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ABSTRACT 

Empirical Tracking and Analysis of the Dynamics in  

Activity Scheduling and Schedule Execution 

by 

Jianyu (Jack) Zhou 

 

One of the major foci in transport research is the identification of the temporal-

spatial decision making structure embedded in activity scheduling and its linkage to 

actual activity/travel execution. The latter part of the research in question has not 

been explored explicitly in real life situations due to the lack of effective data 

collection means. This research presented a real-time activity scheduling, 

activity/travel survey system that incorporates the extraction of activity scheduling 

and activity implementation information within one unified data collection 

framework, under the assumption that in reality activity scheduling and execution are 

an integral and dynamic process that continuously evolves over multiple time 

horizons. During a pilot study of 20 subjects, the system demonstrated its ability in 

successfully capturing the survey participants’ activity scheduling process and 

relevant activity execution into an organized dataset in the real-life, mobile 

environment. With the uniqueness of these empirical data in their full coverage of 

travel modes, site-to-site travel trace and concurrent tracing of activity scheduling 

and execution, they were used for explicitly exploring traveler’s routing choices, 

scheduling pattern and modeling the linkages (congruence and deviation relations) 

 ix



between the actual activity implementation and activity schedules with respect to the 

participants’ social-demographic characteristics and recorded schedule/activity/travel 

attributes. Using a binary logistic modeling approach, the research revealed that 

people’s routing behavior varies with gender, travel distance, different travel modes 

and activity categories. By exploratory statistics and missing value analysis, the 

research showed that activity scheduling behavior does not apply to activity 

categories in an equivalent way. Finally, the activity participation choice and start 

time decision making as revealed in the collected dataset were coalesced into a two-

stage decision paradigm and modeled via nested logistic modeling and a multinomial 

logistic modeling approach. The influencing factors on the linkage between activity 

scheduling and execution were revealed. The multinomial modeling results showed 

the quantitative measures of the effects of factor changes on activity start time 

choices.  

 

Keywords: activity scheduling and execution, real-time survey system, map 

matching and nested-logit-model  
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Chapter 1 Problem Statement 

 

Although a large portion of the activities that people perform daily is unplanned 

ahead of time, activity scheduling is inevitable when people try to make deliberate 

choices to accommodate competing activity needs or tasks. The action of scheduling 

could occur stochastically over time in an unpredictable way and serves as an 

effective means for average people to explore a path through the spatial-temporal 

constraints enforced by human and physical environment.  

 

Researchers from various disciplines (e.g. psychology, geography, transportation) 

are interested in the different aspects of the activity scheduling problems. One of the 

major foci is to identify the temporal-spatial decision making structure embedded in 

activity scheduling and its linkage to actual activity execution. Theoretical advances 

and technological improvements during the past decades (e.g. cognitive model of 

planning and computational process models) have made the former portion of this 

pursuit clearer and easier as considerable modeling and simulation efforts were put 

in. But the latter part of the question is yet to be explored explicitly in a real life 

situation with a more powerful data collection means. The goal of this dissertation is 

to examine the execution status of activity schedules of a small group of sampled 

respondents with respect to a wide range of temporal-spatial constraints and socio-

demographic characteristics by means of empirical data collection. Data are collected 
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with a unique survey system that extracts the activity scheduling and execution 

information within one unified data collection framework in real time. These 

“revealed” data would be used for explicitly defining the relationship of the 

execution status of people’s activity schedules with respect to the factors mentioned 

above through quantitative analysis and model construction.   

 

1.1 Introduction 

   

Activity scheduling is a complex process that involves information acquisition, 

information storage and organization, evaluation, action and learning via feedback 

(Einhorn & Hogarth, 1981). It is also a continuous process of spatial and temporal 

choice over time. The process of spatial choice involves determining the location for 

a future activity among the spatially distributed opportunities. Temporal choice 

involves the decision of starting time, the durations of activities (including the travel 

derived if the activity needs to be conducted at a non-local location) and ensures 

different activities don’t overlap temporally in the course of their execution. Activity 

execution represents the process that converts the planned schedule into the sequence 

of implemented activities under various temporal-spatial constraints. However, 

activity execution is not solely the direct consequence of following activity 

schedules, no matter whether it is explicitly or implicitly formed. The concurrent 

feedback from activity execution experience provides the behavior agents the stimuli 
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to develop better scheduling strategies for the next round via the processing of one’s 

complex human cognitive system.    

 

As revealed by Lee (1999, 2001), two distinct but complementary approaches 

can be identified from the literature for analyzing and predicting the dynamic process 

regarding the decision-making of daily activities. One is rooted in econometric 

studies, which center on the idea that people make their choices with the aim of 

utility maximization. The other approach can be traced back to Psychology, 

Geography and artificial intelligence literature, in which researchers attempt to delve 

into people’s inner cognitive representation of the environment and model the 

decision-making mechanism with the production system that consists of a set of 

disjunctive condition-action rules. The first approach assumes that people evaluate 

the different characteristics that are associated with the choice environment based on 

personal experiences and preferences. The probability for people to choose one 

activity alternative over another is proportional to their valuations of the “utilities” of 

these alternatives (Stopher & Meyburg, 1975). The second approach – computational 

process modeling (CPM), views the individual choices regarding destination, 

departing time, travel mode, etc. as being interdependent with each other. CPM fully 

describes the whole individual choice process of information retrieval, analysis, and 

decision making according to sets of decision rules. It has the potential to simulate 

and forecast people’s activity choices in real-life situations if more reliable data 

could be obtained via an enhanced data collection design. However, static CPM 
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lacks the ability to model the fact that activity decision-making is composed of 

asynchronous choices regarding multiple facets of the activities under planning. 

Selection of activity site, duration, frequency, start time, and travel mode (if travel is 

derived to reach the remote activity site) may not occur concurrently at a single time 

point along the time axis. The effects of the feedbacks from activity execution to 

future scheduling action are yet to be incorporated into CPM to make them more 

approximate to the realistic dynamic decision making process (Goodwin et al., 1990, 

Garling et al., 1994). 

  

These past efforts have been successful in explaining or simulating the process of 

how activity decisions are formulated, but are limited in not being able to analyze the 

interrelated activity scheduling and associated activity execution within one unified 

framework. Specifically, the existing models had put their emphasis on the activity 

schedule formulation but ignored the concurrent activity implementation process. A 

typical example would be the research focus that tried to quantify the sensitivity 

threshold of various types of scheduled activities with respect to the changes in 

human and physical environments. The challenge was approached from multiple 

perspectives - theoretical explanation, simulation of activity schedule formation, or 

study of scheduling strategies variation via controlled experiments, based on the 

assumptions that the scheduling process is composed of a sequence of stages from 

environmental information retrieval, information processing to scheduling decision 

output. Conclusions derived from these methods, however, are not able to explain 
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the real-life phenomenon that sometimes people choose not to follow the schedule. 

This situation is exacerbated in the case that a rule-based model such as CPM is 

sometimes based on the stated preference data for rule extraction under an 

experimental setting. The rules derived from the single case data usually cannot be 

generalized to other situations (Ettema et al., 1996). Conceivably, the elongation of 

previous activity duration will consequently affect the execution of other scheduled 

activities following it. Hence the sole understanding of the activity scheduling 

process does not naturally lead to the understanding of the implementation of the 

scheduling choices (Gärling, 1998).  

    

1.2 Research Objectives, Questions and Hypotheses 

 

The objectives of this research are two-fold: 

1. Develop the systematic data collection and analyzing techniques for tracking 

and recording the concurrent process of realistic activity scheduling and execution. 

2. Identify the critical variables that affect the various relations between 

individual activity schedules and their actual execution based on the “revealed” in-

field data. Model the relationship and quantify the effects of the factor changes on 

people’s activity temporal-spatial choices with respect to their schedules. 

 

To address the research objectives, a real-time system was developed and utilized 

in a pilot study to capture the activity scheduling/execution process as it is driven by 
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time and events, based on the assumption that respondents take the initiative to 

report the consciously-aware activity decision making independently.  

 

The following research questions are expected to be answered via various 

quantitative analyses on the revealed behavioral data: 

 

1. What are the potential constraints faced by people in realistic activity 

scheduling and execution under one unified analysis framework? 

2. Are all activities explicitly planned ahead of their execution? Does the action 

of scheduling specifically relate to the type of activity to be performed? What is the 

frequency of the scheduling action and relevant scheduling horizons? 

3. How can we describe the sensitivity of the execution status of people’s 

activity schedules with a series of factors—socio-demographic characteristics, 

spatial-temporal constraints, etc.? 

4. Are the interactive real-time data collection means effective and efficient in 

capturing data regarding the dynamic process of activity scheduling and execution? 

5. What are the issues involved in the design and implementation of such kind 

of device and the measures necessary to improve data accuracy and system reliability? 

 

The research is expected to clarify the puzzles associated with the following 

hypotheses: 
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1. The congruence and deviation relations between individual activity schedules 

and their actual execution can be described in a series of factors -- socio-

demographic characteristics, spatial-temporal constraints, etc. in several different 

modeling structures. 

2. Various types of activities are differentiated from each other according to the 

degrees of flexibilities associated with them. Not every type of activity is planned 

ahead of time. Habitual activities are conducted without the elaborate planning 

process theoretically associated with them. 

3. A mobile real-time system provides a powerful tool to capture the 

asynchronous activity decision-making and execution process with the least time and 

location constraints.  

 

1.3 Theoretical Framework   

 

Travel is generated from the competing needs to participate in activities. These 

needs can be further classified into three categories: maintenance needs (work or 

business related), subsistence needs (shopping etc.) and leisure needs (recreation 

etc.). Typical activity-based travel behavior studies are oriented towards examining 

people travel activities within the context of time and money allocation among the 

various activity needs. The interwoven travel/activities behavior and people’s 

decisions with respect to them cannot be meaningfully interpreted in isolation from 

the general framework of activity time use and Hagerstrand’s (1970) time-space 
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geography. The various constraints enforced by the environment (as identified by 

Hagerstrand (1970) - capability constraints, coupling constraints and authority 

constraints) potentially limit people’s ability to trade off time for achieving a bigger 

activity and action scope. This entails complex decision making with regard to what 

activity to pursue, when, where, and what people are involved when people are 

trying to fulfill various activity needs (Gärling, 1989). Many years of discrete-choice 

(travel) activity analysis have shown that the interdependent decisions regarding the 

various alternative activity attributes and derived trips might include complex 

choices of many aspects -- activity location, travel mode (if a trip is involved), 

starting time etc. (Ben-Akiva & Lerman, 1985). These choices, however, only 

represent the resulting activity-travel patterns derived from the individual’s decision-

making process. The computational process that generated these outputs in people’s 

minds is the more complicated part to delve into. Classified as cognitive activity, 

scheduling is conducted implicitly and the schedule details can not be revealed 

unless structurally organized questions are asked to elicit them bit by bit. Two 

existing propositions – the successive refinement model and the opportunistic model 

–reflected different views and understanding about the scheduling process (Hayes-

Roth & Hayes-Roth, 1979). Although Hayes-Roth and Hayes-Roth favor the latter 

model as they proposed them and tested it with the “think aloud” protocol, the 

elements (top-down versus multi-directional processing, complete versus 

incremental planning, hierarchical versus heterarchical plan structures) used to 

differentiate the two views are yet to be further examined in more empirical studies. 
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As they have suggested in their article, people with different personalities may 

choose to deal with the scheduling problem with the strategies that best suit the 

scenario. For example, the continuous 24 hours on weekdays is divided by fixed 

working schedules into several segments. The home-work-home (travel) activity 

pattern can serve as the skeleton of people’s activity schedule for them to refine it in 

steps. However, the formulation of the activity schedule on weekends could be far 

more complex than what we can understand with the current research methodology 

(Damm & Lerman, 1981). Systematic techniques need to be developed for shifting 

the data collection emphasis onto the continuous tracking of the activity schedules 

and sequences in space and time and the interaction of them with the time-space 

constraints on individual behavior. Although the long-tradition activity-based 

approach outperforms the trip-based studies in many aspects, the conventional recall 

and recording methods for data collection have become the major constraint that 

hinders the retrieval of more accurate data and the use of a more comprehensive data 

collection design. As activity scheduling could continuously evolve over time even 

while the activity is being undertaken, it is reasonable to conceive a near-real-time 

data collection system to capture the activity scheduling process that is driven by 

time and events. If such a system can be activated by multi-modal input, its use 

would facilitate and encourage the reporting of en-route activity (destination) change, 

the previously under-reported short trips, the multi-stop trips and the associated 

activities with them. Hence not only providing the maximum information about the 

not-well-understood activity-related decision making process, but further improving 
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the analysis of the trip-chaining phenomenon and complex travel patterns. Such a 

system will be fully described in section 3.  

 

1.4 Organization of the Dissertation 

 

The rest of the dissertation will be organized as follows: Section 2 reviews the 

past literature on the theory of activity scheduling, and modeling of the activity 

scheduling process. Section 3 discusses the proposed quantitative analysis on the 

data that are to be collected with a real-time data collection system and the models to 

be constructed for testing the research hypotheses presented in Section 1.2. Section 4 

illustrates the implementation of the real-time activity schedule and execution data 

collection system and explains the activity scheduling and execution data survey that 

supports the research. The empirical data analysis results and modeling results are 

presented in section 5. Finally, Section 6 concluded the research with a summary of 

the research contributions and important findings. The further analysis and model 

constructions to fully realize the full potential of the revealed activity/scheduling 

data are proposed at the end.  
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Chapter 2 Review of the Theories and the Modeling of 

Activity Scheduling and Engagement 

 

 The various travel patterns exposed and revealed in the numerous travel surveys 

and travel activity analysis works are essentially the outcome of following and 

implementing activity schedules. Contemporary travel behavior researchers have 

recognized the importance of establishing the underpinning of travel pattern 

generation within the context of activity scheduling and engagement. For 

systematically researching the topic, they explicitly differentiate two basic concepts 

that are easy to confuse: the generation of an activity program and activity 

scheduling. Bhat and Koppelmen (1993) explained the former as an activity agenda 

that is motivated and driven by individual and household needs, while activity 

scheduling represents the decision making process that sequences the agenda and 

assigns the programmed activities to each feasible slot along the temporal and spatial 

path. As Recker et al. (1986a) pointed out, the scheduling process produces the 

feasible “activity pattern choices from individual activity program” (p307) and the 

actual activity participation depends on the scheduling determination among the 

potential choices. 

     

Activity scheduling is a complex cognitive process that is not directly observable. 

The attempts to explain the underlying mechanism of activity scheduling can be 
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traced back to the late 1970’s and early 1980’s Psychology literature. These early-

stage researches focused more on examining the nature of the activity scheduling 

phenomenon than its relation to the choice of which activity to conduct and the 

travels derived. Einhorn and Hogarth (1981) pointed out that the human behavior to 

a large extent is sub-optimal. Due to people’s limitation in obtaining an exact and 

complete cognition of the structure of the environment, intuition or heuristic rules 

play an important role in the so-called decision-making process such as activity 

scheduling. In other words, people act with “bounded rationality” when dealing with 

tasks like activity scheduling (Kwan, 1994). A good example is Hirtle and Garling’s 

(1992) examination of people’s use of heuristic rules for organizing the destinations 

within one multi-stop trip. The spatial decision-making process of their focus is 

subsidiary to activity scheduling when the planned activity is to be performed at an 

other-than-current location.  

 

Noticing the inherent uncertainty and sub-optimality in people’s decision-making, 

Hayes-Roth and Hayes-Roth (1979) attempted to explain it with an opportunistic 

model of activity planning. They consider the initial motivation for various activities 

as individual desires to perform and the matched operational condition-action rule as 

“cognitive specialists”. “Blackboard” is used to refer to the current status of the mind 

regarding activity decision-making. Each “specialist” writes his decisions on the 

“blackboard” and the others formulate their further actions to be incorporated into 

the activity schedule according to “what was written on the blackboard”. 
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Conceptually the “blackboard” consists of five planes with each for different aspects 

of the task for activity planning. For example, “knowledge-base” is people’s 

cognitive representation of the world context. Its content can be dynamically 

adjusted according to the feedback from the execution of activity schedules on the 

“blackboard”. On the other hand, the “meta-plan” guides what strategy the individual 

would use for approaching the planning problem. Conceivably, the composition of 

“meta-plan” varies with people’s life experience and expertise in dealing with the 

scheduling problem. 

 

Lundberg (1988) does not explicitly address the activity scheduling process but 

emphasizes the task-related decision-making of a human being when facing the 

perceived constraints through their information acquisition mechanism. He stressed 

the effects of environmental cue input on individual’s travel behavior within a 

constrained environment. The cues serving as stimuli to human perception exist in 

the environment abundantly. People’s attention to these cues need to be selective to 

reduce the information space (Einhorn et al., 1979). The time-varying attractiveness 

of various types of activities is represented with fuzzy functions. Top-down and 

bottom-up impulse effects additively determine if an activity should be performed at 

the time being, i.e. if the computed arousal value exceeds the predetermined system 

threshold, the corresponding activity is selected and the next task is continuously 

considered. Due to the use of fuzzy concepts and linguistic variables, the model 

possesses a distinctive feature: the arousal level threshold seems to mimic people’s 
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sensitivity to the temporal variation of different activities pretty well. The low 

arousal level threshold setting could make the model exhibit more of the 

opportunistic nature in human activity scheduling as suggested by Hayes-Roth and 

Hayes-Roth (1979). 

  

Damm and Lerman (1981) concentrated their research on the activity scheduling 

of urban work on weekdays based on the utility maximization assumption. They 

attribute work as the type of activity that is associated with the least flexibility. Thus 

the other types of activities are considered as the next level concerns, to be filled in 

the five blocks of time period defined around the work schedule. The causal factors 

that affect activity decision-making are classified into two sets: One set involved the 

long-term choices of the household as a whole (residential place, household structure 

etc) and the needs that are generated for maintaining the household’s operation; the 

other set of factors are related to spatial and temporal constraints that define the 

activity scope boundary imposed by the environment. Under the conceptual 

framework, the activity-scheduling problem is reduced to a two-fold choice 

regarding how to utilize the discretionary time in the five blocks of time period: 

either performs the planned activity at the home or work location or participates in 

the activity at a location other than home or work.  

 

Damn and Lerman’s (1981) work is insightful but subject to criticism that the 

description of the activity decision-making is structural and static. As indicated by 
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Smith et al. (1982), structural “black boxes” ignore the complex underlying 

behavioral reasoning process behind the phenomenal activity pattern. The preference 

and lifestyle inconsistency among people in a population could compromise the 

predicting ability of simultaneous structural models for people’s reactions to the 

potential policy or transportation infrastructure changes. Based on real-life 

experience, it is easy to draw such a conclusion that people are not capable of 

behaving in a statistically rational way in many cases. Therefore a fixed structural 

description of the linkage between the arbitrarily chosen input and output variables is 

not flexible enough to cover the various facets of the human decision making process. 

On the other hand, Smith et al. (1982) claimed that the computational process model 

(CPM) is more powerful in comparison since it integrates people’s representation of 

the world (the declarative knowledge in their knowledge structure --KS) and 

disjunctive inference rules (the procedural knowledge in KS) for responding to the 

changes in the world into one modeling framework. A large portion of these 

disjunction inference rules (equivalent to the “cognitive specialists” in Hayes-Roth 

and Hayes-Roth’s (1979) opportunistic activity planning) is heuristic in nature, 

which better characterizes the non-optimality and uncertainty exemplified in the 

human decision-making process. In their point of view, CPM has a particular 

meaning in the field of Geography in that the “episodic” routing knowledge can be 

partially captured with the condition-action inference rules, as it is inseparable with 

the spatial learning process, which involves logical inference and deduction 

regarding spatial features. As a part of their next-step work, Smith et al. (1984) 
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tested and explored the derivation of the inference rules for a computational process 

model of the searching behavior in a housing market. Although the test setting is 

experimental in nature, their work indicates that it is practical to generalize the 

inference rules for building a production system model from the observed data 

regarding people’s decision-making process if a “representational language” (e.g. 

disjunctive normal form (DNF)) can be found to fully describe the data and the rules 

can be formed based on the language. Garling et al. (1994) in their review of the up-

to-date developments of CPM models further showed their support for strengthening 

the research efforts toward the direction to complement the traditional structure-

based discrete-choice modeling approach. 

 

Since the concept and application of the production system was first introduced 

into the activity scheduling study, researchers have realized the advantage of using it 

to model activity scheduling behavior. Thus many theoretical and operational 

computational process models (CPMs) have been proposed and implemented as 

computer programs. Several reviews (e.g. Arentze and Timmermans, 2000, Garling 

et al. 1994, Timmermans 2001) have partially or completely covered the currently 

available computational-process models. These models include TOUR (Kuipers, 

1978), NAVIGATOR (Gopal and Smith, 1990), SCHEDULER (Garling et al, 1989, 

1998), STARCHILD (Recker et al., 1986a, 1986b), SMASH (Ettema et al. 1996), 

GISICAS (Kwan, 1994), PCATS (Kitamura et al., 1996, Kitamura & Fujii, 1998), 

AMOS (Kitamura et al., 1993, Kitamura & Fujii, 1998), ALBOTROSS (Arentze & 
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Timmermans, 2000) and CHASE (Doherty and Axhausen, 2001). Each of the CPM 

models addresses a different aspect of activity scheduling and activity-travel 

behavior with its distinct approach. They replicate the complex human decision-

making process and hence are the effective tools to test theoretical assumptions and 

policy effects before a transport policy is enacted (Garling et al. 1994). Some of 

them have been technically used to serve as the theoretical touchstone to the more in-

depth exploration in the analysis of activity scheduling, generation and execution. In 

the following paragraphs, a brief tour of these models is given. Their key features 

and contributions to activity-travel research will be discussed in a condensed form. 

Note that not all the models are in a pure production-system form. Some of these 

models are in essence hybrid in terms of incorporating other approaches into them 

(such as utility maximization (STARCHILD and SMASH) and time-space prism 

(PCATS)) for improving the model performance. There is no unanimous agreement 

on the correct classifications of these models in the research community yet. An 

exemplifying conflict would be the categorization of STARCHILD as utility-

maximizing model in Timmermans’s (2001) review of models of activity scheduling 

behavior. 

 

Kuipers (1978) considered the scheduling problem in a limited domain of route 

choice and route planning. He suggested a CPM model named TOUR, which 

consists of three parts: the cognitive map that represents the incomplete knowledge 

about the surrounding environment, the “you are here” pointer to record people’s 
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current positioning state and the set of inference rules that combine the use the map 

and current state knowledge for deciding the next step of action. The consequence of 

applying an inference rule to the current state would be the change of current 

positioning state in the environment and the filling-in of gaps in the knowledge 

structure. As a loop, an inference rule was searched repetitively and applied to the 

current state until people reach the destination. NAVIGATOR (Gopal and Smith, 

1990) extends and goes beyond the TOUR model with its full devotion to the 

navigation purpose. Thus its information acquisition and storage focus more on 

perceptual information obtained along a linear features during people’s movement. 

“Decision point nodes” and “action links” forms the knowledge network presentation. 

To facilitate the examination of complex scenarios that could occur in real 

navigation experience, NAVIGATOR uses groups of parameters to control the 

simulation of the whole spatial learning and retrieving process. The CPM in 

NAVIGATOR incorporates a two-level scale of searching strategy (global and local) 

for reaching the navigation goals. Which strategy to use depends on the 

completeness and accuracy of the cognitive map the system acquired during the 

learning process. These two models do not explicitly deal with the linkage between 

travel/navigation and activity choice in the constrained spatial-temporal space. But 

they indeed lead us into the insight that the knowledge storage and structure 

(cognitive map) in people’s minds function as the important reference in the en-route 

spatial decision-making process. Considering that activity scheduling could involve 

the mental simulation of a sequence of activities for testing schedule feasibility and 
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resolving potential conflict, these ambiguous and fuzzy beliefs of people partially 

contribute to their satisfaction of sub-optimal activity-travel plans and the 

performance that is associated with the execution of these plans.  

 

Gärling et al. (1989, 1998) refined the representation of the knowledge structure 

in human’s mind into several interrelated components (in addition to the cognitive 

map, short term calendar and long term calendar are added) in their model - 

SCHEDULER. The long-term calendar is assumed to be the container of activity-

related information. If a specific higher-priority activity is activated for fulfilling 

household or individual needs, information retrieved from the long-term calendar 

will be incorporated into an activity schedule and the resulting schedule will be 

saved in the short-term calendar part. SCHEDULER is the first pure computational-

process model that simulates the activity scheduling behavior based on heuristic 

search rules. Other researchers have used it as their work base. Golledge et al. (1994) 

tested the model in the scenario of telecommuting effects on people’s travel pattern. 

Kwan (1994) expanded the SCHEDULER model in the context of ATIS (Advanced 

Traveler Information System) and explored their potential connection to GIS as the 

interface for spatial feature management and analysis. The model she proposed -- 

GISICAS (GIS-Interfaced CPM for Activity Scheduling) –expanded the functions of 

ATIS to include the activity scheduling and execution process within one integral 

modeling framework and provides a set of systematic en-route strategies to support 

the real-time control of the schedule execution. The CPM in GISICAS plays an 
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important role in helping people make activity-travel decisions in response to the 

rapidly changing environment. Partially as navigational guidance, GISICAS takes 

the advantage of the real-time and pre-input spatial information from ATIS and uses 

CPM for searching among the set of feasible spatial opportunities that are supplied 

by the attached GIS. The searching strategies adopted are in nature heuristic (as what 

has been revealed in the past studies of human decision-making process), but more 

refined with the locational spatial binding effects taken into consideration.  

 

STARCHILD (Recker et al. 1986a, 1986b) and SMASH (Ettema et al. 1996) are 

the two mixed-type CPM models that integrate the utility-maximization modeling 

approach together with the rule-based production system for simulating the process 

of activity-travel scheduling. The added-in utility measurement quantifies the 

degrees of satisfaction brought to the schedule makers by various activity plans. The 

emphasis of SMASH is solely on the formation of the pre-activity schedule. Its scope 

of modeling doesn’t include the schedule execution process and the possible 

schedule change en-route. The same applies to STARCHILD. In SMASH, the 

formulation of a satisfactory schedule goes through a recursive stepwise adaptation 

procedure. The temporary schedule derived at each step is evaluated based on the 

associated utility measures. According to the evaluation result, the model determines 

if another activity can be inserted into the schedule or a satisfactory schedule has 

been found thus the whole simulation can be terminated. In comparison, 

STARCHILD adopts a comprehensive modular design to construct a “model 
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system” with each module addressing the different stages in the suggested activity 

scheduling process (activity program generation, the identification of feasible 

activity-travel patterns, utility evaluation of these patterns, and choice among the 

patterns). Essentially STARCHILD uses a combinatorial algorithm with ordering 

and coupling constraints for pruning the solution space to generate all the feasible 

activity-travel patterns. The set of feasible travel patterns are further refined and 

reduced to a set of “non-inferior” activity pattern choices. Finally the “logit” choice 

is made among the “non-inferior” patterns to select the best one based on the utility 

associated with each of them. Many ideas put forward in the construction of 

STARCHILD are theoretically inspiring. But the assumption that the decision-

makers are able to perceive/compare the possible distinctive activity-travel patterns 

and thus select the best opportunity among them is unrealistic. Obviously the human 

mind lacks the capability of dealing with complicated comparisons between large 

volumes of competitive daily activity-travel plans. In addition, the complex 

composition of STARCHILD and its exhaustive exploration of all the possible 

activity-travel patterns make it computational demanding and constrain it from 

becoming fully operational. 

 

PCATS (Kitamura et al., 1996, Kitamura & Fujii, 1998) considers people’s daily 

activity-travel behavior pattern within Hagerstrand’s conceptual framework of time 

geography. The temporal-spatial “prism” determined by the various constraints is 

used to limit the potential choice sets in destination, travel mode and activity 

 21



duration determination. The whole computational process assumes that people’s 

decision-making regarding activity and travel is sequential in nature (choose activity 

type  choose destination  choose travel mode choose activity duration). Each 

step of choice conditionally depends on the decision previously made and is 

simulated by a discrete choice model by itself.  As PCATS explicitly incorporates 

constraints enforced by the environment into the model construction, it is most 

useful in studying the effects of these constraints on people’s activity-travel behavior. 

 

AMOS’s (Kitamura et al., 1993, Kitamura & Fujii, 1998) structure follows the 

streamline of human decision-making process that consists of stages such as 

information acquisition, generation of alternatives, organizing the alternatives, 

evaluation and final determination. Each of the modules in AMOS (i.e. baseline 

activity-travel pattern analyzer, response option generator, activity-travel pattern 

modifier, evaluation routine and acceptance routine) corresponds to each of the 

stages in a certain way. In addition, AMOS combined the use of a rule base and 

utility maximization within one model. The rule base is used for testing the validity 

of the shuffled activity patterns derived from the activity-travel pattern modifier, 

while utility measures constitute the basis of the judgment of which a modified 

activity-travel pattern would be finally chosen. AMOS has been successfully used 

for testing people’s potential activity-travel behavior change in response to various 

transportation demand management (TDM) measures. 
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ALBATROSS (Arentze & Timmermans, 2000) is another purely rule-based 

activity-travel scheduling model. The method of utility comparison for determining 

the best activity-travel alternative is totally expelled from its model construction. 

Arentze and Timmermans (2000) view that the decision rules used in the human 

decision-making process vary with each individual’s adaptation experience with 

respect to the rapidly changing environment. Therefore, they suggested using 

induction methods to capture from data the potential dynamic decision tree used by 

people in making choices regarding activity or travel. As a distinct feature, 

ALBATROSS also considered the interaction effects of two person’s scheduling 

process within a household context (household heads- husband and wife). Due to the 

potentially large condition space in production systems and the preference difference 

across individuals, the decision rule set is difficult to be captured or simulated with a 

small sample drawn from the population. Thus ALBATROSS is not targeted at 

deriving the general set of decision rules to cover general activity-travel decision-

making but only to search for the rule set that best fits the current observed data. 

 

CHASE (Doherty and Axhausen, 2001) assumes that the week period is the 

appropriate time scale that captures the ever evolving activity scheduling process. 

Routine activities are first identified from the household and individual activity 

program to form the optimal “skeleton” schedule. Discretionary activities are 

incrementally filled in to “flesh” out the vacant time slots opportunistically. CHASE 

simulates the interaction among individual’s activity agendas by simultaneous 
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construction of each one’s schedule. Impulsive or unexpected emergencies are built 

into the model via random events. In addition, scheduling and rescheduling in 

CHASE are assumed to be interleaved with the execution of the schedules. This 

makes it approximate the real-life activity scheduling behavior much better than 

other models.          

 

These computational process models discussed above are based on some intuitive 

assumptions and concepts from research experience or expert’s opinions. Their 

representativeness of decision-making principles is questionable when compared to 

real-life situations due to their embedded machinery production mechanism. For 

example, although the interleaving three-way interaction among activity generation, 

scheduling and action have been theoretically recognized, the implementation of 

many CPM models still treat people’ activity scheduling and activity program 

generation as two isolated processes that are sequential in time. This implies that 

people’s activity needs are treated like being completely formed prior to the start of 

the whole day. However, in reality the formulation of the activity program is as 

dynamic as the scheduling process while environmental stimuli continuously spur 

people’s reaction. The feedback from the implementation status of the previous 

scheduled activity potentially affects the scheduling for the next activity and its 

subsequent execution. Besides, in CPM models the linkage between the simulated 

activity schedule and the consequent activity-travel pattern are only examined on the 

basis of simple comparison. To what extent the simulated schedule can predict the 
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actual activity implementation is not fully understood yet. The real-life situation of 

activity execution could be easily under the influence of various psychological or 

environmental factors. One of the key interests that have been long neglected would 

be to identify the set of factors that affects the congruence or deviation of the 

activity-travel with respect to the original schedule. It can be expected that some of 

these factors could affect both the revealed activity-travel pattern and the activity 

planning process. This research intends to explore the interacting relations between 

activity scheduling and the consequent activity execution within one integral 

framework. The distinctive quantitative analysis technique and modeling approaches 

will be further elaborated in Section 3.    
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Chapter 3 Quantitative Data Analysis and Model 

Construction 

 

3.1 Assessment of the Activity Scheduling and Execution Data 

Survey 

 

Data for this research comes from the real-time activity scheduling/execution 

survey to be explained in detail in section 4. The survey centers on data collection 

with computerized real-time mobile devices. The entire data collection procedure 

will be assessed from three aspects. First, analyze the average time that people may 

spend on the scheduling task each day and the variation of data entry time length 

over the one-week survey period to check the data input efficiency. In general, the 

key to get sufficiently accurate in-field/in-situation data for research need is to 

minimize the intrusion effects of the observer or observing equipment on the 

phenomenon or subjects being observed. Second, plot the activity and trip frequency 

variation across the one-week period to check if significant report fatigue effects are 

involved in the data survey. This particular kind of non-response makes the sample 

lose its representativeness of the population from which it is drawn (Brog and 

Merburg, 1980, 1982; Clark et al. 1981; Golob and Meurs, 1986). Last, but not least, 

comments on the survey program are collected from the survey respondents after the 

survey is completed. The feedbacks are summarized in tabulated form to provide the 
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user’s perspective on assessing whether the survey design is sufficient to meet the 

data requirements of this research.  

  

3.2 Quantitative Analysis on the Activity Scheduling/Execution Data 

and Travel Traces 

 

Activities can be classified into obligatory ones and discretionary ones based on 

a rough criteria of the degree of flexibility associated with them. The activities that 

fall in the former class are fixed in schedule and in location, such as work (with no 

telecommuting involved) or study activities (that requires class attendance). The 

latter category can be referred to those activities that are more flexible in time 

arrangements, e.g. shopping, recreational activities, etc. Most of the obligatory 

activities are routinely performed and strongly committed over a certain long time 

period. Their schedules have been optimized as a habitual pattern in the long run 

(Doherty and Axhausen, 2001). It is worth noticing that no explicit pre-planning with 

regard to activity site, duration, start time etc. is associated with routine activities. A 

similar case also occurs for activity needs that arise from impulsive desires. For 

those activities that are indeed planned ahead of time, the pre-planning time scale 

could vary to a great extent, ranging from a few hours to a few days before their 

actual execution. 
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Compared to data from the past travel/activity surveys, the data collected in this 

research is unique not only in its integral records of the dynamic process of 

concurrent activity scheduling/pursuits, but also its coverage of the full spectrum of 

travel modes and complete site-to-site travel traces. Based on the survey data, several 

statistics will be analyzed and presented visually for enhancing our understanding of 

activity scheduling behavior, travel route choice, activity/travel time allocation and 

identifying the critical relationships between activity schedules and their actual 

activity execution. These quantitative analysis techniques applied include: 1) Off-

road travel analysis; 2 ) travel route choices between time/distance optimized routes; 

3)Activity duration and travel duration pattern analysis; 4) Scheduling/Rescheduling 

frequency analysis of different activity types; 5) Analysis of the variation of activity 

scheduling horizon against social-demographic characteristics of the survey sample 

and activity/travel attributes; 6) Missing value analysis to determine the relationships 

of scheduling horizons with respect to the schedule completeness.  

 

3.3 Logit Modeling of Congruence Relationships between Activity 

Scheduling and Execution 

 

Several approaches for building the activity scheduling/execution model are 

available with the empirical observation of how activity scheduling and execution 

are actually made in real-life situation. The options at this research stage may include 

nested logit models, artificial neural networks (ANN), and learning trees etc. These 
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different forms of model construction will facilitate the testing of those hypotheses 

mentioned before from different perspectives, in terms of how spatial–temporal 

constraints, household characteristics and other constraints (such as substitution) 

affect the scheduling, rescheduling of people’s daily activities and their actual 

implementation. In this dissertation, the modeling attempts only focus on the discrete 

choice modeling methods – nested logit modeling and multinomial logit modeling.  

 

Discrete choice modeling techniques have been the focus of activity-travel 

researchers since 1960’s. They have been widely used for the analysis and prediction 

of transportation demands as part of the disaggregate travel demand modeling efforts. 

The so-called nested logit models to be discussed here were derived from the 

traditional multinomial logit models, which deal with the choice among multiple 

discrete alternatives under the IIA (independence of irrelevant alternatives) 

assumption. The nested logit model extended the application of multinomial logit 

model to the multi-dimensional choice situation based on the assumption that a 

subgroup of alternatives “shares unobserved utility components” (Ben-Akiva & 

Lerman, 1985). In this research, estimation of a nested logit model is used to study 

the potential deviation of the respondents’ schedule execution from their stated 

intention – the schedule, with the assumption that schedule execution is an integrated 

decision-making process that conforms to a model in a decision tree form. In a strict 

sense, however, the phenomenon under study is not exactly a choice-among-the-

alternatives situation. But the form of the nested logit model helps in modeling the 
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relationship between activity scheduling and the associated activity execution into 

two stages. At the first stage, the respondent determines if the scheduled activity is 

executed as specified in the schedule or not. If it is not executed as specified in the 

schedule, it means that the activity has been deleted from the daily schedule. In the 

second stage, several model forms could be conceived. One is to model the temporal 

execution status about the activity starting time (on time, ahead of time, late can be 

viewed as the choice set). The other is to model the activity duration (longer, shorter, 

and the same as planned can be viewed as the choice set). Last but not least, the 

spatial attribute of activity execution status can be modeled as locational choice. 

Depending on if the actual execution location is the same as in the schedule or not, 

we may model this level of decision-making as the destination substitution/choice. 

The following diagram (Figure 1) provides a visual depiction of the possible two-

level nested-logit models. The three forms of logit modeling could also be combined 

into one four-level nested-logit model if we assume that the choice of activity start 

time conditionally depends on the choice of activity location and that the choice of 

activity duration conditionally depends on the choice of activity start time, i.e. with 

activity location choice at the second level, activity start-time choice at the third 

level and activity duration choice at the fourth level. Of course, the resulting 

computational cost will be higher than the two-level cases. In general, diagnostic 

analysis is necessary to test which prior model structure is most suitable for the 

problem in consideration (Sobel, 1980). The sequential estimation method (Ben-
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Akiva & Lerman, 1985) is most often used for estimation of the nested-logit-model 

parameters.  

 

Figure 1 Illustration of the possible two-level nested-logit modeling of 

activity scheduling and execution (A, B, C) 

                                                     
     Model A 
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                                                    Model B 
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                                                    Model C 
 

 
  

Suppose that the survey respondent faces the activity participation and start time 

choice indexed as i = 1, 2 (upper level) and j = 1, 2, 3 (lower lever). Under the NLM, 

the probability that one alternative occurs or is chosen can be expressed as:  

Prob (choice j, branch i) = Pj|i * Pi, 

where i refers to the activity participation decision and j refers to the activity start 

time choice. 

Pj|i – the lower level choice in the nested logit model is a multinomial logit choice 

in essence and can be expressed as: 

 Pj|i = exp( Vj|i) / Σ j=3
j=1 exp(Vj|i)  =  exp(βX j|i)/ Σ j=3

j=1 exp(βXj|i) 

Where  
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Pj|i  is the probability of alternative j to be chosen on the condition that the 

alternative I on the upper level has been chosen.  

Vj|i is the deterministic portion of the utility associated with choice j in the choice 

subgroup i. 

β is a vector of model parameters, 

Xj|i is the vector of explanatory variables related to activity start time choice. 

 

Pi – the upper level choice probability, which can be expressed as 

 

Pi = exp( γ Zi + τ Ii) / Σ i=2
i=1 exp( γ Zi + τ Ii) 

 

Where γ is the vector of model parameters 

Z is the vector of explanatory variables related to activity participation decision-

making. 

Ii is defined as the inclusive value for the ith branch, which measures the 

correlation among the random error terms due to unobserved attributes of activity 

participation decisions.  

 

To build the nested-logit model, it is necessary to define a series of attributes for 

computing the “utility” of each alternative. The utility function will be expressed as 

the weighted linear addition of these attributes. Here we only consider the first two-

level model structure illustrated in Figure 1. We may define three vectors of 
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attributes of activity participation choice (Aap), activity start time choice (Aas) and 

combinations of activity participation and start time choice (Aaps). The set of 

attributes in Aaps jointly affect both the activity participation and start time 

determination. Table 1 lists the independent attributes (variables) to be used in the 

model construction.  

 

Table 1 Definition of independent variables for the two-level activity 

scheduling/execution model 

 

Variable name Variable 
representation 

Definition Variable 
type 

Age AGE Age of the respondent Aaps
Gender GENDER Sex of the respondent 

male, female. (1,0) 
Aaps

Driver’s license DRIVERLI Indicates if the person has 
a driver’s license. (1,0) 

Aaps

Income Level INCOME Income level Aaps
Activity types ATYPE The type of activity Aaps
Total 
work/school time 
duration 

WORKTOTA The duration of 
work/school time during 
the day. 

Aaps

Precipitation PRECIPIT The precipitation condition Aaps
Sky condition SKYCONDI The sky condition (sunny, 

cloudy etc.) 
Aaps

Wind condition WIND The wind condition (no 
wind, breezy, etc.) 

Aaps

Temperature TEMPERAT Temperature (cold, cool, 
etc) 

Aaps

Traffic condition 
perception 

TRAFFICA Perception to the 
conditions of traffic at the 
time of activity/travel 
execution. 

Aaps

Schedule Horizon HORIZON How far ahead the activity 
is scheduled. 

Aaps
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Start time 
missing 

STARTMIS If start time element 
missing in the schedule 

Aaps

End time missing ENDMIS If end time element 
missing in the schedule 

Aaps

Location missing LOCMIS If location element missing 
in the schedule 

Aaps

Date missing  DATEMIS If activity date element 
missing in the schedule 

Aaps

IsWeekend WEEKEND If the activity date is at a 
weekend 

Aaps

Participant 
withdraw 

WITHDRAW If a participant withdrew 
from the activity 

Aap

Activity Priority PRIORITY Activity Priority (scaled 
from 1 to 5, 1 as the 
highest) 

Aap

Real-time traffic 
conditions 

TRAFFICR Traffic conditions at the 
time of activity execution 

Aas

Day of the week WEEKDAY Indicate the scheduled day 
in the week (1-7) for the 
planned activity 

Aas

Travel duration TRAVELDU Travel duration Aas
Activity duration ACTIVI5 Activity duration Aas
Length of 
Shortest time 
path  (in 
Kilometers) 

SHORTE1 Length of shortest time 
path  (in Kilometers) 

Aas

Length of 
Shortest time 
path (in Minutes) 

SHORTE2 Length of shortest time 
path (in Minutes) 

Aas

Length of 
Shortest distance 
path (in 
Kilometers) 

SHORTE3 Length of shortest distance 
path (in Kilometers) 

Aas

Length of 
shortest distance 
path (in minutes) 

SHORTE4 Length of shortest distance 
path (in minutes) 

Aas

Travel distance BELIEFTR The distance traveled to 
reach the activity location 

Aas

The ratio of “off-
road” travel 

OFFRATIO The proportion of the travel 
that can’t be matched onto 
a base map (e.g. travel in 
parking lot, bike path, 
sidewalk, etc.)  

Aas
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Number of 
Intersections 

INTERSEC The number of 
intersections encountered 
during travel 

Aas

Is Travel during 
Peak Time 

TRAPEAK If the travel is during the 
peak time (6-9am or 5-
7pm) 

Aas

Travel mode   TRAVELMODE The travel model used to 
reach the activity location 

Aas
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Chapter 4 Activity Scheduling and Execution Data 

Collection 

 

The scientific community is still seeking an effective means to observe the 

process of decision-making actually undergoing in the minds for truly understanding 

its inner working gears. Hayes-Roth and Hayes-Roth’s (1979) tracing of the 

scheduling process by verbal protocol is a first attempt. Ericsson and Simon formally 

proposed the method during the early 1980’s (Ericsson & Simon 1980, 1984). The 

method elicits the details of the cognitive process embedded in the decision-making 

task by asking the interviewee or survey respondents to speak aloud their ongoing 

mind activities. The action of “think aloud” occurs concurrently with the decision-

making task being performed. As the information collected by the “Think Aloud” 

method originates from the “real-time” cognitive process that stores it in the short-

term memory (STM), data derived are not subject to the possible distortion effects of 

any intermediate encoding or interpreting process. The only possible “negative” 

effect is that the duration of the whole decision-making process may be elongated a 

little due to the need to verbalize the originally silent cognitive process (Ericsson & 

Simon, 1980). However, the methodology requires extensive personnel supervision 

and recording efforts. In addition, the cost to analyze the data derived from it is high 

(Smith et al., 1982, 1984). This means the method could be useful in an in-lab 

experimental setting, but might not be a good choice for large-scale data collection 
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efforts. In order to fully examine the activity scheduling behavior and its execution 

status in real-life activity implementation, an in-field data collection method is 

required, which enables the continuous activity scheduling and execution 

observation over a relatively long survey period. However, this does not preclude the 

incorporation of the previous “think aloud” approach in the data collection practice. 

The rapid development in speech recognition and text-to-speech make it possible to 

integrate the “think aloud” protocol onto in-field devices to fully develop its 

application potential. 

 

The research presented and implemented a real time activity 

scheduling/execution data collection system augmented with a multi-modal input 

interface, which, with a client-server system design, will enable a researcher to 

monitor the travel data collection process in real time through time and space by 

wireless networking and respond to the possible data errors in a timely way. As data 

are collected in near real-time by its features for in-field use (with a Pocket PC and 

GPS) and the direct link of the survey unit to the central data server (with wireless 

network connection), the system has the capability of capturing the interleaving 

activity agenda generation and activity scheduling process and recording the 

associated activity-travel pattern under the guidance of refined activity schedules. In 

addition, the system enables the researchers to monitor behavior that happens 

infrequently and differentiates the random variations in people’s travel activities 

from the genuine trend change. By augmenting the existing interface of the data 
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collection devices with speech input-output functions, it is expected that the system 

will be useful for simulating the role of interviewers who in the past home interview 

surveys help the respondent to “think aloud” the subconscious activity scheduling 

information varying with any space-temporal context. The solid database provided 

by the system will be used to support the intended modeling research elaborated in 

section 3 regarding activity scheduling and the associated activity execution status.   

 

4.1. Past Data Collection Efforts 

 

Among past efforts, one comprehensive approach for fulfilling an activity 

scheduling survey is the CHASE survey program by Doherty and Miller (2000), 

which was probably the first successful attempt to provide real-life scheduling data 

for researchers who work on general activity scheduling and execution. This activity 

scheduling survey assumes that people formulate next-week activity agendas during 

the weekends immediately before the week begins. Daily activity scheduling actions 

are recorded by revolving the agenda needs via Internet-connected home computers. 

This electronic survey procedure became the basis of Lee’s work on REACT! (Lee 

et al., 2001, Lee and McNally, 2000). Survey results using either procedure are 

encouraging in terms of their success in capturing the dynamic activity scheduling 

processes over a relatively long survey period (one week), but both lack the ability to 

trace the actual activity-travel execution due to the mobility constraints of the 

computing device they use. 
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Many current computer-assisted travel/activity surveys have incorporated the use 

of a minicomputer, GPS, and Geographic Information Systems (GIS) for enhancing 

the data collection device’s mobility and facilitating the activity-travel data capturing 

through automatic features. One of the pioneer applications is the semi-automatic 

data collection device used in the Lexington Travel Survey (Battelle Transportation 

Division, 1997). In that survey, an on-board mini-computer coupled with a 

connecting GPS module made possible the collection of physical travel paths and 

travel times with considerable accuracy. Other efforts (Guensler and Wolf, 1999, 

Draijer et al. 2000, Stopher and Wilmot, 2000) substituted the mini-computer with 

more portable devices such as PDAs. These approaches allow the survey respondents 

to “actively” interact with the computing device and trigger its data input/recording 

functions. Activity attributes data such as trip purposes, activity types, etc., besides 

the spatial-temporal path trace, are input in real-time via a pre-formatted interface.  

 

As one manifestation of technology advances in survey methodology, the GPS-

assisted device extended the spatial data collection ability of travel/activity survey to 

accurately-measured two-dimensional space. It helped alleviate the reporting burden 

of spatial-temporal attributes on the part of the survey respondents. Hence the survey 

data quality was subject to less potential fatigue effects than the traditional paper-

and-pencil approach. In addition to facilitating the efficient capturing of spatial 

information, interactive geo-coding and other intelligent analysis functions provided 
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by GIS may be applied to the raw data for inferring the derived geo-spatial 

information (e.g., the computer-based intelligent travel survey system by Resource 

Systems Group, Inc. (1999)).  The disadvantages of the purely “active” data 

extracting approach were comprehensively discussed by Stopher, Bullock, and 

Greaves (2001). The main concerns are the intrusive effects of the device on 

respondents’ travel/activity time usage. Real-time data input tasks typically interfere 

with daily travel/activity routines. In extreme cases, carrying the cumbersome device 

may even force the respondents to alter their travel/activity patterns (Draijer et al. 

2000).  These negative impacts on the data quality can not be neglected by the 

survey administrators.  

 

To avoid the intrusive effects of the semi-automatic survey devices and to 

overcome other defects associated with it, some attempts have been made to 

segregate the recording of spatial-temporal travel trajectory from the activity/travel 

attribute data collection (Steer Davies Gleave and GeoStats, 2003, Stopher, Bullock 

and Horst, 2002, Stopher and Collins, 2005). The recording function GPS devices in 

these pilot studies/surveys were designed to be motion-sensitive to facilitate the 

“passive” collection of travel geography data. If further information on the relevant 

activity/travel attributes is required, they can be retrieved in a recall session 

afterward, either via a computer-assisted-telephone-interview (CATI) or on-line 

recall survey with animated trip maps as prompters. Currently, the “passive” data 

collection practice is mostly limited to automobile use, because the GPS loggers 
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require a reliable external power supply. The wearable counterparts with 

rechargeable battery support and full coverage of the spectrum of travel modes are 

under further development by Stopher and his colleagues (Stopher, Greaves and 

FitGerald, 2005). The pilot study by Stopher et al. (2001) indicates no significant 

memory slip problem for up to 14 days after the travel geography data is recorded. 

However, periodic compilation of scenario information for assisting activity/travel 

attribute recall can be a complicated procedure in terms of identifying the missing 

short trips or temporary stops (Stopher, P., Bullock and Jiang, 2003). 

 

The GPS device alone or its combination with other computing devices shows 

great potential for improving data accuracy, expanding data coverage, and lessening 

survey burdens. The integrated activity scheduling and execution survey required by 

this research can also benefit from the technologies that have been widely explored 

in these past travel survey applications. However, it should be noted that the 

innovative approaches that incorporate new technology for travel survey automation 

and data quality improvement are not cost-free. Furthermore, the utilization of 

advanced technology in travel/activity surveys restrains the acceptability of the 

practice within population subgroups other than computer-literate youngsters. The 

effects of the self selection of samples may cause under-representation of non-

computer-users in the sample, especially when the active approach is taken for 

collecting activity/travel attributes in real-time. A variety of measures are commonly 

used to encourage survey participations from all population subgroups: for example, 
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monetary incentives to decrease the non-response rate, simplified user interfaces and 

passive data recording to reduce the “intrusiveness” of the device. On the other hand, 

some preventive measures have been taken to prevent survey participants from 

walking off with the expensive survey devices after the survey finished. When 

commercial devices are used in the survey, it is usually necessary to customize them 

to hide all non-survey related functions, since single-function devices typically 

attract little interest from the participants beyond the survey period (Stopher, 

Greaves and FitGerald, 2005).   

 

In spite of the issues that need to be fully explored and resolved, GPS and other 

computing devices remain powerful tools for tracking multi-day travel/activity data 

over long periods. The data collection methodology presented in this research means 

to bring the technology improvements together in order to extract activity scheduling, 

travel and activity implementation data within a unified data collection framework in 

an active manner. The feasibility of the system was tested later via a pilot study with 

a small subject sample. 
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4.2. Conceptual Framework and Survey Methodology 

 

4.2.1. Dynamic Scheduling Tracing 

 

In order to facilitate the data collection needs regarding activity/trip scheduling, 

special attention must be paid to the underlying mechanism of how respondents 

make planning decisions prior to the actual execution of activities/travels. Until 

recently, little has been known regarding the strategies that people use for 

sequencing and committing activities. According to Gärling, Gillholm and Gärling 

(1998), a person’s intention to execute an activity at a future time may be unrealistic 

due to his/her ignorance about potential conflicts in other concurrent planning. The 

intention could be easily deferred or given up under time pressure in some cases 

(Gärling et al. 1999). Therefore, a sound activity/scheduling survey system should be 

able to elicit and record from various forms and stages of activity scheduling 

processes. According to the research by Doherty and others (Doherty and Miller, 

2000; Doherty et al., 2001), the use of a tabular task scheduler potentially reinforces 

the survey respondents’ awareness of the need to plan their activities with the 

various constraints being taken into consideration—otherwise, their activity plan 

construction and subsequent behavior may be inadvertently affected. 

 

The survey system suggested in this research avoids using a uniform tabular 

visual interface for collecting people’s decisions about trip planning. The embedded 
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scheduling collecting module does not intend to function as a memory jogger or a 

scheduling tool to help the respondents track daily tasks. Instead, the respondents are 

allowed to “talk” or type into a data logger whenever an activity planning decision is 

being made. Data are collected in a way similar to a “think aloud” method (Ericson 

and Simon, 1984). The types of decision-making include “add/delete or schedule 

adjusting” operations as in the Ettema and Timmermans’ (1994) simulation program 

or in CHASE (Doherty and Miller, 2000). This approach also corresponds to the 

common experience that activity scheduling does not occur at a fixed point along the 

time axis but, rather, continuously evolves. 

 

Besides focusing on the activity scheduling action, the data collection system 

also keeps track of the execution consequence of the planned activity schedule in 

order to measure the degree of consistency between the activity planning and its 

actual implementation. Two types of plan-execution inconsistency can be 

differentiated, as indicated by Gärling et al. (1998). One such case is the “false 

alarm,” which means the survey respondent made a plan for the activity but did not 

pursue it. The other case is “miss,” which indicates that the survey respondent did 

not show an intention to perform the activity before or enlist it in the activity plan, 

even though the activity was actually performed. In our activity scheduling 

(execution) survey, the system deals with a “false alarm” by marking the execution 

status of the planned activity as “delete from activity plan”; and, in the case of a 

“miss,” the system will remind the survey respondent that the activity is unplanned 
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in nature. It will also ask the respondent if the planning decision has been forgotten 

and not been put into the system. If not, the “miss” activity will be recorded as an 

impulsive action. 

 

4.2.2. Multi-modal User-Device Interaction: Human-machine “Talk” 

protocol 

 

Speech capabilities are integrated into the survey program to facilitate the 

interaction between survey respondents and the computing device. The data 

collection process is enhanced from two perspectives: voice prompts and speech 

input. With the help of both, the mobile data collection terminal technically serves 

the role of survey interviewer, monitoring and recording the process of data 

collection via human-machine dialogues. A well-designed “Talk” protocol is built 

into the survey program and helps to elicit a maximum amount of information from 

the survey respondents. Talking to a machine rather than an interviewer is assumed 

to contribute to reducing the survey respondent’s privacy concerns. 

 

The formulation of the “talk” protocol is based on interrelated dialogues. The 

vocabulary used in dialogue is limited to the survey screen display (i.e., voice 

messages pre-configured in the survey program). Words with minimal acoustic 

similarity have been selected to aid differentiation by the speech recognition engine. 

A “talk” dialogue can be initiated either by the machine or by the survey respondent. 
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The machine typically starts a “form scope” dialogue by reading the explanatory 

note displayed on the top of a survey form. The action is accomplished by feeding 

the screen-displayed text to synthesized speech on the computing device. The survey 

respondent triggers the “action scope” dialogue by requesting actions from the data 

collection device, e.g., vocalizing the button label or other form of expected input for 

the current screen. If the user’s voice is picked up by the microphone on the Pocket 

PC and processed and recognized as conforming to a pre-defined grammar, a 

corresponding action will be triggered and followed with certain audio/visual 

feedback. If the user conducts an inaccurate action or misses some part of the 

required input, pre-formulated auditory cues are supplied to alert the user about the 

error. The auditory warning is meant to supplement the traditional way of capturing 

users’ attentions by popping up a message box.  

 

4.2.3. Speech-enabled Multi-modal Interface 

 

Past research has shown that humans have the ability to handle/process 

simultaneous streams of input through the auditory channel and to focus on one of 

them selectively (Sawhney and Schmandt, 1998). Ideally, by obviating the need for 

hand use and eye focus when undergoing tasks, speech input and auditory output are 

more suited to survey needs for feeding information into data-recording equipment 

in a timely/convenient way. In a mobile, real-time data collection scenario that exists 

in a travel/activity survey, safety concerns demands that the user’s senses are not 
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preoccupied and are cognizant of surrounding people and events. In addition, the 

speech-enabled interface may also help to boost survey respondent’s awareness of 

the undergoing survey process. One of the disadvantages that associate with a self-

administered travel/activity survey is that data quality and coverage partially relies 

on a user’s enthusiasm in supplying data, which hopefully, would reflect the reality 

in sufficient details. However, an elongated survey period sometimes increase survey 

respondents’ feeling of stress and reduces their vigilance to record travel/activity 

occurrences as accurately as possible. 

 

On the other hand, although speech input and audio output approximates a 

human’s natural means of interaction, speech/audio interaction is in essence 

sequential in time. It lacks the browsing and pre-fetching support offered by 

image/text-based display (Sawhney and Schmandt, 1998). Their usage within 

environment with significant ambient noise may also be questionable. Users are 

easily discouraged in using the device for data input after several times of speech 

input failure or misinterpretation. Multiplexing the strength of visual and touch 

screen means with speech input and audio output potentially avoids the shortcomings 

of each individual approach. Actions on survey forms can be triggered either by 

voice command or by a stylus click. A speech input context switches according to 

mode changes caused by other actions. Therefore, a user can choose the data input 

manner that works best in a given situation. Another approach that helps solve the 

problem is to exploit the idea of “push to talk.” As pointed out by Starner (2002, p. 
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92): “speakers think out their sentences and articulate more clearly if they have to 

press a button before they speak to the computer.” The Pocket PC’s side button can 

be programmed to be a switch that controls the acceptance of speech input.  

 

 

4.2.4. Survey Navigation and Monitoring by Voice 

 

Navigation through the survey form is supplemented by synthesized voice output. 

A user can read the explanation printed on the electronic survey form. 

Simultaneously, “what to do” information is read to the user through auditory output. 

Feedback is provided to confirm the correctness of input when important information 

about scheduling or activity is being collected. Crucial information input is repeated 

in the feedback, thus confirming to the survey respondent that the information has 

been communicated correctly. In other cases, auditory cues (e.g., a chirping sound) 

are used to indicate operation success (e.g., goes to the next form or a voice 

command is recognized as valid).  

 

The speech-enabled interface may also help to boost a survey respondent’s 

awareness of the survey process. One of the disadvantages associated with a self-

administered travel/activity survey is that data quality and coverage partially relies 

on a survey respondent’s enthusiasm in supplying data, which, ideally, would reflect 

the reality in sufficient detail. The data collection terminals are programmed to 
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monitor any unusual data input pattern that potentially affects the quality of collected 

data. For example, when it finds out that the user has spent more time on the activity 

than originally scheduled, the device reminds the survey respondent with “Please 

don’t forget to indicate when the current activity ends.” Or, when it reveals that the 

user has not scheduled an activity for a long time, it will remind the user by saying 

“Please input activity schedule when you have a plan for an activity.” These active 

reminders are trivial but play significant roles in keeping the human-machine 

interaction as smooth and tight as human-human interaction, and they also provide 

some guarantee that the “forgot-to-input” mishap is reduced to a minimum. 

 

4.2.5. Sample Scenario of Speech/Audio Interaction 

 

The following shows a demonstration of how the activity data collection system 

is used during an input session for the Schedule-an-Activity Form. Note that if the 

device has been idle for some time, the system detects that and turns off speech input 

and synthesis to save power. This is called sleep mode.  

 

Now, suppose the device is in sleep mode -- 

Survey respondent says: “wake up!” 

Device says: “ready for listening.” 

Survey respondent says: “1” or “Activity type” or “Type of Activity” 
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Device shows the Select-Activity-Type Form (Figure 11) and reads the survey 

instructions. 

Survey respondent says the activity type name: e.g. meal. 

Device asks: “you have selected activity type name – meal. Is this correct?” 

Survey respondent confirms: “yes”. The Select-Activity-Type Form is closed. 

The Schedule-activity form (Figure 10) shows up again. 

Survey respondent says: “4” or “Activity location” or “location of activity” The 

surrounding environment is noisy and the device can’t recognize the command. 

Survey respondent gets the stylus or uses fingertip to click on the 4th button to select 

location for the activity. 

Device shows the Select-Activity-Location Form (Figure12) and reads the survey 

instruction. 

Survey respondent has come to a quiet place and wants to try the voice input 

function again. He/she says: “home”. 

Device asks: “You have selected activity location – home. Is this correct?” 

Survey respondent confirms: “yes”. The Select-Activity-Location form is closed. 

The Schedule-Activity form (Figure 10) shows up again. 

Survey respondent has come to a very noisy environment. To avoid confusing the 

device, he/she says: “go to sleep.” Now the survey respondent wants to use the stylus 

solely to finish inputting the form. 

Device responds: “stop listening.” 
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4.3 System Design and Survey Organization 

 

4.3.1. Data Collection Infrastructure 

 

The survey system used in the activity scheduling/execution survey adopts a 

single-server, multiple-client architecture design (Figure 2). The central database 

server, located at a fixed location, continuously accepts data uploading requests from 

the mobile data logger carried by the survey respondents. Received data is 

preprocessed and stored on the central data server. The mobile data logger 

equipment consists of four modules—a GPS receiver/antenna, a mobile networking 

card, a Pocket PC (with an additional 128 M SD memory card), and a dual expansion 

pack. Compared to a Palm/PDA, the Pocket PC performs better due to its high-

contrast colorful screen for survey question highlighting, built-in power reservation 

feature, faster processing speed for accommodating computing extensive application 

such as speech recognition, and having more storage to cache the activity-travel data 

when the system goes out of wireless service coverage. The dual-slot expansion pack 

of the Pocket PC accommodates the wireless PC card and GPS receiver card and 

provides additional battery power to the PC cards.  The data logger costs about 

$1500 (based on early 2003 pricing). It weighs about 1 pound and is easy to carry 

around for real-time data input.  Speech recognition/output and touch/visual display 

are multiplexed to provide the survey respondents a multi-modal interface on the 
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Pocket PC. Either approach serves as an alternative to others in cases where one is 

inadequate for handling the current data input situation. Furthermore, its voice input 

capability potentially extends the system’s sample coverage to computer illiterate 

and physically challenged people. Its ability to upload data via a wireless connection 

also eliminates the locational restriction of the traditional computerized data 

collection methods.   

 

Figure 2 System Composition 
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For the pre-analysis of the received data, the central data server was used to 

check the consistency and logical coherence of collected data. This approach is 

similar to the post-interview phase conducted for a typical travel survey. The 

difference is that, instead of the reviewer holding the responsibility of detecting data 

inconsistency and incompleteness, the onerous checking task is delegated to a pre-

processing center in the data collection system, for example, the SYLVIA system in 

ALBATROSS (Arentze et al., 1999; Arentze and Timmermans, 2000). A multi-level 

set of logical rules can be organized into modules to diagnose the fixable errors and 

inconsistencies in the collected data. The demands of travel/activity data validation 

and correction can be reduced dramatically when only irresolvable record 

inconsistencies are returned to the respondents for further clarification. 

 

The data transmission infrastructure of the survey system is set up as follows 

(Figure 3). A SQL SERVER 2000 is installed on the central data server to offer an 

enterprise-level central database support. For our survey, the pre-formulated 

travel/activity data schemas are organized into two categories of database: 

“ActivitySurvey” and “ActivityData.” “ActivitySurvey,” with only one instance 

configured for survey management purposes, contains the demographic information 

of all survey respondents (Appendix A shows the complete database schema). The 

demographic information collected and stored in a local SQL SERVER CE database 

on the PocketPC is sent to the “ActivitySurvey” database located on the central data 

server via the remoteSQL methods (RDA). “ActivityData” includes multiple 
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instances. The number of instances varies with how many survey respondents are 

surveyed at one time (depending on the server processing power and network 

bandwidth).  Each of the instances stores the activity scheduling and implementation 

data received specifically for each survey respondent. The tables included in the 

“ActivityData” database (Figure 4), as specified in its schema, are published as 

“articles” on the SQL Server 2000 on the server machine. The SQL Server CE 

installed on the mobile data logger keeps a local snapshot of the “ActivityData” 

instance and subscribes to the published “articles” in order to maintain data 

consistency between them.  The locally stored copy of activity/scheduling data 

facilitates fast information retrieval when activity or schedule scenario information is 

required to formulate some questionnaire forms. Any update on the local copy by 

survey participants’ data input action can be propagated to the server side later. The 

data server may also update the published “articles” independently. The final results 

are merged into the same replication on both sides via bi-directional data 

synchronization called Merge Replication. Besides activity and scheduling data, the 

“ActivityData” database instance also includes trip data collected via GPS receivers 

in the form of ASCII files. Periodically, the trip log files are remotely sent back to 

the central server via FTP to free up the limited storage space. If any of the data 

transfer functions fail due to temporary network connection problems, the trip data 

will be cached for later resubmission until all the data submitting operations succeed. 
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Figure 3 Database Infrastructure (Adapted from SQL Server CE online 

Book) 

 

 

 

Figure 4 Illustrations of Data Organization and Transmission 
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4.3.2. Survey Program Organization and Questionnaire Forms 

 

The survey program on the mobile data logger (Pocket PC) was programmed 

from scratch in Embedded Visual Basic and Embedded Visual C++, with a GIS 

mapping component – ARCPAD fully integrated. All of the development and testing 

work took the author 9 months to complete, excluding the equipment selection and 

evaluation time. The survey procedure flow was organized into a sequence of forms 

(the complete survey flow chart and organization diagrams are hosted at 

http://www.geog.ucsb.edu/~zhou/MyWeb/systemdesign.htm). The start-up form of 

the survey presents the survey respondents with four module components (“Personal 

Info and Week Schedule,” “Schedule Activities or Refine the Schedules,” “Trace 

Activity Implementation,” and “Answer Questions related to Unfulfilled activities in 

schedules”) of the activity scheduling and implementation survey (Figure 5). Each of 

the components is symbolized and linked to a corresponding button, which leads the 

survey respondent through the process of accomplishing a specific survey task after 

being triggered by a click action. When the survey respondents launch the survey 

program for the first time, only the first module “Personal Info and Week Schedule” 

is enabled for user’s access. The gray colors of the buttons linked to the other 

modules are dimmed to indicate the current inactivity. These modules will only be 

accessible after the questionnaires in the up-front interview module have been 

finished. In this way, some personal information and activity/travel-related spatial 
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information pre-collected in this module can be reused in the later real-time tracing 

of activity scheduling and implementation to reduce the data input burden on the 

user’s part. 

 

As the Pocket PC cannot automatically release the resources that a survey form 

occupied once it’s created, it is essential in the survey program design to minimize 

the number of forms used for fulfilling all the survey tasks. To achieve the goal, 

some common survey questions have been extracted and arranged in a form to share 

among several parts of the survey program. In addition, to reduce the communication 

cost between mobile terminal and central data server, the survey program is designed 

to function as a fat client. That means, except that the central data server handles 

data storage and management, all the data entry, consistency checking, voice 

recognition tasks are to be performed on the mobile terminals. Even the maps to be 

displayed in the GIS module of the survey map are also installed on the memory 

storage of Pocket PC. 

 

4.3.2.1. Personal Info and Week Schedule Module 

 

The Personal Info and Week Schedule module serves the role of the up-front 

interview in traditional activity/travel surveys. As opposed to CHASE and REACT!, 

the survey unit is targeted at individuals rather than households. In the module, 

personal demographic data and activity/travel-related spatial information (frequently 
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pursued activity types and frequently visited activity locations etc.) are collected 

before the beginning of the survey for management convenience.  

 

Home address information is inquired in the pane of the form in a standard text 

input format. In addition a button link is supplied to the survey respondent for 

him/her to indicate the home location on a map presented via the built-in GIS 

(ARCPAD). ARCPAD will convert the stylus coordinates as the user pins down the 

Geographical longitude/latitude of home and channel the result back to data 

collection server. This additional Identify-Home-Address-On-Map requirement 

serves two functions in the survey: On one hand, it demands the user to double-

confirm the home location to avoid the situation that a wrong address has been input 

and goes unnoticed into the backend central database, hence giving a hard time to the 

researchers who try to geocode the location when the activity space information 

needs to be compiled from the data. On the other hand, in many cases the survey 

respondents may rely on the built-in GIS map component to indicate their activity 

location when the address information of that location never caught their attention or 

temporarily slipped out of their memory. Home location on a map serves a good 

reference point for them to quickly indicate their planned activity location/travel 

destination in the real-time data collection scenario. 

 

Similar to REACT!, the module asks the respondents about the frequently 

performed activities and the associated attributes. It is beneficial to have the 
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information for establishing the baseline activity pattern of the survey respondents. 

And potentially later help us to differentiate the difference between scheduled 

activities and unscheduled ones. In this form, the survey respondent selects the types 

of those activities that they frequently conduct (at least once per month) from a 

predefined activity type list. Various activity category demarcation methods have 

been used in the past activity-travel surveys and relevant experiments. As remarked 

by Kuppam and Pendyala (2001), several researchers’ work (Ma & Goulias 1997; Lu 

& Pas 1999; and Golob 1998) on activity participation distribution showed that 

“activity participation in general can be classified into six broader groups: work and 

work-related, in-home maintenance, out-of-home maintenance, in-home recreation, 

out-of-home recreation and sleep.” This typology of activity participation, however, 

is a little too coarse for the survey respondents to describe their activity and travel 

pattern in details. To fully capture the spectrum of activities performed by a 

respondent during a particular survey day, activity types defined for this study 

follows the typology used in the CHASE survey by Doherty and Miller (2000, pp 

80), which hierarchically organized the multitude of possible activities under generic 

types then further elaborate each activity type at the second level. The types of 

activities in the survey are organized into seven categories (Eat/sleep/personal 

hygiene, household obligation, recreation/entertainment, social, shopping, 

services/errands, work/school), following CHASE and REACT! except that the 

“Only for children” category is left out as the preliminary research is expected to be 

conducted on campus first. Considering the odds that the predefined 
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list/categorization is not sufficient to encompass the wide range of all possible 

activity types, a supplementary “Add Activity Type” form follows immediately to 

allow the survey respondents to define their own activity type with the names they 

deem as appropriate. 

 

Survey respondents are also required to compile a list of frequently visited (at 

least once per month) locations from the potential activity location set -- the online 

yellow page of the local study area (Digital City – Santa Barbara. 

http://www.digitalcity.com/santabarbara). The location set covers various possible 

activity locations and travel destinations (banks, bar, bookstore, car-repair, Chinese 

restaurant, church, college, convenience store, department store, gas station, grocery 

store, hair salon, Mexican restaurant, movie theater, park, pizza, post office, school 

K-12 and shopping centers). If the survey respondent can not find the frequently 

visited location from any of the locations listed, an alternative option based on 

mobile GIS techniques (ARCPAD) is provided for the user to pinpoint the location’s 

position on an electronic map and input the location name. The manually captured 

location position is later recorded as geographic longitude and latitude and 

transferred together with location name back to the central data repository. As the 

function set offered by ARCPAD is way too powerful to fit in the real-time data 

collection needs, the built-in GIS component has been customized from the standard 

ARCPAD program with the special configuration, applet and visual basic script files. 

Note that as a major difference from the traditional desktop GIS brands, ARCPAD is 
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not good at displaying text notation alongside with the corresponding icon symbols 

on the map display. Inappropriate algorithm design by ESRI partially contributes to 

the problem, which always fails to avoid the overlay of text labels between two 

nearby icon symbols when the map is displayed at small scales. Not to mention that 

the limited screen size of Pocket PC exacerbates the situation. To partially solve the 

problem, a customized identification tool has been offered on the second toolbar for 

the user’s convenience to quickly narrow down onto a road or location’s name. A 

better approach would be arranging the list of location/road names below the map 

and highlighting the linkage between the symbols and names with colors when the 

user clicks on any of them. However, this leads to even smaller map display area for 

users to navigate and complicated programming issues involving building the 

customized list display into ARCPAD.   

 

At the end of the module navigation, a preliminary activity schedule for the 

upcoming survey period is solicited for identifying those “peg” activities with less 

flexibility and a relatively high repetition rate (Figure 6). All the preliminarily 

scheduled activities will be listed on the weekday tab panes with the arrangement 

sequence based on their input order. The information to collect with respect to a 

scheduled activity includes activity type, day of the week for the activity, planned 

timeslot for the activity, planned activity location, and the number of people that co-

participate in the activity. The survey respondent may leave some details of schedule 

as unspecified at the time if the plan has not been well developed. The activity 
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schedule can always be refined later in the “Schedule Activities or Refine 

Schedules” module in real time whenever some further thinking about it comes up. 

 

 Figure 5 Start-up Form of Activity 

Scheduling and Implementation Survey 

Figure 6 Set up the 

Preliminary Week Schedule 

  

             

 

4.3.2.2. Schedule Activities or Refine Schedules Module 

 

Activity scheduling behavior typically occurs in a stochastic way. Even activities 

pursued out of habit might be subject to an abrupt disturbance from unpredictable 

external factors. Arbitrarily choosing a fixed time or place to collect scheduling data 

(e.g., at the end of day/at home) seems sufficient for researchers to capture a static 

picture of scheduling behavior based on “what could be remembered up to now.” 
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However, the quality of collected data can vary dramatically across the data capture 

periods (the time interval between adjacent data capturing actions), leaving the 

dynamics of scheduling changes unknown. 

 

Integrating scheduling data capturing with mobile devices offers a different 

survey option that requires less time and labor costs and has almost no location 

constraints. The survey respondent has the freedom to record the activity scheduling 

decisions whenever the decision-making comes to mind. After the necessary 

information has been added, the accomplished schedules are subsequently listed on 

the weekday tab pane with a brief description. The simple list of activity name, 

location, and planned activity start/end time allows for quick identification when 

further refinement is required at a later time. A click on the row brings up the 

“schedule an activity” form (Figure 7) which is pre-filled with the previous activity 

plan, but it enables the user to modify/refine the specific schedule-related 

information. To avoid potential bias (a typical schedule tool could help its user 

optimize the daily time use), none of the schedules are ordered by time or name but 

are listed in their original decision-making sequence.       
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Figure 7 Schedule an Activity Figure 8  Trace Activity 

Implementation at Real Time 

        

 

4.3.2.3. Trace Activity Implementation Module 

 

The “tracing activity” implementation module is triggered at the time of activity 

execution to record activity-implementation details in real time. The whole tracing 

procedure is sequenced into two episodes: 

 

(1) Activity to be implemented will be traced as shown in Figure 8. A click on 

button 6 then launches ARCPAD and activates its GPS tracking functions to start 

capturing the user’s position data in travel. If travel finishes before the device is able 

to obtain a valid fix on the signal, or the surrounding buildings/trees along the travel 
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route significantly deteriorate the GPS signal quality, the number of invalid tracing 

records would be checked against a preset threshold. An additional “Draw Route” 

function offers the survey respondent a second chance to redraw the traveled route 

(Figure 9). The missing route will be constructed as a sequence of waypoints created 

by the user’s double-tapping on the Pocket PC screen. After the travel information 

has been collected, the survey respondent clicks on the “Start Activity” button to 

start a timer to track the time duration of the activity. Before the tracing of the 

activity starts, additional questions regarding the activity are asked about the factors 

potentially affecting the conformity relation between the schedule and the actual 

activity implementation. Then the survey respondent is directed back to the start-up 

form with the activity duration time displayed. This form branching design does not 

prevent the survey respondent from feeding the real-time scheduling decision 

information into the survey program while activity pursuit is undertaken. 

 

(2) After the activity tracking and the associated travel tracing are accomplished, 

the two categories of activities - scheduled and unscheduled - are differentiated by 

user selection. For “linked” schedules, questions are used to qualify the relationship 

between the actual implementation of the activity and the schedule (Figure 10). Two 

of the questions focus on the temporal relations between activity and schedule, i.e. if 

the activity starts early/late/on time or if the activity duration is as-

scheduled/elongated/shortened when compared to the schedule. The last of the 

questions emphasizes the spatial linkage between them, i.e., whether or not the actual 
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activity location choice differs from the schedule.  These relationships are not easy to 

demarcate by simply checking on the data alone, but have to be obtained from the 

survey respondents’ perspective. In the end, additional questions are also posted to 

trace factors potentially affecting the conformity between the schedule and actual 

activity implementation, ranging from weather condition, traffic condition … to 

activity priority.  

 

 Figure 9 Draw the Travel Route 

with “Draw Route Tool” when Most 

of Sampled GPS Points are Invalid 

 

 Figure 10 How the Activity 

Implementation Conforms to the 

Schedule 
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4.3.2.4. Answer Questions Related to Unfulfilled Activity Module 

 

For unfulfilled schedules, a series of questions are asked for later research model 

construction. As these activities have only been conceived in the mind rather than 

actually implemented, it would be inappropriate to allocate a fixed time in each 

survey day for collecting answers to these questions from the survey respondents. To 

avoid the possible disruption of activity/travel tracing due to information collection 

regarding missed activity plans, module 4 functions as a flexible, independent survey 

unit that allows the survey respondents to take their own initiative in deciding when 

to answer questions related to unfulfilled activities.   

 

4.3.3. Mobile Usages of the Data Logger 

 

For the practical use of the survey system by the respondents, the data collection 

terminal is equipped with a small camera bag with an external GPS antenna attached 

on the shoulder strap to suit various travel/transport modes. When the survey 

respondent is traveling by walking or bicycling, the device is carried in the bag and 

the coupled GPS receiver is connected to the external antenna to enhance the 

accuracy of collected position data. If a vehicle is involved in the travel, a 

multimedia PDA mount is used to hold the data collection terminal at a fixed and 

steady position close to the windshield for better access to the satellite signals. The 
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mount can be easily transferred between vehicles that the survey respondent may 

have access to. In addition, the PDA cradle that holds the Pocket PC is DC powered 

and embedded with a build-in speaker, which ensures that the audio prompts from 

the survey program will not be compromised by ambient traffic noise. To reduce the 

risk of power drainage, another regular power supplement is also provided separately 

to the survey respondent for charging the device at home during the night or in an 

office during daytime.          

 

4.4. Pilot Data Survey and System Evaluation 

 

4.4.1. Pilot Data Collection Practice 

 

A pilot data collection with the implemented system was conducted at The 

University of California, Santa Barbara from January to July 2004. Due to a conflict 

with the speech recognition engine currently used and the SQL SERVER CE (the 

mini database for storing data on the Pocket PC), speech input function on the survey 

interface was disabled in the pilot survey. Prior to the beginning of the pilot data 

collection, the author of this dissertation personally carried the device and performed 

the daily data collection tasks for a two-week period. Some design weakness and 

logical errors that showed up during this phase were corrected before the final pilot 

version was released. Limited by time and funding resources for this research, the 

survey participants are not selected on a systematic or clustering sampling approach. 
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A total of 20 volunteers (13 males, 7 females) were recruited locally for the survey 

for one week per person. Only one device was available for this survey (Figure 11 

and 12 shows the snapshots of the front and back of the device). The participants of 

the survey were organized into sequential one-week time frames to meet with the 

survey supervisor and to retrieve/return the equipment. The start day of the survey 

week was selected to fit the availability of the survey participants, which was 

expected to help randomize negative effects of start-time selection. One or two 

weeks before the time when the respondent was scheduled to participate, an 

email/phone call was made to confirm his/her availability. Once a positive answer 

was received, the survey guide and consent forms were subsequently sent either by 

email or in paper form to help the participants get familiar with the survey contents 

and procedure. An appointment was also made at the time for a brief survey tutorial 

session and equipment delivery, before the data collection process started. Figure 13 

roughly describes the three phases of the entire data collection process. 
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Figure 11 Front of the Device 

 

Figure 12 Back of the Device 
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Figure 13 Survey Procedure 
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4.4.1.1. Phase I:  Background Information Collection 

 

During the first phase, the basic information of the respondents was collected at 

the time when the equipment was delivered. A one-to-one tutorial was given to the 

survey respondents to facilitate the preliminary device usage and first time data input. 

This tutorial took 50 –70 minutes on average. Almost 2/3 of the time was used 

guiding the participant through finishing survey module one (personal information 

and week schedule). The span of information recorded during the tutorial session 

includes: residential location, work/school location, socio-demographic 

characteristics of the survey participant (age, sex, marital status, education level, 

income level, driver-license status, the set of routine locations for different types of 

activities (such as shopping), tentative activity schedule for each day in a week 

(repetitive activity routines such as work/study)), the number of cars and other motor 

vehicles, car/motor vehicles ownership, etc. Note that those fixed activities refer to 

the class of mandatory activities (work, study, meals or others) for each survey 

respondent. In terms of trip generation, the linkage of the mandatory activities and 

their derived travels is easy to identify and their frequencies are more stable in 

people’s travel patterns (Hoorn, 1979). With the mandatory activities serving as the 

skeleton for the activity schedules of the survey respondents, our study assumes that 

the other non-mandatory (flexible) activities and their derived trips are organized 

around the skeleton constraints.  
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4.4.1.2. Phase II: Concurrent Data Collection 

 

For the second phase, the survey respondents were asked to carry the device 

independently for one week continuously to record their daily activity scheduling 

decision-making and out-of-home activity pursuits (with derived travels included). 

The questions on the scheduled activities cover a plethora of attributes (scheduled 

start/finish time, tentative origin and destination if the activity involves traveling 

(selected from pre-input location choice set or input as a new location choice by the 

survey respondent), travel mode, number of co-participants, etc.). Some of these 

attributes may not have been fully conceived by the respondents during the activity-

planning phase. They are allowed to be left unanswered.  

 

The detailed real-time tracing of activity execution is as follows: When an 

activity is executed locally (at home or work place) in real-time, the system will 

record its start and end time and activity type. Whenever an activity that involves 

other-than-current location is executed, a GPS module automatically recorded the 

origin and destination of the associated trip in addition to the timestamp information. 

At the beginning of each trip, some particular information regarding the trip is 

collected. These include the name of the destination from the pre-input of a location 

set, travel mode, activity type, etc.  In general it will be inconvenient for survey 

respondents to define the origin/destination locations by zip code, detailed street 
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address or name of featured landmarks. An online GIS map was used to pin down 

these locations easily with the Pocket PC stylus. The tracing of trips start from the 

first step of the respondents out of their home and end only when the traveler has 

reached the final destination, with all access, egress and in-vehicle times recorded in 

detail. At the end of each survey day, the collected data was uploaded to the central 

data server to allow the survey supervisor to check for errors in the uploaded data. A 

phone call may be made to the survey respondent to identify the source of errors and 

offer the corresponding solution. Similarly, the survey respondents could use a 

dedicated phone number and email address to contact the survey supervisor for any 

emerging technical problems on the survey device and program.  

 

4.4.1.3. Phase III: Survey Completion 

 

After the survey was accomplished, the equipment was retrieved from the survey 

participants and a questionnaire is sent in order to obtain feedback from the survey 

participant with respect to the design and effectiveness of the survey program. 
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4.4.2. Summary of Pilot Data 

4.4.2.1. Demographics of Survey Sample 

 

This survey covers various demographic aspects of the survey respondents 

including age, education and income level, driver’s license ownership, commonly-

used travel modes, etc. The ages of the survey respondents fall within the range of 

20-35, with the average being 28.75. As university students constitute the main 

survey body, most of the respondents possess a college or higher degree. Among the 

rest, one completed the two-year associate degree and the other finished K-12 study. 

16 of 18 survey respondents earn a monthly income of $1000-$1999, with the 

exception of 2 earning more than $2000 per month and 2 refusing to answer the 

income level question. The survey also inquired about commonly used travel modes 

by the survey respondents. Seven travel mode options (including undisclosed travel 

mode, carpool, vanpool, walk, car, bus, and bicycle) were presented to them for 

selection. On average, each survey respondent commonly uses 4 types of travel 

modes - at most 6 and at least 2. A simple bivariate correlation was conducted on 

driver license ownership and the count of commonly used travel modes to test if 

possessing a driver license significantly affects the travelers’ travel mode options. 

The result (Table 2) indicates that the ownership of a driver’s license does not 

necessarily preclude the survey respondents from choosing other travel modes for a 

journey. Similar conclusion (Table 3) can also be drawn on the relationship between 
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the vehicle accessibility and the count of commonly used travel modes (see the 

relevant correlation analysis). These analyses imply that the size of travel modes 

choice sets is independent of personal vehicle/license ownership.  

 

Table 2 Correlations of Driver’s license ownership and Travel Mode Counts 

 

      

Driver 

License 

Mode 

counts 

Correlation Coefficient 1.000 .139 

Sig. (2-tailed) . .508 

Driver License 

N 20 20

Correlation Coefficient .139 1.000 

Sig. (2-tailed) .508 . 

Kendall's tau_b 

Mode counts 

N 20 20

Correlation Coefficient 1.000 .152 

Sig. (2-tailed) . .523 

Driver License 

N 20 20

Correlation Coefficient .152 1.000 

Sig. (2-tailed) .523 . 

Spearman's rho 

mode counts 

N 20 20
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Table 3 Correlations of Vehicle Accessibility and Travel Mode Counts 

 

      

Vehicle 

Access Mode counts 

Kendall's tau_b Vehicle Access Correlation Coefficient 1.000 -.019 

    Sig. (2-tailed) . .927 

    N 20 20

  Mode counts Correlation Coefficient -.019 1.000 

    Sig. (2-tailed) .927 . 

    N 20 20

Spearman's rho Vehicle Access Correlation Coefficient 1.000 -.023 

    Sig. (2-tailed) . .923 

    N 20 20

  Mode counts Correlation Coefficient -.023 1.000 

    Sig. (2-tailed) .923 . 

    N 20 20

 

 

4.4.2.2. Activity Locations 

 

Activity locations were specified either from a categorized list of locations or 

pinpointed from the mapping component customized from ARCPAD. There are over 

900 locations (in 20 categories) predefined in the survey program. On average, each 

survey respondent indicated 20.3 visited or frequently-visited locations over the 

survey period. Among them, 10.5 locations were selected from the location 

dropdown list and 9.8 locations were entered via the mapping interface. Overall, 406 

activity locations were recorded: 210 (51.7%) selected from the location dropdown 
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list and 196 (48.3%) pinpointed from the map interface. According to the survey 

feedback, the map component was generally more favored by survey respondents for 

activity location input for its convenience and ease of use. Although pinpointing 

activity location on the map would only be able to approximate the actual site, as 

long as the activity site had been visited at least once during the survey period, the 

input error could easily be corrected using the last GPS record for a trip ending with 

the activity site as a trip destination. This indicates that the map component can serve 

as an efficient tool in helping construct the survey respondents’ activity space in a 

GPS-driven activity/travel survey. The exact activity site entered via map interface 

could also have been identified if it was the trip origin. However, the second option 

was dropped, due to concerns that the beginning phase of trip recording suffers from 

data inaccuracy due to multi-path signal reflection and the lengthy time requirement 

to gain a signal fix (typically it took 2 or 3 minutes to get stable signals).   

 

4.4.2.3. Activities and Travel Records 

 

The real-time scheduling and activity survey covers the activities that occurred in 

the daily out-of-home travel loop that starts and ends at “home,” including any out-

of-home activity and the first in-home activity after any out-of-home travel. Out-of-

home activities further include the on-site activities and off-site activities (that 

require travel to reach the activity location). Each survey respondent starts their 
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survey period on random weekdays or weekends, which helps eliminate the potential 

fatigue effects.  

 

To summarize the survey activities and travel records, a series of diagrams have 

been generated for exploring the activities/travel frequency pattern by either activity 

class or travel mode. Figure 14 and 15 show that the average number of total 

activities start relatively high at the beginning the survey week; after a little dip on 

Wednesday, the average count levels to around 4 over the rest of the week, except 

the dramatic drop on Sunday. This pattern persists with the on-site activities included 

or excluded. In comparison, the pattern of the average number of social activities is 

quite simple--it remains low over the weekdays but rises over weekends. 

Surprisingly, the average number of recreation/entertainment shows a flattened 

pattern across the one-week survey period, with no trace of increasing activity level 

observed over the weekends. Figure 16 shows that the average number of on-site 

activities remains high over the weekdays but decreases dramatically over the 

weekends. Activity type break-down implies that the pattern seems to be dominated 

by the variation of work/school activities and Eat/Personal Hygiene activities over 

the survey week. In Figure 17, travel mode break-down reveals that car travel is the 

dominating travel mode for most journeys, seconded by walking. Note that the 

increased car uses on Saturday confirmed Lee’s similar finding (p91, 2001) in his 

PH.D dissertation. As for activity coupling distribution among different activity 

classes, Figure 18 indicates that Work/School activities are subject to the least 
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coupling constraints (about 82% completed alone). They are seconded by the 

Services and Errand Activities (about 67% completed alone). On the other hand, 

Social Activities usually are completed in groups of more than two people (about 

75%). The percentage of coupling for the other types of activities is a little less 

favored compared to the “Alone” situation.  

 

Figure 14 Plot of Activities per Person per Day (with on-site activities 

included) 

Average Activities Per Day By Activity Class 
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Figure 15 Plot of Activities per Person per Day (with on-site activities 

excluded) 

Average Activities Per Day By Activity Class 
(with on-site activities excluded) 
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Figure 16 Plot of On-Site Activities per Person per Day 

Average On-Site Activities Per Day By Activity Class
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Figure 17 Plot of Average Trips per Person by Travel Mode 

Average Activities Per Person by Travel Mode
(on-site activities as no travel)
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Figure 18 Summary of Accompanied Activities 
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4.4.2.4 Scheduling Records 

 

The survey recorded a total of 582 activities over a one-week period among 20 

survey participants. In addition, a total of 236 scheduling steps were made for 

formulating activity schedules over the survey week. Among the schedule records 

collected, 211 schedules were set up in one session. 25 (10.6%) schedules received 

revisions more than once. Figure 19 shows the percentages of schedules with 

different revision times per survey respondent. 

 

Figure 19 Percentage of Schedules with Different Revision Times 
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Average scheduling steps per day varies dramatically among the survey 

participants. A comparison of average scheduling steps and activity counts (Figure 

20) did not reveal any strong correlation between activity intensity and the 

scheduling steps.  The visual impression was confirmed by the correlation analysis 

result (Table 4). This suggests that a busy day does not necessarily lead to deliberate 

activity planning, and most of the motives behind the daily activities could simply be 

spur-of-the-moment. However, since the highest average daily activity count 

recorded in this survey is only 7.28, the proposition needs to be further investigated 

on survey respondents who pursue much tighter activity programs.   

 

Table 4 Correlation between Average Activity Counts and Scheduling Steps 

 

      

ACTIVITY 

COUNT SCHEDULE 

Correlation Coefficient 1.000 .125 

Sig. (2-tailed) . .453 

ACTIVITY COUNT 

N 20 20 

Correlation Coefficient .125 1.000 

Sig. (2-tailed) .453 . 

Kendall's tau_b 

SCHEDULE 

N 20 20 

Correlation Coefficient 1.000 .166 

Sig. (2-tailed) . .485 

ACTIVITY COUNT 

N 20 20 

Correlation Coefficient .166 1.000 

Sig. (2-tailed) .485 . 

Spearman's rho 

SCHEDULE 

N 20 20 
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Figure 20 Comparison of Average Scheduling Steps and Activity Counts 
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If the schedule records are classified by activity classes and plotted against their 

absolute quantities (Figure 21), Work and School activities turn out to be the most 

actively scheduled, and they are seconded by Recreation and Entertainment activities. 

The most rarely scheduled activity class is that of Services and Errands activities. 

Among the 20 survey participants, only 7 total schedules of the Service and Errands 

type were recorded during the one-week period. However, in terms of relative 

scheduling intensity (measured as the ratio of schedule count against the total 

activity count), Recreation and Entertainment activities turned out to be the most 

actively scheduled. Social activities are scheduled in roughly equal intensity to 

Recreation and Entertainment activities. Household Obligation activities are least 

planned before execution (Figure 22).  
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Figure 21 Comparison of Average Scheduling Steps and Activity Counts 
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Figure 22 Summary of Activity Schedules by Activity Classes 
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Figure 23 presents further indications of the variation of schedule counts along 

the temporal horizon. As illustrated by the diagram, Work/School activities are 

actively scheduled at the beginning of the survey week, especially on Tuesday. Their 

schedule count gradually drops over the rest of the week in a zigzag manner. 

Recreation/Entertainment activity schedule counts are almost evenly distributed 

across the week, except for a minor rise on early weekends (Friday and Saturday). 

Shopping activity schedule count is high on Monday, Friday, and weekends, but it 

remains low for the other weekdays, which implies that people may stock up on food 

and other supplies at the end of a week or early in the week. 
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Figure 23 Activity Schedule Count by Day-of-the-Week 
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Besides the scheduling regularity, it is worthwhile to further examine the 

schedule attributes which are likely to limit the schedule formulation (including 

spatial, temporal, or other socio-demographical factors). Typically, schedules were 

not planned out with all spatial-temporal details covered. In this survey, these 

missing elements in activity schedules (“Activity Location,” “Weekday,” “Start 

Time,” and “End Time”) were marked as blank or “unclear.” In most cases, 

“Activity Location” regarding the schedule had been determined while the schedule 

was made (198 out of 236 schedules). “End Time,” on the contrary, was usually 

unknown or unclear at the time of scheduling (71 out of 236 schedules). Figure 24 
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summarizes the missing element distributions among the survey participants. As the 

figure suggests, in terms of projected daily temporal-spatial path before the actual 

activity pursuits, spatial constraints along the path seem to be more rigid than their 

temporal counterparts. 

 

Figure 24 Summary of Missing Elements from Activity Schedules 
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In the previous section, we examined the activity coupling status from the traced 

activity records. Figure 25 shows a summary of the number of co-participants for the 

activity as planned in the schedule (with situation “not clear” un-separated from 

“alone”). As the figure reveals, Household Obligation and Work/school activities are 

subject to the least coupling constraints (about 65-75% completed alone), while 
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about 75% Social activities are expected to be completed in a group. Except for 

Household Obligation activities, the extent of activity coupling planned in schedules 

was consistently higher than what was observed in activity implementations 

(compared to Figure 18). The finding suggests that people tend to spend more effort 

on synchronizing their temporal-spatial sub-paths for activities that potentially 

involve other co-participants. However, the reason why the Household Obligation 

activities distinguish themselves from the other activity types remains an open 

question. 

 

Figure 25 Summary of Accompanied Activities in Schedules 
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4.4.2.5. Data Entry Time and Steps 

 

Due to the survey’s real-time nature, data entries occur across the entire survey 

weekday period rather than being constrained to certain time slots.  In addition, the 

usage of mobile devices removed the location restriction for the data entry. During 

the survey, data entry time (how much time a survey respondent spent on finishing a 

survey form) and steps (the number of forms traversed during a survey period) are 

recorded per survey form for analyzing the survey program’s usage pattern. The 

average data entry steps and entry time by survey modules are illustrated in Table 5. 

As mentioned in previous sessions of this dissertation, Module 1 is used in pre-

survey interviews for collecting the social-demographical information and 

preliminary week schedule of survey respondents; Module 2 offers daily activity 

scheduling and schedule revision functionalities; Module 3 tracks the real-time 

activity implementation and schedule relations; Module 4 collects information with 

respect to the unfulfilled schedules after the survey period ends. For those survey 

forms which are cross-used in two modules, the data entry steps performed on these 

forms are marked with a dual module identifier (e.g. module12). As seen in Table 5, 

the average Module1 entries time (including cross-module entries such as Module12 

entries or Module13 entries) are much longer then other module entries. This is due 

to the fact that the respondents typically spent extra time listening to the instructions 

while entering the data in the pre-survey interview (module 1) session. During the 

normal survey session, the total activity implementation and scheduling tracking 

 94



steps (module 3) for the survey week are on average 247.35 steps (35.34 steps per 

day), which indicates that the entry task may not constitute a major interference to a 

person’s daily activity pursuits. Unfulfilled schedule entries are on average 7.9 steps 

per week. They happened in the after-survey session and therefore barely contribute 

to any potential survey fatigue effects. Note that the average entry time for the 

tracking module is about 26.18 seconds per form. The similar entry time 

measurement for Module 3 and Module 4 (27.88 seconds) implies that time demand 

of the survey entry tasks is consistent over the survey period, i.e. growing familiarity 

with the survey program does not help shorten the time to enter data.  

Table 5 Summary of Average Data Entry Steps and Time 

 

All 
Module 
Entries 

Module1 
Entries 

Module3 
Entries 

Module4 
Entries 

Module12 
Entries 

Module13 
Entries 

Total  5798 89 4947 158 462 142 
Average 
Entry 
Steps (per 
week) 289.9 4.45 247.35 7.9 23.1 7.1 
Average 
Entry Time 
(seconds) 35.4 143.74 26.18 27.88 97.07 96.42 

 

As can be seen in Figure 26, the total average data entry steps are dominated by 

the activity implementation and scheduling tracking data entries. Strong correlations 

have been found between respondents’ activity counts and their Module 3 data entry 

steps (Table 6). This indicates that the variance of average data entry steps across 

survey respondents mainly lies in the difference of each individual’s activity 
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program, rather than arising from other factors such as data input or survey program 

usage pattern.  

  

Table 6 Correlations between Average Activity Counts and Module 3 Data 

Entry Steps 

      ACTIVITY 
COUNT ENTRY STEPS 

Correlation Coefficient 1.000 .581(**) 

Sig. (2-tailed) . .000 ACTIVITY COUNT 

N 20 20 

Correlation Coefficient .581(**) 1.000 

Sig. (2-tailed) .000 . 

Kendall's tau_b 

ENTRY STEPS 

N 20 20 

Correlation Coefficient 1.000 .741(**) 

Sig. (2-tailed) . .000 ACTIVITY COUNT 

N 20 20 

Correlation Coefficient .741(**) 1.000 

Sig. (2-tailed) .000 . 

Spearman's rho 

ENTRY STEPS 

N 20 20 

**  Correlation is significant at the 0.01 level (2-tailed). 
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Figure 26 Comparison of Average Data Entry Steps 
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Figure 27 shows that the average data entry time for Module 1 is significantly 

longer than that of Module 3. The absorption ability of each individual to the survey 

program instructions defined its variance across survey participants. Data entry time 

for Module 3 is relatively flat though, with no significant difference observed among 

the survey participants.   
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Figure 27 Comparison of Average Data Entry Time 
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4.4.2.6. Missing Activity and Schedule Data 

 

During the survey, the survey device recorded in total 502 activities and 211 

schedules for 20 survey participants over the one-week survey period. 80 missing 

activities and 9 missing schedules were recovered via post-survey questionnaire and 

data analysis. The non-response rate for activities and scheduling tracking were 

13.75% and 4.1% respectively. Survey data with insufficient details were mainly 

populated from the survey respondents’ recall information. When possible, the 

temporal information about missing activities/travels such as start/end time, duration, 

etc. was derived from previous and afterward activity execution status. Figure 28 and 
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29 shows the detailed breakdown of the percentage of Recorded/Missing activity and 

scheduling count per survey respondent. Among the survey participants, the 

maximum activity data missing rate was 31.25% (or 5 out of 16); the maximum 

scheduling data missing rate was 50% (or 1 out of 2). 

 

Missing records mainly result from the following scenarios: 

1) Machine malfunction. Occasionally, the survey program froze while entering 

data or GPS collecting data. This is mostly due to the loose connection of the 

expansion pack. A device restart indeed fixed the problem, but caused loss of data. 

2) GPS receivers were not positioned well for receiving satellite signals. 

3) Simplified activity tracing. One short activity such as adding gas to the car 

along the way to a shopping mall could easily be ignored and recorded as part of the 

travel trace to the shopping location.   

4) Inconvenience of carrying the survey device while participating in the activity. 

In certain circumstances, it is extremely inconvenient to carry a portable device in 

order to participate in an activity, especially when the activity itself may potentially 

damage the device (such as jogging). 

4) Forgetting to carry the device while performing an activity. This commonly 

occurs when the need to pursue the activity is urgent. 
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Figure 28 Percentage of Recorded/Missing Activity Count 
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Figure 29  Percentage of Recorded/Missing Scheduling Count 
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4.4.3. User Evaluation of the Survey Program 

 

After the survey participants finished the one-week survey, a questionnaire was 

sent to them for evaluating the survey and equipment design. Questions were asked 

for each survey module and data uploading utility in order to assess the survey 

program’s usability and efficiency. All 20 participants sent in their responses, though 

with certain questions unanswered. Table 7.5 summarized the statistics of user 

evaluations on the survey. The tabulated results add to the comments from direct 

users of the survey device and reveal several interesting aspects about the survey: 

 

1. Most survey participants consider the survey questions clearly and concisely 

organized (95% for Module 1, 85% for Module 2, 80% for Module 3 and 90% for 

Module 4). However, several participants did complain about the load of the survey 

task and the organization of the form flow. One confusing design about the survey 

program is that several traffic questions were repetitively asked before and after 

activity implementation. The intention is to collect data on how the travel experience 

affects people’s perception of the traffic conditions. Unfortunately it potentially 

caused the illusion that a new activity trace started again. 

2. It seems that about 30-35% (Module 1, question 4; Module 2, question 2) of 

survey participants were not aware that the survey is meant to not only record 
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activity schedules but also to track the schedule revision process – the evolving of a 

schedule from its embryo phase (with certain details not fully developed yet) to the 

complete activity plan. 30% of the participants do not quite follow the rationale that 

a linkage needs to be manually established between the input schedule and the 

following activity implementation. 

3. About 45% survey participants (Module 3, question 2) feel difficulty on 

carrying the device in different travel modes. Some certain types of travels such as 

“jogging for exercise” make the participants extremely uncomfortable with carrying 

any unnecessary gear. Weather conditions in “walk” mode cause further concerns on 

the device’s resistance to severe usage environment. 

4. Most of the survey participants (90%) have no problem with data uploading 

at the end of the survey day. The others encountered various connection issues 

mainly due to the poor coverage of the subscribed wide area wireless network at 

their residential locations.    

 

Table 7 User Evaluation of the Survey Program 

 Questions Yes No Unanswered 
1. Are the survey 
questions clearly 
and concisely 
organized in this 
section?  
 

19 (95%) 0 1 (5%) Module 1 
(Personal Info 
and Week 
Schedule) 

2. Has the location 
list provide you 
enough coverage to 
input the frequently 

7 (35%) 13 (75%) 0 
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visited locations 
3. Does the activity 
list provide enough 
activity types from 
which you can 
select the activities 
you typically 
pursue? 

14 (70%) 6 (30%) 0 

4. Are you aware of 
the fact when you 
know an activity 
you would like to 
do in the survey 
week, but you don’t 
know some of the 
details on how to 
implement it, you 
should also need to 
input it in the 
schedule form? 

13 (75%) 7 (35%) 0 

1. Are the survey 
questions clearly 
and concisely 
organized in this 
section?  
 

17 (85%) 2 (10%) 
 

1 (5%) Module 2 
(Schedule 
Activities or 
Refine Schedules) 

2. Are you aware of 
that any of the 
change you made to 
a previously input 
schedule should 
also be input with 
survey program 
(Module 2) as a 
refined one?   
 

14 (70%) 6 (30%) 0 

1. Are the survey 
questions clearly 
and concisely 
organized in this 
section?  

16 (80%) 3 (15%) 1 (5%) Module 3 
(Activity 
Implementation) 
 

2. Did you find any 
difficulty using the 

9 (45%) 10 (50%)  1 (5%) 
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device for tracking 
your travel to an 
activity site on 
various travel 
modes? 
3. Do you think the 
rationale in the 
survey that after the 
activity tracking, if 
the activity is 
scheduled/planned 
before, a linkage to 
the schedule need 
be established is 
reasonable to 
follow? 

11 (55%) 6 (30%) 2 (15%) 

1. Did you check on 
and input 
information for the 
unfulfilled activities 
in your schedules at 
least once/day 
during the survey 
period? 

7 (35%) 12 (60%) 1 (5%) Module 4 
(Answer 
Questions 
Related to 
Unfulfilled 
Activities in 
Schedule) 
 

2. Are the survey 
questions clearly 
and concisely 
organized in the 
section? 

18 (90%) 2 (10%) 0 

Upload Data 
 

Data uploading via 
wireless connection 
is  
Difficult, fair or 
easy? 

2 (10%) 
Difficult 

9 (45%) 
Fair 

9 (45%) 
Easy 
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4.5. Pilot Study Summary and Improvement 

 

This section describes the results of the pilot real-time activity/scheduling study 

conducted at the University of California Santa Barbara. As a summary to the pilot 

study, the following will first discuss the survey achievements and challenges 

revealed during the survey process. Then possible enhancements to the survey will 

be explored from the perspective of survey procedure and program design. The final 

part will be dedicated to a description of expanding the current system by integrating 

it into an AI-enabled systematic survey design. 

 

4.5.1. Achievements and Challenges 

 

The survey demonstrated that the innovative approach of combining GPS, 

scheduling/activity oriented survey program and multi-modal data input onto a 

single-piece portable data collection terminal is viable and feasible. It went beyond 

other types of surveys by not only tracing scheduling/activity implementation in a 

close, real-time manner, but also by putting the whole data collection procedure in 

parallel with people’s time use planning and activity execution. The design helped 

researchers significantly reduce the time interval between the occurrences of 

activity/scheduling events and the data extraction without introducing significant 

exterior interference. As one of the direct consequences, the streamlined procedure 
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generated less missing data and made the “hole” in the data pool much easier to 

reveal and correct.  

 

In terms of survey device design, the suggested and implemented 

scheduling/travel/activity data collection system relaxes the constraints on 

concurrency input of scheduling and activity tracing. Both of the survey respondents 

scheduling decision-making and activity/travel pursuits are recorded within one 

unified data collection framework in real time. The survey program is conceptualized 

in such a way that travel data is treated as an integral part of generated activity 

needed and collected with the relevant activity data in a single data collection session. 

Therefore, the chance of under-reporting for either travel or activity pursuits, which 

constitutes the major reason for incompleteness and inconsistency in diary-based 

travel/activity survey data, is reduced dramatically. Furthermore, insofar as travel 

data are collected prior to activity data, concerns for the validity of the survey data in 

terms of a travel event having to precede the relevant activity pursuit are obviated. 

There are very few cases where the survey respondent would use the travel itself as a 

way to satisfy his/her activity needs, e.g. jogging or walking for leisure. In an 

extreme situation, activity data itself would be used to describe the travel process. 

Therefore, the conceivable activity duration tracking following travel tracking is 

meaningless and the activity duration needs to be replaced by travel duration.  

 

 106



In spite of its strengths regarding data extraction and error endurance, the survey 

and the system used for this pilot study do face challenges in several regards: 

 

1. For short out-of-home activity/trips, real-time data input tasks could be 

demanding and costly under the current survey framework. Under-reporting 

of short trips and activities remains an issue, although to a lesser extent. The 

rule of thumb is: whenever the cost of inputting data into the survey program 

by survey respondents outweighs the efforts of performing an activity and 

related travel, the data recording step for the relevant trip and activity pursuit 

may be ignored. The judgment to ignore a data input action is in nature 

arbitrary, potentially under the influence of various factors. Therefore, for a 

real-time data collection system, the cost (fatigue caused from data input) for 

inputting data in real-time to a certain extent determines the resolution of 

collected spatial-temporal and attribute data. However, it is certainly not the 

only determining factor. Survey respondents’ decision-making and the 

tightness of their activity agenda at the moment might be the other 

contributing factors. In essence, their joint effects are unpredictable and 

difficult to explain. Hence, it is not surprising to see that the temporal-spatial 

resolution of the collected travel/activity data is not consistent across the 

entire survey period.  

2. When monitoring in real time using a portable/wearable device, the scope of 

travel/activity tracing is broadened to encompass almost all possible types of 
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travel modes, except travel by air or train. Since the data collection scope was 

restricted to a local study area, the constraints of these two travel modes 

presumably did not affect the survey data quality. The portability of the 

device further expands the measurement of the travel route from parking lots 

to the true trip origin and destination (i.e., the actual activity locations). 

However, the density and quality of travel trace data suffers from the 

changing moving speeds of the survey respondent or the transport vehicles 

used. The recorded travel time and activity time may not be consistent when 

people occasionally decide to end their current travel traces prematurely 

rather than after he/she finally reaches the activity location. An even worse 

situation can occur when the current activity has been accomplished and the 

survey participant forgets to indicate the finish.  

3. Fortunately, such worst-case errors are very noticeable by both the survey 

respondent and the supervisor and can be fixed quickly once a simple make-

up questionnaire is exchanged between the parties. At this experimental stage, 

queries, problems, and answers regarding the survey are exchanged between 

the survey supervisor and the participants via email or phone. No real-time 

means such as pushing corrections and reminding notices from the server 

side are realistic yet. Pushing data to the mobile device demands a wireless 

connection that is always-on. Having the card activated all the time with the 

survey program occasionally pushes the memory usage on the Pocket PC to 

its limits, which increases the odds of machine malfunction during the real-
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time tracing period. Hopefully, the problem can be solved in the near future 

with technology advances.  

4. Last but not the least, the survey system’s usage among seniors, children, or 

computer illiterate might be limited due to the system complexity and its real-

time nature. Some people might find the data collection equipment/procedure 

overwhelming in terms of understanding and using it correctly. It also may 

not be a sound approach to collect data on an survey respondent who has a 

very tight daily schedule or needs to pursue an activity that is highly 

repeatable (e.g., moving furniture to a new home)--in such cases, the real-

time survey device will usually be found to be intrusive and cumbersome to 

handle. The causes of such problems with the real-time survey derive mainly 

from two aspects: 1) the size, the integrity, and the limited power supply of 

the device; 2) problems of interacting with the device. The former can be 

easily addressed by using the up-to-date portable computing equipment (the 

current trend is toward multi-function computing devices that have a wireless 

card, GPS receiver, and replaceable battery support seamlessly integrated 

into one box). The latter is more or less a human-device interface issue, 

which has been discussed and partly addressed in the multi-modal 

input/output section in this dissertation. The efforts were incomplete, due to 

the failure to completely integrate the available voice recognition tools into 

the pocket device. As a result, the lack of input channels has made the 

process of adding locations on the GIS map component relatively demanding 
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in a real-time scenario, especially when the survey participant is facing a 

tight schedule and most of the activities pursued are time-critical. The 

situation is made worse by the fact that the burden could potentially change 

the survey participant’s behavior pattern (e.g., reduce the number of out-of-

home activities), due to unwillingness to carry the device and input data 

regularly. 

 

4.5.2. Potential Improvements 

 

As noted in the previous discussion, the biggest challenge to real-time 

activity/travel survey systems is probably the conflict between the time constraints 

implied by the survey participant’s daily activity agenda and the time cost to input 

the data in real time. However, the challenge is never easy to fully address, insofar as 

today’s computing devices are not sufficiently intelligent to function as a complete 

passive observer in terms of data recording. In general, the challenge (including 

others mentioned previously) has no near-term solutions in sight to date. A perfect 

solution to these problems demands much more research effort in efficient human-

device interaction design and survey optimization. In the meantime, some minor 

improvements are worth considering as an interim means of reducing the time 

conflict between data capturing and activity pursuits: 
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1. Reduce the load of the survey task. To reduce the load on the participants’ 

part, certain intelligent controls can be integrated to allow device carriers to 

selectively skip certain questions. In addition, secondary information 

regarding activity or schedules could be gleaned from other information 

channels or bypassed entirely. Generally speaking, survey data sources 

should not be limited to portable devices only—the central data server can 

also be coupled with a web robot to actively search for complementary data. 

One good example is the survey questions about the weather at the time when 

an activity was pursued. A weather web site could provide substitute data 

with similar qualities as long as the activity time slots are available. 

2. Provide effective survey guidance. During the pilot study, only textual and 

oral instructions were offered to help the survey participants understand the 

survey procedure and survey input sequence. However, such consecutiveness 

of relation information could better be presented with pictures or picture 

sequences, as a referral base enabling the survey participants to remind 

themselves of how to proceed with the survey. A quick reference to screen 

snapshots and pictures of icons of the survey forms conceivably would be 

one means of communicating information that textual or oral descriptions 

cannot effectively deliver, especially when the survey subjects encompass 

multiple ethnic groups with varying levels of English literacy.    

3. Enhance the multi-task mode of the survey program. Currently, the survey 

program only allows concurrent activity and scheduling tracking. However, 
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the limitation of the GIS/GPS components integrated into the survey program 

prevents activities from being scheduled while travel tracing is ongoing. In 

the case when travel occupies a significant portion of out-of-home time use, 

the lack of the multi-task capability provides no guarantee about the real-time 

recording of activity scheduling data. 

4. Immediate feedback on data validity. In the after-survey questionnaires, some 

participants indicated their concerns about the validity of data they input via 

the survey program. Their shifted focus to data validity cost them more input 

time than is usually needed. Dynamic visual confirmation in icon forms 

beside the survey questions would provide one illustrative way to confirm the 

soundness of the data and to remind the user of any unanswered question. 

Also, the data (error) summary report could be compiled at the end of each 

survey day for the participants to determine if data validity had been 

compromised by their device usage pattern. 

 

Furthermore, some steps could be taken to improve the survey data quality and 

coverage: 

1. Modify the user interface to support concurrent activity tracing. People often 

interleave their activities and perform them simultaneously within a time slot. 

In such cases, the complex activity should be decomposed on the pre-defined 

list of activity types as a co-operating activity set.  
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2. Extend the tracing of schedule change to the activity execution phase. When 

the intervening opportunities emerge during travel, it often prompts trip, 

activity destination, or activity type change in the middle of travel. In a strict 

sense, the activity change/cancel operation should be classified as a type of 

spur-of-the-moment schedule change and be included in the survey data. 

3. Allow indication of non-location specific activity, such as jogging, walking 

the dog, etc. The current survey design is in essence activity-oriented. Travel 

is considered to be the derivative of the activity to be performed. For non-

location specific activity, the designated activity is performed along the travel. 

The activity tracking section should be skipped completely after travel 

tracing is accomplished since presumably the travel duration is equivalent to 

the activity duration. 

 

4.5.3. Complete Framework- Intelligent Data Warehousing for Large-

scale Real-time Survey  

 

In spite of the weaknesses we previously discussed, the real-time computer-based 

survey system provides researchers with many benefits they have never had before. 

However, the benefits of an automated system are not merely restricted to reducing 

survey instrument and labor cost. Such a system also possesses incomparable 

advantages for large-scale survey data collection practices which demand consistent 
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data quality control over a longitudinal survey period. Insofar as the survey tasks 

cannot be accomplished by the central data server alone, we envision the further 

development of an intelligent activity/travel data warehousing at the backend to 

complement the functions provided by the real-time activity/travel survey system. 

The data warehouse is designed to access the operational data collection center for 

management and data validation purposes. It helps analyze, plan and react to the 

quick change of survey conditions by organizing the collected data in a consistent 

format. The architecture of the data warehouse is composed of several 

interconnected layers: 1) the Process Management Layer; 2) the Information Access 

Layer; 3) the Information Directory Layer; and 4) the Application Messaging layer. 

The Process Management layer serves the role of extracting data from the 

operational data source (central data server) periodically, completing the dataset by 

extracting complementary information from external data sources, and converting 

them into common data models for efficient query and analysis. The Information 

Access Layer summarizes scheduling/activity data collected and their qualities, 

identifies survey errors, and reveals missing data to estimate non-response rates to 

the real-time system. The Information Directory Layer organizes the data into 

indexed directories to facilitate searching and queries. The Information directory 

service is dedicated to the survey administrators only. From the indexed 

travel/activity record, the administrator would have the capability of examining the 

survey progress and data quality from a central monitoring site, provided that a 

computer with Internet connection is available. The Application Messaging Layer 
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compiles the revealed errors into GIS-enriched questionnaires and posts them on the 

survey website for participants’ reaffirmation. According to the frequencies and 

criticality of the occurring errors, the layer also pushes the relevant warning 

messages to the portable devices. 

 

Within the information access layer, a rule-based expert system can be overlaid 

upon the central database storage to overcome the potential bias effects of real-time 

system on survey participants’ behavior,  in terms of incorrect operation on survey 

devices or negligence of activity/travel reporting under agenda stress,. The set of 

rules would check the logical consistency of the dataset and any possible errors it 

contains. The possible errors include the unanticipated change of the system clock of 

the Pocket PC, potential missing activity reports, or an inconsistent answer to the 

survey questions (such as answering yes to the question “any survey participant 

withdrawal from the activity” but answering “0” to the question “The number of 

people co-participating in the activity”). 

 

To identify theses errors, a sample rule set may contain the following rules that 

represent the expert knowledge base in order to judge if an error is embedded in the 

data: 

1. A sequence of out-of-home activities must be followed by an at-home 

activity. 
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2. No gap is allowed between adjacent travel and activity or between activities 

performed at the same location. 

3. An off-current-site activity must be accompanied by travel records. 

4. Travel/activities usually do not occur around certain time slots (say 1am – 

6am). 

 

The rule set would be modeled in “if … then …” form. The examination results 

would be posted regularly to the data warehousing web site as a scheduled task via 

ArcIMS and .NET/ASP.  By keeping track of which rules have fired compliance, the 

chain of reasoning that led to the error conclusion would also be presented to the 

survey participants.  

 

With the configuration of the intelligent data warehousing, the survey participant 

could be allowed to opt out of a data input task under a time-critical situation.  Once 

the rule-set based expert system reveals the missing data or errors in an automatic 

manner, an online questionnaire form would be compiled with the accompanying 

scenario information. NET/ASP would be used to present the relevant text attributes 

from the central server database. The Geographical presentations of travels 

associated with the activity pursuits would be published by the ARCIMS service (a 

series of sample usages are presented in the figure from Figure 30 to Figure 34). 

Both, in tandem, prompt the survey participants to fill out the missing section or to 

make correctional changes. Survey respondents therefore get another chance to 
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examine the data recorded by the survey system and help prevent data error from 

propagating to the analysis phase. The validation session of the survey website will 

be refreshed on a daily base by the data warehousing, typically at the end of a survey 

day. A survey participant could use any free time to examine his/her recorded daily 

travel/activity pursuits and to correct the incorrect records on his/her own initiative. 

Note that the correctional modification submitted to the data warehousing would not 

be applied to the collected data directly. Any suggested change by the survey 

participant would be stored alongside the data itself for further examination by the 

survey administrator. The ultimate configuration of the real-time activity/travel 

survey design with the intelligent data warehousing incorporated would be similar to 

the infrastructure illustrated in the following diagram (Figure 35).  
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Figure 30 Daily Activity Report 
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Figure 31 Use Search function to identify Trip 6. Trip 6 is highlighted with 

yellow color 
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Figure 32 Edit Travel Records by Moving Selected Trip or Adding New 

Trip Features. Edit Notes are Sent Back to the Server 
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Figure 33 Use Map Note to Add a Freehand Drawing to the Map. The Map 

Note Then is Sent Back to the Server 
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Figure 34 Use Geocoding Button Find Out Activity Location 

 

 

 

 

 

 

 

 

 

 122



Figure 35 Survey Infrastructure with Intelligent Data Warehousing 

Incorporated 
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Chapter 5 Results Data Analysis and Model Fitting 

 

5.1. Analysis of Travel Trace Data  

 

5.1.1. Travel Data Compilation: A Three-step Map-Matching Procedure 

 

To match the collected travel trace data to the existing base map, a three-step 

map-matching procedure has been developed to identify the traveled paths of each 

survey participant as represented by a sequence of street segments, which are 

extracted from the base map GIS shape file according to a set of pre-defined 

matching criteria. The difference between the actual travel route and the final match 

result is evaluated based on the concept of “edit distance” (ED) – the minimum 

number of insertions, deletions and substitutions needed to transform one route to 

another. The matching percentage is derived according to the following equation: 

100 * (1- ED/n). Here n is the total number of arcs in the actual route. On average 

the map matching algorithm reaches a matching accuracy of 95.74%. The further 

break-down of matching results by travel mode is shown in Table 8. It can be seen 

that travels by bicycle are subject to the most map matching errors, which are mainly 

due to the lack of bike path information in the base map. The paper attached in 
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appendix section B – “A Three-step General Map Matching Method in the GIS 

Environment: Travel/Transportation Study Perspective” further discussed the details 

of the map matching methodology and matching procedure.  

 

Table 8 Map Matching Accuracy by Travel Modes 

Travel Mode 
Total Number 
of Trips Average Matching Accuracy (in percentage) 

Walk 104 94.75 
Car 234 97.04 
Bicycle 61 91.19 
Carpool 34 97.17 
Vanpool 3 100.00 
Local bus 45 96.17 
Total 481 95.75 

 

 

5.1.2. Coverage of the Temporal-Spatial Travel Path - Off-road Travel 

  

Off-road travel here is defined as travel on roads other than those dedicated for 

travel by motor vehicles. These types of “minor” roads (e.g. bike path, sidewalk, etc.) 

are typically not encoded in the generic GIS digital base map. In the map-matching 

process we previously referred to, the off-road segments of the travel records are 

identified according to the pre-defined fuzzy logic rules to derive a ratio of their 

aggregated segment length to the total travel distance. Table 9 lists the off-road 

travel ratios by different activity categories. On average, 28 percent of the total travel 
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distances are not completed on the major road types designed for motorized travel.  

The percentage of off-road travel is the highest for the Work/School activity 

category, as many areas of the campus are not accessible to motor vehicles. In 

contrast, the Shopping travels on average only cover a small distance of “minor” 

roads, mostly thanks to the convenience brought by the thoughtfully designed 

parking facilities of the shopping malls. Note that the statistics here depend on the 

encoding resolution of the GIS base maps and the data we use encompass travels on 

various travel modes. Hence these results may not completely reflect the “off-road” 

travels in their true meaning. However, as many of the travel surveys are still 

targeting at tracing the travels by motor vehicles only, Table 9 provides us a rough 

estimation regarding the coverage of such surveys on the survey correspondents’ 

daily temporal-spatial paths.     

Table 9 Off-Road Travel Ratio by Activity Categories 

Activity Category Total Number of Travels Average Off-Road Ratio 

Eat/sleep/personal hygiene 108 0.25 

Household obligation 91 0.16 

Recreation/entertainment 52 0.27 

Services and errands 18 0.23 

Shopping 39 0.12 

Social 12 0.34 

Work/school 160 0.42 

Total 481 0.28 
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5.1.3. Travel Route Choice: Shortest Distance Route or Shortest Time 

Route 

 

Besides matching the travel trace to the base map, the shortest distance route and 

shortest time route are also generated with the help of ARCVIEW network module, 

which are further used as a comparison base to examine the routing behavior of the 

travelers recruited in this survey. Generally speaking, route choice is the joining 

consequence of activity needs, past travel experience, and current information about 

the activity to pursue and other conditions such as weather, traffic, safety etc. 

Travelers take routes that lead them to their destination based on their judgment on 

whether the route is the most efficient one. Occasionally, the traveler changes his/her 

routine route as a result of changing activity needs (e.g., “trip chaining”), or due to 

the varying information flow-in about the condition of the route. The factors that 

affect the traveler’s route choices may not weigh equivalently in helping them for 

route selection. Intuitively, the traveler’s primary objective should be to minimize 

the travel time or travel distance to reach the destination. Duffell and Kalombaris 

(1988), based on their study results, tend to attribute more importance to travel time 

minimization. Their research results showed that drivers are willing to travel a longer 

distance in order to trade for the reduced travel time provided “the distance is not 

doubled or the alternative is tortuous”. In the section, their point of view will be 

further tested against the empirical data collected in our survey.  
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Table 10 summarizes the edit distance between the actual travel route and the 

shortest distance/time route by travel mode. The results show that shortest path 

criterion (time or distance) can only approximate the rationale behind people’s travel 

routing decision making process. Travelers recorded routes during this real-time 

survey deviate from their corresponding shortest paths in more than 13 arc revisions 

(Edit Distance) on average. Travelers on the labor-consuming travel modes such as 

walk or bicycle almost optimized their travel path by following the shortest 

time/distance path (with an ED of about 4.3 and 1.35 respectively). In the case, with 

the lack of road surface constraints on the travel route, the shortest time and distance 

path are almost identical. As for the other types of travel modes, travelers generally 

prefer to take routes that are closer to the shortest time path than to the shortest 

distance path. However the favoring degree varies with the flexibility associated with 

the vehicle’s traveling scope and the travel participation status. Travel by local bus is 

typically subject to the strict bus route constraints, thus, they tend to deviate from the 

optimized route to a greatest extent. In contrast, travel by vanpool deviates from the 

optimized route significantly due to the potential conflicting activity objectives of 

the vast number of travel participants compared to the carpool case (which only has a 

small number of participants who usually shares a common activity destination).      
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Table 10 Difference of Actual Travel Route from Shortest Time/Distance 

Route by Travel Mode (measured in “Edit Distance”) 

Travel 
Mode 

Total 
Number of 
Travels 

Average Diff between Actual Route and 
Shortest Time Route 

Average Diff between 
Actual Route and 
Shortest Path Route 

Walk 110 4.32 4.36 
Car 234 14.44 20.96 
Bicycle 55 1.35 1.35 
Carpool 34 10.71 21.38 
Vanpool 3 37.00 45.33 
Local Bus 45 48.40 64.73 
Total 481 13.62 19.05 

 

Table 11 indicates the difference between the actual travel route and the shortest 

distance/time route by activity categories in terms of edit distance (ED). The 

tabulated results show that Service and Errands activity category’s travel routes 

closely resemble the optimized travel paths (with an ED of 5.22 with respect to the 

shortest distance path and 5.33 with respect to the shortest time path). As for other 

activity categories, the shortest time route seems to be favored more than the shortest 

distance route in types of activities with clear objectives and immediate demands 

such as Eat and Recreation/Entertainment activity type, while the activity categories 

with potential mixed activity needs (e.g. Household Obligation or Shopping) tend to 

be associated with relatively deviated travel routes from the optimized ones. 

Surprisingly, Work/School route comparison statistics likewise indicate non-optimal 

routing choice by the travelers. However, considering the facts that a significant 

portion of the survey respondents use local bus to reach their work/school locations, 
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it is conceivable that their majority travel paths follow the restricted bus route 

instead of the optimal one.  

 

Table 11 Difference of Actual Travel Route from Shortest Time/Distance 

Route by Activity Categories (measured in “Edit Distance”) 

Activity Category 
Total Number of 
Travels 

Average Diff between 
Actual Route and 
Shortest Time Route 

Average Diff between 
Actual Route and 
Shortest Path Route 

Eat/sleep/personal 
hygiene 108 8.84 18.84 
Household obligation 91 19.63 25.86 
Recreation/entertainment 53 7.57 14.70 
Services and errands 18 5.33 5.22 
Shopping 39 12.28 18.33 
Social 12 12.17 5.08 
Work/school 160 16.79 19.55 
Total 481 13.62 19.05 

 

 

In real life, the decision on which route to take to reach the destination depends 

on the various attributes associated with the route or the travelers’ subjective 

perceptions to the route attributes. In the real-time survey as described in this 

dissertation, the objective attributes of the recorded travel trace has been collected 

with the help of the GPS PC card attached to a Pocket PC. The data provide us with 

detailed information on the factors that could prompt the traveler to choose a 

particular route rather than an alternative one. Here the Binary Logistic analysis is 

used to analyze the traveler’s route choice preference between the shortest time path 

and the shortest distance path. The Edit Distance of actual travel route relative to the 

 130



shortest distance path is subtracted from the Edit Distance of actual travel route 

relative to the shortest time path. The positive results are encoded as 1, indicating a 

routing choice close to shortest time path more than to the shortest distance path. 

Otherwise the derived results are encoded as 0. A series of objectively measured 

attributes of the actual route have been selected as the covariates in this analysis: 

 

1. Route distance in miles. 

2. Travel time in minutes. 

3. Number of street links (extracted from the GIS base map). 

4. Number of intersections encountered during the travel. 

5. Off-road Ratio. 

6. Gender of the traveler. 

7. Travel Mode. 

 

The binary logistic regression function is as follows: 

P = exp(U)/(1+ exp(U))      here U is a linear combination of the covariates listed 

above plus a constant. 

 

Both the forward Wald and back Wald methods have been used to fit the model 

and they generated identical fitting results.  Table 12 and 13 show the part of the 

results from the forward stepwise Wald fitting process.  
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Table 12 Logistic Analysis Results with Forward Wald Method: 

Classification Table (a) 

Predicted 
Route Choice 
Preference 

Percentage 
Correct 

  
Observed 
  
  .00 1.00   
Step 1 Route Choice 

Preference 
.00 11 5 68.8 

    1.00 3 41 93.2 
  Overall Percentage     86.7 
Step 2 Route Choice 

Preference 
.00 9 7 56.3 

    1.00 3 41 93.2 
  Overall Percentage     83.3 

a The cut value is .500 

 

Table 13 Binary Logistic Analysis Results with Forward Wald Method: 

Variables in the Equation 

 

  B S.E. Wald df Sig. Exp(B) 
Step 
1(a) 

Travel 
Distance .405 .102 15.804 1 .000 1.499 

  Constant -2.042 .797 6.559 1 .010 .130 
Step 
2(b) 

Gender 1.790 .833 4.613 1 .032 5.990 

  Travel 
Distance .421 .118 12.832 1 .000 1.524 

  Constant -3.254 1.164 7.814 1 .005 .039 

a: Variable(s) entered on step 1: Travel Distance. 
b: Variable(s) entered on step 2: Gender. 
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At the end of step 2, the correctness of the regression analysis is up to 83.3%. 

The model underscores the significance of “Gender” and “Travel Distance” on the 

routing choice close to shortest time path more than the shortest distance path. The 

coefficients of both variables are positive (1.79 and 0.421 respectively), indicating 

that Male travelers tend to choose travel path that is relatively time-optimized 

compared to female travelers, while as the travel distance on a route increases, 

travelers will shift their routing aim toward time-optimization rather than distance 

optimization. In the backward Ward fitting process, variables other than Gender and 

Travel Distance are included in the analysis and assigned with a coefficient. 

However, none of these coefficients are statistically significant. Hence there is no 

need to comment on them further here. 

 

 

5.2 Analysis of Schedule/Activity/Travel Patterns 

 

5.2.1 Travel and Activity Duration Analysis for Out-of-home Activities 

 

In this section, an analysis of the survey data on out-of-home travel and activity 

durations is performed to establish which activity in the daily travel/activity pattern 

generally requires the longest/shortest activity/travel duration to accomplish, as well 
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as the potential relationship between activity durations and the corresponding travel 

time spans. Table 14 summarizes the difference in the survey participants’ average 

out-of-home activity and travel durations by activity category and scheduling status 

break down. The tabulated results suggest that there is significant variance in the 

time requirements among the activities of different function classes. Unsurprisingly, 

Work/School activities are typically allocated the largest portion of survey 

participants’ daily time budgets, followed by Social activities. In comparison, 

Household Obligation activities and Service and Errands activities demand the least 

time to complete. In terms of travel time, however, there is no significant difference 

observed across the different activity categories. All of the travel duration averages 

fall within the 30-minute time span. Longer activity durations do not necessarily 

imply longer travel times. 

 

When considering the effects of activity planning on the activity duration and 

travel time spans, the table shows that the scheduled Eat/Sleep/Personal Hygiene 

activities (which is mainly dominated by the “eat outside” activity type, due to the 

fact that the survey mainly captures the out-of-home activities and the first in-home 

activities) required much longer activity durations than their unscheduled 

counterparts. In comparison, the average travel time needed to reach the activity 

locations for the scheduled “Eat” activities is shorter than for those of unscheduled 

ones. A similar observation also applies to the Social activity category. 
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Table 14 Activity/Travel Durations of Different Activity Function Classes 

 

All Activities Scheduled Activities Non-Scheduled 
Activities 

Activity 
Category 

Average 
Activity 
Duration 
per Event   

Average 
Travel 
Duration 
per Event 

Average 
Activity 
Duration 
per Event  

Average 
Travel 
Duration 
per Event   

Average 
Activity 
Duration 
per Event   

Average 
Travel 
Duration 
per Event  

Eat/sleep/ 
personal 
hygiene 50.43 25.77 89.41 12.74 34.83 29.72 
Household 
obligation 4.24 19.42 4.32 24.72 4.16 17.26 
Recreation/ 
entertainment 90.03 14.39 93.93 15.93 85.59 12.85 
Services and 
errands 6.76 15.30 5.28 12.32 7.11 16.00 
Shopping 36.09 16.98 39.79 21.03 33.43 14.18 
Social 134.34 15.44 263.59 12.85 91.26 16.24 
Work/school 202.58 16.99 207.91 17.11 197.14 16.88 
Total 124.89 18.97 145.30 17.53 108.56 19.82 

 

A further tabulation of the activity durations of different function classes across 

the days of the survey week indicates that activity durations not only vary among 

activity categories, but are constantly changing over the days of the week even for a 

particular type of activity. Table 15 details the average time (in minutes) of the 

activity events per day of the week for each activity category. We can see that most 

of the rapid changes of activity durations occur between the demarcation of 

weekdays and weekends. For example, Recreation/Entertainment activity duration 

remains at a consistent level during weekdays but increases dramatically during 

weekends. In comparison, Social activities feature more than doubled activity 

durations on Weekends, with the highest average duration level peaking on Sunday. 

A similar activity duration level surge also occurs with Shopping activities, but to a 
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less extent. On the other hand, for certain activity categories, exceptional activity 

duration distribution applies only to a certain day of the week. For example, for Eat 

activity, the unique day with the most significant increase of time expenditure is 

Friday, and, for Services and Errands activities, the average duration time drops to 0 

minutes on Sunday, mainly due to the unavailability of services. Note that 

Work/School activities are generally constrained by routine classes, labs, research 

meetings, etc. during weekdays, and that Saturday is mostly devoted to household 

chores or other relaxation activities. These factors help explain why the survey 

participants tend to allocate a bigger chunk of time on Sunday to a single work/study 

activity event, making their Sunday’s average activity duration longer than that of 

the other days of the week. 

 

Table 15 Activity Durations of Different Activity Function Classes on Days 

of the Week 

Activity Categories Mon Tue Wed Thu Fri Sat Sun 
Eat/sleep/personal hygiene 24.22 61.70 24.85 40.52 80.06 52.29 47.28 
Household obligation 1.29 5.07 12.37 4.84 3.87 1.78 0.27 
Recreation/entertainment 84.86 71.76 69.39 86.23 58.25 128.09 130.28 
Services and errands 4.94 13.88 8.88 1.19 0.07 4.71 0.00 
Shopping 26.94 15.94 14.57 30.79 13.54 44.92 48.11 
Social 61.73 62.34 0.00 37.42 0.00 136.16 199.02 
Work/school 167.52 183.62 226.05 214.78 226.39 165.63 246.05 

 

In terms of travel duration distribution of different function classes across the 

days of the survey week (Table 16), the only activity category whose travel duration 

stays at a stable level over the entire survey week is that of Work/School. The travel 
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durations of Household Obligation activities remain consistent during the first six 

days of the week, but they drop nearly 34% on Sunday. A similar pattern can also be 

observed for the Shopping activities. Both of these two activity categories are 

somewhat significant in terms of maintaining the normal functions of households, 

and it is understandable that these “duty” activities take place within a smaller travel 

scope insofar as that prevents them from occupying a significant portion of 

relaxation time on Sunday. As for Services and Errands activities, their average 

travel duration drops to 0 minutes on Sunday as services are generally unavailable at 

that time. In comparison, the accumulated need to satisfy household service demands 

during the weekend results in increased travel on Saturday, which leads to longer 

observed travel durations at that time.  

 

Table 16 Travel Durations of Different Activity Function Classes on Days of 

the Week 

Activity Categories Mon Tue Wed Thu Fri Sat Sun 
Eat/sleep/personal hygiene 14.88 19.40 12.09 12.93 10.41 93.18 12.48 
Household obligation 21.90 17.11 22.04 20.14 20.30 20.43 13.46 
Recreation/entertainment 9.52 8.00 9.18 20.01 16.25 16.70 20.89 
Services and errands 9.80 10.28 7.50 9.63 18.82 33.09 0.00 
Shopping 20.75 13.95 20.32 13.83 11.34 18.40 8.68 
Social 1.15 34.43 0.00 8.82 33.82 8.89 12.52 
Work/school 18.58 14.01 18.31 18.32 15.96 21.46 16.79 

Note: The exceptionally longer average travel duration on Saturday for Eat activities is due to a long 
out-of-town trip. 

 

Table 17 summarizes the variation of the activity/travel duration with the number 

of participants that are involved in the activity. Here, activities with more than one 
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participant are defined as “coupled” activities. The table shows that more than half of 

the recorded activities (64.8%) are performed “alone.” In general, the activity 

duration of “alone” activities are nearly 39% longer than that of the “coupled” 

activities. In comparison, the corresponding average travel duration is 21% shorter. 

This observation reflects the effects of the temporal constraints in joint activities on 

the activity participants’ time allocation decision making – one’s time arrangement is 

subject to his/her appointments with other persons. If we further tabulate the 

distribution of activity durations on the days of the week (Table 18), it can be seen 

that, except on Sunday, the activity durations of “alone” activities is consistently 

longer than those of coupled activities across the week. It seems that the reduced 

activity needs on Sunday allow the activity participants of joint activities more time 

resources for coordinating multi-agent activity pursuits, while, at the same time, the 

activity duration of “alone” activity drops correspondingly, mostly having been 

substituted by in-home activity pursuits or simply dedicated to resting purposes.   

 

Table 17 Activity/Travel Durations of Activities with Different Participants 

(in minutes) 

Participant Type # of Activities Average Activity Duration Average Travel Duration 
Alone 376 110.96 17.37 
Coupled 204 79.97 21.91 
Total 580 100.09 18.97 

Note: 2 activity records do not contain the activity duration information. They are left out of this table.  
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Table 18 Activity Durations of Activities with Different Participants on Days 

of the Week 

Participant Type Mon Tue Wed Thu Fri Sat Sun 
Alone 86.84 124.62 124.79 121.38 130.46 90.70 65.97 
Coupled 73.20 70.69 72.13 112.27 77.15 70.69 104.13 

 

 

5.2.2. Schedule Horizon Analysis 

 

Schedule time horizon can be defined as “the time between the activity planning 

and its execution,” i.e., how far ahead an activity’s temporal-spatial characteristics 

(and other attributes) are planned out in the behavior’s activity agenda. If a schedule 

is planned further ahead, odds are that it may be subject to several changes before the 

planned activity is executed. Although the planned-ahead activities are less likely to 

be neglected, the scheduling action itself may have lost its efficiency. If the 

scheduler uses a short time frame, the schedule is more likely to be followed 

accurately in terms of the conformity of the executed activity to the plan. However, 

the scheduler may have less opportunity to leverage the resources for activity agenda 

optimization. 

 

Regarding the scheduling recorded in this survey, the percentile analysis (Table 

19) shows that, for out-of-home activities, nearly half of the corresponding activity 

schedules were planned within a one day period. But only 5 percent of the activities 
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can be classified as being spur-of-the-moment (with a schedule horizon of 10-15 

minutes). When the average schedule horizon data was further broken down by 

activity categories (Figure 36), Shopping activities and Services and Errands 

activities on average entail a relatively short schedule horizon (within one day); in 

comparison, Work and School activities and Household Obligation activities 

typically demand the most distant schedule horizon (on average, more than two 

days). Considering the characteristics of the two activity categories (Work and 

School activities are highly repetitive in nature and typically constitute the “back-

bone” of people’s daily travel/activity pattern; Household Obligation activities 

encompass highly coupled activity types such as pickup/drop off others), both seem 

to be ideal candidates for being planned out earlier than other events. In terms of the 

spread of schedule horizons (Figure 37), these two activity categories also show the 

most significant variation. The majority of schedule horizons of the Shopping 

activities, however, seem to cluster within only a one to two hour time span except 

for several outliers, which confirms the previous finding that they are largely 

spontaneous.  

 

Table 19 Schedule Horizon Percentiles 

    Percentiles 
    5 10 25 50 75 90 95 
Weighted 
Average(D
efinition 1) 

Schedule 
Horizon (in 
days) 

.0077 .0223 .0993 .8006 3.3624 5.5250 6.609
0 
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Figure 36 Average Schedule Horizon by Activity Categories 
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Figure 37 Box Plot on Schedule Horizons by Activity Categories 
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To analyze the relationship between the schedule horizon and activity coupling 

conditions, the data were separated according to whether or not a participant is 

accompanied during the activity. Descriptive statistics (Table 20) show the mean 

values and standard deviations of the schedule horizons for “alone” activities and 

“coupled” activities. The ANOVA analysis (N 211, F 0.036, Sig. 0.85) did not reveal 

any significant schedule horizon difference between them. However, as shown in 

Figure 38, if the activity-derived travel is subject to coupling constraints (i.e., 

carpool travel), the mean value and spread of the schedule horizon are more 

restricted. In addition, activities that require no travel possess a wider spread of 

schedule horizon than do those that require travel (Figure 39).  This indicates that 

coupling constraints in travel relate to the flexibility of scheduling time to a greater 

extent than do those in activities. 

       

Table 20 Comparison of Schedule Horizon for Activities with Different 

Participants  

Participant Type 
Mean of Schedule 
Horizon N Std. Deviation 

Alone 1.8065 131 2.01693 
Coupled 1.8626 80 2.22799 
Total 1.8275 211 2.09331 
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                                              ANOVA Table 

 

    
Sum of 
Squares df 

Mean 
Square F Sig. 

Schedule 
Horizon * 
Activity 
Coupling 

Between 
Groups 

(Combined) 

.158 1 .158 .036 .850 

  Within Groups 933.195 209 4.402     
  Total 933.353 210       

 

 

Figure 38 Box Plot on Schedule Horizons by Travel Modes 
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Figure 39 Box Plot on Schedule Horizons by Activity Travel Needs 
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As for the schedule horizon variation across genders, there is no significant 

difference (ANOVA, sig. 0.115, Table 21) found between female and male 

participants, although the mean schedule horizons of the females (2.1976) is a little 

longer than those of males (1.6899) (Figure 40). This may be due to the tendency of 

females to take more caution when it comes to making activity arrangements. 
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Table 21 ANOVA of Schedule Horizons by Gender   

  
Sum of 
Squares df Mean Square F Sig. 

Between Groups 10.901 1 10.901 2.505 .115 
Within Groups 922.452 209 4.351     
Total 933.353 210       

 

Figure 40 Box Plot on Schedule Horizons by Gender 
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Figure 41 shows a scatter plot of schedule horizons juxtaposed with activity 

duration. The cases are labeled in different colors by Gender data. Similarly, Figure 

42 shows a scatter plot of schedule horizons juxtaposed with travel duration. Both 

plots reveal that the pattern of schedule horizon relative to travel/activity duration 
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does not vary significantly across gender. However, in both plots data points do 

cluster around the neighborhood of the (0, 0) corner. This phenomenon suggests that 

activities with short duration or with short derived travels are less likely to be 

planned out early. K-Means Cluster Analysis is further used to identify relatively 

homogeneous groups of cases according to the schedule horizon and activity 

duration characteristics. As indicated by Figure 43 all the cases are divided among 

four clusters, with the activity duration contributing more to the separation of groups 

than the schedule horizon. From the K-Means cluster center table (Table 22), it can 

be seen that, generally, activities with longer durations are associated with more 

distant schedule horizons. However, it seems that this association only applies when 

the activity duration is longer than 3 hours.    
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Figure 41 Scatter Plot of Schedule Horizon against Activity Duration 

(labeled by gender) 
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Figure 42 Scatter Plot of Schedule Horizons against Travel Duration 

(labeled by gender) 
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Table 22 K-Means Cluster Centers of Schedule Horizons with respect to 

Activity Durations 

  Cluster 
  1 2 3 4 
Activity Duration (in 
minutes) 1477.47 462.67 189 37.85 

Schedule Horizon (in 
days) 3.77 2.54 1.79 1.73 
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Figure 43 K-Means Cluster Analysis Result on Schedule Horizons and 

Activity Durations 
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5.2.3. Missing Value Analysis on Activity Schedules 

 

Missing value analysis is used to determine the relationship of schedule horizons 

with respect to the schedule completeness. Using the missing value pattern of 

schedule start time, end time, date, and location as grouping variables, two-sample t 

tests are conducted against schedule horizon data. The test helps determine if the 

 149



schedule elements are missing completely at random (MCAR). If so, then other 

quantitative variables such as schedule horizon should have roughly the same 

distribution for cases separated into two groups based on value pattern (missing or 

present). From the following table (Table 23), we can see that the missing of 

schedule elements was not due to survey fatigue effects or pranks by survey 

participants. In addition, the t statistics help us compare the means of two groups of 

schedule horizon data. The table shows that the planned activity with start or end 

time undetermined tends to be associated with shorter schedule horizons. However, 

the schedule horizon is significantly longer when schedule location or date is missing 

than when they are present.  
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Table 23 T Tests with Groups Formed by the Missing Status of Schedule 

Elements 

   Schedule Horizon (in days)
START TIME MISSING t 4.3 
  df 140.1 
  # Present 156 
  # Missing 58 
  Mean(Present) 2.1424 
  Mean(Missing) .9806 
END TIME MISSING t 4.2 
  df 209.5 
  # Present 125 
  # Missing 89 
  Mean(Present) 2.3038 
  Mean(Missing) 1.1584 
DATE MISSING t -6.8 
  df 143.7 
  # Present 131 
  # Missing 83 
  Mean(Present) 1.0938 
  Mean(Missing) 2.9855 
LOCATION MISSING t -3.8 
  df 38.0 
  # Present 183 
  # Missing 31 
  Mean(Present) 1.5912 
  Mean(Missing) 3.2220 

For each quantitative variable, pairs of groups are formed by indicator variables (present, 
missing). Indicator variables with less than 5% missing are not displayed. 

 

 

 

In the following tabulated display (Table 24), the missing patterns are further 

listed with the number of cases with the unique pattern and the corresponding mean 
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values of the grouped schedule horizon data. The column labeled “Complete if” 

reports the number of complete cases if the variable(s) marked by X in that pattern 

are omitted. Thus, if End Time Missing is eliminated, the number of complete cases 

increases from 68 to 88; if only the Start Time Missing and End Time Missing are 

omitted, the number is 119; and, if the three variables (Date Missing, Start Time 

Missing, and End Time Missing) are removed, it becomes 181. The table further 

indicates that, in most of the activity schedules, the determination of activity 

locations is prioritized over other schedule elements (181 complete cases if the other 

three variables are removed). The schedule element with the next greatest 

importance would be the scheduled activity date (127 complete cases if the other 

three variables are removed). The tabulated missing pattern also confirmed the 

previous analysis result: i.e., an activity schedule with a short schedule horizon tends 

to have an undetermined start or end time (according to the pattern as shown by row 

3 and 7). In comparison, schedules with a long schedule horizon are typically 

associated with the undetermined activity date (according to the pattern as shown by 

row 5 and 9).   
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Table 24 Tabulated Patterns of Missing Scheduling Elements 

Row 
# 

Number 
of Cases Missing Patterns(a) 

Complete 
if ...(b) 

Horizon 
day(c) 

  
Location 
Missing 

Date 
Missing 

Start 
Time 
Missing 

End 
Time 
Missing     

1 68         68 1.6513 
2 20       X 88 .4171 
3 32     X X 119 .2348 
4 30   X     98 2.7505 
5 20 X X     124 4.0085 
6 6 X       74 2.1619 
7 3 X   X X 127 .1588 
8 21   X X X 181 2.1066 
9 11   X   X 129 3.2968 

Patterns with less than 1% cases (2 or fewer) are not displayed. 
a Variables are sorted on missing patterns. 
b Number of complete cases if variables missing in that pattern (marked with X) are not used. 
c Means at each unique pattern 
 

For each schedule element, a missing indicator variable is also created to indicate 

whether its value in the schedule record is present or missing. In the following table 

(Table 25), the percentage of cases in which one schedule element has a missing 

value and the other element has a non-missing value (Percent Mismatch) is displayed 

for each pair. Each diagonal element in the table contains the percentage of missing 

values for a single schedule element. It can be seen that activity locations were 

planned out well in recorded schedules, while the activity end time tends to suffer 

the greatest degree of uncertainty. The off-diagonal mismatch statistics shows that 
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activity start time and end time have the lowest mismatch percentage, which 

indicates that they tend to be missing in tandem. 

 

Table 25 Percent Mismatch of Schedule Elements 

  
Location 
Missing Date Missing 

Start Time 
Missing 

End Time 
Missing 

Location Missing 14.49       
Date Missing 33.64 38.79     
Start Time Missing 37.85 45.33 27.10   
End Time Missing  51.40 49.53 15.42 41.59 

The diagonal elements are the percentages missing, and the off-diagonal elements are the mismatch 
percentages of schedule elements. 
A: Variables are sorted on missing patterns. 
B: Schedule elements with less than 5% missing values are not displayed. 

 

 

From another perspective, the missing pattern can also be examined in terms of 

frequency counts for each pair of schedule element variables. In the following table 

(Table 26), the number of non-missing cases for each schedule element is reported 

on the diagonal of the table; the sample size for complete pairs of schedule elements 

is indicated off the diagonal. Only 35 percent of the schedule cases (75 out of 211) 

have both activity date and end time predetermined together. Less than half of the 

schedule cases (95 out of 211) have both activity date and start time predetermined 

together. It seems that half of the time, the time data in activity schedules is 

incomplete, with at least one level of the time granularity information unplanned. 
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Table 26 Pairwise Frequencies of Schedule Elements 

  Start Time End Time 
Schedule 
Date 

Schedule 
Location 

Start Time 156       
End Time 124 125     
Activity Date 95 75 131   
Activity Location 129 99 121 183 

 

 

The following tables show the cross tabulations of categorical variables against 

the missing status of the schedule elements. A table is displayed for each of the 

categorical variables (gender -- Table 28, travel requirement of the activity – Table 

27, and activity categories – Table 29). For each category, the table lists the 

frequency of non-missing values for the schedule elements in the first row of each 

pattern variable (for example, in Table 28, of the 156 schedule records that are 

present, 44 of them are made by female survey participants). The percentage each 

count of the corresponding sample size is given in the next row (156 is 73.9% of the 

total 211 schedule records, and 44 is 75.9% of the 58 female schedules). The 

percentage missing for individual categories can be compared across the different 

types of missing schedule elements. In the cross tabulation of patterns on activity 

travel requirement (Table 27), no significant difference in scheduling plans, no 

matter whether travel is required for the activity or not, is shown. In the cross 

tabulation of patterns with gender (Table 28), it can be seen that values of schedule 

date and location in male activity plans are missing to a lesser extent than those of 
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female survey respondents. Combining the result with our previous finding that 

female’s schedules are generally planned out earlier than male’s schedules, we may 

further revise our conclusion regarding male and female’ scheduling patterns, i.e., 

although females tend to lay out the events in their activity plan early, their plans are 

relatively incomplete in terms of location and time details. Lastly, the missing 

patterns of scheduling elements are cross-tabulated with activity categories. In Table 

29, different activity categories present various degrees of scheduling flexibilities 

along the projected temporal-spatial paths. For the Work/School and Household 

Obligation activity types, it shows that the activity date is the least planned-out 

schedule element, while activity start time has usually been determined beforehand. 

For the Shopping activity type, both activity start and end time are often missing 

from activity schedules, which indicates that, within the pre-determined activity 

location and date framework, shopping activity is generally spontaneous. For 

Recreation/Entertainment and Eat/Sleep/Personal Hygiene activity categories, 

activity location turns out to be the element missing the least in the activity schedules. 

For Service/Errands activities, activity location and start time are planned with full 

details, in accordance with the authority constraints enforced by the activity locations 

which provide the needed services. For Social activities, the schedule elements are 

rarely missing except for the activity end time, which indicates that social activity 

plans are typically well defined ahead of time, except that the activity duration is left 

open ended.  
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Table 27 Analysis of Scheduling Missing Element by Travel Requirement of 

the Activity 

  Total 
Travel 
Needed 

Travel Not 
Needed 

Start Time 
Missing  

Present Count 156 53 103 

    Percent 72.9 75.7 71.5 
  Missing % SysMis 27.1 24.3 28.5 
End Time 
Missing  

Present Count 125 42 83 

    Percent 58.4 60.0 57.6 
  Missing % SysMis 41.6 40.0 42.4 
Date Missing  Present Count 131 44 87 
    Percent 61.2 62.9 60.4 
  Missing % 0 38.8 37.1 39.6 
Location 
Missing 

Present Count 183 59 124 

    Percent 85.5 84.3 86.1 
  Missing % SysMis 14.5 15.7 13.9 

Indicator variables with less than 5% missing are not displayed. 

Table 28 Analysis of Schedule Missing Elements by Gender 

  Total Female Male 
Start Time 
Missing 

Present Count 156 44 112 

    Percent 72.9 75.9 71.8 
  Missing % SysMis 27.1 24.1 28.2 
End Time Missing Present Count 125 32 93 
    Percent 58.4 55.2 59.6 
  Missing % SysMis 41.6 44.8 40.4 
Date Missing  Present Count 131 29 102 
    Percent 61.2 50.0 65.4 
  Missing % 0 38.8 50.0 34.6 
Location Missing Present Count 183 45 138 
    Percent 85.5 77.6 88.5 
  Missing % SysMis 14.5 22.4 11.5 

Indicator variables with less than 5% missing are not displayed. 
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Table 29 Analysis of Schedule Missing Elements by Activity Categories 
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START 
TIME 
MISSING 

Present Count 
156 84 24 5 18 4 17 4 

    Percent 72.9 87.5 80.0 27.8 54.5 100.
0 58.6 100.

0 
  Missing % 

SysMis 27.1 12.5 20.0 72.2 45.5 .0 41.4 .0 

END TIME 
MISSING 

Present Count 125 73 15 4 14 2 14 3 

    Percent 58.4 76.0 50.0 22.2 42.4 50.0 48.3 75.0 
  Missing % 

SysMis 41.6 24.0 50.0 77.8 57.6 50.0 51.7 25.0 

DATE 
MISSING 

Present Count 131 60 10 16 22 3 16 4 

    Percent 61.2 62.5 33.3 88.9 66.7 75.0 55.2 100.
0 

  Missing % 0 38.8 37.5 66.7 11.1 33.3 25.0 44.8 .0 
LOCATION 
MISSING 

Present Count 183 80 21 15 31 4 28 4 

    Percent 85.5 83.3 70.0 83.3 93.9 100.
0 96.6 100.

0 
  Missing % 

SysMis 14.5 16.7 30.0 16.7 6.1 .0 3.4 .0 

Indicator variables with less than 5% missing are not displayed. 
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5.3. Logit Modeling Results of Activity Participation and Start Time 

Choices 

 

In this research, with the availability of convenient software, SAS function – 

MDC -- is used to estimate the suggested two-level nested logit model A. The 

parameter coefficients β, γ, and τ are estimated using a maximum likelihood method. 

Due to the data requirement of the MDC procedure that a data case should exist for 

each possible choice alternative, the common set of explanatory variables -- Aaps -- is 

specified for the utility functions at each level of the decision tree. The “Activity 

type” variable is transformed into 7 dummy variables (value 0 and 1) to represent 

each of the activity categories. However, most of the variables in the set show nearly 

no effects on the utility functions of the model (with a p value of 1). After 

eliminating these redundant covariates, we only have two explanatory variables 

“Total work/school time duration” and “Schedule horizon” included in the final 

model construction. Table 30 shows the estimate results of the proposed nested logit 

model. 
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Table 30 NLM Estimation Result for Activity Schedule and Execution 

Nested-logit Model A 

                     

The MDC Procedure 
Nested Logit Parameter Estimates 

Parameter DF 
Standard 
Estimate Error 

Approx t 
Value Pr> |t| 

WORKTOTA_L1   1 0.003577 0.001507 2.37 0.0176 
HORIZON_L1       1 0.001661 0.00791 0.21 0.8337 

INC_L2G1C1         1 1.003 0.0791 12.68 
   
<.0001 

INC_L2G1C2         1 0.9975 0.0771 12.93 <.0001 
 

 

The result offers some behaviorally plausible interpretations. Only the “Total 

work/school time duration” variable is statistically significant (5% level) in this 

model. Its coefficient affects the utility of the survey respondent for the chosen 

alternative, which either reduces or increases at the rate based on the value of the 

coefficient. The variable estimate depicts a positive sign indicating that the choices 

of activity participation and start time become irrelevant as the importance of the 

attribute decreases. The order of the coefficient (0.0036) corresponds to the order of 

the marginal effects of the choice probabilities.   

 

Table 30 also shows the estimates for the inclusive value parameter -- 

INC_L2G1C1 and INC_L2G1C2. The inclusive value coefficient estimate of the 

nest comprising the activity start time choice is 1.003, while that for the nest 

comprised of activity participation decisions is 0.9975. Generally, for nested logit 
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modeling, the value of this parameter should vary between 0 and 1. The extreme 

value 1 implies that the nested structure actually collapses to a multinomial logit 

model (MLM).  To further explore the influence of the socioeconomic variables and 

various schedule/travel/activity attributes on activity schedule/execution choices in 

details, we continue to model the three discrete levels of activity start time choices 

under a MLM framework. Besides the attribute set Aaps, Activity start time related 

characteristics -- Aas – are also incorporated into an independent covariate vector for 

building the model.  The CATMOD procedure in SAS is used to fit the multinomial 

model. Those significantly irrelevant variables were eliminated from the input 

parameters list of the procedure via a couple rounds of model filtering process. By 

defining two generalized logit equations, the CATMOD procedure estimates the 

effects of the covariate vector on the log odds of two choice levels against the third 

one. Parameter estimations are simultaneously derived by maximum likelihood (ML).  

From the parameters of these two equations, it is possible to derive effects of unit 

changes in independent variables on the probability of each of the three outcomes. 

Table 31 shows the estimation results of the preliminary MLM model.  
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Table 31 Preliminary MLM Likelihood Estimation Results for Activity Start 

Time Choice 

Maximum Likelihood Analysis of Variance 
Source                  DF        Chi-Square     Pr > ChiSq 
Intercept                2 6.17 0.0458
WORKTOTA       2 5.3 0.0707
TRAVELDU         2 9.33 0.0094
ACTIVI5               2 0.96 0.6201
BELIEFTR            2 6.73 0.0346
OFFRATIO           2 13.54 0.0011
INTERSEC            2 1.05 0.5912
HORIZON             2 3.1 0.2126
TRAPEAK            2 5.08 0.0788
WORKSCHO         2 12.65 0.0018
STARTMIS            2 4.59 0.1006
ENDMIS                2 9.42 0.0090
DATEMIS              2 3.63 0.1628
Likelihood Ratio 300 613.99                  <0.0001 

 

 

From the modeling results, it appears that “Travel duration”, “Travel distance”, 

“The ratio of Off-road travel”, “Work/School activity type” and “End time missing” 

are the significant factors that affect the activity start time choices at the significance 

level of 0.05. “Total work/school time duration” and “Is Travel during Peak Time” is 

suspected to be important in explaining the start time choices. Based on the 

preliminary result the model was refit using only the 7 covariates mentioned above. 

Now the covariates includes in the model are nearly all significant at the level 0.05 

based on the Wald test (Table 32), except the “Is Travel during Peak Time” variable. 

This implies that these variables do have an effect on the activity start time choice. 
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Table 32 MLM Likelihood Estimation Results for Activity Start Time 

Choice with Reduced Covariate Set                         

Maximum Likelihood Analysis of Variance 
Source                  DF        Chi-Square     Pr > ChiSq 
Intercept                2 14.53 0.0007
WORKTOTA       2 7.79 0.0204
TRAVELDU         2 8.31 0.0157
BELIEFTR            2 8.49 0.0143
OFFRATIO           2 16.77 0.0002
TRAPEAK            2 5.7 0.0580
WORKSCHO         2 14.61 0.0007
ENDMIS                2 16.42 0.0003
Likelihood Ratio 312 627.06                   <0.0001 

 

 

Table 33 shows the intercepts and the parameter estimation for the two equations 

predicting the log odds of “activity starts on time versus other” and “activity start 

early versus other” respectively. From the parameters of these logistic equations, it is 

possible to derive the effects of unit changes in independent variables on the 

probability of each of the activity start time choices with some simple calculations. 

These effects are, by the nature of the logistic linking function, non-linear. The literal 

interpretations to those significant parameter estimates are listed below: 

 

1. Given the same status of the other variables, for each 10 minutes increase of 

work/study duration, the odds of activity start on time decreases by 1- exp(-0.0002 * 
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10) = 0.02% and the odds of activity start early decrease by 1-exp(-0.00003 * 10) = 

0.03%.  

2. Given the same status of the other variables, for each 10 minutes increase of 

travel duration, the odds of activity start on time decrease by 1- exp(-0.00035 * 10) = 

0.35% and the odds of activity start early decrease by 1-exp(-0.00118 * 10) = 1.17 %.  

3. Given the same status of the other variables, for each 1 mile increase of travel 

distance, the odds of activity start on time decrease by 1- exp (0.12 * 1) = 12.7% and 

odds of activity start early decrease by 1- exp (0.2 * 1) = 22.1 %.  

4. Given the same status of other variables, for each 0.05 percent increase of off-

road travel ratio, the odds of activity start on time decrease by 1-exp (1.38 * 0.05) = 

7.14%.  

5. Given the same status of other variables, the odds of activity start on time for 

travelers who travel during non peak time is exp (0.2762) = 1.32 times greater than 

those who travel during peak time.  

6. Given the same status of other variables, the odds of activity start on time for 

non-work/school activity pursuit is exp (- 1.544) = 0.21 times of that for work/school 

activity pursuit.  

7. Given the same status of other variables, the odds of start activity on time for 

activities with end time fully planned is exp (-0.225) = 0.8 times of that for activities 

with end-time element missing in their schedules, while the odds of activity start 

early for activities with end time fully planned is exp (-1.53) = 0.22 times of that for 

activities with end time element missing in their schedules. 
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Table 33 MLM Parameter Estimation Results for Activity Start Time 

Choice with Reduced Covariate Set 

 

Analysis of Maximum Likelihood Estimates 

Parameter  Function Number Estimate Standard Error 
Chi-
Square 

Pr > 
ChiSq 

1 0.822500 0.294300 7.81 0.0052Intercept 
2 -1.704100 0.926300 3.38 0.0658
1 -0.000020 0.000006 7.31 0.0069WORKTOTA        
2 -0.000030 0.000025 1.29 0.2569
1 -0.000350 0.000133 6.73 0.0095TRAVELDU        
2 -0.001180 0.000746 2.49 0.1145
1 0.120200 0.044300 7.36 0.0067BELIEFTR        
2 0.200000 0.091600 4.77 0.0290
1 1.384200 0.357400 15.00 0.0001OFFRATIO        
2 0.023800 0.928100 0.00 0.9795

TRAPEAK    0 1 0.276200 0.122000 5.12 0.0236
 0 2 -0.040200 0.342200 0.01 0.9065
WORKSCHO   0 1 0.061900 0.118600 0.27 0.6020
 0 2 -1.544200 0.430500 12.87 0.0003
ENDMIS     0 1 -0.225100 0.124700 3.26 0.0709
 0 2 -1.530400 0.386700 15.66   <0.0001 

 

Due to the limited data coverage, the logit model constructions tested here are 

not comprehensive enough to cover all the potential factors that affect the 

congruence relationship between activity schedules and their executions, e.g. the in-

home versus out-of-home activity substitution. However, it does provide us a 

practical and convenient way to explore the deviation of activity participation/start 

time from the activity plans given the standard socioeconomic variables and various 

schedule/travel/activity attributes. With the help of the SAS statistical procedures, 
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the nested logit model we tested offered us the particular insight that the daily work-

study time duration significantly affects the activity participation and activity start 

time choice in the behavioral paradigm as represented by the postulated nest 

structure. This finding, although coarse in terms of its resolving power in predicting 

people’s behavioral patterns with respects to their schedules, is consistent with our 

empirical expectation base on the real-life experience. The further multinomial logit 

analysis not only reveals the moving direction of the probability associated with a 

certain activity start time choice with respect to the variation in the activity/travel 

scenarios, but also allows us to defer the corresponding quantitative measures for 

such changes. These identified influencing factors from the model explicitly imply 

the effects of limited spatial and temporal flexibility to the activity schedule 

realization.   
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Chapter 6 Conclusion 

 

6.1 Summary 

 

This research conceptualized and implemented a real-time system tool that 

facilitates the study of the dynamic linkages between the activity scheduling and 

execution process at an individual level. The survey methodology opens the 

opportunity for researchers to gather information on the integral scheduling and 

activity execution process by means of empirical data collection and to model the 

relationship between them. This research contributes to the progress of the current 

computer-assisted travel/activity survey practices from two perspectives: on one 

hand, schedule/travel/activity data is collected in real time which is similar to the 

traditional paper-pencil-based approach, but overcomes its deficits such as limited 

storage capacity and linear survey format; on the other hand, with the multi-modal 

interface designed for the mobile computing device, especially with the enhanced 

voice capabilities, the silent machine is endowed with its own personality and 

limited intelligence. Ideally it would be treated more equally as an experienced 

“human” interviewer by the survey respondents in their role interpretation but 

without arousing the concerns of privacy invasion. Thanks to the reduced size and 

detachment of the computing device with a fixed location power supply (either an in-
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wall socket or a car cigarette lighter), scheduling/travel/activity data collection with 

this system are broadened to encompass more travel modes and enlarged activity 

scopes. The small-scale pilot study by this research showed that the methodology 

was successful in achieving our goals without incurring significant survey fatigue 

effects. At the current development stage, it is not practical to expect the approach to 

be applied to a large sample base due to the advanced technology integrated in the 

survey device and its limited acceptance to specific population subgroups. 

Nevertheless, the unique approach did show clear potential in complementing the 

survey data from large-scale household travel/activity surveys, and, particularly, 

promoting our understanding of the role of dynamic activity scheduling processes in 

shaping the observed travel/activity pattern as derived from a traditional 

travel/activity survey.  

  

As the second part of the research, the data provided by the system via the pilot 

survey were used for an in-depth analysis of the routing behavior, scheduling pattern 

of various activity categories and the inter-relationship between scheduling and 

correlated activity execution. With the advantage of full coverage of the spectrum of 

travel modes and site-to-site travel traces, the research revealed the varying routing 

behavior on gender, travel distance, different travel modes and activity categories. 

To summarize, Male travelers tend to choose a travel path that is relatively time-

optimized compared to female travelers, while as the travel distance on a route 

increases, travelers will shift their routing aim toward time-optimization rather than 
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distance optimization. For labor-consuming travel modes, shortest time and distance 

paths tend to coincide with each other, and the shortest-distance paths are favored a 

little more. As for the other types of travel modes, travelers generally prefer to take 

routes that approximate the shortest time. With regards to activity categories, the 

shortest time route seems to be favored more than the shortest distance route in types 

of activities with clear objectives and immediate demands such as Eat and 

Recreation/Entertainment activity type, while the activity categories with potential 

mixed activity needs tend to be associated with relatively deviated travel routes from 

the optimized ones.  

 

The research also shows that scheduling behavior doesn’t associate with each 

type of activity in an equivalent way. Among the seven activity category division 

used in this research, Recreation and Entertainment activities turned out to be the 

most actively scheduled, while Household Obligation activities are least planned 

before execution.  Even with planned activities, scheduling horizons are significantly 

different. Shopping activities and Services and Errands activities on average entail a 

relatively short schedule horizon, while activities with longer durations are 

associated with more distant schedule horizons (when the activity duration is longer 

than a half day).  In terms of projected temporal-spatial attributes in activity 

schedules, activity locations typically are planned out well, while the activity end 

time tends to suffer the greatest degree of uncertainty, although activity start time 

and end time tend to be missing in tandem. Scheduling horizon time scale, obviously, 

 169



to a certain extent affects the details of the activity plans. Planned activities with start 

or end times undetermined are usually associated with shorter schedule horizons. In 

comparison, the schedule horizon is significantly longer when schedule location or 

date is missing than when they are present. For each type of activity, different 

scheduling elements tend to be emphasized in their activity plan. For 

Recreation/Entertainment and Eat/Sleep/Personal Hygiene activity categories, 

activity location turns out to be the element missing the least in the activity schedules. 

For Service/Errands activities, activity location and start time are planned with full 

details, in accordance with the authority constraints enforced by the activity locations 

which provide the needed services. As for Social activities, the schedule elements are 

rarely missing except for the activity end time, which indicates that social activity 

plans are typically well defined ahead of time, except that the activity duration is left 

open-ended.  

 

Besides the commonly recognizable factors that influence the congruence 

relationship between activity scheduling and execution, the research revealed an 

additional factor -- the percentage of “Off-Road” travel, which may potentially affect 

activity participation decisions in a significant way. The percentage of “Off-road” 

travel to a certain extent represents the accessibility of the activity location to the 

activity pursuers as the uncertainty of an activity execution mostly lies in the travel 

portion covered by the slowest travel mode used to reach the site. As shown in the 

research, the percentage of off-road travel is the highest for the Work/School activity 
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category, as many areas of the campus are not accessible to the motor vehicles. In 

contrast, Shopping on average only cover a small distance of “minor” roads, mostly 

thanks to the convenience brought by the purposely designed parking facilities of the 

shopping malls.  

 

Using a nested logit modeling approach, the research was able to identify the 

single factor that dominates the activity participation and start time choice decision 

making. The choices of activity participation and start time become irrelevant as the 

importance of the “Total work/study duration” decreases. The further one-level 

multi-nomial logit modeling efforts identified five factors --“Travel duration”, 

“Travel distance”, “The ratio of Off-road travel”, “Work/School activity type” and 

“End time missing” that affect the activity start time choices at a significant level. 

These identified influencing factors from the model explicitly imply the effects of 

limited spatial and temporal flexibility to the activity schedule realization. The 

modeling results even offer us the quantitative measures for effects of the factor 

changes on activity start time choices. Similar models could be conducted on the 

activity location choices and duration choices.   
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6.2 Future Research  

 

6.2.1. Improve the current data collection system 

  

As shown by this research, the biggest challenge to real-time activity/travel 

survey systems, in comparison to the passive data collection practice, is the conflict 

between the time constraints implied by the survey participant’s daily activity 

agenda and the time cost to input the data in real time. In the short term, several 

improvements are worth considering as an interim means for enhancing the usability, 

duration and reliability of the system: 

1. Reduce the load of the survey task. To reduce the load on the 

participants’ part, certain intelligent controls can be integrated to allow 

device carriers to selectively skip certain questions and provides the 

answers later. In addition, secondary information regarding activity or 

schedules could be gleaned from other information channels or bypassed 

entirely.   

2. Provide effective survey guidance. The consecutiveness of relation 

information such as survey procedure and input sequence could better be 

presented with pictures or picture sequences, as a referral base enabling 

the survey participants to remind themselves of how to proceed with the 

survey.  
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3. Enhance the multi-task mode of the survey program. Currently, the 

survey program only allows concurrent activity and scheduling tracking. 

In the case when travel occupies a significant portion of out-of-home time 

use, the lack of the multi-task capability provides no guarantee about the 

real-time recording of activity scheduling data. The concurrent working 

mode should be further extended to travel tracking. 

 

In the long term, we may further consider delegating the task of activity/travel 

attribute collection to a recall session. By combining the active scheduling data 

collection with passive activity/travel attribute retrieval in a balanced manner, the 

survey protocol holds out considerable promise in providing deep insights into the 

relations between the dynamic activity planning process and the resulting 

travel/activity pattern in an accurate, reliable way. It would also be interesting to 

compare instrument bias and survey burden brought by the system with traditional 

activity/travel data collection methods. Further improvement on duration and 

reliability of the system potentially endows the activity/travel researchers with a 

powerful tool to enlarge the data bases for the longitudinal trends of activity/travel 

pattern changes. 
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6.2.2. Further Modeling efforts 

 

As mentioned in the previous section of this dissertation, two other options exist 

for building the activity scheduling -execution model with the empirical observation 

on how activity scheduling and execution actually evolve concurrently in real-life 

situations. These different forms of model construction could provide a different 

perspective in testing our research hypotheses mentioned, in terms of how spatial–

temporal constraints, household characteristics and other constraints (such as 

substitution) affect the scheduling, rescheduling of people’s daily activities and their 

actual implementation. 

 

6.2.2.1. Artificial Neural Network (ANN) Modeling  

  

The artificial neural network (ANN) provides us a method to learn and 

approximate the relationship between activity scheduling and activity execution 

status with a discrete-valued function in the form of a network of interconnected 

neurons. Derived from the analogy of human brain construction, ANN performs well 

in modeling the phenomena whose natural working mechanism is not fully 

understood (e.g. speech recognition). It is widely known that human behavior is 

sometimes “fuzzy” in the sense that people could make different choices under the 

same circumstance. This is the case for the inconsistency between the intended 
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schedule and the observed real-life activity-travel pattern. ANN to a certain extent 

serves the purpose here in terms of its modeling capability for complicated 

phenomena.  

 

The neurons that compose the ANN system can be one of two forms, Perceptron 

and Sigmoid (Mitchell, 1997). Perceptron units combine the inputs to them linearly 

and output a two-level result (0 and 1) according a threshold setting. They are mostly 

used for the modeling of linearly separable phenomenon. Sigmoid is similar to 

Perceptron with respect to the handling of the inputs but goes one step further to feed 

the linear combination through a logit function: 1/ (1 + e-y)  (in which y is the linear 

combination of the inputs). Therefore, the output of Sigmoid is continuous rather 

than discrete in comparison to that of Perceptron. With a wider output range, 

sigmoid is more powerful in interpreting complicated causal relationships. 

 

In the potential ANN modeling of activity scheduling and execution status, 

Sigmoid will be the chosen neuron units that compose the ANN network. The whole 

network consists of three layers. The first layer accepts the 21 attribute inputs as 

listed in table 1. The input layer, one hidden layer and one output layer are connected 

in a feed-forward way. The links between different layers are complete (any neuron 

in one layer is connected to every neuron in the other layer). Five output units in the 

output layer represent each of the activity execution status – on time, early, late, 

deleted from schedule, and postponed. A back propagation algorithm can be used for 
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estimation of the weights on the links in the network based on training data (Mitchell, 

1997). For testing the validity of network weights and avoiding the overfitting 

problem, only two-third of the entire activity scheduling and execution status data set 

will be used for model estimation. The other one-third can be used for determining 

the best timing to terminate the back propagation algorithm.    

 

6.2.2.2. Learning Tree Modeling 

 

Decision tree modeling in essence is a learning method that infers the 

hierarchical decision structure from the training data by induction with no prior 

model-structure assumption made. The learned tree representation can be easily 

transformed into a set of disjunctive decision rules in the form of condition-action 

pair used in CPM models. Therefore this approach has been used in ALBATROSS 

(Arentze and Timmermans, 2000) to derive the sets of heuristic rules from empirical 

activity-travel data for intermediate stepwise decision-makings in the model.      

  

The well-known decision tree learning algorithms that have been used widely are 

ID3, ASSISTANT, C4.5, CART and CHAID (Mitchell, 1997). C4.5, CART and 

CHAID (Kass, 1980) are the decision-tree learning algorithms tested in the 

ALBATROSS transportation simulation system (Arentze and Timmermans, 2000, 

Arentze, et al. 2000) for the derivation of heuristic decision rules. Each of the 
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algorithms works its way from the construction of a root node of the decision tree to 

the leaf node where instances within the same category are captured. The nodes in 

the tree represent the attributes of the instances being examined for each level of 

classification decision. The training instances are allocated along the branches 

according to their associated attributes values. It is conceivable that the number of 

possible decision tree structures grows rapidly with the number of attributes to 

examine for the classification and the tree sizes could vary in magnitudes. Therefore, 

these decision-tree learning algorithms have the mechanism to bias the tree 

construction process in favor of smaller, shorter trees than bigger, higher ones with 

the assumption that simple theory that explains the data is better. In ID3, the order of 

the attributes to be examined is based on an entropy measure, which “characterizes 

the (im)purity of an arbitrary collection of examples” (Mitchell, 1997). The chosen 

attribute at each decision step is expected to reduce the information entropy 

contained in the current instance classification to a maximum extent. C4.5 (Quinlan, 

1993) was developed based on ID3, but extends the ID3 algorithm in some aspects 

(e.g. missing attribute and continuous attribute value handling). Different from ID3 

and C4.5, CHAID chooses the attribute that “maximizes the significance of a chi-

squared statistic” at each instance-branching step (Kass, 1980, pp 119). In addition to 

select the best attribute that partitions the current subgroup at each step, CHAID 

includes a recursive split-merge sub-module to search for the best possible data 

segmentation for each attribute.  

 

 177



To use a decision tree for activity schedule and execution status modeling, the 

data need be grouped into vectors that consist of the attributes and the associated 

target classification value.  The attributes would be the causal factors as previously 

identified in table 1, while the possible deviation of activity execution from activity 

schedule (on time, late, early, deleted from schedule and postponed) serves as the 

discrete classification value. Note that the value of some attributes in table 1 are in 

continuous range (e.g. travel distance) and thus need to be discretized into adjacent 

intervals when ID3 or CHAID algorithm are used (these algorithms can’t handle the 

attribute with continuous value). The decision tree induction algorithm offers a 

hierarchical organization of different causal factors that indicates the variation of the 

significance levels associated with these factors in the human decision-making 

process. It can be interpreted as the decision dependence relationship or the priority 

difference among the activity-travel attributes in activity scheduling (execution) 

consideration. This information potentially can be used to provide the guidance for 

the nested-logit model construction. Similar to ANN modeling, the learned decision 

tree via training data needs to be validated against a test dataset for examining its 

generality. To avoid the overfitting problem, a post-pruning method is commonly 

used to examine and replace some sub-trees contained in the learned decision tree 

with a single leaf node for improving the decision tree predicting performance.        
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Appendix A 

 

The information collected in the activity scheduling/execution survey is 

organized in the following SQL database tables. First row in the table indicates the 

table’s name. For the rows other than the first, the first column indicates the attribute 

name for each record in the database table; the second column indicates the data type 

of the attribute. 

1) Nvarchar(n) --- variable length of string with the maximum length of n. 

2) Bit – boolean variable with only two possible values (true or false). 

3) Identity Integer – Auto incremented integer ID by database. 

4) Datetime --- time data type that specifies date and time. 
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Contact  

personID Reference to the personID field in 

person table. 

Phone Nvarchar(10) 

Email Nvarchar(30) 

 

 

Person  

personID Random number generated between 1-

500000 

First Name Nvarchar (20) 

Last Name Nvarchar (20) 

Gender Bit 

Age Integer 

Driver’s License Bit 

Education Integer 

Income Integer 

Vehicle Access Bit 
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TransportMode  

PersonID Reference to the personID field in 

Person Table 

Undisclosed Bit 

Walk Bit 

Carpool Bit 

Vanpool Bit 

Car Bit 

Bus Bit 

Bicycle Bit 

 

 

ActivityType  

ActivityID Identity Integer 

ActivityClass Nvarchar(50) 

ActivityName Nvarchar(50) 

Selected Bit 

UserDefined Bit 
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Places  

placeID Identity Integer 

Place Name nvarchar (60) 

Latitude Float 

Longitude Float 

Street Address nvarchar 

(60) 

City nvarchar(30) 

Zip Nvarchar(5)  

State Nvarchar(20) 

UserDefined bit 

personID Reference to personID field in  table 

Person 
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Schedule  

sActivityID Identity integer 

ActivityID Reference to activityID field in Activity 

type table 

LocationID Reference to the PlaceID in table places. 

Day datetime 

Weekday integer  

Start Time Datetime 

End time Datetime 

Accompanies Integer 
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Implement Activity  

iActivityID Identity integer 

sActivityID 

(could be null) 

Reference to sActivityID field in 

table Schedule 

ActivityID Reference to the activityID field in 

table Activity Type 

locationID Reference to the PlaceID field in 

table places 

Day datetime 

Weekday integer 

TravelMode Integer 

Accompanies integer 

TravelStartTime 

(could be null) 

datetime 

TravelDuration 

(could be 0) 

integer 

ActivityStartTime Datetime 

ActivityDuration integer 
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ImplementActivityInfo  

iActivityID Reference to iActivityID field 

in implementActivity Table 

Precipitation Integer 

Skycondition Integer 

Wind Integer 

Temperature Integer 

TrafficAware Integer 

TrafficReal Integer 

ServiceStart Datetime 

Serviceend Datetime 

Withdrawal Bit 

Priority Integer 
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UnfulfilledActivityInfo  

sActivityID Integer reference to the 

sActivityID field in table Schedule 

Precipitation Integer 

SkyCondition Integer 

Wind Integer 

Temperature Integer 

TrafficAware Integer 

ServiceStart   Datetime 

ServiceEnd Datetime 

Withdrawal   Bit 

Priority Integer 

 

Forget Bit 

 

LackofCondition Bit 
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ImplementStatus  

Start Integer 

Duration Integer 

Location Integer 

 

 

iActivityID  

Longitude Float 

Latitude Float 

Fix Integer 

 Note: the table could have multiples instances. The total number of the instances 

depends on how many trips are made during the survey.  
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Abstract 

 

Despite its application in many fields, map matching in travel/transport 

geography study is unique in two aspects: 1) The correct road links traversed by the 

traveler need to be unambiguously identified; 2) All the identified links should form 

a meaningful travel route. This paper discusses the application of map matching 

methodologies in the context of deriving people’s travel behavior from GPS-traced 

multi-modal trip data within the GIS environment. In recognition of the 

disadvantages associated with the existing map-matching algorithms, this research 

proposed and implemented in ARCGIS a heterogeneous map matching approach 

suitable for travel/activity research needs which is uniquely characterized by: 1) data 

preprocessing with point cluster reduction and density leverage; 2) offering the 

candidate solution within a pool of “the best”; 3) the balancing of matching results 

from multiple matching factors with rank aggregation; 4) Intelligently utilizing the 

basic network constraint attributes with “expert rules” to increase the matching 

accuracy; and 5) Dempster belief test to discern the noise and off-road travel. Our 

analysis has shown that the performance of the new algorithm is comparable with the 

others when the candidate pool size is small and network/GPS trace size is large. 

Further research needs to quantify the performance of this algorithm and others with 

respect to a complete set of survey travel routes recorded.    
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1. Introduction 

 

Map matching is defined as the process of correlating two sets of geographical 

positional information (e.g., GPS records of object positioning versus road network, 

digital road networks from different vendors, etc.). Data types handled by map 

matching include point-to-line, line-to-line (Xiong, 2000) and polyline to polyline 

matching. Based on the temporal-response characteristics, map matching algorithms 

can also be roughly classified into online map-matching and off-line map-matching. 

Online map-matching methods snap the device-captured geo-spatial feature position 

to the base reference in real-time. Offline map-matching counterparts post-snap the 

point data/linear data after the whole set of data is collected (Yin and Ouri, 2004). 

 

This paper discusses the map matching methods in the context of 

travel/transportation studies. Map matching is used as a means to transfer the road 

network attributes to the resulting travel route in order to derive certain travel 

behavior, and, hence, further analysis can be conducted based on the inferred 

information. Matching GPS recorded points to the correct position on the correct 

road link is secondary compared to obtaining the topologically correct travel route 

and the associated attributes/statistics. The paper is organized as follows: Section 2 

briefly overviews the currently available map matching methods. Section 3 delves 

into the unique requirements for map matching algorithms in travel/transportation 

studies and describes an innovative three-step heterogeneous map matching 
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methodology. Finally, section 4 presents conclusions and discusses future research 

on the proposed map-matching method and its application in travel/transportation 

studies. 

 

2. Overview of Map Matching Methods 

 

2.1 Applications and Conceptual Formulation 

 

Map matching has widespread applications, including automatic vehicle 

navigation (Syed & Cannon, 2004), image processing, network data conflation 

(Xiong, 2002), and travel/activity surveys (Lexington Travel Survey, 1997). The 

common procedure for map matching is to establish the correspondence relationship 

between two sets of spatial features. Spatial information and attributes contained in 

the different spatial data sets are conflated into one of the spatial data sets via a 

matching operation, or are processed further to generate a new data set.  The process 

of map matching helps researchers extract the characteristics of matched features 

from one data set and transfer/update the associated spatial/non-spatial information 

to/on the other data set. In this paper, we will focus on the research question of how 

to accurately match GPS-captured positional data onto linear data (road network).   

 

2.2 Evolution of Map-matching Factors 
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A straightforward solution to the map-matching problem, as mentioned by White 

and his colleagues (2000), is to snap the GPS recorded location to the nearest road 

link node or road link. The simple solution, however, only generates perfect 

matching results in the ideal situation. Typically, due to the dual uncertainty and 

inaccuracy involved in both the point and network data, matching GPS recorded 

point data to road link nodes or to a road link itself is extremely prone to errors. The 

situation is exacerbated when only distance measures are used for guiding the 

matching process due to the potential map-matching zone overlay (Lakakis et al. 

2004). Point to point matching (matching GPS points to road link nodes) could easily 

fall into the pitfall of matching to the wrong node on the wrong link if the correct 

and wrong links are close by in parallel and the correct link does not contain as many 

of pseudo-nodes as the wrong one. Point to curve matching, (matching GPS points to 

road link arcs), on the other hand, suffers from ambiguity issues when the GPS point 

is close to a road intersection (Bernstein and Kornhauser, 1996, 1998; White et al. 

2000).  

 

Notice that a distance measure would only constrain a spatial feature along one 

dimension. An additional measure - travel direction - naturally became the candidate 

to add on as the second dimension to quantify the relationship between GPS points 

and the matching road network. Unsurprisingly it ends up improving the matching 

accuracy dramatically (White et al. 2000). However, travel direction derived simply 

from GPS points could be very unreliable, especially when the carrier of the GPS 
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receiver travels at a low speed or makes brief stops along the travel routes. In either 

case, GPS signal drifts exert unpredictable effects on the GPS-derived travel 

directions. This has forced many researchers to rely on gyroscope or digital compass 

as the second data source.  These devices generally can provide accurate heading and 

heading change information at various travel speeds (Quddus et al., 2003; Syed and 

Cannon, 2004).       

 

As more research efforts are devoted to searching better map-matching methods, 

other measurements have been incorporated to provide better selection criteria for 

deciding the best match from the neighboring candidate link set. The decision space 

for matched road link selection, hence, was expanded to a multi-dimensional level. 

For example, besides proximity and heading difference, Quddus et al. (2003) have 

used two additional measures for road link selection -- “GPS position relative to the 

road link” and “intersection relation between the GPS trace and the road links”; Syed 

and Cannon (2004) have used the “average distance traveled on current link” and 

“large distance traveled on current road link”. In addition, if the base road network 

contains detailed road attributes (speed limits, one way lanes, etc.) that potentially 

restrict a certain routing behavior, they can be utilized to further filter unqualified 

road links (Najjar and Bonnifait, 2003; Taylor et al. 2001).  

 

Intuitively, taking more factors into consideration helps avoid matching errors 

that easily result from measurements from a single perspective. Nevertheless, 
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different select criteria could also result in conflicting matching conclusions and 

therefore cause more confusion. To overcome the difficulty, two approaches have 

been taken to fuse the multi-dimensional selection criteria and reduce them to 

facilitate the deterministic matching decision.  The one that is commonly used is to 

simply combine the selection factor with a weighting scheme. The weighting factors 

are typically derived empirically from data testing (Quddus et al. 2003) or from 

adaptive-fuzzy-network-based training (Kim and Kim, 2001). The second approach 

is complicated enough to use Bayesian Belief Theory and Dempster-Shafter’s rule 

for deriving the unique non-ambiguous selection.  

 

1. Improvements with Topological Information 

 

With meticulous calibration of selection criteria, map-matching algorithms are 

sufficient to identify a series of the matched road segments from the pool of 

candidate links. However, this does not necessarily imply the matching result would 

be meaningful in terms of truthfully reflecting a traced travel route. A matching 

result could show up simply as a group of disconnected “paths”.  

 

Notice that both point-to-point and point-to-curve matching approaches do not 

reflect the fact that GPS records indeed represent the travel routes of the carriers but 

that only constitute a small sample of the route. Bernstein and Kornhauser (1996) 

and White et al. (2000) have suggested connecting the GPS points in sequence to 
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form piece-wise linear curves, which are further matched against road network. The 

method is called curve-to-curve matching. The matched curve, consisting of road 

links that are selected from the base road network, should have the smallest L2 norm 

distance to the GPS trace or be viewed as the approximate variation of GPS trace 

after a small amount of translation and rotation. Techniques have been borrowed 

from the pattern recognition field that utilizes similar measures to evaluate the shape 

proximity between two geometrical figures. One of the good examples is the Joshi 

(2001)’s application of a rotational variation metric to measure the shape similarity 

between vehicle trajectory and the possible travel paths. 

     

On the other hand, there are many other researchers who chose to further 

improve point-to-point matching or point-to-curve matching. As suggested by 

Bernstein and Kornhauser (1996, 1998), tested by White et al. (2000), and included 

in other researchers’ work (Quddus et al., 2003; Syed and Cannon, 2004), road 

network topology information has been incorporated into the matching algorithm to 

maintain the topological integrity of map matching results and prevent the error of 

matching points to the wrong road link. The underpinning rational is simple: if, at 

time t, a road link is selected without ambiguity; at time t+1, the selected road link 

would most probably remain as the ideal matching candidate; or the end of the 

current road link has been reached, and, hence, a road link that is connected to it 

becomes the next candidate.  Therefore, the topology relations (especially, 

connectivity) among road links restrain the search for the next matching candidate. 

 202



Unreachable road links from the current match in one GPS epoch thus would be 

easily eliminated from the candidate link set with confidence. However, the 

effectiveness of the approach depends greatly on the extent to which we can trust the 

previous match.  A tiny bad match could consequentially lead to a matching blunder 

as the GPS epoch progresses, as commonly seen in the pure geometry- based 

matching algorithms (Quddus et al., 2003).  It is not an easy task to clearly 

dichotomize the confidence/trust domain with a deterministic threshold setting. 

 

As a solution to the problem, Pyo et al. (2001) and, later, Marchal et al. (2004) 

increased the number of testing epochs for determining the best “continuing” road 

link from the currently matched one. Their algorithms keep multiple possible 

“continuing” road links and the corresponding accumulated “fitness” values in a 

hypothesis space over a period of GPS epochs. The fitness measurements that grew 

smaller than a threshold over time will get pruned. Finally, a road link hypothesis is 

confirmed as the map matching result either if its fitness score is the highest or the 

ratio of its score to the next highest one exceeds a certain threshold. Note that there 

is no single definition for such fitness measures. Marchal et al. (2004) used the 

aggregated proximity measure between the GPS points and road links, while Pyo et 

al. (2001) used the recursive conditional probability formulation that was comprised 

of multiple measurements -- projected position, link direction, link connectivity, road 

facility, etc. Both approaches seem to perform adequately in empirical tests.  
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2. Statistical-Estimate-Based Map Matching 

 

Distinctive from geometry and topology-based map-matching methods, current 

trends in map matching development have begun to incorporate more probabilistic 

and fuzzy elements. These constituents are more tolerant of the uncertainty, partial 

truth, and approximation involved in map matching processes. Taylor and Blewitt 

(2000) took a unique but innovative approach by simulating the working mechanism 

of differential GPS. Their algorithm, called road reduction filtering, defines a pool of 

virtual GPS “Ref” positions by projecting the “Raw” GPS point to the nearby road 

links. These “Ref” positions are used as virtual differential corrections for the next 

“Raw” GPS points and, in turn, to generate another pool of “Ref” positions. 

Conceivably, the correct matching position on the road link must be among the 

“Ref” positions. Based on the fact that bearing and distance measures between 

successive “Raw” GPS points and those between successive “Ref” positions are 

highly correlated, any false series of “Ref” positions can be filtered out. In essence, 

the road reduction filter is still mostly geometry/shape based. But, among the few 

first attempts, statistical rationale (i.e., correlation measurement) for the first time 

was introduced into the efforts of searching for a better map matching solution.  In 

the mean time, Lakakis (2000) attempted the approach using linear regression 

analysis to fit GPS points to the road centerlines. Parameter significance tests serve 

to verify the linear relationship between GPS latitude and longitude coordinates. The 
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fitted lines work as predictors for map matching GPS points to the base road network. 

This method, however, puts higher demands on GPS data accuracy. For stand-alone 

GPS data, there is a great possibility that map matching zones for two one-way 

parallel roads overlay each other. Walter and Fritsch (1999) viewed the map 

matching problem as equivalent to transmitting information through a 

communication channel. The ultimate aim of the map matching procedure, therefore, 

becomes minimizing the amount of information loss during the transmission or 

maximizing the mutual information shared between data sets. The method does not 

require any tuning parameters except a statistical investigation on the evaluation of 

the conditional probability involved in the mutual information formulation. 

 

 

3. Data Enhancement Efforts 

 

  

Apart from continuously refining the map matching procedures and techniques, 

other efforts have been made to improve map matching accuracy from the 

perspective of data preparation and compilation, either by increasing the accuracy of 

the localization estimates or by matching the these estimates against high-accuracy 

digital map.  For an application that involves a larger and more stable carrying 

platform, data input for map matching typically incorporates simple GPS recorded 

point data with other data sources, such as from a digital elevation model, digital 

compass, gyroscope, velocity sensors or Antilock Brake System (ABS), etc. For 
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other applications that allow post-processing in travel or transport-related studies, 

usually only the GPS point data serves as the input data source. While GPS recorded 

points comprise the single data source, a Kalman filter typically is executed to 

estimate the bias associated with a previous map-matching epoch. Then the 

estimation can be used to compensate the next GPS positioning input. In the situation 

where a GPS receiver is complemented and integrated with other data sources, a 

centralized Kalman filter (Extended Kalman Filter- EKF) has been used to 

incorporate the measurements from all data sources and generate a single stream of 

complex position estimates (Bétaille and Bonnifait, 2000). To further eliminate the 

errors and biases generated from the sensors, these EKF methods usually also build 

the geometrical shape of the platform into the data fusion model. The seminal 

localization approach has the ability to collect solid measurements even when the 

GPS signals are cut off by the obstruction of surrounding environment. The multi-

data source combination method is superior in that it handles both of the 

disadvantages associated with the individual Dead Reckoning (DR) or GPS 

localization methods by allowing them to complement each other within an 

integrative measurement framework (Bonnifait et al., 2001).  

 

Compared to the rapid advances of positioning technology, improving map 

accuracy is more of a long-term, energy-consuming task. Digital maps usually either 

contain errors or do not possess enough resolution power for some of the map 

matching applications. Although the current commercial digital maps already have 
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sufficient coverage over the road networks in most metropolitan areas and even most 

parts of rural regions, mapping accuracy typically varies dramatically, and the map 

details have not been able to extend to the details of lanes and cover particular types 

of roads such as bike paths or sidewalks. The map resolution problem could be 

partially resolved by one of two ways. For simplified two-lane road representation 

(generalized as single road centerlines), Marchal et al. (2004) have replaced them 

with two oriented links derived by adding small shifts perpendicular to the link 

centerline. Therefore, the distance between GPS record and the road segment can be 

enhanced as the distance from the point to the augmented road links. The method 

reverses the map generalization process to generate more road link details. But it 

does require that the network attribute table contain the “number of lanes” details. 

Rogers (2000) attempted to address the problem by using the repetitive differential 

GPS (DGPS) measurements from a probe vehicle to augment commercial digital 

maps down to the drive lane levels. His approach is partially successful, but still 

suffers higher errors around road intersection and in cases where GPS signals are 

subject to multi-path effects.  

 

 

3. A Heterogeneous Map Matching Approach for Travel/Transport Studies 

 

Different from its application in other fields, the map matching in 

travel/transportation studies aims at: 1) identifying the correct road links traversed by 
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the traveler; and 2) ensuring that the identified links form a meaningful travel route. 

Its main focus is to correctly transfer the road network attributes data to the GPS 

recorded travel route, hence further identifying how the spatial features (road, 

locations visited, function area traversed, etc.) interacted with the traveler during the 

behavioral process. Ideally, map-matching methodology should be able to help 

answer queries beyond the direct matching result, i.e., road type distribution along 

the travel route or delays encountered. Generally speaking, it is impossible to answer 

these queries if the travelers are off-road, or if the travel roads are not shown on the 

map. Thus, map matching in travel/transportation studies not only calls for accurate 

road network maps, but also takes into account the fact that the travel is not 

necessarily restrained to roads that facilitate a vehicle’s travel and that the travel 

might include pedestrian walks and bicycle journeys. 

 

In this research, three recent map-matching algorithms were empirically 

evaluated for travel route derivation from GPS point data and their performance is 

tested against the GPS data that were collected in a travel survey. The three map-

matching algorithms are: weight-based map matching by Yin and Wolfson (2004), 

fuzzy-logic based map matching by Syed and Cannon(2004) and General map 

matching by Quddus et al (2003). They were implemented in the ARCVIEW 

network analysis module and the evaluation is conducted from multiple perspectives 

– data needs, selection factors, matching accuracy, and time complexity. 
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The empirical testing revealed several facts about these map matching algorithms 

and has inspired us on how to adapt them or how to design our own in order to solve 

the matching problem in travel/transportation studies. 

  

1) Online map matching algorithms typically ignore or can not use the global 

information contained in the data. Occasionally a GPS position can be matched to a 

branching or disconnecting road link (Figure 1). Problems arose when the recorded 

GPS points are sparse due to fast travel speed by the carrier - a short road link could 

be ignored and unmatched (Figure 2).  

2) In traditional GIS digital maps, nodes are not always digitized at street 

intersections and their density varies across the map. The position of a node plays an 

important role in the node-to-curve based map matching algorithms. If insufficient 

attention is paid to maintain the consistent topology of matching results, one minor 

mismatch could lead to a blunder (broken links or gaps). 

3) Offline algorithm could use global optimization techniques such as the 

shortest path algorithm to generate a topologically correct route. However, the 

assumption that no road links have ever been repetitively visited deprives its ability 

to differentiate the travel loops.  

4) Both types of algorithms could utilize the fact that travelers constrain their 

travel within the attributed road network. Thus, the particular regulations about the 

road links (speed limits, one-way streets, etc.) could be used to help enhance map-

matching accuracy. 
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With these rationales in mind, we determined to take a heterogeneous approach 

for map-matching travel/transportation data. The targeted data input source for the 

algorithm is limited to GPS records. The algorithm consists of three phases: data 

preprocessing, multiple hypothesis map matching with rank aggregation and 

Dempster belief test.  

 

4.1 Data Preprocessing—Cluster Reduction and Density Leverage 

 

The new algorithm adds a data preprocessing step prior to the real map matching 

work. It consists of two steps: cluster reduction and density leverage.  

 

Cluster reduction is meant to reduce the systematic noise in the data. Usually it is 

not easy to qualify the moving/still state solely based GPS receiver’s input, 

especially when a tracking device is used to collect travel data across the full 

spectrum of travel modes. Even when the carrier keeps still at a fixed location, a 

GPS device would record a cluster of positions indicating random deviations around 

the true position point, which phantoms the slow moving speed of the carrier and 

random travel directions. Due to their unpredictability and falsifying characteristics, 

the GPS point clusters could be extremely misleading to map-matching procedures 

and are the greatest cause of overshoots and mismatch. With the spatial clustering 
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modeling technique, the GPS collected travel data are filtered first to substitute the 

point clusters with their centroids. To model and identify these clusters, we selected 

the DBSCAN (Ester et al., 1996) clustering algorithm for cluster searching since it 

allows lack of information on the number and shape of the clusters in the input data. 

  

Density leverage is meant to dynamically adjust the data sampling frequency 

against the model resolution of the base street map. The matching street layer 

consists of various lengths of street links. Similarly, the sampling interval of the GPS 

receiver varies with the carrier’s moving speed and direction. Whenever the 

sampling interval is greater than the length of a traversed street link, there might be 

the chance that the street link is omitted from the matching algorithm, resulting in 

gaps in the match result. After the cluster reduction handling, the GPS trace data is 

streamlined in units of two. Every two GPS points are processed to generate a 

combined buffer area around them. If the sample distance between the two points is 

greater than half of the minimum-length street link that falls in the buffer, additional 

false data points are interpolated and inserted into the trace sequence.   

 

4.2 Multiple-Hypothesis Matching Algorithm with Rank Aggregation 

 

Borrowing the concept from the genetic algorithm, the map matching method we 

propose and implement keeps a pool of the best solutions. The solution pool is 

updated sequentially with the ordinal encountering of street intersections along the 
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travel route. The GPS recorded travel trace is treated as a translated and rotated 

version of the match route. During the search for the best candidates, both 

accumulated 2-norm distance (A2ND) and rotational variation metric (RVM) (Joshi, 

2001) is used to evaluate the matching result and guide the search directions around 

street connections.  Norms constitute a quantitative measure of the geometric 

displacement between the GPS trace and the actual travel route. RVM, which 

accumulates the degree of variance between the orientations of two geometric shapes, 

measures the geometric distortion between them.    

 

The algorithm starts with creating a pool of (N) seed candidates by buffering 

around the first valid GPS record. Any street segment that falls within the buffer is 

selected as one of the potential matches of the travel route start. Continuing with the 

next temporally adjacent GPS trace point, the norm distance between the GPS points 

and its projection on the current match link is computed and accumulated into A2ND 

as the match score of the current match candidate. In the mean time, a direction 

discrepancy between the current travel direction as indicated by the GPS records and 

the current match link is computed and accumulated to RVM metric. A2ND and 

RVM both serve to guide the match search in the street network space. However, we 

did not try to multiplex them to produce a single matching index, as a fixed or 

dynamic weighting schema are difficult to specify and unlikely to suit every possible 

individual tracing case. The partial match results are ranked in A2ND and RVM 
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separately. Only the top N results of both are kept for the next round of match 

growth.    

  

As the partial match results growth encounters a street intersection, a ground rule 

is set up to decide the right timing of when to select the next link to further the 

matching process. Two cases exist to judge when the traveler began to leave the 

current link and transit to the next one: 1) The projection of current GPS point falls 

on or out of the end point of the current link, which typically occurs when the travel 

direction change is less than or equal to 90 degrees; 2) The projection of the current 

GPS point comes near to the end point of the current link, but the point’s position is 

getting away from the current link, which typically occurs when the travel direction 

change exceeds 90 degrees. For the second case, we set up two threshold values to 

switch on the turning signal -20 meters for coming near to the end point of a link and 

30 meters for leaving the current link. When determining the next link, all the 

topologically connected links to the intersection node are considered as the potential 

next links, including the incurrent link to cover the U-turn situation. However, 

prohibited maneuver and turn restrictions information has been used to pre-eliminate 

certain search branches efficiently. 

  

After the matching process is completed, a pool of top N match results is derived 

with different rankings of A2ND and RVM measures. With the rank aggregation 

method, we may combine the ranking of the two to obtain an aggregated ordering. 
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Ideally, Kemeny ordering minimizes the sum of the “bubble sort” distances and thus 

generates the best compromise ranking. However, it is a NP-hard problem (Dwork et 

al., 2001). Here, we implemented two of the other heuristic/sub-optimal ranking 

aggregation methods to composite the ultimate matching results (Table 1):  1) the 

simple Borda’s method to generate a combined ranking for the pool of match results: 

Each candidate in the pool is assigned a score of the number of candidate ranked 

blow it. Its total score across the different ranking list is finally sorted in a 

descending order; and 2) a good approximation to Kemeny optimized rank 

aggregation – footrule optimal aggregation, which finds the median permutation of 

the rank lists to be combined.  

 

4.3 Dempster Belief Test for Travel Off-Road/Noise Discernment  

 

As discussed in the previous sections, uncertainties typically exist in both the 

trace data and the base matching street map. Given the dataset and the matching base, 

match results are considered as always producible without setting any restraint on the 

acceptable belief and plausibility level. However, considering the possible travel by 

walk mode, a matching algorithm could easily map a pedestrian travel onto a 

highway link nearby. Or under other scenarios, the GPS device could be “blacked 

out” by the surrounding tall buildings. In either case, the assumption that a candidate 

match link is identifiable from the base street map becomes void.  
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This research takes the advantage of Dempter-Shafter theory (Shafer, 1976) to 

fuse heterogeneous information in order to discern the off-road travel and GPS 

black-out situations. For each of the matching select criterion (proximity and 

direction), a frame of discernment {yes, no, perhaps} and its belief assignment 

functions as similar to Najjar and Bonnifait’s (2002) was built to test if a matching 

link is a “good match”.  Each discernment type of a select criterion is associated with 

two quantities: belief and plausibility. The GPS trace point match to a link is 

considered invalid if the no belief value is greater than the plausibility values of the 

other two assumptions, the no belief value is 1, or the conflict parameter has a value 

of 1.  A consecutive trace of more than 10 invalid GPS point-to-link match 

invalidates the corresponding segment of match results, which is then splinted out 

and replaced with the original GPS travel trace.     

 

4.4 Match Results  

 

Map matching is performed against the Dynamap/transportation data of Santa 

Barbara from GDT, Inc. It contains complete address information and routing 

features, including speed limit, cost, turn restrictions, one-way street information, etc. 

The travel data comes from a travel survey conducted locally. A test run of the 

algorithm against a single GPS trace generates the following results: Figure 3 and 

figure 4 show data processing effects of cluster reduction and density leverage, 

respectively. Figure 5 show the best match result from the match candidate pool as 
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indicated by both the Borda and Footrule ranking aggregation methods. The second 

best match result as indicated from Borda method indicates an additional matching 

link at the end of travel route, while the second best match result as indicated by 

Footrule method indicates an alternative matching link at the end of travel route. 

They show up with the minimal difference from the best except the divergence at the 

end of the identified travel route. Table 2 shows the part of Dempster belief test 

result for the test route. The final part of the travel is discerned as the part of off-road 

travel and replaced with the original GPS data. In all, the algorithm generated a 

perfect match for the GPS trace input, without branch or gap in between, and 

segmented out the off-road travel portion with high accuracy (Figure 6).    

  

Considering the performance of the algorithm, suppose the number of the road 

links in the road network is N, the number of the road link extremities is V, the 

number of collected GPS points is M, and the size of candidate Pool is K. The time 

complexity for the DBSCAN algorithm would be O(M * log(M)) with R-tree 

implementation. Density leverage involves a spatial buffering operation, and, hence, 

is the most costly. Its time complexity is up to O(M * log(N) ). The map matching 

step involves O(M *  K) for candidate searching, and O(K* log(k)) for pool updating 

at each step. Its total complexity is O(M * K2 * log(K)). The dempster belief test at 

the end incurs an additional O(M) time cost. When K is small and N/M is large, the 

time complexity of the algorithm is comparable to most of the algorithms we 

discussed in section 3.   
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5. Conclusion 

 

In this paper, we briefly overviewed the currently available map matching 

methods. Several recent online/offline map matching algorithms were implemented 

in GIS to provide a case study to evaluate from multiple perspectives. In recognition 

of the disadvantages associated with the methods examined, this research proposed 

and implemented an innovative map matching approach suitable for travel/activity 

research needs which is uniquely characterized by: 1) data preprocessing with point 

cluster reduction and density leverage, 2) offering the candidate solution within a 

pool of “the best,” 3) balancing of matching results from multiple matching factors 

with rank aggregation, 4) intelligently utilizing the basic network constraint 

attributes with “expert rules” to increase the matching accuracy, and 5) Dempster 

belief test to discern the noise and off-road travel.  Our analysis has shown that the 

performance of the new algorithm is comparable with the others when the candidate 

pool size is small and network/GPS trace size is large. Further research needs to 

quantify the performance of this algorithm and others with respect to a complete set 

of survey travel routes recorded. A matching index needs to be developed to evaluate 

the matching accuracy among the algorithms quantitatively.   
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List of Illustrations: 

 

• Figure 1. Overshoot scenario 
• Figure 2. Gap scenario 
• Figure 3. A cluster of GPS points recorded around street intersection is 

recovered via DBSCAN algorithm and replaced with its centroid 
• Figure 4. Original GPS trace (as indicated by the triangle symbols) didn’t 

sample the short street intersection. Augmented traces by density leverage 
added three false GPS data points to cover it 

• Figure 5. The best match result from both Borda and Footrule ranking 
aggregation 

• Figure 6: Map matching result after Dempter belief test with multi-criterion 
fusion 

• Table 1. Match Result Summary (including L2norm and RVM measures, 
rankings, ranking results from Borda and Footrule ranking methods, map 
matching trip distance and final trip distance after Dempster belief test  

• Table 2. Portion of the Dempster fusion result for the test travel route (PI = 
Plausibility) 
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Figure 1 Overshoot scenario 
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Figure 2 Gap scenario 
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Figure 3 A cluster of GPS points recorded around street intersection is 
recovered via DBSCAN algorithm and replaced with its centroid 
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Figure 4 Original GPS trace (as indicated by the triangle symbols) didn’t 
sample the short street intersection. Augmented traces by density leverage 
added three false GPS data points to cover it. 
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Figure 5 The best match result from both Borda and Footrule ranking 
aggregation. 
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Figure 6 Map matching result after Dempter belief test with multi-criterion 
fusion. 
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Table 1. Match Result Summary (including L2norm and RVM measures, 
rankings, ranking results from Borda and Footrule ranking methods, map 
matching trip distance and final trip distance after Dempster belief test.     

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 228



 

 

Table 2 Portion of the Dempster fusion result for the test travel route (PI = 
Plausibility) 
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