaffe, Newell, and Stavins (2003) and Requate (2005)survey the literature on pollution control and endoge-
nous investment. Many papers in this literature, including Biglaiser, Horowitz, and Quiggin (1995), Gersbach
and Glazer (1999), Kennedy and Laplante (1999), Montero (2002), Fischer, Parry, and Pizer (2003), Moledina,
Polasky, Coggins, and Costello (2003), Tarui and Polasky (2005) and Tarui and Polasky (2006) assume that firms
behave strategically with respect to the regulator: firms believe that their investment decisions will affect future
regulation. Several paper, including Malueg (1989), Milliman and Prince (1989), Requate (1998), Requate and
Unold (2003) and Karp (2008) treat firms as non-strategic. Papers that discuss time-inconsistency arising because
of the disparity between the numeber of targets and the number of instruments include Abrego and Perroni (2002)
and Marsiliani and Renstrom (2002)
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the problem in more detail.
In each period the representative firm observes an abatement cost shock that is private in-

formation. If this cost shock is serially correlated, the regulator learns something about its
current value by observing past behavior. The firm knows the current value of the cost shock
and therefore is better informed than the regulator. Both the regulator and firms obtain in-
formation over time. We assume that the regulator conditions the current emissions policy
only on payoff-relevant information: (i) aggregate stock of abatement capital (which affects
the industry-wide marginal abatement costs), (ii) the stock of pollution (which determines mar-
ginal damages) and (iii) the regulator’s beliefs about the current cost shock (which also affects
the industry’s marginal abatement costs). The regulator cannot make binding commitments
regarding future policies; that is, we restrict policies to be Markov Perfect. Firms have ra-
tional expectations; they take the current emissions policy as given and they understand how
the regulator chooses future policies. The non-atomic representative firm is not able to affect
the economy-wide variables that determine future policies. The representative firm therefore
behaves non-strategically, but not myopically, and also uses Markov policies. In this repre-
sentative firm model, all firms are identical in equilibrium, so their ability to trade emissions
permits (under the quota) is unimportant; therefore, in our setting the quota is equivalent to a cap
and trade policy. (In a later footnote we briefly discuss the case where firms are heterogenous
in equilibrium, so that emissions trading is important under quotas.)

The regulator understands that future emissions policies affect the current shadow value of
abatement capital and thus affect current investment. For example, firms’ anticipation that
future emissions policies will be strict would increase the shadow value of abatement capital,
thereby increasing the current level of investment. Therefore, the regulator might want to
commit to future policies as a means of affecting current investment in abatement capital. This
incentive is the source of the familiar time-consistency problem. Our setting has the usual
ingredients that lead to this problem: the regulator with a second-best instrument (the emissions
tax or quota) wants to influence forward-looking agents.

If the private level of investment under the equilibrium emissions policy is socially optimal,
then the regulator has no desire to influence investment and no incentive to change a previously
announced emissions policy. In that case, there is no time-consistency problem and we can
obtain the equilibrium by solving an optimization problem that contains elements of the regula-
tor’s and the firms’ problems. If, however, the regulator’s emissions policy creates a secondary
distortion at the investment stage, the time-consistency problem does arise. In that case, the
Markov restriction is binding and we need to solve an equilibrium problem (a dynamic game
between the regulator and non-strategic firms) rather than a relatively simple dynamic opti-
mization problem. In other words, the type of problem that we need to solve – an equilibrium
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problem or an optimization problem – depends on whether the Markov Perfect emissions policy
(the tax or quota) causes a secondary distortion in investment.

There is another way of thinking about the time consistency problem. The only market
failure is that firms do not take into account the social damages arising from emissions. If
there were no cost shock, or if the regulator and firms had symmetric information, either the
emissions tax or the quota would be sufficient to induce firms to emit at the optimal level.
In that case, firms’ investment decisions would be first best. Therefore, if in addition to the
emissions policy the regulator were able to use an investment tax, the optimal level of that tax
would be identically zero. However, when there is asymmetric information about abatement
costs, there is no assurance that either the emissions tax or the quota leads to the first best level
of emissions. Therefore, with asymmetric information, the equilibrium level of investment
under the emissions policy might not be (information-constrained) socially optimal. In that
case, the optimal level of an investment tax would be non-zero.

We can ask our basic question in two equivalent ways. 1. Is the optimal emissions tax or
quota policy time consistent? 2. Would a regulator who uses either the emissions tax or the
quota increase welfare by additionally using an investment tax/subsidy? (In other words: Is the
optimal investment tax/subsidy identically 0?)

We provide a simple answer to these questions. The optimal quota policy is time consistent;
equivalently, when the regulator can use both an emissions quota and an investment tax, the
latter is identically 0. However, the optimal emissions tax policy is time inconsistent, unless a
particular “separability condition” holds; if this condition does not hold, the optimal investment
tax, when used with the emissions tax, is not identically 0.

This result is useful for two reasons. First, under plausible circumstances the separability
condition does not hold. In these cases, an emissions tax creates a secondary investment
distortion, whereas the emissions quota does not. Thus, we have identified a difference between
taxes and quotas that has previously been unnoticed. Second, when the separability condition
does hold, we can solve the dynamic game by solving a much simpler dynamic optimization
problem that combines elements of the regulator’s and the firms’ optimization problems. The
separability condition holds for an important special case (the linear-quadratic model) that has
been used to study the problem of regulating both a flow and a stock pollutant under asymmetric
information. We generalize this special case by including endogenous abatement capital, and
discuss numerical results of a model of climate change.

The next section discusses a static problem that provides the intuition for the separability
condition. Subsequent sections describe the dynamic model and show the role of the sep-
arability condition. When then discuss the linear-quadratic specialization, and explain how
endogenous investment affects the comparison of taxes and quotas in that setting. In closing
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the paper, we discuss other aspects of the tax versus quantity debate, as it applies to climate
change policy.

2 The one-period example

This section uses a one-period model that demonstrates, in a simple setting, the difference
between taxes and quotas when abatement costs are endogenous. We show that the emissions
quota is always time consistent, and we obtain the separability condition that is necessary and
sufficient for the emissions tax to be time consistent.

The non-strategic but forward looking representative firm’s cost of investment is c(k) and
the firm obtains benefits B (x, k, θ) by emitting x units of emissions when its stock of abate-
ment capital is k and the cost shock is θ. We can think of the function B (·) as a restricted
profit function in which input and output prices are suppressed. Alternatively, we can interpret
B (·) as the amount of avoided abatement costs. For the latter interpretation, define xb as the
Business-as-Usual (BAU) level of emissions, i.e. the level of emissions under the status quo.
Define a = xb−x as the level of abatement, i.e. the reduction in emissions due to a new regula-
tory policy. The abatement costs associated with the new regulations are A = A (k, θ, a). If xb

is a function of (k, θ), we can rewrite the abatement cost function as A (k, θ, a) = B (x, k, θ),
with Aa (·) = Bx (·): marginal abatement costs equal the marginal benefit of emissions.

The benefit function is increasing and concave in x and k and increasing in θ (Bk > 0,
Bθ > 0, Bx > 0, Bkk < 0, Bxx < 0). More abatement capital decreases the marginal cost of
abatement and therefore lowers the marginal benefit of pollution, so Bxk < 0. A higher cost
shock increases the marginal benefits of abatement capital and emissions: Bkθ ≥ 0, Bxθ ≥ 0.

The damage from emissions (external to the firm) is D(x). The regulator chooses either
a tax p or an emissions quota x̄. Throughout this paper, we assume that the emissions quota
is binding for all realizations of θ. Both the regulator and the firm have the same information
about the distribution of θ before the firm observes its value.

Each firm has measure 0, and by choice of units the mass of firms has measure 1. With this
normalization, in a symmetric equilibrium k and x represent the industry-wide capital stock
and aggregate emissions, as well as the firm level values. The non-strategic firm chooses its
(possibly constrained) level of k and x but takes the industry-wide levels as exogenous. In this
section it is clear from the context whether we mean firm or aggregate level variables, but in a
later section we modify the notation to avoid the possibility of misunderstanding.

We consider the following two time-lines:
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Time Line A Time Line B
1. The regulator chooses the policy level (p or x̄). 1. The firm chooses investment (k)
2. The firm chooses investment (k) 2. The regulator chooses the policy level (p or x̄).
3. Nature reveals the cost shock (θ) 3. Nature reveals the cost shock (θ).
4. The firm makes its emissions decision (x) 4. The firm makes its emissions decision (x).

With Time Line A, the emissions policy can influence both the levels of investment and emis-
sions. With Time Line B the emissions policy depends on the level of investment, and influences
only the emissions level. In the one-period game, neither of the two time lines has a greater
claim to plausibility, but the comparison of the two helps to understand the time consistency
problem in the dynamic setting.

If the optimal policy for the regulator is the same under both time lines, then it is obvious
that the regulator uses that policy only to affect the emissions decision, not to influence the
investment decision. In this case, the emissions policy does not create a secondary distortion in
the investment decision; if we were to add a “stage 2.5” to Time Line A, at which the regulator
were permitted to revise the policy announced in stage 1, the regulator would not want to make
a revision when policies are time-consistent.

We show that the emissions quota is always time consistent, but the emissions tax is time
consistent if and only if a particular separability condition holds. Equivalently, if we were to
add a “stage 0” to either time line, at which the regulator announces an investment tax, the
optimal investment tax is always 0 when the regulator uses an emissions quota, but it is 0 when
the regulator uses an emissions tax if and only if the separability condition holds. To establish
this claim, we examine the four games, under the two time lines, for the emissions tax and the
quota.

Emissions Taxes Consider Time Line A when the regulator uses a tax. The representative
firm’s payoff in stage 2 is

E [B(x, k, θ)− px− c(k)] ,

where the expectation is with respect to θ. The firm chooses x in the last stage, conditional
on k and θ. It chooses k before it learns θ. The first order conditions for x and k and the
corresponding decision rules (denoted using ∗) in stages 4 and 2 are

Bx(x, k, θ)− p = 0⇒ x = x∗ (k, p, θ) . (1)

E [Bk(x
∗, k, θ)− c0(k)] = 0⇒ k = k∗ (p) . (2)

Differentiating the first order condition (1) gives the comparative statics result
∂x∗

∂p
=

−1
Bxx (x, k, θ)

and
∂x∗

∂k
=
−Bxk (x, k, θ)

Bxx (x, k, θ)
. (3)
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The regulator’s problem under Time Line A is

max
p

E [B(x∗, k∗, θ)− c(k∗)−D (x∗)] ,

leading to the first order condition

E

½
[Bx(∗, θ)−D0 (x∗)]

∂x∗

∂p
+

∙
[Bx(∗, θ)−D0 (x∗)]

∂x∗

∂k
+Bk(∗, θ)− c0(k∗)

¸
dk∗

dp

¾
= 0,

(4)
(using the notation ∗ = (x∗, k∗)).

With Time Line B the representative firm’s investment decision depends on its point expec-
tation of the emissions tax. This tax depends on the industry-wide level of abatement capital,
which the non-strategic firm takes as given. Therefore, the assumption that the non-strategic
representative firm has rational expectations regarding the policy implies that equations (1) and
(2) are also the firm’s first order conditions under Time Line B. Consequently, the functions
x∗ (k, p, θ), and k∗ (p) are the same under the two time lines, although of course the values of
p in the two scenarios (and therefore the equilibrium values of k and x) might differ. Under
Time line B the regulator takes k as given, so its first order condition for the tax reduces to

E

½
[Bx(∗, θ)−D0 (x∗)]

∂x∗

∂p

¾
= 0. (5)

Denote the optimal tax under Time line B as p̂. We assume that the regulator’s problem
is concave under both time lines, so that the solution to the respective first order condition is
unique. Comparison of equations (4) and (5) shows that the optimal emission tax is the same
under the two time lines if and only if

E

½∙
[Bx(∗, θ)−D0 (x∗)]

∂x∗

∂k
+Bk(∗, θ)− c0(k∗)

¸
dk∗

dp

¾
|p=p̂

= 0. (6)

Since k∗ (p) is not a function of θ, dk∗

dp
is also independent of θ; moreoverdk∗

dp
6= 0, as can be seen

by differentiating equation (2) and using equation (3). Therefore, equation (6) is equivalent to

E

½
[Bx(∗, θ)−D0 (x∗)]

∂x∗

∂k
+Bk(∗, θ)− c0(k∗)

¾
|p=p̂

= 0. (7)

We refer to the following as the “separability condition” since (using equation (3)) it re-
quires that ∂

∂θ
Bxx =

∂
∂θ
BxK = 0 when evaluated at the optimal level of emissions:

Condition 1 (Separability) Bxx and Bxk, evaluated at the optimal x∗, are both independent of
θ.

Remark 1 Equation (7) holds for all functions B (x, k, θ) if and only if the separability condi-
tion holds.
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Proof. In order to establish the sufficiency of Condition 1, note that it implies (using equa-
tion (3)) that both ∂x∗

∂p
and ∂x∗

∂k
are independent of θ. This independence, together with equation

(5) and the fact that∂x∗
∂p
6= 0 imply that p̂ (the optimal tax under Time line B) satisfies

E [Bx(x
∗ (k∗, p, θ) , k∗, θ)−D0(x∗ (k∗, p, θ))] = 0, (8)

i.e. the tax equates expected marginal benefits of emissions with marginal damages (under
Condition 1). Evaluating the left side of equation (7) at p̂ and using equations (8) and (2) we
obtain

E
©
[Bx(∗, θ)−D0 (x∗)] ∂x

∗

∂k
+Bk(∗, θ)− c0(k∗)

ª
|p=p̂ =©

∂x∗

∂k
E [Bx(∗, θ)−D0 (x∗)] +E [Bk(∗, θ)− c0(k∗)]

ª
|p=p̂ = E {Bk(∗, θ)− c0(k∗)}|p=p̂ = 0.

Thus, Condition 1 is sufficient for equation (7) to hold. If either Bxx or Bxk are not inde-
pendent of θ, it is straightforward to construct examples under which the regulator’s first order
conditions for p differ under the two time lines.

It is also easy to show:

Remark 2 Suppose that the regulator uses an emissions tax. If we modify either time lines by
adding a stage 0 at which the regulator is able to choose an investment tax/subsidy, the optimal
level of this policy is identically 0 for all functions B (x, k, θ) if and only if the separability
condition holds.

We omit the proof, which parallels the proof of Remark 1.
In summary, we see that Condition 1 is necessary and sufficient for the optimal emissions

tax to be time consistent, when the regulator chooses the tax before investment. If this condition
does not hold, the regulator would like to announce an emissions tax with a view to influencing
investment as well as emission; but once the firm has made the investment decision, the regula-
tor would then like to revise the tax, in order focus on only the emissions target. Section 5.3.2
discusses the economic logic behind Condition 1.

Emissions quotas If the regulator uses quotas (that by assumption are binding for all θ) the
firm’s emissions decision equals x̄, and ∂x∗

∂x̄
= 1. The firm’s first order condition for the choice

of k (for both of the two time lines) is

E [Bk(x̄, k, θ)− c0(k)] = 0⇒ k = k∗ (x̄) . (9)

Under Time line A, the regulator’s first order condition for x̄ is

E
©
[Bx(x̄, k

∗, θ)−D0 (x̄)] + [Bk(x̄, k
∗, θ)− c0(k∗)] dk

∗

dx̄

ª
= E {[Bx(x̄, k

∗, θ)−D0 (x̄)]} = 0,
(10)
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where the first equality uses equation (9), the fact that k∗ is independent of θ, and dk∗

dx̄
6= 0.

The first order condition under Time line B is identical to the second equality in equation
(10). Thus, when non-strategic firms have rational expectations, the optimal quota is the same
under the two time lines. The regulator uses the quota to target only emissions, and the firm’s
investment decision is information-constrained socially optimal. There is no social value in
using an investment tax when the regulator uses an emissions quota.

3 Basics of the dynamic model

The stock of pollution at the beginning of period t is St−1 and the flow of emissions in period t

is xt. The fraction 0 ≤ ∆ ≤ 1 of the pollution stock lasts into the next period, so the growth
equation for St is:

St = ∆St−1 + xt. (11)

The period t stock-related environmental damage equalsDt = D (St−1) ,withD0
> 0, D

00
> 0.

At time t the representative firm’s level of abatement capital is Kt−1 and its cost shock is θt;
when it emits at xt its benefit is Bt = B (Kt−1, θt, xt). At time t only the firm knows the value
of the random cost shock θt; there is persistent asymmetric information. All agents know the
stochastic process for the cost shock, which we assume is AR(1):

θt = ρθt−1 + μt, μt ∼ iid
¡
0, σ2μ

¢
, ∀t ≥ 1, (12)

with −1 < ρ < 1.2 The sequence {μt} (t ≥ 1) is generated by an i.i.d. random process with
zero mean and common variance σ2μ. At time 0 the regulator knows θ−1, so the subjective
expectation and variance of θ0 is

¡
ρθ−1, σ

2
μ

¢
. This assumption about the regulator’s initial

priors makes the problem stationary; it has no bearing on our results, but merely simplifies the
notation. At time t ≥ 1 the regulator’s variance for the current shock is σ2μ provided that he
has learned the value of the previous shock, θt−1.

The representative firm invests in abatement capital to reduce future abatement costs, i.e. to
increase future benefits from pollution. The flow of investment in period t is It. The fraction
of abatement capital that lasts into the next period is 0 ≤ δ ≤ 1, so the growth equation for Kt

is:
Kt = δKt−1 + It. (13)

The cost of investment, Ct = C (It, Kt−1), is increasing and convex in It. This convexity
means that abatement capital does not adjust instantaneously. A greater degree of convexity
implies that capital adjusts more slowly.

2Throughout the paper we refer to θ as a “cost shock”, as an abbreviation for “random cost parameter”. In
most economically meaningful circumstances, this parameter is positively serially correlated: ρ > 0.
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The endogeneity of the investment decision means that the marginal abatement cost func-
tion, Bx (·), changes endogenously. Slower adjustment of abatement capital means that it is
optimal to adjust emissions more slowly.

4 The Game

In this section it is helpful to distinguish between the representative firm’s level of capital and
the aggregate level of capital. We denote the former by k and the latter by kA. Where
there is no danger of confusion, we denote both using K. Since we normalize the number of
representative firms to 1, kA = k = K in a symmetric equilibrium. The representative firm
understands that it controls k, and that this variable affects its payoff directly, via the function
B (·). This firm takes the aggregate level of capital kA as exogenous; kA has no direct effect on
the firm’s payoff. However, in a Markov Perfect equilibrium, where the regulator conditions
policies on payoff-relevant information, kA affects the firm’s beliefs about future policies.

In order to avoid a proliferation of notation, we do not distinguish between the firm’s level
of emissions and the aggregate level of emissions. However, it is important to bear in mind that
the firm treats aggregate emissions, and therefore the aggregate pollution stock, as exogenous.

The regulator always uses taxes or always uses quotas. The period t policy is the tax pt

or the quota xt. At time t the regulator knows the aggregate capital stock kAt−1, the pollution
stock St−1 and (as we explain below), the lagged cost shock θt−1. These are the payoff-
relevant variables for the regulator. In a Markov Perfect rational expectations equilibrium,
the representative firm takes the current level of the regulatory policy (at time t) as given; it
understands that the policy at time τ > t will be a function of

¡
kAτ−1, Sτ−1, θτ−1

¢
. Since the

firm takes these conditioning variables to be exogenous, it treats future policies as exogenous.
This firm chooses investment It under both policies, and it chooses the level of emissions if the
regulator uses a tax.

In view of the timing conventions in the model, the regulator’s current (tax or quota) policy
influences the firm’s current emission, but not the current level of investment. Investment
depends on the firm’s beliefs about future policies (as was the case with Time Line B in Section
2).

4.1 The Firm’s Emission and Investment Responses

The firm wants to maximize the expectation of the present value of the stream of cost saving
from polluting (B) minus investment cost (C) minus pollution tax payments (under taxes). The
constant discount factor is β, and we use the superscripts T and Q to distinguish functions and
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variables under taxes and quotas.
Taxes. The firm’s value function under taxes, V T

¡
kt−1, θt, pt;St−1, k

A
t−1
¢
, solves the dy-

namic programming equation (DPE)

V T
¡
kt−1, θt, pt;St−1, k

A
t−1
¢
= maxxt,It{B (kt−1, θt, xt)− ptxt − C (It, kt−1)

+βEt

£
V T
¡
kt, θt+1, pt+1;St, k

A
t

¢¤
},

subject to the equation of motion for the cost shock (12), the capital stock (13), and the pollution
stock (11). The firm’s expectation at t of θt+1 and pt+1 is conditioned on the payoff-relevant
variables

¡
kAt−1, θt, St−1

¢
.

The optimal level of emissions solves a static problem with the following first-order condi-
tion

Bx (kt−1, θt, xt)− pt = 0. (14)

Solving for x, we obtain the optimal emission response

x∗t = χ (kt−1, θt, pt) ≡ χt. (15)

The optimal level of investment equates the marginal cost of investment and the discounted
shadow value of abatement capital. Setting kA = k = K, the stochastic Euler equation is3

βEt

©
BK

¡
Kt, θt+1, χt+1

¢
− CK (It+1,Kt) + δCI (It+1,Kt)

ª
− CI (It,Kt−1) = 0. (16)

This second-order difference equation has two boundary conditions, the current abatement cap-
ital Kt−1, and the transversality condition

lim
T→∞

Et

©
βT−tCI (IT , KT−1)KT

ª
= 0. (17)

Quotas. Firms are homogeneous and quotas are not bankable. Thus, under a quota policy,
there is no incentive to trade permits.4 The firm solves the DPE

V Q
¡
kt−1, θt, xt;St−1, k

A
t−1
¢
= maxIt{B (kt−1, θt, xt)− C (It, kt−1)

+βEtV
Q
¡
kt, θt+1, xt+1;St, k

A
t

¢ª
.

3For all of the control problems, we merely write the Euler equation since the derivations are standard. The
first order condition of the DPE with respect to It provides one equation. In this first order condition, the firm’s
expectation of pt+1 is independent of its investment. This independence reflects the fact that the firm is unable
to affect aggregate capital or pollution stock, and therefore cannot affect values of the variables that affect future
regulation. We differentiate the DPE with respect to kt−1, using the envelope theorem, to obtain a second equation.
Combining these two equations gives the stochastic Euler equation.

4In a model without abatement capital, Karp and Zhang (2005) show how trade in permits amongst heteroge-
nous firms enables the regulator to learn the value of the cost shock. Without trade in permits (and in the absence
of investment decisions), the regulator does not know the previous cost shock when choosing the current quota;
in this case, taxes have an informational advantage, relative to quotas. As we point out in the text, when the firm
invests in abatement capital, the regulator does not need tradeable quotas in order to learn the cost shock.
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Again, the firm’s beliefs about the quota in the next period depend on
¡
kAt−1, θt, St−1

¢
.

The optimal level of investment solves the stochastic Euler equation

βEt {BK (Kt, θt+1, xt+1)− CK (It+1,Kt) + δCI (It+1,Kt)}− CI (It,Kt−1) = 0, (18)

and the transversality condition (17).
The investment rule Under both taxes and quotas, the current level of investment depends

on the firm’s beliefs about future policy levels, but it does not depend on the current policy
level. The firm has rational expectations about future policies; we discuss this policy rule in
the next section. Under either taxes or quotas, the representative firm’s equilibrium investment
rule at time t is a function of

¡
kt−1, θt;St−1, k

A
t−1
¢
. When there is no danger of confusion, we

write the investment rule as Ij (Kt−1, θt, St−1), j = T,Q (for tax or quota).

4.2 The Regulator’s Problem

The regulator’s payoff equals the payoff to the representative firm net of taxes, minus environ-
mental damages. The regulator maximizes the expectation of the present discounted value of
the flow of the payoff, i.e. the expectation of

∞X
t=0

βt (B (Kt−1, θt, xt)− C (It, Kt−1)−D(St−1)) .

His policy (always a tax or always a quota) can be a function of (only) payoff-relevant variables:
the current stocks of pollution and capital, and the regulator’s current information about the cost
shock. Under taxes the regulator knows that equation (15) determines emissions. Under either
policy, he knows that investment is given by Ij (Kt−1, θt, St−1), j = T,Q.

The regulator takes as given the investment rule and (under taxes) the emissions rule. At
time t the regulator observes the aggregate stocks St−1, Kt−1. If ρ = 0, the regulator learns
nothing about the current cost shock by observing firms’ past behavior. The past cost shock
provides information about the current shock if and only if ρ 6= 0. Under taxes, the regula-
tor learns the previous cost by observing the response to the previous tax (via equation (15)).
Provided that BKθ 6= 0 the regulator who uses quotas can learn the previous cost shock by ob-
serving the level of investment in the previous period, i.e. by inverting the investment function
IQ (·). From equation (18) , BKθ 6= 0 means that current investment depends on the firm’s
beliefs about future cost shocks. When ρ 6= 0 these beliefs – and therefore current investment
– depend on the current cost shock.

If BKθ 6= 0, as we hereafter assume, taxes and quotas give the regulator the same infor-
mation about the previous cost shock, and thus about the current cost shock. Neither policy
has an informational advantage. Of course, using observed emissions (under taxes) to infer

11



the past cost variable requires only that the regulator solve the first order condition of a static
problem. Using observed investment (under quotas) to infer the past cost variable requires
that the regulator knows the function IQ (Kt−1, θt, St−1); that requires the solution of the entire
equilibrium. Thus, although both policies have the same informational content (unless ρ 6= 0
and BKθ = 0), this information is easier to extract under taxes.

The regulator’s decision rule is a function zi (Kt−1, θt−1, St−1) , j = T,Q that determines
the current tax (j = T ) or quota (j = Q) as a function of his current information, given his
beliefs about the firm’s decision rules.

4.3 The Equilibrium

Both the regulator and the representative firm solve stochastic control problems; the exact prob-
lem that one agent solves depends on the solution to the other agent’s problem. The rational
expectations equilibrium investment rule for the firm depends on the regulator’s policy rule, and
that policy rule depends on the equilibrium investment rule. The investment and the regulatory
decision rules generate a random sequence of pollution and capital stocks. Agents have rational
expectations about these random variables.

An equilibrium consists of a (possibly non-unique) pair of decision rules Ij∗ (Kt−1, θt, St−1)

and zj∗ (Kt−1, θt−1, St−1) for j = T,Q that are mutually consistent; the superscript “∗” indi-
cates equilibrium functions. Hereafter we refer to Ij∗ (Kt−1, θt, St−1), and zi∗ (Kt−1, θt−1, St−1)

as Markov Perfect policy rules.
Modern computational methods make it possible to (approximately) solve these kinds of

dynamic equilibrium problems, i.e. to find a fixed point in function space (Judd 1998), (Marcet
and Marimon 1998), (Miranda and Fackler 2002). These fixed point problems are not trivial,
especially when the state space has more than one dimension – it has three in our problem.

5 Finding the Markov Perfect Equilibrium

In many cases, the type of model described in the previous section must be solved as an equi-
librium problem rather than as an optimization problem. The next subsection explains why
this complication might arise. Using an auxiliary control problem in which the regulator has
two policy instruments, we then identify conditions under which the model can be solved as a
straightforward optimization problem.

12



5.1 The Time-Consistency Problem

In general, the regulator might want to announce a rule that would determine future levels of the
tax or quota. The purpose of such an announcement would be to alter the firm’s investment rule
– as distinct from altering a stock that appears as an argument of the investment rule. The in-
ability to make binding commitments, and the Markov assumption, exclude this possibility. In
a rational expectations equilibrium, current investment depends on beliefs about future policies,
and these beliefs and policies depend on the pollution stock. By choice of the current quota
or tax level, the regulator affects the future pollution stock, which can affect future investment.
Under our assumptions, the only means by which the this period’s policy can influence future
investment is by influencing the future level of the pollution stock.

Consider a simpler problem without asymmetric information, where a representative firm
with rational expectations makes investment decisions. The firm’s optimal decisions depend
on its beliefs about future regulations, and the regulator wants to influence the firm’s decisions.
If the regulator has a first best policy (defined as one that does not cause secondary distortions),
he can induce the firm to select exactly the decisions that the regulator would have used, had he
been in a position to choose them directly. In that case, the regulatory problem can be solved
as standard optimization problem. If, however, the regulator has only a second-best policy,
the familiar time-consistency problem arises. (See Xie (1997) and Karp and Lee (2003) for
discussions of this problem, and references.) The Markov restriction is binding in this set-
ting, so finding the equilibrium requires solving an equilibrium problem rather than a standard
optimization problem.

The presence of asymmetric information in our model leads to the possibility of time-
inconsistency of the optimal emissions tax or quota. We know from the literature on principal-
agent problems that with asymmetric information, non-linear policies are generally superior to
either the linear tax or the quota: neither the linear tax nor the quota is typically the information-
constrained first best policy. We noted in Section 4.1 that the firm’s investment depends on its
beliefs about future policies. Since the regulator has two targets, (emissions and investment)
and only one instrument (which might not be information-constrained first best), it appears that
the regulator might want to use future emissions taxes or quotas to influence the firm’s current
investment decision. In that case, the information-constrained first best tax or quota would be
time-inconsistent: the ability to make commitments about future taxes or quotas would enable
the regulator to achieve a higher payoff than under the Markov restriction. If this were the case,
we would not be able to obtain a Markov Perfect equilibrium merely by solving a dynamic op-
timization problem, but would instead have to solve the equilibrium problem described in the
previous section.
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5.2 An Auxiliary Control Problem

This subsection describes an auxiliary control problem that helps identify conditions under
which the Markov Perfect equilibrium can be obtained by solving an optimization problem.
In this control problem, in each period the regulator sets an emissions tax or quota using the
same information as in the game; later in the same period he observes the current cost shock
and then chooses investment directly. (In contrast, in the game the regulator chooses only an
emissions policy.) The ability to control current investment directly, knowing the current cost
shock, eliminates any incentive to use future emissions policies to control current investment.

In this setting, it does not matter whether the regulator chooses investment directly (e.g. by
command and control), or decentralizes this decision by means of an investment tax/subsidy.
In the former case, firms make no investment decision, and in the latter case, firms merely carry
out the optimal investment decision induced by the investment tax/subsidy.

As an aid to intuition, it is useful to think of decentralizing the optimal investment deci-
sion (from the auxiliary problem) using an investment tax/subsidy. The optimal investment
tax/subsidy is identically 0 if and only if Markov Perfect rules are equivalent to the optimal
policy rules in the auxiliary problem. With an identically zero investment tax, agents have ex-
actly the same optimization problem as in the game. It is optimal to use a non-zero investment
tax/subsidy if and only if the Markov Perfect policies do not solve the auxiliary problem.

The Markov Perfect equilibrium investment rule is conditioned on (Kt−1, θt, St−1), whereas
the emissions tax or quota is conditioned on (Kt−1, θt−1, St−1). Consequently, in the auxiliary
problem we need to consider a two-stage optimization within each period. At the beginning
of the period the regulator knows (Kt−1, θt−1, St−1) and chooses the emissions policy (a tax
or quota); the regulator then learns θt and chooses the level of investment (equivalently, the
investment tax/subsidy).

It does not matter whether this time-line is “plausible”. We use this problem only as a
means of finding conditions under which the Markov Perfect rules can be obtained by solving
a control problem. If the Markov Perfect investment rule is equivalent to the investment rule
in the auxiliary problem, then a regulator who had to choose investment (or an investment
tax/subsidy) before knowing θt would obviously prefer to allow firms to choose investment.
(Firms have better information – they know θt whereas the regulator knows only θt−1 in the
game – and firms choose the information constrained socially optimal level of investment.)
That is, the regulator would use a zero investment tax/subsidy.

We describe the auxiliary control problem when the regulator uses an emissions quota, and
then when he uses an emissions tax.
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5.2.1 Quotas in the auxiliary problem

The regulator solves the following DPE:

J Q (Kt−1, St−1, θt−1) = maxxt Eθt|θt−1{B (Kt−1, θt, xt)−D (St−1)

+maxIt
£
−C (It,Kt−1) + βJ Q (Kt, St, θt)

¤
}

(19)

subject to equations (11) and (13). The first order condition for the optimal quota is

Eθt|θt−1{Bx (Kt−1, θt, xt) + βJ Q
S (Kt, St, θt)} = 0 (20)

and the Euler equation for investment under quotas is

βEθt+1|θt {BK (Kt, θt+1, xt+1)− CK (It+1,Kt) + δCI (It+1,Kt)}− CI (It, Kt−1) = 0. (21)

The transversality condition is

lim
T→∞

EθT |θt
©
βT−tCI (IT ,KT−1)KT

ª
= 0. (22)

5.2.2 Taxes in the auxiliary problem

Using the firm’s emission response function (15), the regulator in the auxiliary problem solves
the following DPE

J T (Kt−1, St−1, θt−1) = maxpt Eθt|θt−1{B (Kt−1, θt, x
∗
t )−D (St−1)+

maxIt
£
−C (It, Kt−1) + βJ T (Kt, St, θt)

¤
}

(23)

subject to equations (11), (13) and (15). We use the definition

Ht ≡
£
Bx (Kt−1, θt, x

∗
t ) + βJ T

S (Kt, St, θt)
¤
,

and the abbreviation χt ≡ χ (Kt−1, θt, pt) = x∗t . The function Ht is the social benefit of an
additional unit of emissions. With this notation, we can write the first-order condition with
respect to pt as

Eθt|θt−1

½
Ht

∂χt
∂pt

¾
= 0, (24)

and the stochastic Euler equation for investment as

βEθt+1|θt

n
BK

¡
Kt, θt+1, x

∗
t+1

¢
− CK (It+1,Kt) + δCI (It+1,Kt) +Ht+1

∂χt+1
∂Kt

o
−CI (It, Kt−1) = 0.

(25)

The transversality condition is equation (22).
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5.3 Social Optimality of the Markov Perfect Rules

We begin with the following:

Lemma 1 Condition 1 is equivalent to the following two conditions: (a) ∂χ(Kt−1,θt,pt)
∂pt

is inde-
pendent of θt. (b) ∂χ(Kt−1,θt,pt)

∂Kt−1
is independent of θt, where pt is the time t emissions tax .

Proof. Totally differentiating the first-order condition (14) gives

∂χt
∂pt

=
1

Bxx (Kt−1, θt, x∗t )
,

∂χt
∂Kt−1

= −BxK (Kt−1, θt, x
∗
t )

Bxx (Kt−1, θt, x∗t )
.

Condition (a) holds if and only if Bxx (Kt−1, θt, x
∗
t ) is independent of θt. This independence

means that Condition (b) holds if and only if BxK (Kt−1, θt, x
∗
t ) is independent of θt.

Our main result is the following

Proposition 1 (i) When the regulator uses emissions quotas, the solution to the auxiliary prob-
lem (19) is a Markov Perfect equilibrium to the original game. (ii) When the regulator uses
emissions taxes, the solution to the auxiliary problem (23) is a Markov Perfect equilibrium to
the original game if and only if the separability condition holds.

The proof, contained in Appendix 1, verifies that the equilibrium conditions in the games and
in the auxiliary problems are identical under the conditions stated in the Proposition.

5.3.1 Significance of the proposition

When the regulator uses quotas to control emissions, the Markov Perfect investment rule is
always (information-constrained) socially optimal. With emissions quotas, the ability to use
an additional policy instrument to influence investment does not increase social welfare.

If the regulator uses emissions taxes to control emissions, the Markov Perfect investment
rule is socially optimal if and only if Condition 1 is satisfied. This condition depends only
on the benefit function B (·), not on the damage or the investment cost function. Under the
separability condition, the investment tax that would support the optimal investment (from the
auxiliary problem) is identically 0.

Proposition 1 identifies a previously unnoticed difference between taxes and quotas. When
the separability condition does not hold, the regulator who uses an emissions tax to control pol-
lution creates a secondary distortion in investment. In these circumstances, private investment
is optimal under an emissions quota but not under an emissions tax. The emissions tax, but not
the quota, create the need for an investment tax/subsidy.

The Proposition also provides a simple way of obtaining the equilibrium for the game when
the separability condition holds. This method requires only solving a dynamic optimization
problem rather than a dynamic equilibrium problem.
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5.3.2 Interpretation of the Separability Condition

We first identify the secondary distortion under emissions taxes, and we explain why it vanishes
if the separability condition holds. This discussion also explains why emissions taxes and
quotas typically have different effects, as regards the secondary distortion.

In order to identify the secondary distortion, we follow the standard procedure of com-
puting the investment tax/subsidy that supports the information-constrained first best invest-
ment policy. Suppose that firms face an investment tax st, so their single period payoff is
B(·)−C (·)− stIt− ptxt. We can write the Euler equation for the capital stock corresponding
to this problem, and compare it to the optimal investment policy under an emissions tax, equa-
tion (25). We omit the details, but the comparison implies that the investment tax supports the
socially optimal level of investment if and only if5

−st + βδEθt+1|θtst+1 = βEθt+1|θt

½
Ht+1

∂χt+1
∂Kt

¾
. (26)

The left side of equation (26) equals the effect of the tax sequence on the marginal incentive
to invest in the current period. Under the investment tax, an additional unit of investment costs
the firm st in the current period, but reduces the cost of tax payments by δEtst+1 in the next
period. The right side of equation (26) is the present value of the expectation of the secondary
distortion. Ht+1 is the marginal value to society of an additional unit of emissions in the next
period, and ∂χt+1

∂Kt
equals the change in emissions in the next period caused by an additional

unit of investment in the current period. Thus, the term in brackets in equation (26) is the
value to society of the lower future emissions caused by the additional investment. This benefit
is external to the firm. The optimal investment tax sequence induces the firm to internalize
the present value of the expectation of this additional social benefit of investment – i.e., to
internalize the externality.

The optimal emission quota does not create a secondary distortion. Under the quota, the
expected social benefit of an additional unit of emissions is zero in each period (equation (20)).
The socially optimal rule for determining investment, equation (21), involves only the current
and future expected marginal investment and abatement costs. The socially optimal balance of
these costs is identical to the balance that firms choose.

The optimal emissions tax, in contrast, requires that a marginal change in the tax has zero
expected social value (equation (24)) . This condition is not, in general, equivalent to the re-
quirement that the expected social marginal benefit of emissions (Ht) is zero. The expected
social marginal benefit of an additional unit of emissions is zero if and only if Bxx is indepen-
dent of θ (equivalently, if and only if ∂χ

∂p
is independent of θ). This independence implies that

EtHt = 0.
5The right side of equation (26) equals the function τ , used in the proof of Proposition 1.
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Even if this independence holds, Ht is a random variable, a function of θ. If ∂χ
∂K

is also a
function of θ (i.e., if BxK is not independent of θ), then the social marginal benefit of emissions
is correlated with ∂χ

∂K
. In that case, the expected marginal value to society of the lower future

emissions caused by the additional investment (i.e., the secondary distortion, measured by the
right side of equation (26)) is non-zero. Here, the investment externality is non-zero. Conse-
quently, both Bxx and BxK must be independent of θ in order for the investment externality to
vanish under emissions taxes.

6 The Linear-Quadratic Model

The static model with a flow pollutant shows that a simple comparison of taxes and quotas
requires strong functional assumptions: quadratic abatement costs and quadratic damages and
additive uncertainty (the linear-quadratic model) (Weitzman 1974). Without these assump-
tions, the ranking of taxes and quotas depends on parameters such as the variance of the cost
uncertainty, for which we have very poor (if any) estimates. The major insight from the static
linear-quadratic model is that taxes dominate quotas when the marginal abatement cost function
is steeper than the marginal environmental damage function.

Analytical comparisons of the two policies in the climate change literature use the linear-
quadratic model in which damages arise from the pollution stock, rather than the flow of emis-
sions. Some commentators have claimed that for the regulation of GHGs, taxes obviously
dominate quotas, because the marginal damage function for GHGs is so flat relative to the mar-
ginal abatement cost function. This reasoning is faulty, because in the dynamic setting the
marginal abatement cost depends on the flow of emissions, while the marginal damage depends
on the stock of pollution. The two slopes have different units in the dynamic problem, whereas
they have the same units in the static problem.6 In the dynamic setting it is not sensible to
simply compare magnitudes of the two slopes. The dynamic optimization problem has to be
solved in order to know how to compare these slopes, i.e. to know what constitutes a “large
slope” and a “small slope” with GHGs.

This analysis has been undertaken, with and without serially correlated costs shocks, under
the competing assumptions that the regulator announces the entire sequence of future policies
today (the open loop assumption) or that the regulator conditions future policies on future in-
formation (the feedback assumption), and under the assumption that the regulator expects to

6Suppose we measure stock S in tonnes and emissions x in tonnes/year. Suppose that single period environ-
mental damage is a+ bS2 and abatement cost is c+dx2 and both are measured in dollars per year. Then the units
of b, the slope of marginal damages are $

year·(tonne)2 and the units of d, the slope of marginal abatement costs are
$·year
(tonne)2

.
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learn about a damage parameter (Hoel and Karp 2002), (Newell and Pizer 2003), (Karp and
Zhang 2005),.(Karp and Zhang 2006). This analysis, together with available estimates of pa-
rameter values, supports the view that taxes dominate quotas. Numerical results that do not
use the linear-quadratic model also support this conclusion (Pizer 1999), (Hoel and Karp 2001),
(Pizer 2002).

In order to examine the effect of endogenous investment on policy ranking, we also use a
linear-quadratic model, extended to include abatement capital. The representative firm’s benefit
function is

B (Kt−1, θt, xt) = f0 + (f1 + ψθt)Kt−1 −
f2
2
K2

t−1 + (a− φKt−1 + θt)xt −
b

2
x2t

with f1 > 0, f2 > 0, b > 0, ψ ≥ 0, φ ≥ 0. The function B (·) (which includes the rental cost
of capital) satisfies the separability condition. The cost of changing the level of capital is7

C (It) =
d

2
(It)

2 , d > 0.

Environmental damages are also quadratic:

D(St−1) =
g

2

¡
St−1 − S̄

¢2
where S̄ is the stock level that minimizes damages.

The following Remark collects a number of useful facts about the comparison of policies.
These results will be obvious to readers familiar with the linear-quadratic control problem, so
we state them without proof:

Remark 3 In this linear-quadratic model with additive errors, the Principle of Certainty Equiv-
alence holds. The expected trajectories of all stock and flow variables are the same under taxes
and quotas. The higher moments of these trajectories differ under the two policies. Neither
the policy ranking nor the magnitude of the payoff difference depends on the information state
(Kt−1, St−1, θt−1). The magnitude (but not the sign) of the difference in payoffs depends on the
variance of cost, σ2μ.

In the static version of this problem, damages are caused by the flow of pollution, shocks are iid,
and there is no abatement capital. The static linear-quadratic model has properties analogous to
those listed in Remark 1. In both the static and the dynamic problems, these properties make it
possible to compare policies using a minimum of information (e.g., without using information
on the magnitude of uncertainty or stocks).

7We can replace the investment cost function with a quadratic function of net rather than gross investment,
so that adjustment costs are zero in the steady state. This slightly more plausible model does not lead to any
interesting changes in analysis below. However, it complicates the problem of calibrating the model. Therefore
we discuss only the model in which adjustment depends on gross investment.
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6.1 Regulated Emissions and Investment

For the linear-quadratic model we obtain an explicit equation for the emissions rule (equation
(15)) under taxes:

x∗t = et −
φ

b
Kt−1 +

θt
b
; et ≡

a− pt
b

.

A higher cost realization increases current emissions, and a higher tax or a higher stock of
abatement capital decreases emissions.

Using standard methods (e.g. Chapter 14 of Sargent (1987)) we can solve the firm’s Euler
equation ((16) under taxes and (18) under quotas) to write current investment as a linear function
of current capital (Kt−1) and the firm’s expectations of the future cost variables and policies
(taxes or quotas). The optimal investment under emissions taxes is

I∗t =
λβf1

dδ(1−λβ) + (λ− δ)Kt−1

+λβ
dδ
Et

h¡
ψ − φ

b

¢P∞
j=0 (λβ)

j θt+1+j − φ
P∞

j=0 (λβ)
j et+1+j

i (27)

where 0 < λ < 1 is the smaller root of the quadratic equation λ2 + h
β
λ + 1

β
= 0 and

h ≡ −
h
1
δ
+ β

dδ

³
f2 − φ2

b

´
+ βδ

i
. A lower expected future tax (i.e., a higher value of et+j) de-

creases current investment. A higher expected future cost shock increases (decreases) current
investment if ψ− φ

b
is positive (negative). SinceBKθ = ψ > 0, a higher expected cost shock in-

creases the expected marginal benefit of capital – and thus increases the marginal shadow value
of capital. This effect encourages investment. However, a higher expected cost shock increases
expected emissions, reducing the expected marginal benefit of capital (BxK = −φ < 0) and
discouraging investment. These offsetting effects are exactly balanced if ψ = φ

b
, in which case

the cost shock has no effect on investment, under emissions taxes.
The optimal investment under emissions quotas is

I∗t =
μβf1

dδ(1−μβ) + (μ− δ)Kt−1

+μβ
dδ
Et

h
ψ
P∞

j=0 (μβ)
j θt+1+j − φ

P∞
j=0 (μβ)

j xt+1+j
i (28)

where 0 < μ < 1 is the smaller root of the quadratic equation μ2 + w
β
μ + 1

β
= 0 and

w ≡ −
¡
1
δ
+ βf2

dδ
+ βδ

¢
. Higher expected quotas decrease investment, and higher expected cost

shocks increase investment. With quotas, cost shocks have an unambiguous effect, because the
firm treats future emissions quotas as exogenous.

6.2 A Limiting Case: Flow Externality

If ∆ = 0 all of the pollution stock decays in a single period, and the model collapses to the
case of a flow externality. In this case, emissions in the current period cause damages only
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in the next period: D(St−1) = D(xt−1).8 By defining D̃(xt) = βD (xt) we can write the
difference between the benefits and costs of current emissions as B (Kt−1, θt, xt) − D̃(xt).
This simplification eliminates a state variable (S), making it possible to obtain some analytic
results. We can solve the dynamic programming equations under taxes and quotas and compare
the payoffs. (Details of the calculations are available on request).

We noted in Section 3.2 that both policies enable the regulator to acquire the same informa-
tion about the current cost variable if either of these conditions hold: (a) ρ = 0; or (b) ρ 6= 0 and
ψ 6= 0. The last inequality implies that the regulator learns the lagged value of θ by observing
investment under quotas – see section 3.2 and equation (28). We show that in either of these
two cases, the policy ranking does not depend on the parameters associated with abatement
capital. If, however, neither of these two conditions hold (and if in addition quotas are not
traded) taxes have an informational advantage. In that case, the policy ranking does depend on
the parameters associated with abatement costs.

If ρ = 0, or if ρ 6= 0 and ψ 6= 0, the payoff difference under taxes and quotas, is

J T − J Q =
σ2μ

2b (1− β)

µ
1− βg

b

¶
.

This expression reproduces a result in Weitzman (1974)’s static model and in two dynamic
models ((Hoel and Karp 2002) and (Karp and Zhang 2005)).

If ρ 6= 0 and ψ = 0, and quotas are not traded, the regulator learns the past cost variable
under taxes but not under quotas.9 Here the payoff difference equals

J T − J Q =
σ2u

2b (1− β)

∙
Γ+

µ
1− βg

b

¶¸
(29)

The function Γ > 0 (see appendix) embodies the informational advantage of taxes; Γ depends
on f2, d and δ (among other parameters).

We summarize the implications of these expressions in the following:

Remark 4 For a flow pollutant (∆ = 0): (i) When taxes and quotas have the same informa-
tional content (i.e., if (a) ρ = 0, or if (b) ρ 6= 0 and ψ 6= 0), the policy ranking depends only on
the relative slopes (appropriately discounted) of the marginal benefit and damage functions. (ii)
When taxes have an informational advantage (i.e., when neither conditions (a) or (b) in part (i)
hold and quotas are not traded) the policy ranking also depends on the parameters associated
with abatement capital.

8The specialization in this section simplifies the the stock pollution problem, and it is also of independent inter-
est, because it shows how to compare taxes and quotas for a flow pollutant when abatement costs are endogenous.

9This is one case where the assumption of symmetric firms is important. If, instead, firms receive firm-specific
cost shocks in addition to the common cost shock, and are able to trade permits, the permit price enables the
regulator to acquire the same information as under emissions permits (Karp and Zhang 2005).
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The next section considers the problem of a stock-related pollutant. There, even when
neither policy has an informational advantage, the policy ranking does depend on the parameters
associated with abatement capital – in contrast to Remark 4.i. Here we explain why stock and
flow pollutants have this qualitative difference.

As Remark 3 notes, the expected levels of emissions and of investment are the same under
taxes and quotas. The first order condition for investment (using equation (19) or (23)) is

−CI (It,Kt−1) + βJ i
K (Kt, St, θt) = 0, i = T,Q.

The linear-quadratic structure with additive uncertainty implies thatJ T
K (Kt, St, θt) ≡ J Q

K (Kt, St, θt):
the investment rules under taxes and quotas, conditional on (Kt−1, St, θt), are identical.

For a stock pollutant, J i
K,S 6= 0, so investment at time t depends on the pollution stock at the

beginning of the next period, St. That pollution stock depends on current emissions; therefore,
emissions in period t affect investment in period t. Conditional on the regulator’s information
at the beginning of a period, the current level of emissions is random under taxes and is a
choice variable under quotas. Therefore, conditional on the information at the beginning of
a period, the distribution function for the current level of investment differs under the two
policies. The expected payoff difference therefore depends on the parameters associated with
abatement capital.

In contrast, with a flow pollutant, the current level of emissions has no effect on future
payoffs. The shadow value of capital J i

K depends only on (Kt, θt). With a flow pollutant, the
current investment and current emissions decisions are decoupled. Therefore, the value to the
regulator of the difference in emissions under taxes and quotas does not depend on investment
costs.

7 An Application to Climate Change

With a stock externality problem such as greenhouse gasses, we have three state variables
(greenhouse gasses, the capital stock, and the expected cost shock) and therefore cannot ob-
tain an analytic solution. However, using Proposition 1, it is straightforward to solve the tax
and quota problems numerically. The resulting control problem is almost standard, except
that new information arrives within a period, so there are two stages of optimization within a
period. This fact accounts for the nested maximization in equations (19) and (23). For the
linear-quadratic model, we can solve each of these dynamic programming problems by solving
a matrix Riccati equation. (Details are available upon request.)
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1. Pollutant stock growth St − S̄ = ∆
¡
St−1 − S̄

¢
+ xt.

2. Environmental damage D (St−1) =
g
2

¡
St−1 − S̄

¢2
.

3. Abatement capital growth Kt = δKt−1 + It.

4. Investment cost C (It) =
d
2
I2t .

5. “Business as usual” emissions xbt = m0 −m1Kt−1 + θ̃t.

6. Abatement cost A (xt) =
b
2

¡
xbt − xt

¢2
.

7. “General” benefit function
B (Kt−1, θt, xt) = f0 + (f1 + ψθt)Kt−1 − f2

2
K2

t−1 + (a− φKt−1 + θt)xt − b
2
x2t .

Parameter restriction:
0 ≤ ∆ ≤ 1, g > 0, 0 ≤ δ ≤ 1, d > 0, m0 > 0, m1 ≥ 0, b > 0.

Relation of parameters:
θt = bθ̃t, f0 = − b

2
m2
0, f1 = bm0m1, f2 = bm2

1, a = bm0, φ = bm1, and ψ = φ
b
= m1.

Table 1: The Model of Global Warming.

7.1 Model Calibration

Table 1 describes the model. In order to calibrate the general linear quadratic model described
in the previous section, we assume that benefits are equal to the value of abatement cost that the
firm avoids by increasing emissions. Abatement costs are a quadratic function of abatement,
xbt − xt (row 6), where the BAU emissions xbt is a decreasing linear function of abatement
capital (row 5). A higher level of abatement capital makes it cheaper to reduce emissions,
and also decreases the marginal abatement costs. The cost variable θ̃ (which is proportional to
the random variable θ used above) changes the level of BAU emissions and therefore changes
marginal abatement costs. Row 7 of Table 1 repeats the general linear quadratic model; the
final row gives the parameter restrictions under which this general model reproduces the special
model described in the rows 2- 6 of the table.10 If m1 = 0, capital does not affect abatement
costs. This limiting case reproduces previous linear-quadratic models of a stock pollutant (Karp
and Zhang 2005).

Table 2 lists baseline parameter values. In presenting the simulation results, we use the
parameter π, defined as the percentage loss in Gross World Product due to a doubling of green-
house gasses. This parameter is linearly related to g, the slope of marginal damages. Our

10We ignore the effect of θ̃ on the constant term since the constant has no effect on the regulator’s control.
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baseline parameters assume that π = 1.33, an estimate that has been widely used. For com-
parison, we also discuss results when π = 3.6 (the average of expert opinions, reported in
Nordhaus (1994a)) and π = 21 (the maximum of these expert opinions).

Appendix 3 explains our calibration of the abatement costs (rows 3-6 of Table 1). Our
companion paper (Karp and Zhang 2006)11 describes the calibration of the growth and damage
functions (rows 1 and 2 of Table 1) and of the equation for the random shock (equation (12)).

Parameter Note Value

β a continuous discount rate of 5% 0.9512
∆ pollutant stock persistence 0.9917
δ capital stock persistence 0.85

π the percentage loss in GWP from doubling S̄ 1.33
g slope of the marginal damage 0.0022

billion $/(billion tons of carbon)2

b slope of the marginal abatement cost, 26.992
billion $/(billion tons of carbon)2

d slope of the marginal investment cost, billion $ 703.31

m0 intercept of the BAU emissions, 12.466
billion tons of carbon

m1 slope of the BAU emissions, 0.7266

(billion tons of carbon)/(billion $)
ρ cost correlation coefficient 0.90
σμ standard deviation of cost shock, 1.7275

$/(ton of carbon)
xb0 current CO2 emissions into the atmosphere 5.20

billion tons of carbon

S̄ preindustrial stock, billion tons of carbon 590
S−1 current pollutant stock, billion tons of carbon 781
K−1 initial capital stock, billion $ 10

Table 2: Parameter Values for the Baseline Model.

11That paper studies the problem in which the regulator learns about the relation between pollution stocks
and environmental damages; there we ignore abatement capital. Since performing this calibration, more recent
estimates of climate-related damage have been published (including (Stern 2006) and (Intergovernmental Panel on
Climate Change 2007)) but these are within the range of estimates in our calibration. For this reason, and in order
for the results here to be comparable to those in our earlier paper, we use the same calibration.

24



7.2 Numerical Results

We begin by summarizing results from earlier static and dynamic models that exclude abate-
ment capital. We then discuss new results – those directly related to abatement capital.

7.2.1 Previous results

Previous papers study the relation between the policy ranking and parameters in the linear-
quadratic model with additive errors (Hoel and Karp 2002), (Newell and Pizer 2003), (Karp
and Zhang 2005), . Those papers show that the difference in payoffs under optimal taxes and
quotas, J T − J Q, is decreasing in g

b
. The intuition is the same as in Weitzman (1974)’s static

model. A larger value of g means that damages are more convex in S. In view of Jensen’s
inequality, as damages become more convex it becomes more important to control emissions
exactly (as under a quota) rather than to choose only the expected value of emissions (as under a
tax). A higher value of b makes it more important for the firm to be able to respond to changes
in the cost variable by changing emissions. It is able to respond under a tax but not under a
quota.

There is a critical value of g
b

above which quotas are preferred. This critical value is
decreasing in both β and ∆. When more weight is put on future costs and benefits (higher β),
or when the stock is more persistent (higher ∆), it is more important to control the exact level
of emissions (as under quotas) rather than the first moment of emissions (as under taxes).

The previous papers calibrate models using parameter values that are consistent with pub-
lished estimates of the abatement costs and environmental damages associated with greenhouse
gasses. These studies find that taxes dominate quotas for the control of greenhouse gasses.

These qualitative results also hold for our parameterization of the model with endogenous
abatement capital. This robustness is worth noting, but our analysis adds nothing to the intu-
ition for these results, and therefore we do not discuss them further. Instead, we emphasize the
comparative statics and dynamics associated with endogenous abatement costs.

7.2.2 The role of abatement capital

There are three important parameters related to abatement capital: δ, d, and m1. We consider
the first two briefly, and then concentrate on the third. In all cases, we perform the obvious
experiment of varying one of these parameters, holding all others constant. This experiment
has a shortcoming that we discuss later, where we consider a second type of experiment.

We explained why a more durable pollution stock (higher ∆) decreases the preference for
taxes. However, a more durable capital stock (higher δ) increases the preference for taxes.
Under taxes, the firm responds to a cost shock by changing the level of emissions. Under both
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Figure 1: Dependence of expected payoff difference on cost-related parameters

taxes and quotas, the firm responds to a cost shock by changing the level of capital, provided that
ρ 6= 0.12 The adjustment mechanism via capital provides a partial substitute for the inability
to change emissions under quotas. A large value of δ means that current investment has long-
lasting effects, tending to make capital less flexible. The decreased flexibility associated with
larger values of δ increases the value of being able to respond to cost variables by changing
emissions. A larger value of δ therefore increases the advantage of taxes.

A lower value of m1 (a decrease in the marginal effect of capital on BAU emissions) or a
larger value of d (an increase in the adjustment cost for abatement capital), favors quotas. Fig-
ure 1 shows the relation between the difference in payoffs (the value of using taxes minus the
value of using quotas) and the parameters d and m1 for three values of π, holding all other para-
meters constant. (Recall that π is the percentage loss in global world product due to a doubling
of greenhouse gasses.) When environmental damages are moderate (π = 1.33 or π = 3.6) the
difference in payoffs is insensitive to changes in d and m1; for large environmental damages
(π = 21) the change in either parameter has a noticeable affect on the payoff difference. Pre-

12If ρ = 0, the current cost shock provides no information about the future cost shocks. Since current investment
reduces abatement costs only in future periods, the firm’s investment does not depend on the current cost shock if
ρ = 0.
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vious linear-quadratic models that do not include investment capital are a special case of the
model here, obtained by letting d → ∞ or m1 → 0. Those models tend to understate the
advantage of using taxes.

As d increases, capital increasingly resembles a fixed input; as m1 decreases, abatement
capital has less effect on the marginal benefit of pollution. A larger value of d or a smaller
value of m1 both imply less flexibility of marginal abatement costs. This diminished flexibility
favors quotas, just as does the diminished flexibility in marginal abatement costs associated
with a smaller value of b (the slope of Bx).

In all cases, the present discounted value of the payoff difference under taxes and quotas is
approximately 1 billion dollars, implying an annualized cost of about 50 million dollars. Our
parameterization of abatement costs assumes that the annualized cost of stabilizing emissions
is about 1 percent of income, or 290 billion dollars. Thus, the payoff difference of the two
policies is less than 0.02% of the estimated costs of stabilizing emissions.

The small difference in the expected payoffs may be due largely to the Principle of Certainty
Equivalence, mentioned in Section 5: the expected stock trajectories are identical under taxes
and quotas – only higher moments differ. Uncertainty in our calibrated model (but not in
the general formulation) arises only because BAU emissions are uncertain. Given the (small)
magnitude of this particular type of uncertainty, the higher moments of stocks simply are not
very important. Models that do not satisfy the Principle of Certainty Equivalence find a larger
payoff difference under taxes and quotas (Pizer 1999), (Hoel and Karp 2001).

The relations between the equilibrium decision rules and levels of the state variables are as
expected. The optimal quota (which equals the expected level of emissions under the optimal
tax) decreases with the level of pollution and with the capital stock and increases with the
lagged cost shock (for ρ > 0, as in our calibration). Equilibrium investment is an increasing
function of the stock of pollution and a decreasing function of capital stock. Firms understand
that a higher pollution stock will lead to lower future equilibrium emissions, increasing the
marginal value of investment. A higher aggregate capital stock encourages the regulator to
reduce future emissions, increasing the value of investment. However, the representative firm’s
level of capital equals the aggregate level. For a given quota or tax, a higher capital stock
reduces the marginal value of investment. The net effect of higher capital stocks is to reduce
investment.

As we mentioned above, the comparative dynamics associated with a change in a single
parameter value might be misleading. For example, when we decrease m1 holding other pa-
rameters constant, we change the BAU level of emissions and the abatement costs associated
with a particular emissions trajectory, in addition to changing the marginal effect of capital on
abatement costs. Here we consider a slightly different experiment: When we vary m1 we make
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Figure 2: Changes in expected pollution flows and stocks relative to BAU levels

offsetting changes in m0 in order to maintain current BAU emissions at 5.2, and we require that
the year 2100 BAU emissions are consistent with a particular IPCC scenario.

Our baseline calibration (m1 = 0.7266) makes our model consistent with the IPCC IS92a
scenario that projects BAU CO2 stocks of 1500 GtC in the year 2100 – an approximate doubling
of stocks relative to pre-industrial levels. For comparison we also choose parameters that are
consistent with the IS92c scenario of a 35% increase in CO2 concentration (m1 = 0.0416) and
with the IS92e scenario of a 170% increase in CO2 concentration ( m1 = 1.6622).

Figure 2 graphs optimal abatement levels, i.e. the difference in the BAU and the optimal
levels of emissions (the left panel) and the difference between BAU and the regulated pollution
stock (the right panel), as a function of time. The three graphs in each panel correspond
to the three values of m1. In all cases, abatement increases over time. Both the level and
the change over time of abatement is greatest when abatement capital has a large effect on
marginal abatement costs (m1 is large). This result is further evidence that the consideration of
endogenous investment in abatement capital increases the optimal level of abatement.
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8 Discussion and Conclusion

The previous literature that compares taxes and quotas assumes that firms solve a sequence of
static problems. Our paper recognizes that firms also make investment decisions which affect
their future abatement costs. The value of this investment depends on the severity of future
environmental restrictions, so the policymaker might have an incentive to announce future en-
vironmental policies in order to influence current investment. When this incentive arises, the
firms’ investment decisions are not constrained optimal, so the regulator would increase wel-
fare if he were able to use an investment tax/subsidy together with the emissions policy. We
showed that for general functional forms, when the regulator uses a quota (cap and trade), the
competitive firms’ investment policy is information-constrained efficient. In contrast, for gen-
eral functional forms, when the regulator uses an emissions tax, the firms’ investment policy is
not information-constrained efficient. In this sense, there is an advantage to quotas, relative to
emissions taxes, that had not previously been recognized.

This particular advantage disappears under a “separability condition” on the primitive func-
tions. The linear-quadratic model, generalized to include endogenous investment, satisfies this
condition. Using a calibrated model and a numerical solution, we found that making capital
more durable or more effective in reducing the cost of abatement, or reducing the marginal cost
of capital, all favor the use of taxes rather than quota. These numerical results and the previ-
ously described analytic result lead to a mixed message for the comparison of policies. Within
the functional assumptions that most previous studies have used, we find that the inclusion of
endogenous investment increases the advantage of taxes. However, for more general functional
forms, quotas have an entirely different type of advantage. We do not know anything about the
magnitude of the latter advantage; its measurement would require a more complicated (i.e. non
– linear quadratic) model, which presents problems of calibration, and it would also require the
solution to a dynamic game rather than an optimization problem.

We close by discussing several other views of the relative efficiency of taxes and quotas.
One view is that the risk of extreme environmental damages, associated with high GHG stocks,
means that over some range damages are likely to be very convex in stocks, i.e. the slope of
marginal damages is actually very large. In addition, over a long enough time span, given the
opportunities for the development and adoption of new technologies, the marginal abatement
cost curve is actually rather flat. Based on these (in our view, plausible) observations, and
reasoning from the standard static model, Dietz and Stern (2007) conclude that quantity restric-
tions are more efficient than taxes for climate policy. We have three reasons for doubting this
conclusion. First, the use of the static framework (or the open loop assumption in a dynamic
setting) is not appropriate for studying climate policy, because the current policymaker cannot
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choose policy levels decades into the future. More rapid adjustment of policy, i.e. a decrease
in the length of period between policy adjustments, favors the use of taxes. Second, even if the
possibility of extreme events makes the marginal damage function much steeper than current
estimates suggest, the magnitude of the slope of damages would have to be implausibly large
to favor quotas. (Hoel and Karp (2002) demonstrate both of these claims.) Third, the current
paper shows that endogenous investment in abatement capital is likely to increase the advantage
of taxes, given the linear quadratic framework.

A second view, which we have heard propounded orally but not in writing, is that the exist-
ing models inaccurately describe the abatement problem and are therefore simply inappropriate
for comparing policies. The objection is that firms will first undertake the cheapest abatement
opportunities, which will not be available in the future. There are (at least) two ways to re-
spond to this objection. First, a stationary upward sloping marginal abatement cost curve (used
in most previous analyses) is obviously consistent with the claim that firms first use the cheap-
est way of reducing emissions, and then use more expensive means when regulation becomes
stricter. However, because abatement is a flow decision, the fact that the cheap abatement op-
portunities were used early in the program does not mean that they are unavailable later in the
program. The firms move up their marginal abatement curves as the policy becomes stricter.
A second response interprets the objection as a call to use a model in which abatement is a
stock rather than a flow decision – specifically, a model with endogenous investment in abate-
ment capital, in which there is a sequence of increasingly expensive technologies that reduce
emissions. It would be fairly straightforward to produce that kind of model, using a slight
modification of the model in this paper. We assumed that the cost of investment is a function
of gross investment. To address the objection, we could modify the cost function so that the
cost of an additional unit of capital increases with the current level of capital. With this formu-
lation, the firms’s level of capital is a proxy for it’s stage of technology. Because it first adopts
the cheapest (most efficient) technologies, it becomes increasingly expensive to make further
reductions in abatement costs. It is not clear how this change affects the policy ranking.

There are several other model variations that would address other interesting questions. For
example, network externalities may cause the productivity of a firm’s capital to increase with
the level of aggregate capital. There may be intra-firm increasing returns to scale. There might
also be learning by doing, so that an increase in cumulative abatement decreases abatement
costs. The inclusion of intertemporal trade (banking and borrowing) under quantity restrictions
would be even more interesting. Because GHGs are a stock pollutant, the stream of damages
can be sensitive to the cumulative emissions over a long period of time without being sensitive
to the precise timing of emissions. Intertemporal trading allows firms to optimally allocate
over time a given cumulative level of emissions. The introduction of banking and borrowing
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(under the quantity restriction) would likely significantly erode the advantage of taxes. The
effect of banking and borrowing on the incentive to invest is not clear. These questions, and
the model variations that they entail, are the subject of current research.

9 Appendix

The appendix consists of four parts. Section 1 contains the proof of Proposition 1. Section
2 provides the formulae for Γ used in equation (29). Section 3 contains information on cali-
brating adjustment costs. Section 3 contains other calibration information similar to that used
in Karp and Zhang (2006). Section 4 is not intended for publication, but is included here to
enable the referee to evaluate the calibration.

9.1 Proof of Proposition 1

We use Jj (·) (j = T,Q) to denote the regulator’s value function in the dynamic game (where
the regulator chooses only an emissions policy), and J j (·) (j = T,Q) to denote the regulator’s
value function in the corresponding auxiliary problem (where the regulator chooses an emis-
sions policy and then chooses investment after observing the current cost variable). We want
to find conditions under which the equilibrium capital and pollution stocks are identical in the
Markov Perfect equilibrium to the game and in the auxiliary problem. Equivalently, we want to
find conditions under which the optimal investment tax/subsidy is identically 0 in the auxiliary
problem.

(i) Quotas When the regulator uses an emissions quota, the Euler equations for investment
in the Markov perfect equilibrium (equation (18)) and investment in the auxiliary problem
(equation (21)) are identical, as are the corresponding transversality conditions. We need to
confirm that the Euler equations for the pollution stock are also identical in the two settings.

In the Markov Perfect equilibrium with quotas the regulator solves the following DPE:

JQ (Kt−1, St−1, θt−1) = maxxt Eθt|θt−1{B (Kt−1, θt, xt)−D (St−1)− C
³
IQt , Kt−1

´
+βJQ

³
δKt−1 + IQt ,∆St−1 + xt, θt

´
},

subject to the private investment rule IQt ≡ IQ (Kt−1, θt, St−1), which is independent of the
current quota level xt. The stochastic Euler equation for pollution stock is:

Eθt|θt−1Bx (Kt−1, θt, xt)− βD
0
(∆St−1 + xt)− β∆Eθt+1|θt−1Bx (Kt, θt+1, xt+1) = 0.

The transversality condition is

lim
T→∞

EθT |θt−1
©
βT−tBx (KT−1, θT , xT )ST

ª
= 0.
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A straightforward calculation confirms that the corresponding Euler equation and transversality
condition in the auxiliary problem are identical to the last two equations. (To obtain the Euler
equation in the auxiliary problem we differentiate the DPE (19) with respect to St−1, using the
envelope theorem; we combine the resulting equation with the first order condition equation
(20).)

(ii) Taxes We first consider the equations that determine the evolution of capital stock.
Inspection of the Euler equations for capital (equation (16) in the Markov Perfect equilibrium
and equation (25) in the auxiliary problem) establishes that these are identical if and only if the
function τ , defined as

τ t ≡ βEθt+1|θt

½
Ht+1

∂χt+1
∂Kt

¾
,

is identically 0. We therefore find necessary and sufficient conditions for τ t ≡ 0. Note that the
assumptions that BxK < 0 and BKK < 0 imply that ∂χt+1

∂Kt
6= 0.

By Lemma 1, the separability condition is equivalent to

Condition 2 (a) ∂χ(Kt−1,θt,pt)
∂pt

is independent of θt. (b) ∂χ(Kt−1,θt,pt)
∂Kt−1

is independent of θt.

We therefore need only show that Condition 2 is necessary and sufficient for τ t ≡ 0. We first
consider sufficiency. If Condition (2a) holds, the first-order condition (24) implies

Eθt|θt−1 {Ht} = 0, ∀t. (30)

If Condition (2b) also holds, we can write τ t as

τ t ≡ β

µ
∂χt+1
∂Kt

¶
Eθt+1|θt {Ht+1} .

Using equation (30), the last equality implies that τ t ≡ 0. Clearly the transversality conditions
in the two problems are the same.

The necessity of the separability condition follows from the previous argument. If either
part of Condition 2 does not hold the function τ is not identically 0. (Of course the equality
τ = 0 might hold for some values of the information state, but we need the stronger condition
that the equality hold identically, i.e., for all possible values of the information state.)

To complete the proof, we need only check that the Euler equations and transversality con-
ditions for the pollution stock are also the same in the two problems. In the Markov Perfect
equilibrium with taxes, the regulator solves the following DPE:

JT (Kt−1, St−1, θt−1) = maxpt Eθt|θt−1
©
B (Kt−1, θt, χt)−D (St−1)− C

¡
ITt , Kt−1

¢
+βJT

¡
δKt−1 + ITt ,∆St−1 + χt, θt

¢ª
,

(31)
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subject to emissions χt given by equation (15), and the private investment rule ITt ≡ IT (Kt−1, θt, St−1).
ITt is independent of the current tax level pt as discussed in Section 4; ∂χt

∂pt
is independent of θt

because of Condition 1. Thus the first order condition for the optimal tax is

Eθt|θt−1
©
Bx [Kt−1, θt, χ (Kt−1, θt, pt)] + βJTS [Kt,∆St−1 + χ (Kt−1, θt, pt) , θt]

ª
= 0. (32)

Differentiating the DPE (31) with respect to St−1, using the envelope theorem, and combining
the resulting equation with the first order condition (32) gives the stochastic Euler equation for
the pollution stock in the dynamic game:

Eθt|θt−1
©
Bx [Kt−1, θt, χ (Kt−1, θt, pt)]− βD

0
[∆St−1 + χ (Kt−1, θt, pt)]

ª
−β∆Eθt+1|θt−1Bx [Kt, θt+1, χ (Kt, θt+1, pt+1)] = 0

. (33)

The transversality condition is

lim
T→∞

EθT |θt−1
©
βT−tBx [KT−1, θT , χ (KT−1, θT , pT )]ST

ª
= 0.

Again, it is straightforward to obtain the Euler equation for pollution stocks in the auxiliary
problem. We differentiate equation (23) with respect to St−1, using the envelope theorem.
Combining the resulting equation with the first order condition (30) leads to the stochastic
Euler equation for the pollution stock in the auxiliary problem. This equation is identical to
equations (33). The transversality conditions are also the same. QED

9.2 Formulae for Γ

The function Γ used in equation (29) is

Γ =

β2ρ2φ2 (d−βh)
b(1+βg

b )
2
(d−βh−dβρ)2

+ βρ2

1+βg
b

1− βρ2
> 0

with
Ξ ≡

µ
f2 −

φ2

b+ βg

¶
β − d

¡
1− βδ2

¢

h =

−Ξ−
r
Ξ2 + 4βd

³
f2 − φ2

b+βg

´
2β

< 0

9.3 Calibration of Abatement costs and the shock

We assume that abatement capital depreciates at an annual rate of 16.25%, the mean of capital
stock depreciation rates in 14 OECD countries (Cummins, Hassett, and Hubbard 1996). This
depreciation rate implies that δ = 0.85.

33



A higher unit of abatement capital decreases the BAU emissions bym1 units. Whenm1 = 0,
BAU emissions are constant, and abatement capital has no effect on the marginal benefit of pol-
lution (i.e., on marginal abatement costs). In this special case, the firm’s emission decision and
investment decision are decoupled, and the firm’s capital stock has no effect on the regulator’s
optimal policy. The restriction m1 = 0 therefore reproduces the linear-quadratic models of
global warming in Karp and Zhang (2006).

The dependence of adjustment costs on gross rather than net investment leads to a simple
method of calibration. In the absence of additional regulation – i.e., under Business as Usual –
firms never invest: Ibt = 0, ∀t ≥ 0. If the initial level of abatement capital is positive, the level
monotonically decreases over time, so BAU emissions monotonically increase:

Kb
t = δt+1K−1, xbt = m0 −m1K

b
t−1 + θ̃t = m0 −m1δ

tK−1 + θ̃t,

where K−1 > 0 is the abatement capital at the beginning of the initial period (t = 0). Our
assumptions provide a simple way to include endogenous investment, and also to reproduce the
stylized fact that BAU emissions will increase. The model is “incomplete”, since it does not
explain why K−1 > 0. The expected future BAU atmospheric CO2 stock is:

St = ∆t+1S−1 −m1K−1
δt
h
1−

¡
∆
δ

¢t+1i
1− ∆

δ

+
£
m0 + (1−∆) S̄

¤ 1−∆t+1

1−∆
, (34)

where S−1 is the pollutant stock at the beginning of the initial period.
The current anthropogenic fluxes of CO2 into the atmosphere is 5.2 GtC13 so we set Exb0 =

m0−m1K−1 = 5.2 to obtain one calibration equation. The IPCC IS92a scenario projects BAU
CO2 stocks at 1500 GtC in 2100 (Intergovernmental Panel on Climate Change 1996), page
23. This estimate, equation (34), and the estimate of current atmospheric CO2 concentration
at S−1 = 781GtC (Keeling and Whorf 1999), gives a second calibration equation. The two
equations imply

m0 = 12.466, m1K−1 = 7.2661.

We have no data on abatement capital, so we choose an arbitrary value for K−1.14 We set
K−1 = 10.

13We use “current” to mean the year 2000. The current total anthropogenic CO2 emissions are about 8.12 GtC,
which equals the sum of 6.518 GtC of global CO2 emissions from fossil fuel combustion and cement production
(Marland, Boden, Andres, Brenkert, and Johnston 1999) and 1.6 GtC annual average net CO2 emissions from
changes in tropical land-use (Intergovernmental Panel on Climate Change 1996). We obtain the current anthro-
pogenic fluxes of CO2 into the atmosphere 5.20 GtC by multiplying the total anthropogenic emissions by 0.64, the
marginal atmospheric retention ratio.

14Even for pollution problems that have been studied in more detail, data on abatement capital is difficult or
impossible to obtain. For example, Becker and Henderson (1999) note the absence of estimates of abatement
capital stocks associated with U.S. air quality regulation.
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We choose the baseline values of d (the slope of the marginal investment cost) and b (the
slope of the marginal abatement cost) to satisfy a scenario in which firms are required to main-
tain emissions at the current level in each period. Firms begin with the initial abatement capital
and solve an infinite horizon investment problem to minimize the present discounted sum of
investment and abatement cost under emission stabilization. In order to determine the two
unknown parameters, we assume:

• The annualized discounted present value of firms’ total (abatement-related) costs is about
1% of 1998 GWP (Manne and Richels 1992).15

• In the steady state the ratio of investment costs to total abatement costs is about 0.5
(Vogan 1991).

These two assumptions lead to the baseline parameter values: d = 703.31, and b = 26.992.

9.4 Calibration material not intended for publication

Row 1 in Table 1 is pollutant stock growth equation. We measure St, the CO2 atmospheric
concentration, in billions of tons of carbon equivalent (GtC). S̄ equals 590GtC, the preindustrial
CO2 concentration (Neftel, Friedli, Moor, and Lötscher and H. Oeschger and U. Siegenthaler
and B. Stauffer 1999). Let et be total anthropogenic CO2 emissions in period t. The proportion
of emissions contributing to the atmospheric stock is estimated at 0.64 (Goulder and Mathai
2000), (Nordhaus 1994b). This fraction accounts for oceanic uptake, other terrestrial sinks, and
the carbon cycle (Intergovernmental Panel on Climate Change 1996). The linear approximation
of the evolution of the atmospheric pollutant stock is

St − 590 = ∆ (St−1 − 590) + 0.64et.

This equation states that 64% of current emissions contribute to atmospheric CO2, and that CO2

stocks in excess of the preindustrial level decays naturally at an annual rate of 1−∆. We take
xt ≡ 0.64et, the anthropogenic fluxes of CO2 into the atmosphere, as the control variable. The
stock persistence is ∆ = 0.9917 (an annual decay rate of 0.0083 and a half-life of 83 years)
(Goulder and Mathai 2000), (Nordhaus 1994b).

We assume that the preindustrial CO2 concentration has zero environmental damage. Dam-
ages from higher CO2 concentration are g

2

¡
S − S̄

¢2. (Row 2 in Table 1). For ease of interpret-
ing the numerical values, we use π to denote the percentage loss in GWP (Gross World Product)

15Manne and Richels (1992) estimate that the total global costs of stabilizing CO2 emissions at the 1990 level
are about 4,560 billions of 1990 US dollars, or 20.25% of the 1990 GWP. We take the same percentage loss and
use the annuanlized value (1− β)× 20.25% = 1%.
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from a doubling of the preindustrial CO2 concentration. With the 1998 GWP of 29,185 billion
dollars (International Monetary Fund 1999) we have

π% · 29185 = g/2 · 5902 =⇒ g = 0.0017π.

For example, π = 1.33 which is widely used corresponds to g = 0.0022. For the sensitivity
analysis we consider two other damage parameters, π = 3.6 and π = 21.0, the mean and the
maximum of expert opinions.

Using maximum likelihood, we fit the following data generating process for global carbon
emissions over the 50 year period 1947-1996 from Marland, Boden, Andres, Brenkert, and
Johnston (1999).

et = e0 + nt+ εt, εt = ρεt−1 + νt, νt ∼ iid N
¡
0, σ2υ

¢
.

The estimates are ρ = 0.9 and συ = 0.1GtC. We convert the emission uncertainty συ into
cost uncertainty σμ by multiplying it by 0.64 (because xt ≡ 0.64et), and then by the slope of
marginal abatement cost b = 26.992 (because θt ≡ bθ̃t). The result is σμ = 0.1 × 0.64 ×
26.992 = 1.7275$/(ton of carbon).
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